Lecture 13
Time Series:
Stationarity, AR(p) & MA(q)

Time Series: Introduction

• In the early 1970's, it was discovered that simple time series models performed better than the complicated multivariate, then popular, 1960s macro models (FRB-MIT-Penn). See, Nelson (1972).

• The tools? Simple univariate (ARIMA) models, popularized by the textbook of Box & Jenkins (1970).

Q: What is a time series? A time series y_t is a process observed in sequence over time, $t = 1, ..., T$ $\Rightarrow Y_T = \{y_1, y_2, y_3, ..., y_T\}$

• Because of the sequential nature of Y_T, we expect that y_t and y_{t+1} to be dependent. Then, classical assumptions are not valid.
Time Series: Introduction

• Usually, time series models are separated into two categories:
 - univariate \((y_t \in \mathbb{R}, \text{it is scalar})\)
 \(\Rightarrow\) primary model: Autoregressions (ARs).
 - multivariate \((y_t \in \mathbb{R}^m, \text{it vector-valued})\).
 \(\Rightarrow\) primary model: Vector autoregressions (VARs).

• In time series, \(\ldots, y_1, y_2, y_3, \ldots, y_T\) are jointly RV. We want to model the conditional expectation:
 \(E[y_t | F_{t-1}]\)
 where \(F_{t-1} = \{y_{t-1}, y_{t-2}, y_{t-3}, \ldots\}\) is the past history of the series.

Time Series: Introduction

• Two popular models for \(E[y_t | F_{t-1}]\):
 - An autoregressive (AR) process models \(E[y_t | F_{t-1}]\) with lagged dependent variables.
 - A moving average (MA) process models \(E[y_t | F_{t-1}]\) with lagged errors.

• Usually, \(E[y_t | F_{t-1}]\) has been modeled as a linear process. But, in recent times, non-linearities have become more common.

• In general, we assume the error term, \(\varepsilon_t\), is uncorrelated, with mean 0 and constant variance, \(\sigma^2\). We call a process like this a white noise (WN) process. We denote it as
 \(\varepsilon_t \sim \text{WN}(0,\sigma^2)\)
CLM Revisited: Time Series

With autocorrelated data, we get dependent observations. Recall,
\[\varepsilon_t = \rho \varepsilon_{t-1} + u_t \]

The independence assumption (A2′) is violated. The LLN and the CLT cannot be easily applied, in this context. We need new tools and definitions.

We will introduce the concepts of stationarity and ergodicity. The ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent variables, using the concept of mixing and stationarity. Or we can rely on the martingale CLT.

Time Series - Stationarity

• Consider the joint probability distribution of the collection of RVs:

\[F(z_{t_1}, z_{t_2}, \ldots, z_{t_n}) = P(Z_{t_1} \leq z_{t_1}, Z_{t_2} \leq z_{t_2}, \ldots, Z_{t_n} \leq z_{t_n}) \]

Then, we say that a process is

1st order stationary if

\[F(z_{t_1}) = F(z_{t_1+k}) \quad \text{for any } t_1, k \]

2nd order stationary if

\[F(z_{t_1}, z_{t_2}) = F(z_{t_1+k}, z_{t_2+k}) \quad \text{for any } t_1, t_2, k \]

Nth-order stationary if

\[F(z_{t_1}, \ldots, z_{t_n}) = F(z_{t_1+k}, \ldots, z_{t_n+k}) \quad \text{for any } t_1, t_n, k \]

• Definition. A process is strongly (strictly) stationary if it is a Nth-order stationary process for any N.
Time Series – Moments

• The moments describe a distribution. We calculate the moments as usual.

\[E(Z_t) = \mu_t = \int Z_t f(z_t) dz_t \]

\[Var(Z_t) = \sigma^2_t = E(Z_t - \mu_t)^2 = \int (Z_t - \mu_t)^2 f(z_t) dz_t \]

\[Cov(Z_{t_1}, Z_{t_2}) = E[(Z_{t_1} - \mu_{t_1})(Z_{t_2} - \mu_{t_2})] = \gamma(t_1 - t_2) \]

\[\rho(t_1, t_2) = \frac{\gamma(t_1 - t_2)}{\sqrt{\sigma^2_{t_1}} \sqrt{\sigma^2_{t_2}}} \]

Note: \(\gamma(t_1,t_2) \) is called the autocovariance function. \(\gamma(0) \) is the variance.

• Stationarity requires all these moments to be independent of time.

• If the moments are time dependent, we say the series is non-stationary.

Time Series – Moments

• For strictly stationary process: \(\mu_t = \mu \) and \(\sigma^2_t = \sigma^2 \)

because \(F(z_{t_1}) = F(z_{t_1+k}) \Rightarrow \mu_{t_1} = \mu_{t_1+k} = \mu \)

provided that \(E(|Z_t|) < \infty, \ E(Z^2_t) < \infty \)

Then, \(F(z_{t_1}, z_{t_2}) = F(z_{t_1+k}, z_{t_2+k}) \Rightarrow \)

\(\text{cov}(z_{t_1}, z_{t_2}) = \text{cov}(z_{t_1+k}, z_{t_2+k}) \Rightarrow \)

\[\rho(t_1, t_2) = \rho(t_1 + k, t_2 + k) \]

let \(t_1 = t - k \) and \(t_2 = t \), then

\[\rho(t_1, t_2) = \rho(t - k, t) = \rho(t, t + k) = \rho_k \]

The correlation between any two RVs depends on the time difference.
Time Series – Weak Stationarity

- A process is said to be \(N\)-order weakly stationary if all its joint moments up to order \(N\) exist and are time invariant.

- A covariance stationary process (or 2nd order weakly stationary) has:
 - constant mean
 - constant variance
 - covariance function depends on time difference between R.V.

