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Lecture 1

Review II 

CLM: Review

• CLM Assumptions

(A1) DGP: y = X β + εεεε is correctly specified. 
(A2) E[εεεε|X] = 0
(A3) Var[εεεε|X] = σ2 IT
(A4) X has full column rank – rank(X)=k-, where T ≥ k.

• OLS estimation: b = (X′X)-1X′ y
Var[b|X] = σ2 (X′X)-1

=> b unbiased and efficient (MVUE)

• If (A5) εεεε|X ~N(0, σ2IT) => b|X ~N(ββββ, σ2(X’ X)-1)
Now, b is also the MLE (consistency, efficiency, invariance, etc). (A5)
gives us finite sample results for b (and for tests: t-test, F-test, Wald tests). 
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CLM: Review - Relaxing the Assumptions

• Relaxing the CLM Assumptions:
(1) (A1) – Lecture 5. Now, some non-linearities in the DGP are OK. 
=> as long as we have intrinsic linearity, b keeps its nice properties. 

(2) (A4) and (A5) – Lecture 7. Now, X stochastic: {xi,εi}  i=1, 2, ...., T  
is a sequence of independent observations. X has finite means and 
variances. Similar requirement for ε, but we also require E[ε]=0. 
Two new assumptions:

(A2’) plim (X’εεεε/T) = 0.
(A4’) plim (X′′′′X/T)=Q.

=> Only asymptotic results for b (consistency, asymptotic normality). 
Tests only have large sample distributions. Boostrapping or 
simulations may give us better finite sample behavior.

(3) (A2’) – Lecture 8. A new estimation: IVE/2SLS. Find l variables Z 
such that 

(1) plim(Z’X/T) ≠ 0 (relevant condition)
(2) plim(Z’εεεε/T) = 0 (valid condition –or exogeneity)

=> We only get asymptotic results for b2SLS (consistency, asymptotic 
normality). Tests only have asymptotic distributions. Small sample 
behavior may be bad. Problem: Finding Z.

(4) (A1) again! – Lecture 9. Any functional form is allowed. General 
estimation framework: M-estimation, with only asymptotic results. A 
special case: NLLS. Numerical optimization needed.
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Generalized Regression Model

• Back to the CLM Assumptions:
(A1) DGP: y = X β + εεεε is correctly specified. 
(A2) E[εεεε|X] = 0
(A3) Var[εεεε|X] = σ2 IT
(A4) X has full column rank – rank(X)=k-, where T ≥ k.

• Relax (A3)  =>(A3’) Var[εεεε|X]  =  Σ = σ2ΩΩΩΩ where ΩΩΩΩ ≠ IT

• Generalized regression model (GRM): Variances differ across 
observations and non-zero correlation across observations.

• Implication: Under (A3’) Var[b|X] ≠ σ2 (X′′′′X)-1.
=> True variance of b: VarT[b|X] = σ2 (X’X)-1 X′Ω′Ω′Ω′ΩX (X’X)-1

• (A3’) Var[εεεε|X]  =  Σ = σ2ΩΩΩΩ. 

• Leading Cases:
- Pure heteroscedasticity:     E[εεεεi′′′′εεεεj|X] = σij = σi

2 if i=j
= 0 if i ≠j

- Pure autocorrelation:        E[εεεεi′′′′εεεεj|X]  = σij if i ≠j
= σ2 if i=j

• Heteroscedasticity and autocorrelation are different problems. They 
generally occur with different types of data. But, have similar 
implications for OLS.

Generalized Regression Model
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(1) Unbiasedness. From (A2), the OLS estimator b is still unbiased. 

(2) Consistency? Assume (A2’) instead. To get consistency, we need 
plim (X′′′′X/T) =  QXX (QXX a pd matrix of finite elements).
plim (X′Ω′Ω′Ω′ΩX/T) =  QXΩX, a finite matrix.

Then, the true variance of b, 
VarT[b|X] = (σ2/T )(X’X/T)-1 (X′Ω′Ω′Ω′ΩX/T) (X’X/T)-1

converges to 0 as T grows.

(3) Asymptotic normality?  For OLS we apply the CLT to X’ε/√T.
- Easy to do for heteroscedastic data. Apply the Lindeberg-Feller 
(assuming only independence) version of the CLT. 
- Difficult for autocorrelated data, since X’ε/√T is not longer an 
independent sum. We need more assumptions.

Generalized Regression Model: OLS Properties

• ΩΩΩΩ is unknown. It has Tx(T+1)/2 elements to estimate. Too many! 
We need a model for ΩΩΩΩ. 

• But, models for ΩΩΩΩ may be incorrect. The robust estimation of the 
covariance matrix is robust to  misspecifications of (A3’).

• We need to estimate VarT[b|X] =  σ2 (X’X)-1 X′Ω′Ω′Ω′ΩX (X’X)-1

• Important distinction: 

- σ2ΩΩΩΩ, a (TxT) matrix => difficult to estimate with T observations.
- σ2 X′Ω′Ω′Ω′ΩX  = σ2 ΣiΣjωij xi xj′′′′, a (kxk) matrix => easier!

