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Lecture 14
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Estimation & Seasonalities
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• We defined the ARMA(𝑝, 𝑞) model:
ሺ𝐿ሻ 𝑦௧ െ 𝜇 ൌ 𝜃ሺ𝐿ሻ𝜀௧

Let 𝑦௧ െ 𝜇 ൌ 𝑥௧

Then,  𝐿 𝑥௧ ൌ 𝜃ሺ𝐿ሻ𝜀௧

 𝑥௧ is a demeaned ARMA process. 

• In this lecture, we will study:
- Identification of  𝑝, 𝑞.
- Estimation of  ARMA(𝑝, 𝑞) 
- Non-stationarity of  𝑥௧.
- Differentiation issues – ARIMA(𝑝,𝑑, 𝑞) 
- Seasonal behavior  – SARIMA(𝑝,𝑑, 𝑞)S

ARMA Process
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• We define the autocovariance function, γ 𝑡 െ 𝑗  as: 
γ 𝑡 െ 𝑗 ൌ 𝑘 ൌ 𝐸ሾ 𝑦௧,𝑦௧ି௝ሿ

• For an AR(𝑝) process, WLOG with 𝜇 =0 (or demeaned 𝑦௧), we get:
𝛾ሺ𝑘ሻ ൌ 𝐸ሾሺ𝜙ଵ 𝑦௧ିଵ𝑦௧ି௞ ൅ 𝜙ଶ𝑦௧ିଶ𝑦௧ି௞൅. . . .൅𝜙௣𝑦௧ି௣𝑦௧ି௞ ൅ 𝜀௧𝑦௧ି௞ሻሿ
    ൌ 𝜙ଵ 𝛾ሺ𝑘 െ 1ሻ ൅ 𝜙ଶ𝛾ሺ𝑘 െ 2ሻ൅. . . .൅𝜙௣𝛾ሺ𝑘 െ 𝑝ሻ

Notation: γ 𝑘  is commonly used. Sometimes, γ 𝑘 is referred as 
“covariance at lag 𝑘.

• The γ 𝑘 determine a system of  equations:
𝛾 0 ൌ 𝐸 𝑦௧ ,𝑦௧ ൌ 𝜙ଵ 𝛾 1 ൅ 𝜙ଶ 𝛾 2 ൅ 𝜙ଷ 𝛾 3  ൅. . . .൅ 𝜙௣ 𝛾ሺ𝑝ሻ ൅ 𝜎ଶ

𝛾 1 ൌ 𝐸 𝑦௧ ,𝑦௧ିଵ ൌ 𝜙ଵ 𝛾 0 ൅ 𝜙ଶ 𝛾 1 ൅ 𝜙ଷ 𝛾 2  ൅. . . .൅ 𝜙௣ 𝛾ሺ𝑝 െ 1ሻ
𝛾 2 ൌ 𝐸 𝑦௧ ,𝑦௧ିଶ ൌ 𝜙ଵ 𝛾 1 ൅ 𝜙ଶ 𝛾 0 ൅ 𝜙ଷ 𝛾 1  ൅. . . .൅ 𝜙௣ 𝛾ሺ𝑝 െ 2ሻ
⋮    ⋮    ⋮    ⋮    ⋮    ⋮

Autocovariance Function 

• The 𝑝x𝑝 system of  equations:

𝛾 1 ൌ 𝐸 𝑦௧ ,𝑦௧ିଵ ൌ 𝜙ଵ𝛾 0 ൅ 𝜙ଶ𝛾 1 ൅ 𝜙ଷ𝛾 2 ൅ . . .൅𝜙௣𝛾ሺ𝑝 െ 1ሻ
𝛾 2 ൌ 𝐸 𝑦௧ ,𝑦௧ିଶ ൌ 𝜙ଵ𝛾 1 ൅ 𝜙ଶ𝛾 0 ൅ 𝜙ଷ𝛾 1 ൅ . . .൅𝜙௣𝛾ሺ𝑝 െ 2ሻ
𝛾 3 ൌ 𝐸 𝑦௧ ,𝑦௧ିଷ ൌ 𝜙ଵ𝛾 2 ൅ 𝜙ଶ𝛾 1 ൅ 𝜙ଷ𝛾 0 ൅ . . .൅𝜙௣𝛾ሺ𝑝 െ 3ሻ
⋮    ⋮    ⋮    ⋮    ⋮    ⋮ 

Using linear algebra, we write the system as:  𝜸 = Γ 𝜙

where

Γ = 

𝛾 0 𝛾 1 ⋯ 𝛾 𝑝 െ 1
𝛾 1 𝛾 0 ⋯ 𝛾 𝑝 െ 2
⋮ ⋮ ⋮ ⋮

𝛾 𝑝 െ 1 𝛾 𝑝 െ 2 ⋯ 𝛾 0

a 𝑝x𝑝 matrix

𝜙 is the 𝑝x1 vector of  AR(𝑝) coefficients
𝜸 is the 𝑝x1 vector of  𝛾ሺ𝑘ሻ autocovariances.

ACF: Estimation (System of  Equations)
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• Now, we define the autocorrelation function (ACF):

𝜌ሺ𝑘ሻ ൌ
𝛾ሺ𝑘ሻ
𝛾 0

ൌ
covariance at lag 𝑘

variance

The ACF lies between -1 and +1, with 𝜌ሺ0ሻ ൌ 1.

• Dividing the autocovariance system by γ(0), we get: 

Or using linear algebra: Ρ 𝜙 = ρ

• These are Yule-Walker equations, which can be solved numerically.

𝜌ሺ0ሻ 𝜌ሺ1ሻ ⋯ 𝜌ሺ𝑝 െ 1ሻ
𝜌ሺ1ሻ 𝜌ሺ0ሻ ⋯ 𝜌ሺ𝑝 െ 2ሻ
⋮ ⋮ ⋯ ⋮

𝜌ሺ𝑝 െ 1ሻ 𝜌ሺ𝑝 െ 2ሻ ⋯ 𝜌ሺ0ሻ

𝜙ଵ
𝜙ଶ
⋮
𝜙௣

ൌ

𝜌ሺ1ሻ
𝜌ሺ2ሻ
⋮

𝜌ሺ𝑝ሻ

ACF: Estimation – Yule-Walker

• The Yule-Walker equations can be solved numerically. MM can be 
used (replace population moments with sample moments).

• Properties for a stationary time series
1. 𝛾 0 ≥ 0 (from definition of  variance)
2. 𝛾ሺ𝑘ሻ ≤ 𝛾 0 (from Cauchy-Schwarz)
3. 𝛾 𝑘 ൌ 𝛾ሺെ𝑘ሻ (from stationarity)
4. Γ, the auto-correlation matrix, is psd (a’ Γ a ≥ 0)

Moreover, any function 𝛾 : Z → R that satisfies (3) and (4) is the
autocovariance of  some stationary time series.

ACF: Estimation – Yule-Walker
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• For an ARMA(1, 1) we have:.
𝑦௧ = 𝜇 ൅ 𝜙ଵ 𝑦௧ିଵ+ θଵ 𝜀௧ିଵ + 𝜀௧, 𝜀௧ ~ 𝑊𝑁.

• Moments: (𝜇 = 0)
E[𝑦௧] = 𝜇 / (1 െ 𝜙ଵ) = 0 (assuming 𝜙ଵ ≠ 1)

Var[𝑦௧] = 𝜎ଶ (1 ൅ θଵ
ଶ ) / (1 െ ϕଵ

ଶ) (assuming |𝜙ଵ|< 1)

• Autocovariance function (𝜇 = 0)
γሺ𝑘ሻ = Cov[𝑦௧,  𝑦௧ି௞]

ൌ 𝐸 𝜙ଵ 𝑦௧ିଵ ൅ θଵ  𝜀௧ିଵ൅ 𝜀௧  𝑦௧ି௞
ൌ 𝜙ଵ 𝐸 𝑦௧ିଵ 𝑦௧ି௞ ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞
= 𝜙ଵ γ 𝑘 െ 1  ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞

• Again, we have a recursive formula.
γሺ𝑘ሻ = 𝜙ଵ γ 𝑘 െ 1  ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞ ൅ 𝐸 𝜀௧ 𝑦௧ି௞

ACF: ARMA(1, 1) – Recursive Formula

• We have a recursive formula:
γ 𝑘 ൌ  𝜙1 

γ 𝑘 െ 1 ൅ 𝐸 𝜀௧ 𝒚𝒕ି𝒌 ൅ θଵ 𝐸 𝜀௧ିଵ 𝑦௧ି௞

It can be shown, after a lot of  algebra: 

For 𝑘 = 0,
γ 0 ൌ 𝜙ଵ γ 1 ൅ 𝜎ଶ ൅ θଵ 𝜙1 σ2 ൅ θ1σ2

For 𝑘 = 1, 
γ 1 ൌ  𝜙1 

γ 0 ൅ θଵ γ 1

For 𝑘 = 2, 
γ 2 ൌ  𝜙1 γ 1

For 𝑘, 
γ 𝑘 ൌ 𝜙ଵ

௞ିଵ γሺ1ሻ,  𝑘 ൐ 1 

 If |𝜙1|<1, exponential decay.

ACF: ARMA(1, 1) – Recursive Formula
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• Two equations for γሺ0ሻ and γ 1 :

γ 0 ൌ 𝜙ଵ γ 1 ൅ σ2 ൅ θଵ 𝜙1 σ2 ൅ θ1 σ2

γ 1 ൌ 𝜙ଵ γ 0 ൅ θଵ γ 1

Solving for γ 0 & γ 1 :

γ 0 ൌ σ2 ଵ ା θభ
మ

 ା ଶ థభθభ
ଵ ି థభ

మ

γ 1 ൌ σ2 ଵ ା థଵ 
θభ

 
∗ థభା θభ

ଵ ି థభ
మ

⋮
γ 𝑘 ൌ 𝜙ଵ

௞ିଵ γሺ1ሻ,  𝑘 ൐ 1  If  |𝜙1|<1, exponential decay.

Note: If  stationary, ARMA(1,1) & AR(1) show exponential decay. 
Difficult to distinguish one from the other through autocovariances.

ACF: ARMA(1, 1) – Stationarity

• Estimation:  
Easy: Use sample moments to estimate 𝛾ሺ𝑘ሻ and plug in formula:

𝑟௞ ൌ 𝜌ො௞ ൌ
∑ሺ𝑌௧ െ 𝑌ሜ ሻሺ𝑌௧ା௞ െ 𝑌ሜ ሻ

∑ሺ𝑌௧ െ 𝑌ሜ ሻଶ

We plug 𝜌ො௞ = 𝑟௞ in the Yule-Walker equations and solve for 𝝓:

𝑹 𝜙 = 𝒓   𝜙෡ = 𝑹ିଵ 𝒓

where 𝑹 is the estimated correlation matrix P.

• The sample correlogram is the plot of  the ACF against 𝑘. As the 
ACF lies between -1 and +1, the correlogram also lies between these 
values.

ACF: Estimation & Correlogram
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• The sample correlogram is the plot of  the ACF against k.