That is, \(Z_t\) is covariance stationary if:

\[
E(Z_t) = \text{constant} \\
Var(Z_t) = \text{constant} \\
Cov(Z_{t_1}, Z_{t_2}) = E[(Z_{t_1} - \mu_{t_1})(Z_{t_2} - \mu_{t_2})] = \gamma(t_1 - t_2) = f(t_1 - t_2)
\]

Examples: For all assume \(\varepsilon_t \sim \text{WN}(0, \sigma^2)\)

1) \(y_t = \Phi y_{t-1} + \varepsilon_t\)
 \[
 E[y_t] = 0 \quad \text{(assuming } \Phi \neq 1) \\
 \text{Var}[y_t] = \sigma^2/(1 - \Phi^2) \quad \text{(assuming } |\Phi| < 1) \\
 E[y_t y_{t+1}] = \Phi E[y_{t+1}^2] \\
 => \text{stationary, not time dependent}
 \]

2) \(y_t = \mu + y_{t-1} + \varepsilon_t\)
 \[
 E[y_t] = \mu + y_0 \\
 \text{Var}[y_t] = \sigma^2 = \sigma^2 t \\
 => \text{non-stationary, time dependent}
 \]
Stationary Series

Examples:
\[y_t = 0.08 + \varepsilon_t + 0.4 \varepsilon_{t-1} \quad \varepsilon_t \sim WN \]
\[y_t = 0.13 y_{t-1} + \varepsilon_t \]

Non-Stationary Series

Examples:
\[y_t = \mu t + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t \quad \varepsilon_t \sim WN \]
\[y_t = \mu + y_{t-1} + \varepsilon_t \quad \text{RW with drift} \]
Time Series – Ergodicity

- We want to allow as much dependence as the LLN allows us to do it.
- But, stationarity is not enough, as the following example shows:

Example: Let \(\{U_t\} \) be a sequence of i.i.d. RVs uniformly distributed on \([0, 1]\) and let \(Z \) be \(N(0,1) \) independent of \(\{U_t\} \).

Define \(Y_t = Z + U_t \). Then \(Y_t \) is stationary (why?), but

\[
\bar{Y}_n = \frac{1}{n} \sum_{t=1}^{n} Y_t \quad \overset{n \to \infty}{\longrightarrow} \quad E(Y_t) = \frac{1}{2}
\]

\[
\bar{Y}_n - Z \overset{p}{\longrightarrow} \frac{1}{2}
\]

The problem is that there is too much dependence in the sequence \(\{Y_t\} \) (because of \(Z \)). In fact the correlation between \(Y_1 \) and \(Y_t \) is always positive for any value of \(t \).

Time Series – Ergodicity of the Mean

- We want to estimate the mean of the process \(\{Z_t\} \), \(\mu(Z_t) \). But, we need to distinguishing between ensemble average and time average.

 - Ensemble Average \(\bar{z} = \frac{1}{m} \sum_{i=1}^{m} Z_i \)

 - Time Series Average \(\bar{z} = \frac{1}{n} \sum_{i=1}^{n} Z_i \)

Q: Which estimator is the most appropriate?
A: Ensemble Average. But, it is impossible to calculate. We only observe one \(Z_i \).

- Q: Under which circumstances we can use the time average (only one realization of \(\{Z_t\} \))? Is the time average an unbiased and consistent estimator of the mean? The *Ergodic Theorem* gives us the answer.
Time Series – Ergodicity of the Mean

- Recall the sufficient conditions for consistency of an estimator: the estimator is asymptotically unbiased and its variance asymptotically collapses to zero.

1. Q: Is the time average is asymptotically unbiased? Yes.
\[
E(\bar{z}) = \frac{1}{n} \sum E(Z_t) = \frac{1}{n} \sum \mu = \mu
\]

2. Q: Is the variance going to zero as T grows? It depends.
\[
\text{var}(\bar{z}) = \frac{1}{n^2} \sum_{t=1}^{n} \sum_{s=1}^{n} \text{cov}(Z_t, Z_s) = \frac{\gamma_0}{n^2} \sum_{t=1}^{n} \sum_{s=1}^{n} \rho_{t-s} = \frac{\gamma_0}{n^2} \sum_{t=1}^{n} (\rho_{t-1} + \rho_{t-2} \cdots + \rho_{t-n}) = \\
= \frac{\gamma_0}{n^2} [(\rho_0 + \rho_1 + \cdots + \rho_{n-1}) + (\rho_{-1} + \rho_0 + \cdots + \rho_{n-2}) + \\
\cdots + (\rho_{-(n-1)} + \rho_{-(n-2)} + \cdots + \rho_0)]
\]

Time Series – Ergodicity of the Mean

\[
\text{var}(\bar{z}) = \frac{\gamma_0}{n^2} \sum_{k=-(n-1)}^{n-1} (n-|k|) \rho_k = \frac{\gamma_0}{n} \sum_{k} (1-\frac{|k|}{n}) \rho_k
\]
\[
\lim_{n \to \infty} \text{var}(\bar{z}) = \lim_{n \to \infty} \frac{\gamma_0}{n} \sum_{k} (1-\frac{|k|}{n}) \rho_k \to 0
\]

- If the \(Z_t \) were uncorrelated, the variance of the time average would be \(O(n^{-1}) \). Since independent random variables are necessarily uncorrelated (but not vice versa), we have just recovered a form of the LLN for independent data.

Q: How can we make the remaining part, the sum over the upper triangle of the covariance matrix, go to zero as well?
A: We need to impose conditions on \(\rho_k \). Conditions weaker than "they are all zero;" but, strong enough to exclude the sequence of identical copies.
Time Series – Ergodicity of the Mean

- We use two inequalities to put upper bounds on the variance of the time average:
 \[\sum_{t=1}^{n-1} \sum_{k=1}^{n-1} \rho_{k} \leq \sum_{t=1}^{n-1} \sum_{k=1}^{n-1} |\rho_{k}| \leq \sum_{t=1}^{n-1} \sum_{k=1}^{\infty} |\rho_{k}| \]

Covariances can be negative, so we upper-bound the sum of the actual covariances by the sum of their magnitudes. Then, we extend the inner sum so it covers all lags. This might of course be infinite (sequence-of-identical-copies).