GR Model: Robust Covariance Matrix
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• We estimate σ2 X′Ω′Ω′Ω′ΩX  = σ2 ΣiΣjωij xi xj′′′′, a (kxk) matrix. We 
estimate (kx(k+1))/2 elements.

• This distinction is very important in modern applied econometrics: 
– The White estimator
– The Newey-West estimator

• The White estimator assumes heteroscedasticity only. ΩΩΩΩ is a 
diagonal matrix. We only need to estimate σi

2 = σ2 ωi

=> Q* = (1/T) σ2 X′Ω′Ω′Ω′ΩX  = (1/T) σ2 Σiωi xi xi′′′′ = (1/T) Σi σi
2 xi xi′′′′

GR Model: Robust Covariance Matrix

• Since only heteroscedasticity is assumed, we need to estimate:

Q* = (1/T) σ2 X′Ω′Ω′Ω′ΩX = (1/T) Σi σi
2 xi xi′′′′

• Since b is a consistent estimator of ββββ, e, are consistent estimators of 
εεεε. Then we use ei

2 to estimate σi
2. 

=> Estimate (1/T) σ2 X′Ω′Ω′Ω′ΩX  with S0 = (1/T) Σi ei
2 xi xi′′′′.

Note: The estimator is also called the sandwich estimator, the White 
estimator. It is also known as Eiker-Huber-White estimator.

• The White estimator allows us to make inferences using the OLS 
estimator b in situations where heteroscedasticity is suspected, but we 
do not know enough its functional form or nature.  

Covariance Matrix: The White Estimator



RS – Lecture 1

The White Estimator: Some Remarks

(1) The White estimator is consistent, it may not perform well in 
finite samples. A good small sample adjustment: 

(X’X)-1 [Σi ei
2/(1-hii )2 xi xi′′′′] (X’X)-1

where hii = xi(X’X)-1 xi′′′′

(2) The White estimator is biased (show it!). Biased corrections are 
popular –see above & Wu (1986).
(3) In large samples, we can overcome the problem of biased standard 
errors. The t-tests and F-tests are asymptotically valid.
(4)  The OLS estimator remains inefficient. But inferences are 
asymptotically correct. 
(5) The HC standard errors can be larger or smaller than the OLS  
ones. It can make a difference to the tests.
(6) It is included in all the packaged software programs.

• Now, we also have autocorrelation. We need to estimate 
Q* = (1/T) σ2 X′Ω′Ω′Ω′ΩX  = (1/T) ΣiΣj σij xi xj′′′′

• We would like to produce a HAC (Heteroscedasticity and 
Autocorrelation Consistent) estimator. 

• Again, use residuals to estimate covariances. That is, we use eiej to 
estimate σij => natural estimator of Q*: (1/T) ΣiΣj eiej xi xj′′′′

Problem: This sum has T2 terms. Difficult to get convergence.

Solution: Cut short the sum. Usually, use weights in the sum that 
imply that the process becomes less autocorrelated as time goes by.

Newey-West Estimator
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Newey-West Estimator

• We want to estimate    Q* = (1/T) ΣiΣj σij xi xj′′′′
We use eiej to estimate σij. 

• Practical problem: Q* needs to be pd. Based on a quadratic form, 
Newey-West (1987) produce a consistent pd estimator of Q*.

• Two components for the HAC estimator:
(1) Start with Heteroscedasticity Component:

S0 = (1/T) Σi ei
2 xi xi′′′′ --the White estimator.

(2) Add the Autocorrelation Component
S = S0 + (1/T) ΣlwL(l) Σj=l+1,...,T (xi-l et-l et xj′′′′+xi et et-l xj-l′)

where
wL(l) = 1 - |l|/L+1 --This is the Bartlett kernel or window.

Then,
Est. Var[b] = (1/T) (X’X/T)-1 S (X’X/T)-1 --NW’s HAC est.

• Other kernels - wL(l)- besides the Bartlett have been proposed in 
the HAC estimator literature to estimate Q*:

Q* = S0 + (1/T) ΣlwL(l) Σj=l+1,...,T (xi-l et-l et xj′′′′+xi et et-l xj-l′)

- Parzen kernel –Gallant (1987).
- Quadratic spectral kernel –Andrews (1991): 

wL(l) = 25/(12π2l2)[sin(6 π l/5)/(6 π l) - cos(6 π l/5)]
- Daniel kernel –Ng and Perron (1996):

wL(l) =sin(π l)/(π l)

• The quardratic spectral kernel has the lowest (8.6% better than 
Parzen’s) asymptotic MSE. The Bartlett kernel is the least efficient. 

• There are estimators of Q* that are not consistent, but with better 
small sample properties. See Kiefer, Vogelsang and Bunzel (2000).

Newey-West Estimator
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Newey-West Estimator

• A key assumption in establishing consistency is that L → ∞ as 
T → ∞ , but L/T→ 0. 

• In practice, the fraction L/T is never equal to 0, but approaches  
some positive fraction. 

• Kiefer and Vogelsang (2005) derive the limiting distribution of Q* 
under the assumption that the fraction L/T stays constant as T →∞. 