As the ACF lies between -1 and +1, the correlogram also lies between 
these values.

Example: Correlogram for US Monthly Returns (1800 – 2013)

ACF: Estimation & Correlogram

• Distribution: 
For a linear, stationary process, 𝑦௧ ൌ 𝜇 ൅ ∑ 𝜓௝

ஶ
௝ୀ଴ 𝜀௧ି௝, 

with E[𝜀௧4] < ∞, the distribution of  the sample ACF, 𝑟௞ ൌ 𝜌ො௞ is 
approximately normal with:

r 
   ௗ  

 N(ρ, V/𝑇), V is the covariance matrix.

Under H0 (no autocorrelations) ρ௞ = 0 for all 𝑘 > 1.

r 
   ௗ  

 N(0, I/𝑇)  Var[𝑟௞] = 1/𝑇.

• Under H0, the SE = 1/ 𝑇  95% C.I.: 0 േ 1.96 * 𝟏/ 𝑻

Then, for an uncorrelated, WN sequence, approximately 95% of  the 
sample ACFs should be within the above C.I. limits. 

Note: The SE = 1/ 𝑇 are sometimes referred as Bartlett’s SE. 

ACF: Distribution
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• The ACF can be used as a tool to select an ARMA(𝑝, 𝑞) model. In 
general, it is used to select the lag 𝑞 in an MA model.

Note: Ideally, “Tails off ” is exponential decay. In practice, we may see 
decay with a lot of  “noise” and a lot of  non-zero values.

• In the next slides, we simulate ARMA models. This is an “ideal” 
situation, we know the model that generated the data. Then, we look 
at the ACF to see if  it is easy to guess the model and order of  the 
model.

ACF – Identification

AR(𝑝) MA(𝑞) ARMA(𝑝, 𝑞)

ACF Tails off 0 after lag 𝑞 Tails off

Example: Sample ACF for an MA(𝑞) process:

𝑦௧ ൌ 𝜇 ൅ 𝜀௧ ൅ 𝜃ଵ  𝜀௧ିଵ൅ 𝜃ଶ 𝜀௧ିଶ ൅ . . .൅ 𝜃௤ 𝜀௧ି௤

𝜌 𝑘 ൌ
∑ ఏೕఏೕషೖ
೜
ೕసೖ

ଵ ା ఏభ
మା ఏమ

మା … ା ఏ೜
మ   𝑘 ൑ 𝑞

ൌ 0        otherwise. 

For different 𝑘’s:
ρ 0 = 1

ρ 1 = 
ఏభ ା ఏమఏభ ା ఏయఏమ

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

ρ 2 = 
ఏమ ା ఏయఏభ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

ρ 3 = 
ఏయ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

ρ 𝑘 = 0 for |𝑘| > 3.

ACF: MA(𝒒)
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Example (continuation): 
𝑦௧ ൌ 𝜇 ൅ 𝜀௧ ൅ 𝜃ଵ  𝜀௧ିଵ൅ 𝜃ଶ  𝜀௧ିଶ൅ 𝜃ଷ 𝜀௧ିଷ

Suppose 𝜃ଵ = 0.5; 𝜃ଶ = 0.4; 𝜃ଷ = 0.2. Then,

ρ 0 = 1

ρ 1 = 
ఏభ ା ఏమఏభ ା ఏయఏమ

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.5+0.4∗0.5+0.1∗0.4
1 + 0.52 

+ 0.42+ 0.12 = 0.5211

ρ 2 = 
ఏమ ା ఏయఏభ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.4 + 0.1∗0.5

1 + 0.52 
+ 0.42 

+ 0.12 = 0.3169

ρ 3 = 
ఏయ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

= 
0.1

1 + 0.52 
+ 0.42+ 0.12 = 0.0704

ρ 𝑘 = 𝟎 for |𝑘| > 3.

ACF: MA(𝒒 = 3)

Example (continuation): Plot of  simulated series and ACF with 95% 
CI: = [-0.1386, 0.1386] 
> sim_ma3_05 <- arima.sim(list(order=c(0,0,3), ma=c(0.5, 0.4, 0.2)), n=200)  # sim MA(3)

ACF: MA(𝒒 = 3)
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Example: Sample ACF for an ARMA(1,1) process:
𝑦௧ ൌ 𝜙1𝑦௧ିଵ ൅ 𝜀௧ ൅ 𝜃ଵ𝜀௧ିଵ

• From the autocovariances, we get

γ 0 ൌ σ2 1 ൅ θ1
ଶ ൅ 2𝜙1 θ1

1 െ 𝜙1 ଶ

γ 1 ൌ σ2 1 ൅ 𝜙1 θ1 ∗ 𝜙1 ൅  θ1

1 െ 𝜙1
ଶ

γ 𝑘 ൌ 𝜙1γ 𝑘 െ 1 ൌ 𝜙1
௞ିଵσ2 1 ൅ 𝜙1 θ1 ∗ 𝜙1 ൅  θ1

1 െ 𝜙1 ଶ

• Then,

𝜌ሺ𝑘ሻ ൌ 𝜙1
௞ିଵ ଵ ା థଵ ஘ଵ  ∗ థଵା஘ଵ

ଵ ା ஘ଵ
మା ଶథଵ஘ଵ

 If  |𝜙1|<1, exponential decay. Similar pattern to AR(1).

ACF: ARMA(1, 1)

Example (continuation): Sample ACF for an ARMA(1,1) process:
𝑦௧ ൌ 𝜙1𝑦௧ିଵ ൅ 𝜀௧ ൅ 𝜃ଵ𝜀௧ିଵ

The ACF for an ARMA(1,1):

ρሺ𝑘ሻ ൌ 𝜙1
௞ିଵ ଵ ା థଵ ஘ଵ  ∗ థଵା஘ଵ

ଵ ା ஘ଵ
మା ଶథଵ஘ଵ

• Suppose 𝜙1 
= 0.4, θ1 = 0.5. Then,

ρ 0 = 1

ρሺ1ሻ ൌ ଵ ା ଴.ସ ∗ ଴.ହ
 
∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ
= 0.6545 

ρሺ2ሻ ൌ 0.4 *  
ଵ ା ଴.ସ ∗ ଴.ହ  ∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ
= 0.2618

ρሺ3ሻ ൌ 0.4ଶ *  
ଵ ା ଴.ସ ∗ ଴.ହ  ∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ
= 0.0233 

⋮ 

ρሺ𝑘ሻ ൌ 0.4௞ିଵ *  
ଵ ା ଴.ସ ∗ ଴.ହ  ∗ ଴.ସ ା ଴.ହ

ଵ ା 0 .ହమା ଶ∗଴.ସ∗଴.ହ

ACF: ARMA(1, 1)
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Example (continuation): Plot of  simulated series and ACF
> sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)  #sim ARMA(1,1)

ACF: ARMA(1, 1)

Example: US Monthly Returns (1871 – 2020, T=1,795)
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, 
sep=",")
x_P <- Sh_da$P
x_D <- Sh_da$D
T <- length(x_P)
lr_p <- log(x_P[-1]/x_P[-T])
lr_d <- log(x_D[-1]/x_D[-T])
acf_p <- acf(lr_p) # acf: R function that estimates the ACF
> acf_p
Autocorrelations of  series ‘lr_p’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.279 0.004 -0.043  0.017  0.074 0.039  0.039  0.044  0.035  0.034  0.022 

12  13     14  15     16 17 18 19 20 21  22     23 
-0.010 -0.059 -0.058 -0.056  0.009  0.033  0.047 -0.040 -0.087 -0.090 -0.029  0.005 

24 25 26  27  28     29   30  31     32 
0.003 -0.013 -0.058 -0.018 -0.005  0.026  0.011  0.000  0.020

SE(𝑟௞) = 1/sqrt(T) = 1/sqrt(1,795) = .0236  95% CI: േ 2 * 0.0236

ACF: Example – U.S. Stock Returns
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Example (continuation): Correlogram for US Monthly Returns 
(1871 – 2020)

Note: With the exception of  first correlation, correlations are small. 
However, many are significant, not strange result when T is large. 

ACF: Example – U.S. Stock Returns

Example: US Monthly Changes in Dividends (1871 – 2020, 𝑇 ൌ
1,795ሻ

acf_d <- acf(lr_d)
> acf_d
Autocorrelations of  series ‘lr_d’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000  0.462  0.516  0.432  0.444  0.326  0.442  0.288  0.283  0.265  0.202  0.168

12  13     14  15     16 17 18 19 20 21  22     23 
0.142 0.100  0.122  0.123  0.085  0.045  0.026 -0.013  0.001 -0.029 -0.049 -0.077    

24 25 26  27  28     29   30  31     32 
-0.038 -0.100 -0.095 -0.055 -0.081 -0.092 -0.034 -0.063 -0.089

High correlations and significant even after 32 months! 

ACF: Example – U.S. Stock Returns
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Example (continuation): Correlogram for US Monthly Changes in 
Dividends (1871 – 2020)

Note: Correlations are positive for almost 1.5 years, then become 
negative.

ACF: Example – U.S. Dividends

• Recall the Q statistic as:
𝑄 ൌ 𝑇∑ 𝜌ො௞

ଶ௠
௞ୀଵ

Under H0: ρ1 = ρ2 = ... = ρm= 0, 𝑄 follows χ௠
ଶ

𝑄 ൌ 𝑇∑ 𝜌ො௞
ଶ௠

௞ୀଵ
  ௗ  

χ௠
ଶ

• The Ljung-Box (LB) statistic has better finite sample properties than 
the 𝑄 statistic. Under H0, LB follows a χ௠

ଶ :

𝐿𝐵 ൌ 𝑇ሺ𝑇 ൅ 2ሻ∑ ሺ
ఘෝೖ
మ

ሺ்ି௞ሻ
௠
௞ୀଵ ሻ

  ௗ  
χ௠
ଶ

ACF:  Joint Significance Tests
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Example: LB test with 20 lags for US Monthly Returns and 
Changes in Dividends (1871 – 2020)
> Box.test(lr_p, lag=20, type= "Ljung-Box")

data:  lr_p
X-squared = 208.02, df = 20, p-value < 2.2e-16  Reject H0 at 5% level. 

> Box.test(lr_d, lag=20, type= "Ljung-Box")

data:  lr_d
X-squared = 2762.7, df = 20, p-value < 2.2e-16  Reject H0 at 5% level.

Conclusion: We found joint significance of  first 20 autocorrelations.

ACF – Joint Significance Tests

• The ACF gives us a lot of  information about the order of  the 
dependence when the series we analyze follows a MA process: The 
ACF is zero after 𝑞 lags for an MA(𝑞) process.

• If  the series we analyze, however, follows an ARMA or AR, the ACF 
alone tells us little about the orders of  dependence: We only observe 
an exponential decay. 

• We introduce a new function that behaves like the ACF of  MA 
models, but for AR models, namely, the partial autocorrelation 
function (PACF). 

• The PACF is similar to the ACF. It measures correlation between 
observations that are 𝑘 time periods apart, after controlling for 
correlations at intermediate lags.