- **Definition**: A covariance-stationary process is *ergodic* for the mean if
 \[p \lim_{n \to \infty} \bar{Z} = E(Z_t) = \mu \]

Ergodicity Theorem: Then, a sufficient condition for ergodicity for the mean is
\[\rho_k \to 0 \quad \text{as} \quad k \to \infty \]

Time Series – Ergodicity of 2nd Moments

- A sufficient condition to ensure ergodicity for second moments is:
 \[\sum_{k} |\rho_k| < \infty \]

A process which is ergodic in the first and second moments is usually referred as *ergodic in the wide sense*.

- **Ergodicity under Gaussian Distribution**
 If \{Z_t\} is a stationary Gaussian process, \[\sum_{k} |\rho_k| < \infty \]
 is sufficient to ensure ergodicity for all moments.

Note: Recall that only the first two moments are needed to describe the normal distribution.
Time Series – Ergodicity – Theorems

- We state two essential theorems to the analysis of stationary time series. Difficult to prove in general.

Theorem I
If y_t is strictly stationary and ergodic and $x_t = f(y_t, y_{t-1}, y_{t-2}, ...)$ is a RV, then x_t is strictly stationary and ergodic.

Theorem II (Ergodic Theorem)
If y_t is strictly stationary and ergodic and $E[y_t] < \infty$; then as $T \to \infty$;

$$\frac{1}{\sqrt{T}} \sum_t y_t \xrightarrow{p} E[y_t]$$

- These results allow us to consistently estimate parameters using time-series moments.

Time Series - MDS

- **Definition**: ε_t is a martingale difference sequence (MDS) if

 $$E[\varepsilon_t | F_{t-1}] = 0.$$

- Regression errors are naturally a MDS. Some time-series processes may be a MDS as a consequence of optimizing behaviour. For example, most asset pricing models imply that asset returns should be the sum of a constant plus a MDS.

- **Useful property**: ε_t is uncorrelated with any function of the lagged information F_{t-1}. Then, for $k > 0$

 $$=> E[y_{t+k} \varepsilon_t] = 0.$$

Time Series – MDS CLT

Theorem (MDS CLT)
If \(u_t \) is a strictly stationary and ergodic MDS and \(\text{E}(u_t, u_t') = \Omega < \infty \); then as \(T \to \infty \):
\[
\frac{1}{\sqrt{T}} \sum_{t} u_t \xrightarrow{d} N(0, \Omega)
\]

- **Application:** Let \(x_t = \{y_{t-1}, y_{t-2}, \ldots \} \), a vector of lagged \(y_t \)'s. Then \((x_t | x_t) \) is a MDS. We can apply the MDS CLT Theorem. Then,
\[
\frac{1}{\sqrt{T}} \sum_{t} x_t \varepsilon_t \xrightarrow{d} N(0, \Omega), \quad \Omega = \text{E}[x_t x_t' \varepsilon_t^2]
\]

- Like in the derivation of asymptotic distribution of OLS, the above result is the key to establish the asymptotic distribution in a time series context.

Autoregressive (AR) Process

- We want to model the conditional expectation of \(y_t \):
 \[
 \text{E}[y_t | F_{t-1}]
 \]
 where \(F_{t-1} = \{y_{t-1}, y_{t-2}, y_{t-3}, \ldots \} \) is the past history of the series. We assume the error term, \(\varepsilon_t = y_t - \text{E}[y_t | F_{t-1}] \), follows a WN(0, \(\sigma^2 \)).

- An AR process models \(\text{E}[y_t | F_{t-1}] \) with lagged dependent variables.

- The most common models are AR models. An AR(1) model involves a single lag, while an AR(\(p \)) model involves \(p \) lags.

Example: A linear AR(\(p \)) model (the most popular in practice):
\[
y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t
\]
with \(\text{E}[\varepsilon_t | F_{t-1}] = 0 \).
AR Process – Lag Operator

- Define the operator L as:

 $$L^k z_t = z_{t-k}$$

- It is usually called *Lag operator*. But it can produce lagged or forward variables (for negative values of k). For example:

 $$L^{-3} z_t = z_{t+3}$$

- Also note that if c is a constant $\Rightarrow Lc = c$.

- Sometimes the notation for L when working as a lag operator is B (*backshift operator*), and when working as a forward operator is F.

- Important application: Differencing

 $$\Delta z_t = (1-L)z_t = z_t - z_{t-1}$$

 $$\Delta^d z_t = (1-L)^d z_t$$

Autoregressive (AR) Process

- Let's work with the linear AR(p) model is:

 $$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t = \mu + \sum_{i=1}^{p} \phi_i y_{t-i} + \varepsilon_t$$

 $$y_t = \mu + \sum_{i=1}^{p} \phi_i L^i y_t + \varepsilon_t$$

 L : Lag operator

- We can write this process as:

 $$\Phi(L)y_t = \mu + \varepsilon_t$$

 where $\Phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p$

 $\Phi(L)$ is called the autoregressive polynomial of y_t. Note that

 $$y_t = \Phi(L)^{-1}(\mu + \varepsilon_t)$$

 delivers an infinite sum on the ε_t's \Rightarrow an MA(∞) process!

- Q: Can we do this inversion?
• Let’s compute moments of y_t using the infinite sum (assume $\mu=0$):

$$E[y_t] = \phi(L)^{-1}E[\varepsilon_t] = 0 \Rightarrow \phi(L) \neq 0$$

$$Var[y_t] = \phi(L)^{-2}Var[\varepsilon_t] \Rightarrow \phi(L)^{-2} > 0$$

$$E[y_t y_{t-j}] = \gamma(t-j) = E[(\phi_1 y_{t-1} y_{t-j} + \phi_2 y_{t-2} y_{t-j} + \cdots + \phi_p y_{t-p} y_{t-j} + \varepsilon_t y_{t-j})]$$

$$= \phi_1 \gamma(j-1) + \phi_2 \gamma(j-2) + \cdots + \phi_p \gamma(j-p)$$

where, abusing notation,

$$\phi(L)^{-2} = \frac{1}{1 - \phi_1^2 L^1 - \phi_2^2 L^2 - \cdots - \phi_p^2 L^p}$$

Using the fundamental theorem of algebra, $\Phi(z)$ can be factored as

$$\phi(z) = (1-r_1^{-1}z)(1-r_2^{-1}z)\cdots(1-r_p^{-1}z)$$

where the $r_1, \ldots, r_k \in \mathbb{C}$ are the roots of $\Phi(z)$. If the ϕ_j’s coefficients are all real, the roots are either real or come in complex conjugate pairs.