Partial ACF (PACF)
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Intuition: Suppose we have an AR(1):
𝑦௧ ൌ 𝜙ଵ  𝑦௧ିଵ൅ 𝜀௧.

Then,
ρሺ2ሻ = 𝜙ଵ

ଶ

The correlation between 𝑦௧ and 𝑦௧ିଶ is not zero, as it would be for an 
MA(1), because 𝑦௧ is dependent on 𝑦௧ିଶ through 𝑦௧ିଵ. 

Suppose we break this chain of  dependence by removing (“partialing
out”) the effect 𝑦௧ିଵ. Then, we consider the correlation between [𝑦௧ –
𝜙ଵ𝑦௧ିଵ] & [𝑦௧ିଶ െ 𝜙ଵ𝑦௧ିଵ] –i.e., the correlation between 𝑦௧ & 𝑦௧ିଶ
with the linear dependence of  each on 𝑦௧ିଵ removed:

γሺ2ሻ = Cov(𝑦௧–𝜙ଵ𝑦௧ିଵ, 𝑦௧ିଶ – 𝜙ଵ 𝑦௧ିଵ) = Cov(𝜀௧, 𝑦௧ିଶ – 𝜙1 𝑦௧ିଵ) =0

Similarly,
γሺ𝑘ሻ = Cov(𝜀௧, 𝑦௧ି௞ െ 𝜙ଵ𝑦௧ିଵ) = 0 for all 𝑘 > 1.

Partial ACF

Definition: The PACF of  a stationary time series {𝑦௧} is 𝜙௛௛:

𝜙ଵଵ= Corr(𝑦௧,  𝑦௧ିଵ) = ρ(1)

𝜙௛௛ = Corr(𝑦௧ – E[𝑦௧|𝐼௧ିଵ], 𝑦௧ି௛ – E[𝑦௧ି௛|𝐼௧ିଵ]) for ℎ = 2, 3, ....

This removes the linear effects of  𝑦௧ିଶ, ..., 𝑦௧ି௛.

Example: AR(𝑝) process:
𝑦௧ ൌ 𝜇 ൅ ଵ 𝑦௧ିଵ ൅ ଶ 𝑦௧ିଶ ൅ . . .൅ ௣ 𝑦௧ି௣ ൅𝜀௧

𝐸 𝑦௧ 𝐼௧ିଵ ൌ 𝜇 ൅ 𝜙ଵ𝑦௧ିଵ ൅ 𝜙ଶ𝑦௧ିଶ ൅ . . .൅ 𝜙௛𝑦௧ି௛ିଵ
𝐸 𝑦௧ି௛ 𝐼௧ିଵ ൌ 𝜇 ൅ 𝜙ଵ𝑦௧ି௛ିଵ ൅ 𝜙ଶ𝑦௧ି௛ିଶ ൅ . . .൅ 𝜙௛𝑦௧ିଵ

Then, 𝜙௛௛ =𝜙௛ if  1≤ ℎ ≤ 𝑝
= 0 otherwise

 After the 𝑝th PACF, all remaining PACF are 0 for AR(𝑝) processes.

Partial ACF
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• The PACF 𝜙௛௛ is also the last coefficient in the best linear 
prediction of  𝑦௧ given 𝑦௧ିଵ,𝑦௧ିଶ, ..., 𝑦௧ି௛. ( OLS!)

OLS estimation steps:
Regress 𝑦௧ against 𝑦௧ିଵ  𝜙ଵଵ: estimated coefficient of  𝑦௧ିଵ.

Regress 𝑦௧ against 𝑦௧ିଵ & 𝑦௧ିଶ  𝜙ଶଶ: estimated coefficient of  𝑦௧ିଶ.
⋮
Regress 𝑦௧ against 𝑦௧ିଵ, 𝑦௧ିଶ, … 𝑦௧ି௛ 𝜙௛௛: estimated coefficient 
of  𝑦௧ି௛.

• OLS estimation is simple, easy to use. Estimation by Yule-Walker 
equation is possible. The is also a recursive algorithm by Durbin-
Levinson. 

• The plot of  the PACF is called the partial correlogram.

Partial ACF

• The IACF of  the ARMA(𝑝, 𝑞) model
𝜙 𝐿  𝑦௧ ൌ 𝜃ሺ𝐿ሻ𝜀௧

is defined to be (assuming invertibility) the ACF of  the inverse (or dual) 
process 

𝜃ሺ𝐿ሻ 𝑦௧ିଵ ൌ 𝜙 𝐿  𝜀௧

• The IACF has the same property as the PACF: ARሺ𝑝ሻ is
characterized by an IACF that is nonzero at lag p but zero
for larger lags. 

• The IACF can also be used to detect over-differencing. If  the data 
come from a nonstationary or nearly nonstationary model, the IACF 
has the characteristics of  a noninvertible moving-average.

Inverse ACF (IACF)
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Example: Monthly USD/GBP 1st differences (1800-2013)

ACF, Partial ACF & IACF: Example

• A trend is usually easy to spot. A more sophisticated visual tool is the 
ACF: a slow decay in ACF is indicative of  highly correlated data, 
which suggests a trend. 

• A series with a trend is not stationary. To build a forecasting model, 
we need to remove the trend from the series. The models we consider:

(1) Deterministic trend: 𝑦௧ is a function of  𝑡. For example,
𝑦௧ = 𝛼 + β 𝑡 + 𝜀௧

(2) Stochastic trend:  𝑦௧ is a function of  aggregated errors,  𝜀௧, over 
time. For example, 

𝑦௧ = μ + 𝑦௧ିଵ+ 𝜀௧ = 𝑦଴ + 𝑡 𝜇 + ∑ 𝜀௧ି௝
௧
௝ୀ଴

• The process to remove the trend depends on the structure of  the 
DGP of  𝑦௧. 

Non-Stationary Time Series Models
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• The process to remove the trend depends on the nature of  the DGP 
of  the trending 𝑦௧:

(1) Deterministic trend  – Simple model: 𝑦௧ = 𝛼 + β 𝑡 + 𝜀௧
– Solution: Detrending –i.e., regress 𝑦௧ on a constant and a time 
trend, 𝑡. Then, keep residuals for further modeling.

(2) Stochastic trend  – Simple model:  𝑦௧ = μ + 𝑦௧ିଵ+ 𝜀௧.
– Solution: Differencing –i.e., apply ∆ = (1 െ 𝐿) operator to 𝑦௧. 
Then, use ∆𝑦௧ for further modeling.

Non-Stationary Time Series Models

Example: Plot of  US Monthly Prices and Dividends (1871 – 2020)

Non-Stationary Time Series Models
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• Suppose we have the following model, with a determinist trend: 
𝑦௧=  +  𝑡 + 𝜀௧.

• {𝑦௧} will show only temporary departures from trend line  +  𝑡. 
It is a model with short memory. A shock (big 𝜀௧) hits 𝑦௧, 𝑦௧ goes 
back to trend level in short time. Forecasts are not affected.

• This type of  model is called a trend stationary (TS) model.

• Note that trivially, by definition, 𝜀௧ is WN. Then, removing  +  𝑡
from 𝑦௧ creates a WN series –i.e., the influence of  𝑡 from 𝑦௧ is gone:

𝜀௧ ൌ 𝑦௧ െ  െ  𝑡

• When we replace  &  by their OLS estimates, we detrend 𝑦௧. The 
residual from the OLS is called detrended 𝑦௧.

𝑒௧ ൌ 𝑦௧ െ ෝ െ ෠ 𝑡 (the residuals are the detrended 𝑦௧ series)

Non-Stationary Models: Deterministic Trend

• We can detrend in more complicated models. For example, suppose e 
have a stationary AR(𝑝) model with linear and quadratic trends: 

𝑦௧ ൌ 𝛼 ൅ 𝜙1𝑦௧ିଵ ൅ ⋯൅  𝜙𝑝𝑦௧ି௣ ൅ βଵ𝑡 ൅ βଶ𝑡ଶ ൅ 𝜀௧ .

• Note that removing from 𝑦௧ a constant, a linear and a quadratic 
trend creates a series, 𝑤௧, which is composed of   a WN error, 𝜀௧, and 
the AR(𝑝) part:

𝑤௧ ൌ  𝜀௧ ൅ 𝜙1𝑦௧ିଵ ൅⋯൅  𝜙𝑝𝑦௧ି௣ ൌ 𝑦௧ െ  െ βଵ𝑡 െ βଶ𝑡ଶ

• This is a stationary series: the dependence on 𝑡 is gone. We will work 
with the residual from a regression of  𝑦௧ against a constant, 𝑡 and 𝑡ଶ:

𝑤ෝ௧ ൌ 𝑦௧ െ ෝ െ ෠ଵ 𝑡 െ ෠ଶ𝑡ଶ (𝑤ෝ௧= detrended 𝑦௧).

Remark: We do not necessarily get stationary series by detrending.

Non-Stationary Models: Deterministic Trend
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• Many economic series exhibit “exponential trend/growth”. They 
grow over time like an exponential function over time instead of  a 
linear function. In this cases, it is common to work with logs

ln(𝑦௧) = 𝛼 +  𝑡 + 𝜀௧. ( 𝑦௧ = 𝑒ఈ +  ௧ + ఌ೟)

 The average growth rate is: E[Δln(𝑦௧)] = 

• We can have a more general model:
𝑦௧ ൌ 𝛼 ൅ 𝜙1𝑦௧ିଵ ൅⋯൅  𝜙𝑝𝑦௧ି௣ ൅ βଵ𝑡 ൅ βଶ𝑡ଶ൅. . .൅ β௞𝑡௞ ൅ 𝜀௧ .

• Estimation of  AR(𝑝) with a trend component:
- OLS. 
- Frish-Waugh method (a 2-step method):

(1) Detrend 𝑦௧: regress 𝑦௧ against a constant & a time trend, 𝑡. 
Then, get the residuals (=𝑦௧ without the influence of  𝑡).

(2) Use residuals to estimate the AR(𝑝) model.  

Non-Stationary Models: Deterministic Trend

Simulated Example: We simulate an AR(1) series with a trend:
𝑦௧ ൌ 0.3 ൅ 0.2 𝑦௧ିଵ ൅ 0.05 𝑡 ൅ 𝜀௧ .

T_sim <- 200 # Length of  simulation
y_sim <- matrix(0,T_sim,1) # Vector to accumulate simulated data
u <- rnorm(T_sim, sd = 1) # Draw T_sim normally distributed errors
mu <- 0.3 # Constant
phi1 <- 0.2 # Change to create different AR(1) patterns
mu_t <- .05 # Trend coefficient
t <- 2 # Time index for observations
while (t <= T_sim) {  
y_sim[t] = mu + phi1 * y_sim[t-1] +  mu_t * t + u[t] # y_sim simulated values
t <- t + 1

} 
y_det_t <- y_sim[2: T_sim]
plot(y_det_t, type="l", col = "blue", main = "Simulated Series with a Deterministic Trend")

# Detrend series
trend <- c(1:(T_sim1-1))
fit_det_t <- lm(y_det_t ~ trend)
y_det_t_filt <- fit_det_t$residuals # Filtered series
plot(y_det_t_filt, type="l", main = "Detrended Simulated Series")

Non-Stationary Models: Deterministic Trend
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Simulated Example (continuation): We plot the simulated AR(1) 
series (blue) and the detrended simulated series (red).