AR Process - Stationarity

Theorem: The linear AR(p) process is strictly stationary and ergodic if and only if $|r_j| > 1$ for all j, where $|r_j|$ is the modulus of the complex number r_j.

• We usually say “all roots lie outside the unit circle.”

Note: If one of the r_j’s equals 1, $\Phi(L)$ ($\& y_t$) has a unit root —i.e., $\Phi(1)$=0. This is a special case of non-stationarity.

• Recall $\Phi(L)^{-1}$ produces an infinite sum on the ε_t’s. If this sum does not explode, we say the process is stable.

• If the process is stable, we can calculate $\delta y_t / \delta \varepsilon_{t-j}$: How much y_t is affected today by an innovation (a shock) $t-j$ periods ago. We call this the impulse response function (IRF).
AR Process – Example: AR(1)

Example: AR(1) process

\[y_t = \mu + \phi y_{t-1} + \varepsilon_t \]

\[
E[y_t] = \frac{E[\mu + \varepsilon_t]}{1 - \phi} = \frac{\mu}{1 - \phi} = \mu^* \quad \Rightarrow \phi \neq 1 \quad (\eta_1 \neq 0)
\]

\[
Var[y_t] = \frac{Var[\varepsilon_t]}{(1 - \phi^2)} = \frac{\sigma^2}{(1 - \phi^2)}; \quad \text{since } \sigma^2 > 0 \Rightarrow |\phi| < 1 \quad (\eta_1 > 1)
\]

Note: \(1/(1 - \phi^i) = \sum_{j=0}^{\infty} \phi^j \quad i = 1, 2\)

These infinite sums will not explode (stable process) if

\[|\phi| < 1 \quad \Rightarrow \text{stationarity condition.} \]

Under this condition, we can calculate the impulse response function:

\[\delta y_t / \delta \varepsilon_{t-j} = \Phi^j \]

AR Process – Example: AR(1)

- The autocovariance function is:

\[
\gamma_k = Cov(Y_t, Y_{t-k}) = E[(Y_t - \mu)(Y_{t-k} - \mu)]
\]

\[
\gamma_k = E[\phi(Y_{t-1} - \mu) + \varepsilon_t)(Y_{t-k} - \mu)]
\]

\[
\gamma_k = \phi E[(Y_{t-1} - \mu)(Y_{t-k} - \mu)] + E[\varepsilon_t(Y_{t-k} - \mu)]
\]

\[
\gamma_k = \phi \gamma_{k-1} + E[\varepsilon_t(Y_{t-k} - \mu)] = \phi \gamma_{k-1}
\]

- There is a recursive formula for \(\gamma_k\):

\[
\gamma_1 = \phi \gamma_0 \\
\gamma_2 = \phi (\phi \gamma_0) = \phi^2 \gamma_0 \\
\gamma_k = \phi^k \gamma_0
\]

- Again, when \(|\phi| < 1\), the autocovariance do not explode as \(k\) increases. There is an exponential decay towards zero.
AR Process – Example: AR(1)

• Note: $y_k = \phi^k y_0$
 - when $0 < \phi < 1$ ⇒ All autocovariances are positive.
 - when $-1 < \phi < 0$ ⇒ The sign of the autocovariances shows an alternating pattern beginning a negative value.

• The AR(1) process has the Markov property: The distribution of Y_t given $\{Y_{t-1}, Y_{t-2}, \ldots\}$ is the same as the distribution of Y_t given $\{Y_{t-1}\}$.

AR Process – Example: AR(2)

Example: AR(2) process

$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t \Rightarrow (1 - \phi_1 L - \phi_2 L^2) y_t = \mu + \varepsilon_t$

We can invert $(1 - \phi_1 L - \phi_2 L^2)$ to get the MA(∞) process.

• Stationarity Check
 - $E[y_t] = \mu/(1-\Phi_1 \cdot \Phi_2) = \mu^* \Rightarrow \Phi_1 + \Phi_2 \neq 1.$
 - $\text{Var}[y_t] = \sigma^2/(1 - \Phi_1^2 - \Phi_2^2) \Rightarrow \Phi_1^2 + \Phi_2^2 < 1$

 Stationarity condition: $| \Phi_1 + \Phi_2 | < 1$

• The analysis can be simplified: Rewrite the AR(2) in matrix form as an AR(1).

\[
\begin{bmatrix}
 y_t \\
 y_{t-1}
\end{bmatrix} =
\begin{bmatrix}
 \mu \\
 0
\end{bmatrix} +
\begin{bmatrix}
 \phi_1 & \phi_2 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 y_{t-1} \\
 y_{t-2}
\end{bmatrix} +
\begin{bmatrix}
 \varepsilon_t \\
 0
\end{bmatrix} \Rightarrow \tilde{y}_t = \tilde{\mu} + A\tilde{y}_{t-1} + \tilde{\varepsilon}_t
\]

Note: Now, we check $[I - A]$ ($i=1,2$) for stationarity conditions.
AR Process - Stationarity

\[\tilde{y}_t = \tilde{\mu} + A \tilde{y}_{t-1} + \tilde{\epsilon}_t \quad \Rightarrow \quad \tilde{y}_t = (I - AL)^{-1} \tilde{\epsilon}_t \]

Note: Recall \((I - F)^{-1} = \sum_{j=0}^{\infty} F^j = I + F + F^2 + ...\)

Checking that \([I - AL]\) is not singular, same as checking that \(A^j\) does not explode. The stability of the system can be determined by the eigenvalues of \(A\). That is, get the \(\lambda_i\)'s and check if \(|\lambda_i| < 1\) for all \(i\).

\[A = \begin{bmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{bmatrix} \Rightarrow |A - \lambda I| = \det \begin{bmatrix} \phi_1 - \lambda & \phi_2 \\ 1 & -\lambda \end{bmatrix} = - (\phi_1 - \lambda)\lambda - \phi_2 \]

\[\lambda_i = \frac{\phi_1 \pm \sqrt{\phi_1^2 + 4\phi_2}}{2} \]

- If \(|\lambda_i| < 1\) for all \(i=1,2\), \(y_t\) is stable (it does not explode) and stationary. Then:
 \[\lambda_1 \lambda_2 = \phi_2 \Rightarrow |\lambda_1 \lambda_2| = |\phi_2| < 1 \]
 \[\lambda_1 + \lambda_2 = \phi_1 \Rightarrow |\lambda_1 + \lambda_2| = |\phi_1| < 2 \]

AR Process - Stationarity

- The autocovariance function is given by:
 \[\gamma_k = E[(Y_t - \mu)(Y_{t-k} - \mu)] \]
 \[= E[(\phi_1(Y_{t-1} - \mu) + \phi_2(Y_{t-2} - \mu) + \epsilon_t)(Y_{t-k} - \mu)] \]
 \[= \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2} + E[\epsilon_t(Y_{t-k} - \mu)] \]

- Again a recursive formula. Let’s get the first autocovariances:
 \[\gamma_0 = \phi_1 \gamma_{-1} + \phi_2 \gamma_{-2} + E[\epsilon_t(Y_{t} - \mu)] \]
 \[= \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2 \]
 \[\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_1 + E[\epsilon_t(Y_{t-1} - \mu)] \]
 \[= \phi_1 \gamma_0 + \phi_2 \gamma_1 \quad \Rightarrow \quad \gamma_1 = \frac{\phi_1 \gamma_0}{1 - \phi_2} \]
 \[\gamma_2 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + E[\epsilon_t(Y_{t-2} - \mu)] \]
 \[= \phi_1 \gamma_1 + \phi_2 \gamma_2 \quad \Rightarrow \quad \gamma_2 = \frac{\phi_1^2 + \phi_2 - \phi_1^2\gamma_0}{1 - \phi_2} \]
AR Process - Stationarity

• The AR(2) in matrix AR(1) form is called Vector AR(1) or VAR(1). Nice property: The VAR(1) is Markov -i.e., forecasts depend only on today’s data.

• It is straightforward to apply the VAR formulation to any AR(p) processes. We can also use the same eigenvalue conditions to check the stationarity of AR(p) processes.

AR Process - Causality

• The AR(p) model:
 \[\phi(L)y_t = \mu + \varepsilon_t \]
 where \(\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p \)

 Then, \(y_t = \phi(L)^{-1}(\mu + \varepsilon_t) \) => an MA(\(\infty \)) process!

• But, we need to make sure that we can invert the polynomial \(\Phi(L) \).

• When \(\Phi(L) \neq 0 \), we say the process \(y_t \) is causal (strictly speaking, a causal function of \{\varepsilon_t\}).

Definition: A linear process \(\{y_t\} \) is causal if there is a

\[\psi(L) = 1 + \psi_1 L + \psi_2 L^2 + \ldots \]

with \(\sum_{j=0}^{\infty} |\psi_j(L)| < \infty \)

with \(y_t = \psi(L)\varepsilon_t \).
AR Process – Causality

Example: AR(1) process:
\[\phi(L)y_t = \mu + \varepsilon_t, \quad \text{where} \phi(L) = 1 - \phi_1 L \]

Then, \(y_t \) is causal if and only if:
\[
| \phi_1 | < 1
\]
or
the root \(r_1 \) of the polynomial \(\Phi(z) = 1 - \phi_1 z \) satisfies \(|r_1| > 1 \).

• Q: How do we calculate the \(\psi \)'s coefficients for an AR(\(p \))?

Matching coefficients:
\[
(Y_t - \mu) = \frac{1}{1 - \phi_1 L} \varepsilon_t = \sum_{i=0}^{\infty} \phi_1^i L^i \varepsilon_t
\]
\[
= \left(1 + \phi_1 L + \phi_2 L^2 + \cdots \right) \varepsilon_t \quad \Rightarrow \quad \Psi_i = \phi_1^i, \quad i \geq 0
\]

AR Process – Calculating the \(\psi \)'s

• Example: AR(2) - Calculating the \(\psi \)'s by matching coefficients.

\[
\left(\frac{1 - \phi_1 L - \phi_2 L^2}{\Phi(L)} \right) (y_t - \mu) = \varepsilon_t \quad \Rightarrow \quad \Phi(L) \Psi(L) = 1
\]

\[
\Psi_0 = 1
\]
\[
\Psi_1 = \phi_1
\]
\[
\Psi_2 = \phi_1^2 + \phi_2
\]
\[
\Psi_3 = \phi_1^3 + 2\phi_1\phi_2
\]
\[
\Psi_j = \phi_1 \Psi_{j-1} + \phi_2 \Psi_{j-2}, \quad j \geq 2
\]

We can solve these linear difference equations in several ways:
- Numerically
- Guess the form of a solution and using an inductive proof, or
- Using the theory of linear difference equations.
AR Process – Estimation and Properties

- Define

 \[x_t = (1 \ y_{t-1} \ y_{t-2} \ldots y_{t-p}) \]

 \[\beta = (\mu \ \phi_1 \ \phi_2 \ldots \phi_p) \]

 Then the model can be written as

 \[y_t = x_t' \beta + \varepsilon_t \]

- The OLS estimator is

 \[b = \hat{\beta} = (X'X)^{-1} X'y \]