Non-Stationary Models: Deterministic Trend

Simulated Example (continuation):  Now, we add a quadratic trend:
𝑦௧ ൌ 0.3 ൅ 0.2 𝑦௧ିଵ ൅ 0.05 𝑡 ൅ 0.003 𝑡ଶ ൅ 𝜀௧.

mu_t2 <- .003 # Trend square coefficient
t <- 2 # Time index for observations
while (t <= T_sim) {  
y_sim[t] = mu + phi1 * y_sim[t-1] +  mu_t * t + u[t] # y_sim simulated autocorrelated values
t <- t + 1
} 
y_det_t <- y_sim[2: T_sim]
plot(y_det_t, type="l", col = "blue", main = "Simulated Series with a Deterministic Trend")

# Detrend series with only a linear trend
trend <- c(1:(T_sim1-1))
fit_det_t <- lm(y_det_t ~ trend)
y_det_t_filt <- fit_det_t$residuals # Filtered series
plot(y_det_t_filt, type="l", main = "Detrended Simulated Series")

## Detrend series with a linear & Quadratic trends
trend2 <- trend^2fit_det_t <- lm(y_det_t ~ trend + trend2)
y_det_t_filt <- fit_det_t$residuals # Filtered series
plot(y_det_t_filt, type="l", col = "violet", main="Detrended Simulated Series")

Non-Stationary Models: Deterministic Trend
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Simulated Example (continuation): We plot the simulated AR(1) 
series (blue) and the detrended series with a linear trend (violet).

Non-Stationary Models: Deterministic Trend

Simulated Example (continuation): We plot the detrended
simulated series with a linear and quadratic trends (red).

Non-Stationary Models: Deterministic Trend

Remark: A series with a quadratic trend, needs to be detrended with a 
quadratic trend, otherwise extra patterns (U-shape, in this case) 
appear. Once we use an appropriate detrending model, we use the 
detrended series –i.e., the residuals– for furthering (ARMA) modeling.
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Example: We detrend U.S. Stock Prices

T <- length(x_P) # length of  series
trend <- c(1:T) # create trend
det_P <- lm(x_P ~ trend) # regression to get detrended e
detrend_P <- det_P$residuals
plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time")
title("Detrended U.S. Stock Prices")

Non-Stationary Models: Deterministic Trend

Note: Extra pattern in detrended series  Using the wrong model.

Example: We detrend U.S. Stock Prices adding a square trend

trend2 <- trend^2
det_P <- lm(x_P ~ trend + trend2) # regression to get detrended e
detrend_P <- det_P$residuals
plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time")
title("Detrended U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Deterministic Trend

 Still using the wrong model to detrend: Try exponential trend.
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Example: We detrend Log U.S. Stock Prices adding a squared trend
l_P <- log(x_P)
det_lP <- lm(l_P ~ trend) # regression to get detrended e
detrend_lP <- det_lP$residuals
plot(detrend_lP, type="l", col="blue", ylab ="Detrended Log U.S. Prices", xlab ="Time")
title("Detrended Log U.S. Stock Prices")

det_lP2 <- lm(l_P ~ trend + trend2) # regression to get detrended e
det_lP2 <- det_lP2$residuals
plot(det_lP2, type="l", col="blue", ylab ="Det Log U.S. Prices", xlab ="Time")
title("Detrended Log U.S. Stock Prices with linear and quadratic trends")

Non-Stationary Models: Deterministic Trend

• The more modern approach is to consider trends in time series as a 
variable trend. 

• A variable trend exists when a trend changes in an unpredictable way. 
Therefore, it is considered stochastic.

• Recall the AR(1) model: 𝑦௧ = 𝜇 ൅ 𝜙ଵ 𝑦௧ିଵ + 𝜀௧

• As long as 𝜙ଵ ൏ 1, everything is fine, we have a stationary AR(1) 
process: OLS is consistent, t-stats are asymptotically normal, etc.

• Now consider the special case where 𝜙ଵ= 1:

𝑦௧ = 𝜇 + 𝑦௧ିଵ + 𝜀௧
Q: Where is the (stochastic) trend? No 𝑡 term.

Non-Stationary Models: Stochastic Trend



RS – EC2 - Lecture 14

24For private use only – Do not share/post online

• Let us replace recursively the lag of  𝑦௧ on the right-hand side:
𝑦௧ = 𝜇 + 𝑦௧ିଵ + 𝜀௧

= 𝜇 + (𝜇 + 𝑦௧ିଶ+ 𝜀௧ିଵ) + 𝜀௧
...
= 𝑦଴ + 𝑡 𝜇 + ∑ 𝜀௧ି௝

௧
௝ୀ଴

• This process is called a Random walk with drift: 𝑦௧ grows with 𝑡.

• Each 𝜀௧ shock represents a shift in the intercept. All values of  {𝜀௧} 
have a 1 as coefficient  each shock never vanishes (permanent).

• We remove the trend by differencing 𝑦௧
 ∆𝑦௧ = (1 െ 𝐿) 𝑦௧ = 𝜇 + 𝜀௧

Note: Applying the (1 െ 𝐿) operator to a time series is called differencing

Non-Stationary Models: Stochastic Trend

Deterministic trend Accumulation of errors (shocks) – stochastic part 

Example: We difference U.S. Stock Prices, using the diff R function:

diff_P <- diff(x_P)
> plot(diff_P,type="l", col="blue", ylab ="Differenced U.S. Stock Prices", xlab ="Time")
> title("Differenced U.S. Stock Prices")

Non-Stationary Models: Stochastic Trend

Remark: Trend is gone  Use first differences for AR modeling.
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• 𝑦௧ is said to have a stochastic trend (ST), since each 𝜀௧ shock gives a 
permanent and random change in the conditional mean of  the series. 

• For these situations, we use Autoregressive Integrated Moving 
Average (ARIMA) models. 

• Q: Deterministic or Stochastic Trend?
They appear similar: Both lead to growth over time. The difference is 
how we think of  𝜀௧. Should a shock today affect 𝑦௧ାଵ?

– TS:   𝑦௧ାଵ = 𝜇 +  (𝑡 + 1) + 𝜀௧ାଵ  𝜀௧ does not affect 𝑦௧ାଵ. 

– ST:   𝑦௧ାଵ= 𝜇 + 𝑦௧+ 𝜀௧ାଵ = 𝜇 + [𝜇 + 𝑦௧ିଵ + 𝜀௧] + 𝜀௧ାଵ
= 2 ∗ 𝜇 + 𝑦௧ିଵ + 𝜀௧ + 𝜀௧ାଵ  𝜀௧ affects 𝑦௧ାଵ. 
(In fact, the shock 𝜀௧ has a permanent impact.) 

Non-Stationary Models: Stochastic Trend

• For 𝑝, 𝑑, 𝑞 ≥ 0, we say that a time series {𝑦௧} is an ARIMA (𝑝, 𝑑, 𝑞)
process if  𝑤௧ = Δௗ  𝑦௧ = ሺ1 െ 𝐿ሻௗ  𝑦௧ is ARMA(𝑝, 𝑞). That is,

𝜙ሺ𝐿ሻሺ1 െ 𝐿ሻௗ  𝑦௧ ൌ 𝜃 𝐿  𝜀௧  

• Applying the (1 െ 𝐿) operator to a time series is called differencing.

Notation: If 𝑦௧ is non-stationary, but Δd 𝑦௧ is stationary, then 𝑦௧ is 
integrated of  order 𝑑, or I(𝑑). A time series with unit root is I(1). A 
stationary time series is I(0). 

Examples:
Example 1: RW:   𝑦௧ =  𝑦௧ିଵ + 𝜀௧. 
 𝑦௧ is non-stationary, but

𝑤௧ = (1 െ 𝐿)  𝑦௧ = 𝜀௧  𝑤௧ ~ WN!

Now,  𝑦௧ ~ ARIMA(0, 1, 0). 

ARIMA(𝒑, 𝒅, 𝒒) Models
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Example 2: AR(1) with time trend:  𝑦௧ = 𝜇 + 𝛿 𝑡 + 𝜙1 𝑦௧ିଵ + 𝜀௧. 
𝑦௧ is non-stationary, but  

𝑤௧ = (1 െ 𝐿) 𝑦௧
= 𝜇 + 𝛿 𝑡 ൅ 𝜙ଵ𝑦௧ିଵ ൅ 𝜀௧ – [𝜇 + 𝛿 (𝑡 - 1) + 𝜙ଵ 𝑦௧ିଶ + 𝜀௧ିଵ]. 
= 𝛿 + 𝜙ଵ𝑤௧ିଵ + 𝜀௧ – 𝜀௧ିଵ  𝑤௧ ~ ARMA(1, 1).

Now,  𝑦௧ ~ ARIMA(1, 1, 1).

• We call both process first difference stationary.

Note: 
− Example 1: Differencing a series with a unit root in the AR part of  
the model reduces the AR order.

− Example 2: Differencing can introduce an extra MA structure. We 
introduced non-invertibility (θଵ= 1). This happens when we difference 
a TS series. Detrending should be used in these cases. 

ARIMA(𝒑, 𝒅, 𝒒) Models

• In practice: 
A root near 1 of  the AR polynomial  differencing
A root near 1 of  the MA polynomial  over-differencing

• In general, we have the following results: 
- Too little differencing: not stationary.
- Too much differencing: extra dependence introduced. 

• Finding the right 𝑑 is crucial. For identifying preliminary values of  𝑑:
- Use a time plot.
- Check for slowly decaying (persistent) ACF/PACF.

Note: There are many formal tests for unit roots. Most popular tests: 
ADF (Augmented Dickey-Fuller) and PP (Phillips-Perron).

ARIMA(𝒑, 𝒅, 𝒒) Models
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Example 1: Monthly Stock Price levels (1871-2020)

acf_P <- acf(x_P)
> acf_P
Autocorrelations of  series ‘x_p’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000 0.992 0.984 0.977 0.971 0.966 0.961 0.954 0.946 0.938 0.931 0.924     

12  13     14  15     16 17 18 19 20 21  22     23 
0.917 0.911 0.904 0.897 0.891 0.884 0.877 0.871 0.865 0.860 0.854 0.848 

24 25 26  27  28     29   30  31     32 
0.841 0.834 0.827 0.821 0.815 0.809 0.803 0.797 0.790 

Very high autocorrelations. Looks like 𝜙1 ≈ 1.

ARIMA Models: Unit Roots 1?

Example 1: Monthly Stock Price levels (1871-2020)

ARIMA Models – Unit Roots 1: ACF & PACF
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Example 2: Monthly Interest Rates (1871-2020)

acf_i <- acf(x_i)
> acf_i
Autocorrelations of  series ‘x_i’, by lag

0 1 2 3 4 5 6 7 8  9    10     11 
1.000 0.996 0.990 0.985 0.980 0.975 0.970 0.965 0.960 0.956 0.951 0.946 

12  13     14  15     16 17 18 19 20 21  22     23 
0.940 0.934 0.929 0.924 0.919 0.915 0.912 0.908 0.904 0.901 0.899 0.896 

24 25 26  27  28     29   30  31     32 
0.894 0.891 0.889 0.887 0.884 0.882 0.879 0.877 0.874 

Very high autocorrelations. Looks like 𝜙1 ≈ 1.

ARIMA Models: Unit Roots 2?

Example 2: Monthly Interest Rates (1871-2020)

ARIMA Models – Unit Roots 2: ACF & PACF
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• A random walk (RW) is a process where the current value of  a 
variable is composed of  the past value plus an error term defined as a 
white noise (a normal variable with zero mean and variance one).

• RW is an ARIMA(0,1,0) process 
𝑦௧ ൌ 𝑦௧ିଵ ൅ 𝜀௧     ⇒ Δ𝑦௧ ൌ 1 െ 𝐿 𝑦௧ ൌ 𝜀௧,   𝜀௧ ~ 𝑊𝑁 0,𝜎ଶ .

• Popular model. Used to explain the behavior of  financial assets, 
unpredictable movements (Brownian motions, drunk persons). 

• A special case (limiting) of  an AR(1) process: a unit-root process.

• Implication:  E[𝑦௧ାଵ|𝐼௧] = 𝑦௧  ∆𝑦௧ is absolutely random.

• Thus, a RW is nonstationary, and its variance increases with 𝑡.

ARIMA Models – Random Walk

• Change in 𝑦௧ is partially deterministic (𝜇) and partially stochastic.
𝑦௧ െ 𝑦௧ିଵ ൌ Δ𝑦௧ ൌ 𝜇 ൅ 𝜀௧

• Recall that 𝑦௧ can also be written as
𝑦௧ = 𝑦଴ + 𝑡 𝜇 + ∑ 𝜀௧ି௝

௧
௝ୀ଴

 𝜀௧ has a permanent effect on the mean of  𝑦௧.

• Recall the difference between conditional and unconditional 
forecasts:

E[𝑦௧] = 𝑦଴ + 𝑡 𝜇 (Unconditional forecast)
E[𝑦௧ା௦|𝑦௧] = 𝑦௧ ൅ 𝑠 𝜇 (Conditional forecast)

ARIMA Models – RW with Drift
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Examples: A simulated RW in R
T_sim <- 200
u <- rnorm(200) # Draw T_sim normally distributed errors
y_sim <- matrix(0,T_sim,1)
rho <- 1 # Change to create different correlation patterns
a <- 2
mu <- 0 # Time index for observations
while (a <= T_sim) {

y_sim[a] = mu + rho * y_sim[a-1] + u[a] # y_sim simulated autocorrelated values
a <- a + 1
} 
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Simulated RW Series with no drift")

ARIMA Models – Random Walk

Examples: Two simulated RW one with drift and one without drift
T_sim <- 200 # Sample size for simulation
u <- rnorm(200) # Draw T_sim normally distributed errors
y_sim <- matrix(0,T_sim,1) # Vector to collect simulated data
phi <- 1 # Set phi = 1 for RW
a <- 2 # Time index for observations
mu <- 0 # RW Drift
while (a <= T_sim) {

y_sim[a] = mu + phi * y_sim[a-1] + u[a] # y_sim simulated RW values
a <- a + 1
} 
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Simulated RW Series with no drift")

ARIMA Models – Random Walk
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• We have a family of  ARIMA models, indexed by 𝑝, 𝑞, and 𝑑. 
Q: How do we select one?

An effective procedure for building empirical time series models is the 
Box-Jenkins approach, which consists of  three stages: 

(1) Identification or Model specification (order of  ARIMA)

(2) Estimation of  order 𝑝, 𝑞.

(3) Diagnostics testing on residuals: 
 Are they white noise?  If  not, add lags (𝑝, 𝑞, or both).

If  we are happy with model, then we proceed to forecasting.

ARIMA Models: Box-Jenkins

• Recall the two main approaches to (1) Identification. 
- Correlation approach: Based on ACF & PACF.
1) Make sure data is stationary –check a time plot. If  not, differentiate.
2) Using ACF & PACF, guess small values for 𝑝 & 𝑞.

- Information criteria: Very common situation: The order choice not 
clear from looking at ACF & PACF. Then, use 𝐴𝐼𝐶 (or 𝐴𝐼𝐶𝑐), 𝐵𝐼𝐶, or 
HQIC (Hannan and Quinn (1979)). 

This is the usual (& easier) approach.

R Note: The R function auto.arima uses 𝐴𝐼𝐶𝑐 to select 𝑝, 𝑞; 𝑑 is 
selected using a formal unit root test (KPSS).

• Value parsimony. When in doubt, keep it simple (KISS).

ARIMA Models: Identification
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• Correlation approach.
- ACF identifies order of  MA: Non-zero at lag q; zero for lags > q.

- PACF identifies order of  AR: Non-zero at lag 𝑝; zero for lags  > 𝑝.
- All other cases, try ARMA(𝑝, 𝑞) with 𝑝 > 0 and q > 0.

Summary: For 𝑝 > 0 and 𝑞 > 0.

ARIMA Models: Identification – Correlations

AR(𝑝) MA(q) ARMA(𝑝, 𝑞)

ACF Tails off 0 after lag 𝑞 Tails off

PACF 0 after lag 𝑝 Tails off Tails off

64

ARIMA Models: Identification – AR(1)
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65

ARIMA Models: Identification – AR(2)

66

ARIMA Models: Identification – MA(1)
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67

ARIMA Models: Identification – ARMA(1,1)

• Note: Identification is not clear.

Example: Monthly US Returns (1800 - 2013).

• 𝐼𝐶’s are equal to the estimated variance or the log-likelihood function 
plus a penalty factor, that depends on 𝑘. Many 𝐼𝐶’s. Popular ones:

- Akaike Information Criterion (𝑨𝑰𝑪)
𝐴𝐼𝐶 = െ2 ∗ 𝑙𝑛𝐿 െ 𝑘 ൌ െ2 𝑙𝑛𝐿 + 2 ∗ 𝑘

 if  normality AIC = 𝑇 * 𝑙𝑛ሺ𝒆
ᇲ𝒆

்
ሻ + 2 ∗ 𝑘 (+constants)

- Bayes-Schwarz Information Criterion (𝑩𝑰𝑪 or SBIC)
𝐵𝐼𝐶 = െ2 ∗ 𝑙𝑛𝐿 െ 𝑙𝑛 𝑇 ∗ 𝑘

 if  normality AIC = 𝑇 * 𝑙𝑛ሺ𝒆
ᇲ𝒆

்
ሻ + ln 𝑇 ∗ 𝑘 (+constants)

- Hannan-Quinn (HQIC)
HQIC = െ2 ∗ ሺ𝑙𝑛𝐿 െ 𝑘 [𝑙𝑛ሺ𝑙𝑛 𝑇 ሻሿሻ

 if  normality AIC = 𝑇 * 𝑙𝑛
𝒆ᇲ𝒆

்
൅ 2 ∗ 𝑘 [𝑙𝑛ሺ𝑙𝑛 𝑇 ሻ] (+constants)

ARIMA Model: Identification – IC
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• There are modifications of  𝐼𝐶 to get better finite sample behavior, a 
popular one is 𝐴𝐼𝐶 corrected, 𝐴𝐼𝐶𝑐, statistic:

𝐴𝐼𝐶𝑐 ൌ 𝑇 𝑙𝑛𝜎ොଶ ൅
2𝑘ሺ𝑘 ൅ 1ሻ
𝑇 െ 𝑘 െ 1

• 𝐴𝐼𝐶𝑐 converges to 𝐴𝐼𝐶 as 𝑇 gets large. Using 𝐴𝐼𝐶𝑐 is not a bad idea.

• For AR(𝑝) models, other AR-specific criteria are possible: Akaike’s
final prediction error (FPE), Akaike’s 𝐵𝐼𝐶, Parzen’s CAT.

• Hannan and Rissannen’s (1982) minic (=Minimum 𝐼𝐶): Calculate 
the 𝐵𝐼𝐶 for different 𝑝’s (estimated first) and different 𝑞’s. Select the 
best model –i.e., lowest 𝐵𝐼𝐶.

Note: Box, Jenkins, and Reinsel (1994) proposed using the 𝐴𝐼𝐶 above.

ARIMA Model: Identification – IC

• We would like the 𝐼𝐶 statistics –i.e., the 𝐼𝐶’s– to have good 
properties. For example, if the true model is being considered among 
many, we want the 𝐼𝐶 to select it. This can be done on average 
(unbiased) or as 𝑇 increases (consistent).

Some results regarding 𝐴𝐼𝐶 and 𝐵𝐼𝐶. 

- 𝐴𝐼𝐶 and Adjusted R2 are not consistent.

- 𝐴𝐼𝐶 is conservative –i.e., it tends to over-fit: 𝑘஺ூ஼ too large models.

- In time series, 𝐴𝐼𝐶 selects the model that minimizes the out-of-
sample one-step ahead forecast MSE. 

- 𝐵𝐼𝐶 is more parsimonious than 𝐴𝐼𝐶. It penalizes the inclusion of 
parameters more (𝑘஻ூ஼ ≤ 𝑘஺ூ஼).

- 𝐵𝐼𝐶 is consistent in autoregressive models.

- No agreement which criteria is better.

ARIMA Model: Identification – IC
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• Example: Monthly US Returns (1800 - 2013) Hannan and 
Rissannen (1982)’s minic.

ARIMA Model: Identification – IC

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 -6.1889 -6.19573 -6.19273 -6.19177 -6.18872 -6.18886

AR 1 -6.19511 -6.193 -6.19001 -6.18929 -6.18632 -6.18678

AR 2 -6.19271 -6.18993 -6.1911 -6.18802 -6.18536 -6.1839

AR 3 -6.19121 -6.18916 -6.18801 -6.18562 -6.18256 -6.18082

AR 4 -6.18853 -6.18609 -6.18523 -6.18254 -6.17983 -6.17774

AR 5 -6.18794 -6.18671 -6.18408 -6.18099 -6.1779 -6.17564

• Note: Best Model is ARMA(0, 1).

• Script in R to select model using arima function.
p <- 6 # set max order for AR part: p-1
q <- 6 # set max order for Ma part: q-1
npq <- p*q
aic_m <- matrix(0,nrow = npq, ncol=3) # matrix collects p, q, AIC: AIC in last column
j <- 0
k <- 1
while (j < p) {
i <- 0
while (i < q) {
mod_j <- arima(lr_p, order=c(i,0,j)) # fit arima(p,0,q) process
aic_m[k,] <- cbind(i, j, mod_j$aic) # extract aic from arima fit model
i <- i + 1
k <- k + 1
}
j <- j + 1
}
aic_m # Print all the results AR(i), MA(j), AIC
min_aic <- min(aic_m[,3]) # Minimum AIC
min_aic # Print Minimum

which(aic_m == min_aic, arr.ind=TRUE) # Prints the row

ARIMA Model: Identification – IC
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Example: Monthly US Returns (1871 - 2020). 
R has a couple of  functions that select automatically the “best” 
ARIMA model: armaselect (using package auto) minimizes BIC and 
auto.arima (using package forecast) minimizes 𝐴𝐼𝐶, 𝑨𝑰𝑪𝒄 (default) or 
𝐵𝐼𝐶.