- Recall that \(u_t = \varepsilon_t \) is a MDS. It is also strictly stationary and ergodic.

 \[\frac{1}{\sqrt{T}} \sum_{t} x_t \varepsilon_t = \frac{1}{\sqrt{T}} \sum_{t} u_t \longrightarrow_{p} E[u_t] = 0. \]

- The vector \(x_t \) is strictly stationary and ergodic, and by Theorem I so is \(x_t x_t' \). Then, by the Ergodic Theorem

 \[\frac{1}{\sqrt{T}} \sum_{t} x_t x_t' \longrightarrow_{p} E[x_t x_t'] = Q \]

AR Process – Estimation and Properties

- **Consistency**

 Putting together the previous results, the OLS estimator can be rewritten as:

 \[b = \hat{\beta} = (X'X)^{-1} X'y = \beta + \left(\frac{1}{T} \sum_{t} x_t x_t' \right)^{-1} \left(\frac{1}{T} \sum_{t} x_t \varepsilon_t \right) \]

 Then,

 \[b = \beta + \left(\frac{1}{T} \sum_{t} x_t x_t' \right)^{-1} \left(\frac{1}{T} \sum_{t} x_t \varepsilon_t \right) \longrightarrow_{p} \beta + Q^{-1} 0 = \beta \]

 \[\Rightarrow \text{the OLS estimator is consistent.} \]
AR Process – Asymptotic Distribution

• Asymptotic Normality

We apply the MDS CLT to x_t. Then, it is straightforward to derive the asymptotic distribution of the estimator (similar to the OLS case):

Theorem If the AR(p) process y_t is strictly stationary and ergodic and $E[y_t^4]$, then as $T \to \infty$;

$$\sqrt{T} (b - \beta) \xrightarrow{d} N(0, Q^{-1}\Omega Q^{-1}), \quad \Omega = E[x, x', \varepsilon^2]$$

• Identical in form to the asymptotic distribution of OLS in cross-section regression => asymptotic inference is the same.

• The asymptotic covariance matrix is estimated just as in the cross-section case: The sandwich estimator.

AR Process – Bootstrap

• So far, we constructed the bootstrap sample by randomly resampling from the data values (y_t, x_t). This created an i.i.d bootstrap sample.

• This is inappropriate for time-series. (We have dependence.)

• There are two popular methods to bootstrap time series.

 (1) Model-Based (Parametric) Bootstrap

 (2) Block Resampling Bootstrap
AR Process – Bootstrap

(1) Model-Based (Parametric) Bootstrap
1. Estimate \(\mathbf{b} \) and residuals \(\mathbf{e} \):
2. Fix an initial condition \(\{y_{t-k+1}, y_{t-k+2}, y_{t-k+3}, \ldots, y_0\} \)
3. Simulate i.i.d. draws \(\mathbf{e}^* \) from the empirical distribution of the residuals \(\{e_1, e_2, e_3, \ldots, e_T\} \).
4. Create the bootstrap series \(y_t \) by the recursive formula
 \[
 y_{t}^* = \hat{\mu} + \hat{\phi}_1 y_{t-1}^* + \hat{\phi}_2 y_{t-2}^* + \ldots + \hat{\phi}_p y_{t-p}^* + e_t^*
 \]

Pros: Simple. Similar to the usual bootstrap.

Cons: This construction imposes homoskedasticity on the errors \(e^* \); which may be different than the properties of the actual \(e \). It also imposes the AR(p) as the DGP.

AR Process – Bootstrap

(2) Block Resampling
1. Divide the sample into \(T/m \) blocks of length \(m \).
2. Resample complete blocks. For each simulated sample, draw \(T/m \) blocks.
3. Paste the blocks together to create the bootstrap time-series \(y_t^* \).

Pros: It allows for arbitrary stationary serial correlation, heteroskedasticity, and for model misspecification.

Cons: It may be sensitive to the block length, and the way that the data are partitioned into blocks. May not work well in small samples.
Moving Average Process

• An MA process models $E[y_t | F_{t-1}]$ with lagged error terms. An MA(q) model involves q lags.

• We keep the white noise assumption for ε_t.

Example: A linear MA(q) model:

$$y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} - \ldots - \theta_q \varepsilon_{t-q} = \mu - \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t$$

$$y_t = \mu - \sum_{i=1}^{q} \theta_i L^i \varepsilon_t + \varepsilon_t = \mu + \theta(L) \varepsilon_t, \quad \theta(L) = 1 - \theta_1 L - \theta_2 L^2 - \ldots - \theta_q L^q$$

• Q: Is y_t stationary? Check the moments. WLOG, assume $\mu = 0$.

Moving Average Process - Stationarity

• Q: Is y_t stationary? Check the moments. WLOG, assume $\mu = 0$.

$$E[y_t] = 0$$

$$Var[y_t] = (1 + \theta_1^2 + \theta_2^2 + \ldots + \theta_q^2) \sigma^2$$

$$\gamma(t-j) = E[y_{t} y_{t-j}] = E[(-\theta_1 \varepsilon_{t-1} y_{t-j} - \theta_2 \varepsilon_{t-2} y_{t-j} - \ldots - \theta_q \varepsilon_{t-q} y_{t-j} + \varepsilon_t y_{t-j})]$$

$$\gamma(t-j) = \sigma^2 \left[\sum_{j=1}^{q} \theta_j \theta_j (1) \right] \quad |k| \leq q; \quad \text{otherwise} \quad \gamma(t-j) = 0.$$

• It is easy to verify that the sums are finite \Rightarrow MA(q) is stationary.

• Note that an MA(q) process can generate an AR process.

$$y_t = \mu + \theta(L) \varepsilon_t \quad \Rightarrow \theta(L)^{-1} y_t = \mu^* + \varepsilon_t$$

• We have an infinite sum polynomial on θL. That is, an AR(∞).

$$\sum_{j=0}^{\infty} \pi_j (L) y_t = \mu^* + \varepsilon_t$$
MA Process - Invertibility

• We need to make sure that $\theta(L)^{-1}$ is defined. That is, we require $\theta(L) \neq 0$. When this condition is met, we can write ε_t as a causal function of y_t. We say the MA is invertible. For this to hold, we require:

$$\sum_{j=0}^{\infty} |\pi_j(L)| < \infty$$

Definition: A linear process \{\varepsilon_t\} is invertible strictly speaking, an invertible function of \{\varepsilon_t\}, if there is a

$$t = 1 + \pi_1 L + \pi_2 L^2 + ...$$

with $$\sum_{j=0}^{\infty} |\pi_j(L)| < \infty$$

with $\varepsilon_t = \pi(L) y_t$.

MA Process – Example: MA(1)

• Example: MA(1) process:

$$y_t = \mu + \theta(L) \varepsilon_t, \quad \theta(L) = 1 + \theta_1 L$$

- Moments

$$E(y_t) = \mu$$

$$\gamma_0 = Var(y_t) = \sigma^2 + \theta_1^2 \sigma^2$$

$$\gamma_1 = E[y_t, y_{t-1}] = \theta_1 \sigma^2$$

$$\gamma_k = E[y_t, y_{t-k}] = 0, \quad |k| > 1$$

Note: The autocovariance function is zero after lag 1.

- Invertibility: If $|\theta_1| < 1$, we can write $(1 + \theta_1 L)^{-1} y_t + \mu^* = \varepsilon_t$

$$\Rightarrow (1-\theta_1 L + \theta_1^2 L^2 + ... + \theta_1^j L^j + ...) y_t + \mu^* = \mu^* + \sum_{j=1}^{\infty} \pi_j(L) y_t = \varepsilon_t$$
Example: MA(2) process:

\[y_t = \mu + \theta(L) \varepsilon_t \quad \theta(L) = 1 - \theta_1 L - \theta_2 L^2 \]

- Moments

\[
E(y_t) = \mu \\
\gamma_k = \begin{cases}
\sigma^2 (1 + \theta_1^2 + \theta_2^2), & k = 0 \\
-\theta_1 \sigma^2 (1 - \theta_2), & |k| = 1 \\
-\theta_2 \sigma^2, & |k| = 2 \\
0, & |k| > 2
\end{cases}
\]

Note: the autocovariance function is zero after lag 2.

Invertibility: The roots of \(\lambda^2 - \theta_1 \lambda - \theta_2 = 0 \) all lie inside the unit circle. It can be shown the invertibility condition for MA(2) process is:

\[
\begin{align*}
\theta_1 + \theta_2 &< 1 \\
\theta_2 - \theta_1 &< 1 \\
-1 &< \theta_2 < 1
\end{align*}
\]
MA Process - Estimation

- MA are more complicated to estimate. In particular, there are nonlinearities. Consider an MA(1):
 \[y_t = \varepsilon_t + \theta \varepsilon_{t-1} \]

The auto-correlation is \(\rho_1 = \theta/(1+\theta^2) \). Then, MM estimate of \(\theta \) satisfies:

\[r_1 = \frac{\hat{\theta}}{1+\hat{\theta}^2} \Rightarrow \hat{\theta} = \frac{1\pm \sqrt{1-4r_1^2}}{2r_1} \]

- A nonlinear solution and difficult to solve.

- Alternatively, if \(|\theta| < 1 \), we can try \(a \in (-1; 1) \),
 \[\varepsilon_t (a) = y_t + a \, y_{t-1} + a^2 y_{t-2} + ... \]
 and look (numerically) for the least-square estimator
 \[\hat{\theta} = \text{arg}_{a} \min \{ S_T (a) = \sum_{t=1}^{T} \varepsilon_t^2 (a) \} \]

The Wold Decomposition

Theorem - Wold (1938).

Any covariance stationary \(\{ y_t \} \) has infinite order, moving-average representation:

\[y_t = \sum_{j=0}^{\infty} \psi_j L^j \varepsilon_t + \kappa_t, \quad \psi_0 = 1, \]

where \(\kappa_t \) : deterministic term (perfectly forecastable). Say, \(\kappa_t = \mu \)

\[\sum_{j=0}^{\infty} \psi_j^2 < \infty \]
\[\varepsilon_t \sim WN(0, \sigma^2) \]

- \(y_t \) is a linear combination of innovations over time.

- A stationary process can be represented as an MA(\(\infty \)) plus a deterministic “trend.”
The Wold Decomposition

Example:
Let \(x_t = y_t - \kappa_t \). Then, check moments:

\[
E[x_t] = E[y_t - \kappa_t] = \sum_{j=0}^{\infty} \psi_j E[\varepsilon_{t-j}] = 0.
\]

\[
E[x_t^2] = \sum_{j=0}^{\infty} \psi_j^2 E[\varepsilon_{t-j}^2] = \sigma^2 \sum_{j=0}^{\infty} \psi_j^2 < \infty.
\]

\[
E[x_t x_{t-j}] = E[(\varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + ...)(\varepsilon_{t-j} + \psi_1 \varepsilon_{t-j-1} + \psi_2 \varepsilon_{t-j-2} + ...)]
\]
\[
= \sigma^2 (\psi_j + \psi_1 \psi_{j+1} + \psi_2 \psi_{j+2} + ...) = \sigma^2 \sum_{k=0}^{\infty} \psi_k \psi_{k+2}
\]

\(X_t \) is a covariance stationary process.