> armaselect(lr_p) # shows the best 10 models according to BIC
p q       sbc

[1,] 2 0 -11644.79
[2,] 1 0 -11641.53
[3,] 3 0 -11637.71
[4,] 4 0 -11632.43
[5,] 5 0 -11629.95
[6,] 2 1 -11627.42
[7,] 6 0 -11621.70
[8,] 1 3 -11620.18
[9,] 3 1 -11619.93
[10,] 2 2 -11619.44

ARIMA Model: Identification – IC

Example: Monthly US Returns (1871 - 2020). 

> auto.arima(lr_p, ic="bic", trace=TRUE) # ic=“BIC”. function 
approximates models. 

Fitting models using approximations to speed things up...

ARIMA(2,0,2) with non-zero mean : -6519.957
ARIMA(0,0,0) with non-zero mean : -6392.599
ARIMA(1,0,0) with non-zero mean : -6527.879
ARIMA(0,0,1) with non-zero mean : -6536.548
ARIMA(0,0,0) with zero mean     : -6385.246
ARIMA(1,0,1) with non-zero mean : -6529.358
ARIMA(0,0,2) with non-zero mean : -6530.806
ARIMA(1,0,2) with non-zero mean : -6523.415
ARIMA(0,0,1) with zero mean     : -6534.284

Now re-fitting the best model(s) without approximations...

ARIMA(0,0,1) with non-zero mean : -6536.463

ARIMA Model: Identification – IC
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Example (continuation): Monthly US Returns (1871 - 2020). 

> auto.arima(lr_p, ic="bic", max.p=5, max.q = 5, trace=TRUE) # approximates 
models. 

Series: lr_p
ARIMA(0,0,1) with non-zero mean 

Coefficients:
ma1    mean

0.2880  0.0037
s.e. 0.0218  0.0012

sigma^2 estimated as 0.001523:  log likelihood=3279.47
AIC=-6552.94   AICc=-6552.93   BIC=-6536.46

• auto.arima does not try a lot of  models, tries to keep the 𝑝 + 𝑞 ൑ 5.

Remark: Do not take the results from auto.arima or armaselect or 
minic as the final model. We still need to check the residuals are WN.

ARIMA Model: Identification – IC

• The old correlation approach is seldom used. In practice, 
identification is done with ICs.

• There is no agreement on which IC is best. The 𝐴𝐼𝐶 is the most 
popular, but others are also used. 

• Asymptotically, the BIC is consistent –i.e., it selects the true model 
if, among other assumptions, the true model is among the candidate 
models considered. 

• The 𝐴𝐼𝐶 is not consistent, generally producing too large a model, 
but is more efficient –i.e., when the true model is not in the 
candidate model set, the 𝐴𝐼𝐶 asymptotically chooses whichever model 
minimizes the MSE/MSPE.

ARIMA Model: Identification – IC - Remarks
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• We assume:
- The model order 𝑑, 𝑝, and 𝑞 is known. Make sure 𝑦௧ is I(0).
- The data has zero mean (𝜇=0). If  this is not reasonable, demean 𝑦௧.

Fit a zero-mean ARMA model to the demeaned 𝑦௧:
𝜙ሺ𝐿ሻሺ𝑦௧ െ 𝑦̄ሻ ൌ 𝜃ሺ𝐿ሻ𝜀௧  

• Several ways to estimate an ARMA(𝑝, 𝑞) model:

1) Maximun Likelihood Esimation (MLE). Assume a distribution, 
usually a normal distribution, and, then, do ML. 

2) Yule-Walker for ARMA(𝒑, 𝒒). Method of  moments. Not efficient.

3) OLS for AR(𝒑).

4) Innovations algorithm for MA(𝒒).

5) Hannan-Rissanen algorithm for ARMA(𝒑, 𝒒).

ARIMA Process – Estimation

1) Maximun Likelihood Esimation (MLE).
Steps:
1) Assume a distribution for the errors. Typically, i.i.d. normal, say:

𝜀௧ ~ 𝑖𝑖𝑑 𝑁ሺ0, 𝜎ଶሻ

2) Write down the joint pdf  for 𝜀௧: 𝑓ሺ𝜀ଵ, … , 𝜀்ሻ ൌ 𝑓ሺ𝜀ଵሻ … 𝑓ሺ𝜀்ሻ

Note: we are not writing the joint pdf  in terms of  the 𝑦௧’s, as a 
multiplication of  the marginal pdfs because of  the dependency in 𝑦௧. 

3) Get 𝜀௧. For the general stationary ARMA(𝑝, 𝑞) model:
𝜀௧ ൌ 𝑦௧ െ 𝜙1𝑦௧ିଵ െ⋯െ  𝜙𝑝𝑦௧ି௣ ൅ 𝜃ଵ  𝜀௧ିଵ൅ 𝜃ଶ 𝜀௧ିଶ ൅ . . .൅ 𝜃௤ 𝜀௧ି௤

(if  𝜇 ≠ 0, demean 𝑦௧.)

4) The joint pdf  for {𝜀ଵ, ..., 𝜀்) is:

ARIMA Process – MLE
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• Steps:
5) Let 𝑌 ൌ ሼ𝑦௧} and assume that initial conditions 𝑌* =(𝑦ଵି௣, …, 𝑦଴ሻ′
and 𝜀* = (𝜀ଵି௤ , …, 𝜀଴ሻ′ are known.

6) The conditional log-likelihood function is given by

Note: Usual Initial conditions:

• Numerical optimization problem. Initial values (𝑦*) matter.

ARIMA Process – MLE
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Example: 
- To change the joint from 𝜀௧ to 𝑦௧, we need the Jacobian, |𝐽|:

𝑓 𝑦ଵ, 𝑦ଶ, … ,𝑦் ൌ 𝑓ሺ𝜀ଵ, 𝜀ଶ, … , 𝜀்ሻ ∗ |𝐽| ൌ 𝑓ሺ𝜀ଵ, 𝜀ଶ, … , 𝜀்ሻ

- Then, the likelihood function can be written as

ARIMA Process – MLE: AR(1)
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Example: 
- Then,

- Then, the log likelihood function:

- S*(𝜙) is the conditional SS and S(𝜙) is the unconditional SS.

ARIMA Process – MLE: AR(1)
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Example: 
- F.o.c.’s:

Note: If  we neglect 𝑙𝑛ሺ1 െ 𝜙ଶሻ, then MLE = Conditional LSE.

If  we neglect both 𝑙𝑛 1 െ 𝜙ଶ  and                     , then

ARIMA Process – MLE: AR(1)

 

 
0

,ln

0
,ln

2

2

















L

L

   .min,max 2 


SL 

   .min,max *
2 


SL 

  2
1

21 Y



RS – EC2 - Lecture 14

42For private use only – Do not share/post online

2) Yule-Walker for ARMA(𝒑, 𝒒). Method of  moments. Not efficient

• For an ARሺ𝑝ሻ, the Yule-Walker estimator for 𝜙 is given by solving
𝜸 = Γ 𝜙

where

Γ = 

𝛾 0 𝛾 1 ⋯ 𝛾 𝑝 െ 1
𝛾 1 𝛾 0 ⋯ 𝛾 𝑝 െ 2
⋮ ⋮ ⋮ ⋮

𝛾 𝑝 െ 1 𝛾 𝑝 െ 2 ⋯ 𝛾 0

a 𝑝x𝑝 matrix

𝜙 is the 𝑝x1 vector of  ARሺ𝑝ሻ coefficients
𝜸 is the 𝑝x1 vector of  𝛾ሺ𝑘ሻ autocovariances.

• MM: Compute sample 𝛾ሺ𝑘ሻ’s –i.e., 𝛾ො 𝑘 ’s – & solve:𝝓෡ = Γ෡௣
ିଵ 
𝜸ෝ௣

• If  𝛾ො 0 ൐ 0, then Γ෡௣ is non-singular.

ARIMA Process – Yule-Walker

• Distribution:

If  𝑦௧ is an ARሺ𝑝ሻ process, and 𝑇 is large,

𝑇 ሺ𝜙෠ െ 𝜙ሻ
    ௔   

N(0, 𝜎ଶ Γିଵ )

• 100*(1  )% approximate C.I. for 𝜙௝ is 𝜙෠௝ േ 𝑧/ଶ
ఙෝమ

்
ሺΓ෡௣

ିଵ 
ሻ௝௝
ଵ/ଶ

Note: The Yule-Walker algorithm requires Γ-1. 

• For ARሺ𝑝ሻ.  The Levinson-Durbin (LD) algorithm avoids Γ-1. It 
is a recursive linear algebra prediction algorithm. It takes advantage 
that Γis a symmetric matrix, with a constant diagonal (Toeplitx matrix). 
Use LD replacing 𝜸with 𝜸ෝ௣.

• Side effect of  LD: automatic calculation of  PACF and MSPE.

ARIMA Process – Yule-Walker
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Example: AR(1) (MM) estimation (𝜇 ൌ 0):  
𝑦௧ = 𝜙ଵ 𝑦௧ିଵ + 𝜀௧, 𝜀௧ ~ 𝑊𝑁. 

It is known that 𝜌ଵ ൌ 𝜙. Then, the MME of  𝜙 is 

 𝜌ଵ ൌ 𝜌ොଵ . 

 𝜙෠ଵ ൌ 𝜌ොଵ ൌ
∑ሺ௒೟ି௒ሜ ሻሺ௒೟శೖି௒ሜ ሻ

∑ሺ௒೟ି௒ሜ ሻమ

• Also, 𝜎ଶ is unknown: 

γሺ0ሻ ൌ  ఙమ 
 (1 ି థభమ)

 𝜎ොଶ ൌ γොሺ0ሻ∗ (1 െ  𝜙෠ଵ
ଶ)

ARIMA Process – Yule-Walker: AR(1)

Example: MA(1) (MM) estimation:  
𝑦௧ = 𝜀௧ ൅ θଵ 𝜀௧ିଵ

Again using the autocorrelation of  the series at lag 1,

• Choose the root satisfying the invertibility condition. For real roots:
1 െ 4 𝜌ොଵ

ଶ ൒ 0  0.25 ൒  𝜌ෝଵ
ଶ  െ0.5 ൑   𝜌ෝଵ

ଶ ൑ 0.5

If  𝜌ොଵ ൌ േ 0.5, unique real roots but non-invertible.

If  |𝜌ොଵ | ൏ 0.5, unique real roots and invertible.

1 ttty 
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ARIMA Process – Yule-Walker: MA(1)
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• Remarks
- The MMEs for MA and ARMA models are complicated. 

- In general, regardless of  AR, MA or ARMA models, the MMEs are 
sensitive to rounding errors. They are usually used to provide initial 
estimates needed for a more efficient nonlinear estimation method. 