ARMA Process

• A combination of AR(\(p \)) and MA(\(q \)) processes produces an ARMA(\(p,q \)) process:

\[
y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} - \ldots - \theta_q \varepsilon_{t-q}
\]

\[
= \mu + \sum_{i=1}^{p} \phi_i y_{t-i} - \sum_{i=1}^{q} \theta_i L \varepsilon_i + \varepsilon_i
\]

\[
=> \phi(L) y_t = \mu + \theta(L) \varepsilon_t
\]

• Usually, we insist that \(\Phi(L) \neq 0 \), \(\theta(L) \neq 0 \) and that the polynomials \(\Phi(L), \theta(L) \) have no common factors. This implies it is not a lower order ARMA model.
ARMA Process

Example: Common factors.
Suppose we have the following ARMA(2,3) model \(\phi(L)y_t = \theta(L)e_t \) with
\[
\phi(L) = 1 - .6L + .3L^2
\]
\[
\theta(L) = 1 - 1.4L + .9L^2 - .3L^3 = (1 - .6L + .3L^2)(1 - L)
\]
This model simplifies to: \(y_t = (1-L)e_t \) => an MA(1) process.

- **Pure AR Representation:** \(\Pi(L)(y_t - \mu) = a_t \Rightarrow \Pi(L) = \frac{\phi_p(L)}{\theta_q(L)} \)
- **Pure MA Representation:** \((y_t - \mu) = \Psi(L)a_t \Rightarrow \Psi(L) = \frac{\theta_q(L)}{\phi_p(L)} \)
- **Special ARMA(\(p,q \)) cases:**
 - \(p = 0 \): MA(\(q \))
 - \(q = 0 \): AR(\(p \)).

ARMA: Stationarity, Causality and Invertibility

Theorem: If \(\Phi(L) \) and \(\Theta(L) \) have no common factors, a (unique) stationary solution to \(\phi(L)y_t = \theta(L)e_t \) if and only if
\[
|z| = 1 \Rightarrow \phi(z) = 1 - \phi_1z - \phi_2z^2 - ... - \phi_pz^p \neq 0.
\]

This ARMA(\(p,q \)) model is causal if and only if
\[
|z| < 1 \Rightarrow \phi(z) = 1 - \phi_1z - \phi_2z^2 - ... - \phi_pz^p \neq 0.
\]

This ARMA(\(p,q \)) model is invertible if and only if
\[
|z| < 1 \Rightarrow \theta(z) = 1 + \theta_1z - \theta_2z^2 + ... + \theta_qz^q \neq 0.
\]

- **Note:** Real data cannot be exactly modeled using a finite number of parameters. We choose \(p, q \) to create a good approximated model.
ARMA Process – SDE Representation

- Consider the ARMA\((p,q)\) model:
 \[\phi(L)(y_t - \mu) = \theta(L)\epsilon_t \]

 Let \(x_t = y_t - \mu \) and \(w_t = \phi(L)\epsilon_t \).

 Then, \(x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \ldots + \phi_p x_{t-p} + w_t \)

 \(\Rightarrow x_t \) is a \(p \)-th-order linear stochastic difference equation (SDE).

Example: 1st-order SDE (AR(1)): \(x_t = \phi x_{t-1} + \epsilon_t \)

Recursive solution (Wold form):
\[
x_t = \phi x_{t-1} + \sum_{i=0}^{\infty} \phi^i \epsilon_{t-i} = \phi^1 x_{t-1} + \sum_{i=0}^{\infty} \psi^i \epsilon_{t-i}
\]

where \(x_{-1} \) is an initial condition.

ARMA Process – Dynamic Multiplier

- The dynamic multiplier measures the effect of \(\epsilon_t \) on subsequent values of \(x_t \): That is, the first derivative on the Wold representation:
 \[
 \frac{\delta x_{t+i}}{\delta \epsilon_t} = \frac{\delta x_i}{\delta \epsilon_0} = \psi_i.
 \]

For an AR(1) process: \(\frac{\delta x_{t+1}}{\delta \epsilon_t} = \frac{\delta x_1}{\delta \epsilon_0} = \phi_1 \).

- That is, the dynamic multiplier for any linear SDE depends only on the length of time \(j \), not on time \(t \).
ARMA Process – Impulse Response Function

- The *impulse-response function* (IRF) a sequence of dynamic multipliers as a function of time from the one time change in the innovation, ε_t.

- Usually, IRF are represented with a graph, that measures the effect of the innovation, ε_t, on y_t over time:

\[
\frac{\delta y_{t+j}}{\delta \varepsilon_t} + \frac{\delta y_{t+j+1}}{\delta \varepsilon_t} + \frac{\delta y_{t+j+2}}{\delta \varepsilon_t} + ... = \psi_j + \psi_{j+1} + \psi_{j+2} + ...
\]

- Once we estimate the ARMA coefficients, it is easy to draw an IRF.

ARMA Process – Addition

- Q: We add two ARMA process, what order do we get?

- Adding MA processes

\[
x_t = A(L)\varepsilon_t
\]

\[
z_t = C(L)u_t
\]

\[
y_t = x_t + z_t = A(L)\varepsilon_t + C(L)u_t
\]

- Under independence:

\[
\gamma_y(j) = E[y_t y_{t-j}] = E[(x_t + z_t)(x_{t-j} + z_{t-j})]
\]

\[
= E[(x_t x_{t-j} + z_t z_{t-j})] = \gamma_x(j) + \gamma_z(j)
\]

- Then, $\gamma(j) = 0$ for $j > \text{Max}(q_x, q_z)$ => y_t is ARMA($0, \text{Max}(q_x, q_z)$)

- Implication: MA(2)+MA(1)=MA(2)
ARMA Process – Addition

- **Q:** We add two ARMA process, what order do we get?

- **Adding AR processes**

 \[
 (1 - A(L))x_i = \varepsilon_i \\
 (1 - C(L))z_i = u_i \\
 y_i = x_i + z_i = ?
 \]

 - Rewrite system as:

 \[
 (1 - C(L))(1 - A(L))x_i = (1 - C(L))\varepsilon_i \\
 (1 - A(L))(1 - C(L))z_i = (1 - A(L))u_i \\
 (1 - A(L))(1 - C(L))y_i = (1 - C(L))\varepsilon_i + (1 - A(L))u_i = \varepsilon_i + u_i - [C(L)\varepsilon_i + A(L)u_i]
 \]

 - Then, \(y_i \) is ARMA\((p_x, p_z, \max(p_x, p_z))\)