- The moment estimators are not recommended for final estimation 
results and should not be used if  the process is close to being 
nonstationary or noninvertible. 

ARIMA Process – Yule-Walker

5) Hannan-Rissanen algorithm for ARMA(𝒑, 𝒒)

Steps:
1. Estimate high-order AR.
2. Use Step (1) to estimate (unobserved) noise 𝜀௧
3. Regress 𝑦௧ against 𝑦௧ିଵ, 𝑦௧ିଶ, ..., 𝑦௧ି௣, 𝜀௧̂ିଵ, ... ,  𝜀௧̂ି௤
4. Get new estimates of  𝜀௧. Repeat Step (3).  

ARIMA Process – Estimation Hannan-Rissanen
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•  Consider a simple ARIMA model: ሺ1 െ 𝐿ሻௗ  𝑦௧ ൌ  𝜀௧

• We went over two cases for 𝑑 ൌ 0 & 1. Granger and Joyeaux (1980) 
consider the model where 0 ≤ 𝑑 ≤ 1.

• We Taylor expand ሺ1 െ 𝐿ሻௗ around 𝐿଴ ൌ 0 (a binomial series 
expansion:

ሺ1 െ 𝐿ሻௗ ൌ 1 െ 𝑑𝐿 ൅ ௗ ௗିଵ ௅మ

ଶ!
െ  ௗ ௗିଵ ሺௗିଶሻ௅య

ଷ!
+…

• Similarly, for ሺ1 െ 𝐿ሻିௗ 

ሺ1 െ 𝐿ሻିௗ ൌ 1 ൅ 𝑑𝐿 ൅ ௗାଵ ௗ௅మ

ଶ!
+
ௗ ௗାଵ ሺௗାଶሻ௅య

ଷ!
…

• Thus, the ARIMA(0, 𝑑, 1):

𝑦௧  = ሺ1 െ 𝐿ሻିௗε௧ ൌ ε௧ ൅ 𝑑ε௧ିଵ ൅
ௗାଵ ௗ

ଶ!
ε௧ିଶ+…

ARFIMA Process: Fractional Integration  

• In the ARIMA(0, 𝑑, 1):

𝑦௧  = ሺ1 െ 𝐿ሻିௗε௧ ൌ ε௧ ൅ 𝑑ε௧ିଵ ൅
ௗାଵ ௗ

ଶ!
ε௧ିଶ+…

• The above MA can be approximated by:
𝑦௧  = ሺ1 െ 𝐿ሻିௗε௧ ൎ ε௧ ൅ ሺ1 ൅ 1ሻௗε௧ିଵ ൅ ሺ1 ൅ 2ሻௗିଵ ε௧ିଶ+…

= ∑ 𝛽௝ε௧ି௝
ஶ
௝ୀ଴

where 𝛽଴ ൌ 1.  Convergence depends on 𝑑.

• Hosking (1981) shows that ρ 𝑘 ∝ 𝑘ଶௗିଵ as 𝑘 → ∞. 

• The series is covariance stationary if  𝑑 < 1/2. (When 𝑑 ൒ 1/2, the 
variance explodes.) Then, ARFIMA models have slow (hyperbolic to 
zero) decay patterns in the ACF.

ARFIMA Process: Fractional Integration  
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•  ρ 𝑘 ∝ 𝑘ଶௗିଵ as 𝑘 → ∞.  

This type of  slow decay patterns also show long memory for shocks. 
This type of  process is neither 𝐼ሺ0ሻ (stationary) nor 𝐼ሺ1ሻ (unit root). 
It is an 𝐼 𝑑 (in between, no “short” memory, with decaying impact of  
shock, nor “persistent” memory, with permanent effect of  shocks)! 

• When 0 < 𝑑 ൏ 0.5, the ARFIMA process is said to exhibit long 
memory, or long-range positive dependence. When 0 > 𝑑 ൐ െ0.5,
the ARFIMA process is said to exhibit long long-range negative 
dependence (or anti-persistence).

Note: When 𝑑 ൌ 0, we have a stationary ARMA.

ARFIMA Process: Fractional Integration  

• Estimation is complicated. Many methods have been proposed. The 
majority of  them are two-steps procedures. First, we estimate d. Then, 
we fit a traditional ARMA process to the transformed.

Popular estimation methods:
- Based on the log periodogram regressions, due to Geweke and 
Porter-Hudak (1983), GPH. Phillips (1999) has a generalized version 
of  the GPH
- Rescaled range (RR), due to Hurst (1951) and modified by Lo (1991).
- Approximated ML (AML), due to Beran (1995). In this case, all 
parameters are estimated simultaneously.

ARFIMA Process: Estimation  
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• In a general review paper, Granger (1999) concludes that ARFIMA
processes may fall into the empty box category –i.e., models with  
stochastic properties that do not mimic the properties of  the data.

• Leybourne, Harris, and McCabe (2003) find some forecasting power 
for long series. Bhardwaj and Swanson (2004) find ARFIMA useful at 
longer forecast horizons.

ARFIMA Process: Remarks  

• From Bhardwaj and Swanson (2004)

ARFIMA Process: Example  
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• How do we select 𝑝, 𝑞, and 𝑑 for an ARIMA model?

• Box-Jenkins Approach
1) Make sure data is stationary –check a time plot. If  not, differentiate.

2) Use IC (AIC, AICc, BIC, etc.). You can also use ACF & PACF to 
guess small values for 𝑝 & 𝑞. If ACF shows seasonal patterns (waves 
or periodic significant pikes), remove them.

3) Estimate order 𝑝, 𝑞. (ML, Hannan-Rissanen algorithm, etc.) 

4) Run diagnostic tests on residuals (Check ACF, LB tests).
 Are they white noise?  If  not, add lags (𝑝 or 𝑞, or both).

• Value parsimony. When in doubt, keep it simple (KISS).

• Looks simple, but there are a lot of  nuances to the process. Step 1 is 
crucial: Need to remove everything deterministic.

Review: ARIMA Models – Box-Jenkins

• We say a time series shows seasonal patterns if  it repeats itself  after a 
regular period of  time.

• “Business cycle effects” in macroeconomics “time of  the day” in 
trading patterns, “Monday effect” for stock returns, “9 to 5 effect” for 
electricity demand, etc. 

• The smallest time period for this repetitive phenomenon is called a 
seasonal period, 𝑠.

Seasonal Patterns
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• In the Box-Jenkins approach, we also incorporate seasonal patterns. 

• Some seasonal patterns are very clear. For example, retail sales 
increase in December, hotel occupancy goes up in the Summer, etc. 

Seasonal Patterns

• In time series, seasonal patterns (“seasonalities”) can show up in 
two forms: additive and multiplicative.

(1) Additive: The seasonal variation is independent of  the level. The 
amplitude of  the seasonal pattern is constant over time. The constant 
amplitude can be around a mean or constant around a trend. 

(2) Multiplicative: The seasonal variation is a function of  the level. 
Thus, we see an increasing amplitude in the seasonal variation over 
time. Again, the  increasing amplitude can be around a mean or 
around a trend. 

Note: In practice, because of  the presence of  the error term, we 
expect to see the constant or increasing amplitude on average. 

Seasonal Patterns: Additive & Multiplicative
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Examples: We simulate the two seasonal patterns, additive and 
multiplicative, with trend and no trend.

A. With trend

B. With no trend

Seasonal Patterns: Additive & Multiplicative

• In general, seasonal patterns are evident in a plot of the raw series. 
Also, the ACF and PACF can be used to discover the pattern. 

Signs: Periodic repetitive wave pattern in ACF, repetition of  significant 
ACFs, PACFs after 𝑠 periods. 

Discovering Seasonal Patterns
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• In the presence of  seasonal patterns, we proceed to do seasonal 
adjustments to remove these predictable influences.

• Seasonalities can blur both the true underlying movement in the 
series, as well as certain non-seasonal characteristics which may be of  
interest to analysts.

• Similar to the trend, the type of  adjustment depends on how we view 
the seasonal pattern: Deterministic or Stochastic.

- Deterministic – Usual treatment: Build a deterministic function:
𝑓 𝑠 ൌ 𝑓 𝑡 ൅ 𝑘 ∗ 𝑠 , 𝑘 ൌ 0,േ1,േ2, …

- Stochastic – Usual treatment: SARIMA model. For example:
 ሺ1 െ 𝐿௦ሻ𝜙ሺ𝐿ሻሺ1 െ 𝐿ሻௗ  𝑦௧ ൌ 𝜃 𝐿 Θሺ𝐿௦ሻ𝜀௧  

where 𝑠 the seasonal periodicity or frequency of  𝑦௧.

Removing Seasonal Patterns

• We follow a similar 2-step process to detrending:
1) Regress 𝑦௧ against the seasonal dummies. Keep residuals  
2) With the residuals, follow Box-Jenkins to select an ARIMA model.

• For Step 1. Suppose 𝑦௧ has monthly frequency, we suspect that 𝑦௧
increases every December. 
– For the additive model, we regress 𝑦௧ against a constant and a 
December dummy, 𝑫௧: 

𝑦௧ ൌ μ ൅ 𝑫௧  𝝁௦൅ 𝜀௧

– For the multiplicative model, we regress 𝑦௧ against a constant and 
a December dummy, 𝑫௧, interacting with a trend:

𝑦௧ ൌ μ ൅ 𝑫௧  𝝁௦ ∗ 𝑡 ൅ 𝜀௧

• For Step 2. Use the residuals of  these regressions, 𝑒௧, –i.e., 𝑒௧ = 
filtered 𝑦௧, free of  “monthly seasonal effects”– for ARMA modeling.

Removing Seasonalities: Deterministic Case
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Example: We model log changes in real estate prices in the LA 
market, 𝑦௧. First, we run a regression to remove (filter) the monthly 
effects from 𝑦௧. Then, we model 𝑦௧ as an ARMA(𝑝, 𝑞) process.
RE_da <- read.csv(" http://www.bauer.uh.edu/rsusmel/4397/Real_Estate_2019.csv", 
head=TRUE, sep=",")
x_la <- RE_da$LA_c
zz <- x_la
T <- length(zz)
plot(x_la, type="l", main="Changes in Log Real Estate Prices in LA")

Removing Seasonalities: Deterministic Case

Example (continuation): We look at the ACF & PACF for LA
> acf(x_la)
> pacf(x_la)

Note: ACF shows highly autocorrelated data, with some seasonal 
pattern (there is a periodic decreasing wave). 

Removing Seasonalities: Deterministic Case
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Example (continuation): We define monthly dummies

Feb1 <- rep(c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create January dummy
Mar1 <- rep(c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create March dummy
Apr1 <- rep(c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create April dummy
May1 <- rep(c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create May dummy
Jun1 <- rep(c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create June dummy
Jul1 <- rep(c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create Jul dummy
Aug1 <- rep(c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create Aug dummy
Sep1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), (length(zz)/12+1)) # Create Sep dummy
Oct1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), (length(zz)/12+1)) # Create Oct dummy
Nov1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), (length(zz)/12+1)) # Create Oct dummy
Dec1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), (length(zz)/12+1)) # Create Oct dummy
seas1 <- cbind(Feb1, Mar1, Apr1, May1, Jun1, Jul1, Aug1, Sep1, Oct1, Nov1, Dec1)
seas <- seas1[1:T,]

x_la_fit_sea <- lm(x_la ~ seas) # Regress x_la against constant + seasonal dummies
> summary(x_la_fit_sea)

Removing Seasonalities: Deterministic Case

Example (continuation): We define monthly dummies
> summary(x_la_fit_sea)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.0014063 0.0020125  -0.699 0.485157    
seasFeb1 0.0006752 0.0028223   0.239 0.811079    
seasMar1 0.0049095 0.0028223   1.740 0.082838 .  
seasApr1 0.0090903 0.0028223   3.221 0.001400 ** 
seasMay1 0.0104159 0.0028223   3.691 0.000260 ***
seasJun1 0.0103464 0.0028223   3.666 0.000285 ***
seasJul1 0.0080593 0.0028223   2.856 0.004557 ** 
seasAug1 0.0062247 0.0028223  2.206 0.028080 *  
seasSep1 0.0032244 0.0028223   1.142 0.254055    
seasOct1 0.0011967 0.0028461   0.420 0.674421    
seasNov1 -0.0006218 0.0028461  -0.218 0.827181    
seasDec1 -0.0009031 0.0028461  -0.317 0.751195    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note: Returns –i.e., home prices– are higher from April to August.

Removing Seasonalities: Deterministic Case
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Example (continuation): Now, we model 𝑒௧, the filtered LA series
x_la_filt <- x_la_fit_sea$residuals # residuals, et = filtered x_la series
fit_ar_la_filt <- auto.arima(x_la_filt) # use auto.arima to look for a good model
> fit_ar_la_filt
Series: x_la_filt
ARIMA(2,0,1) with zero mean

Coefficients:
ar1     ar2     ma1

0.0987  0.7737  0.7245
s.e. 0.0963 0.0866  0.1136

sigma^2 estimated as 1.668e-05:  log likelihood=1453.66
AIC=-2899.33   AICc=-2899.21   BIC=-2883.83

> checkresiduals(fit_ar_la_filt)

Ljung-Box test

data:  Residuals from ARIMA(2,0,1) with zero mean
Q* = 13.5, df = 7, p-value = 0.06083  Reject H0 at 5% lever. But, judgement call is OK.

Model df: 3.   Total lags used: 10

Removing Seasonalities: Deterministic Case

Example (continuation): We check residual plots.

Note: ACF shows some small, but significant autocorrelations, but the 
seasonal (wave) pattern is no longer there. 

Removing Seasonalities: Deterministic Case
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• For stochastic seasonality, we use the Seasonal ARIMA model. In 
general, we have the SARIMAሺ𝑃,𝐷,𝑄ሻs:

 

Φ௉ሺ𝐿௦ሻ ሺ1 െ 𝐿௦ሻ஽  𝑦௧ ൌ 𝜃଴ ൅ Θொሺ𝐿௦ሻ𝜀௧
where 𝜃଴is constant and

Φ௉ 𝐿௦ ൌ 1 െΦଵ 𝐿௦ െ ΦଶLଶ௦ െ ΦଷLଷ௦ …െΦ௉L௉௦

Θொ 𝐿௦ ൌ 1 െ Θଵ 𝐿௦ െ ΘଶLଶ௦ െ ΘଷLଷ௦ …െ ΘொLொ௦

Example 1: SARIMA(0,0,1)12 = SMA(1)12

 𝑦௧ൌ 𝜃଴ ൅ 𝜀௧  െ Θ 𝜀௧ିଵଶ

- Invertibility Condition: Θ ൏ 1.

– 𝐸ሾ𝑦௧ሿ ൌ 𝜃଴.

– 𝑉𝑎𝑟 𝑦௧ ൌ ሺ1 ൅ Θଶሻ𝜎ଶ

Removing Seasonalities: SARIMA





 





otherwise,0

12,
1: 2

k
ACF k

Example 2: SARIMA(1,0,0)12= AR(1)12

1 െΦ𝐿ଵଶ  𝑦௧ ൌ 𝜃଴ ൅ 𝜀௧

- This is a simple seasonal AR model.

- Stationarity Condition: Φ ൏ 1.

– 𝐸 𝑦௧ ൌ ఏబ
ଵି஍ 

– 𝑉𝑎𝑟 𝑦௧ ൌ ఙమ

ଵ ି ஍మ

– ACF: ρ 12 ∗ 𝑘 ൌ Φଵଶ∗௞ 𝑘 ൌ 0,േ1,േ2, …

• When Φ ൌ 1, the series is non-stationary. To test for a unit root, 
consider seasonal unit root tests. 

Removing Seasonalities: SARIMA
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• A special, parsimonious class of seasonal time series models that is 
commonly used in practice is the multiplicative seasonal model 
ARIMAሺ𝑝, 𝑑, 𝑞ሻሺ𝑃,𝐷,𝑄ሻs:

𝜙௣ሺ𝐿ሻΦ௉ሺ𝐿௦ሻሺ1 െ 𝐿ሻௗሺ1 െ 𝐿௦ሻ஽  𝑦௧ ൌ 𝜃଴ ൅ 𝜃௤ 𝐿 Θொሺ𝐿௦ሻ𝜀௧  

where all zeros of 𝜙௣ሺ𝐿ሻ; Φ௉ሺ𝐿௦ሻ; 𝜃௤ 𝐿 & Θொሺ𝐿௦ሻ lie outside the 
unit circle. Of course, there are no common factors between 
𝜙௣ሺ𝐿ሻΦ௉ሺ𝐿௦ሻ and 𝜃௤ 𝐿 Θொሺ𝐿௦ሻ

• When Φ௉ 𝐿௦ ൌ 1 ൌ 0, the series is non-stationary. To test for a 
unit root, consider seasonal unit root tests. 

Seasonal Time Series – Multiplicative SARIMA

• We derive ACF as usual: For example, 

𝑊௧ = 1 െ θ𝐿  ሺ1 െ Θ𝐿ଵଶሻ 𝑦௧, 𝑊௧ ~ 𝐼ሺ0ሻ
then, 

𝑊௧ = 1 െ θ𝐿  ሺ1 െ Θ𝐿ଵଶሻ 𝑦௧
ൌ ሺ1 െ  θ𝐿 െ Θ𝐿ଵଶ ൅ θΘ𝐿ଵଷሻ
ൌ  𝑦௧ െ θ 𝑦௧ିଵ െ Θ 𝑦௧ିଵଶ ൅ θΘ 𝑦௧ିଵଷ

Seasonal Time Series – Multiplicative SARIMA
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• The ACF and PACF can be used to discover seasonal patterns. 

Seasonal Time Series – Multiplicative SARIMA

• The ACF and PACF can be used to discover seasonal patterns. 

Seasonal Time Series – Multiplicative SARIMA
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• The ACF and PACF can be used to discover seasonal patterns. 

Seasonal Time Series – Multiplicative SARIMA

• Most used seasonal model in practice: SARIMA(0,1,1)(0,1,1)12

1 െ 𝐿  ሺ1 െ 𝐿ଵଶሻ  𝑦௧ ൌ 1 െ 𝜃𝐿  1 െ Θ𝐿ଵଶ  𝜀௧  
where |𝜃| ൏ 1 and |Θ| ൏ 1 .

• This model is the most used seasonal model in practice. It was used 
by Box and Jenkins (1976) for modeling the well-known monthly 
series of airline passengers. It is called the airline model.

• We usually work with the RHS variable, 

𝑊௧ = 1 െ 𝐿  ሺ1 െ 𝐿ଵଶሻ 𝑦௧
ሺ1 െ 𝐿ሻ: “regular” difference

ሺ1 െ 𝐿ଵଶሻ: “seasonal” difference. 

Seasonal Time Series – Multiplicative SARIMA
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• If a series has seasonal unit roots, then standard ADF test statistic 
do not have the same distribution as for non-seasonal series. 

• Furthermore, seasonally adjusting series which contain seasonal unit 
roots can alias the seasonal roots to the zero frequency, so there is a 
number of reasons why economists are interested in seasonal unit 
roots.

• See Hylleberg, S., Engle, R.F., Granger, C. W. J., and Yoo, B. S., 
Seasonal integration and cointegration,(1990, Journal of Econometrics).

Seasonal Time Series – Seasonal Unit Roots

• Stationarity in mean does not imply stationarity in variance

• Non-stationarity in mean implies non-stationarity in variance.

• If the mean function is time dependent:
1. The variance, 𝑉𝑎𝑟 𝑦௧ , is time dependent.
2. 𝑉𝑎𝑟 𝑦௧ is unbounded as 𝑡 .
3. Autocovariance functions and ACFs are also time dependent.
4. If 𝑡 is large with respect to 𝑦଴, then 𝜌௞   1.

• It is common to use variance stabilizing transformations: Find a 
function 𝐺ሺ. ሻ so that the transformed series 𝐺ሺ𝑦௧ሻ has a constant (or 
lower) variance. For example, the Box-Cox transformation:

𝐺 𝑦௧ ൌ ሺ௬೟
ഊ ି ଵሻ

ఒ 

Non-Stationarity in Variance
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• Many times, this stabilizing transformation is done because the 
variance is non-stationary. In practice, a variance stabilizing 
transformation is done to reduce the variance of the series. 

• Traditionally, variance stabilizing transformations are used when  
working with a nominal series (not changes, say, USD total retail sales 
or total units sold). 

• In the context of nominal series, the most popular transformation is 
the log:

𝐺 𝑦௧ ൌ log ሺ𝑦௧ሻ 

Non-Stationarity in Variance

Example: We log transform the monthly variable Total U.S. Vehicle 
Sales data (1976: Jan – 2020: Sep):
Car_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/TOTALNSA.csv", 
head=TRUE, sep=",")
x_car <- Car_da$TOTALNSA

library(tseries)
ts_car <- ts(x_car,start=c(1976,1),frequency=12) 
plot.ts(ts_car,xlab="Time",ylab="div", main="Total U.S. Vehicle Sales")

> mean(x_car)
[1] 1260.818
> sd(x_car)
[1] 225.5706

Non-Stationarity in Variance: Logs
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Example (continuation):
l_car <- log(ts_car)
> plot.ts(l_car,xlab="Time",ylab="div", main="Log Total U.S. Vehicle Sales")

> mean(l_car)
[1] 7.122416
> sd(l_car)
[1] 0.1889378

Note: Big reduction in volatility. Though pattern of series not significantly changed.

Non-Stationarity in Variance: Logs

• Variance stabilizing transformation is only for positive series. If a 
series has negative values, then we need to add each value with a 
positive number so that all the values in the series are positive. 

• Then, we can search for any need for transformation.

• It should be performed before any other analysis, such as 
differencing.

• Not only stabilize the variance, but we tend to find that it also 
improves the approximation of the distribution by Normal 
distribution.

Variance Stabilizing Transformation - Remarks