Under this assumption, the NW estimator is no longer consistent.

• Thus, traditional t- and F-tests no longer converge in distribution to 
Normal and χ2 RVs, but they do converge in distribution to RVs that 
do not depend on the unknown value of Ω. Tests are still possible. 

Generalized Least Squares (GLS)

• Assumptions (A1), (A2), (A3’) & (A4) hold. That is,
(A1) DGP: y = X β + εεεε is correctly specified. 
(A2) E[εεεε|X] = 0
(A3’) Var[εεεε|X] = σ2 ΩΩΩΩ (recall ΩΩΩΩ is symmetric => T’T= ΩΩΩΩ)
(A4) X has full column rank –i.e., rank(X)=k--, where T ≥ k.

• GLS: Transform the linear model in (A1) using P = ΩΩΩΩ-1/2.  
Py =  PXββββ + Pεεεε or  
y*  =  X*ββββ + εεεε*.
E[εεεε*εεεε*’|X*] = σ2IT
=> OLS in the transformed model satisfies G-M theorem.
=>  bGLS = b* = (X*’X*)-1X*’y* = (X’Ω-1X)-1 X’Ω-1y

Note I: bGLS ≠ b.  bGLS is BLUE by construction, b is not.
Note II: Both unbiased and consistent. Should not be that different.
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• Relax (A2) and (A4), then only asymptotic properties for GLS:
- Consistency - “well behaved data”
- Asymptotic distribution under usual assumptions 
(easy for heteroscedasticity, complicated for autocorrelation)
- Wald tests and F-tests with usual asymptotic χ2 distributions. 

Generalized Least Squares (GLS)

Consistency – Autocorrelation case

• If the {Xt} were uncorrelated –i.e., ρk=0-, then Var[bGLS|X] → 0. 

• We need to impose restrictions on the dependence among the Xt’s. 
Usually, we require that the autocorrelation, ρk, gets weaker as t-s
grows (and the double sum becomes finite). 
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ble the heteroscedasticity case.)

• The dependence is usually broken by assuming {xi et} form a mixing
sequence. The intuition behind mixing is simple; but, the formal
details and its application to the CLT can get complicated. 

• Intuition: {Zt} is a mixing sequence if any two groups of terms of the 
sequence that are far apart from each other are approximately 
independent --and the further apart, the closer to being independent.

Asymptotic Normality – Autocorrelation case

Brief Detour: Time Series 

• With autocorrelated data, we get dependent observations. Recall, 

εt =  ρεt-1 +  ut

• The independence assumption (A2’) is violated. The LLN and the 
CLT cannot be easily applied, in this context. We need new tools
and definitions:
- Stationarity. It imposes conditions on the moments/distribution 
(time invariant.)
- Ergodicity. The ergodic theorem give us a counterpart to the LLN 
for dependent RVs.

• We can also rely on the martingale CLT. 
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GLS: General Remarks

• GLS is great (BLUE) if we know ΩΩΩΩ. Very rare case.
• It needs the specification of ΩΩΩΩ -i.e., the functional form of 

autocorrelation and heteroscedasticity.
• If the specification is bad => estimates are biased.
• In general,  GLS is used for larger samples, because more 

parameters need to be estimated.
• Feasible GLS is not BLUE (unlike GLS); but, it is consistent and

asymptotically more efficient than OLS.
• We use GLS for inference and/or efficiency.  OLS is still unbiased 

and consistent.
• OLS and GLS estimates will be different due to sampling error. 

But, if they are very different, then it is likely that some other CLM 
assumption is violated –likely, (A2’).

Testing for Heteroscedasticity

• Usual strategy when heteroscedasticity is suspected: Use OLS along 
the White estimator. This will give us consistent inferences.   

• Q: Why do we want to test for heteroscedasticity?
A: OLS is no longer efficient. The estimator with lower asymptotic 
variance: GLS/FGLS estimator. 

• We want to test: H0: E(ε2|x1, x2,…, xk) = E(ε2) = σ2

• Key: Whether E[ε2]  =  σ2ωi is related to x and/or xi
2.  

• Popular LM tests: White and BP 
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• Simple strategy:  Use OLS residuals to estimate disturbances and 
look for relationships between ei

2 and xi and/or xi
2.

• Suppose that the relationship between ε2 and X is linear:
ε2 = Xα + v

Then, we test: H0: α = 0 against H1: α ≠ 0.

• Base the test on how the squared OLS residuals e correlate with X.

• These LM tests are asymptotically equivalent to a T R2 test, where 
R2 is calculated from a regression of ei

2on the variables that are 
suspected to cause heteroscedasticity.

Testing for Heteroscedasticity

• Usual calculation of the Breusch-Pagan test
- Step 1. From your model for the mean, get OLS residuals, e.
- Step 2. (Auxiliary Regression). Run the regression of ei

2on all the 
explanatory variables, z. In our example, 

ei
2 = α0 + zi,1’ α1 + .... + zi,m’ αm + vi

- Step 3. Keep the R2 from this regression. Let’s call it Re2
2 Calculate 

either
(a) F = (Re2

2/m)/[(1-Re2
2)/(T-(m+1)], which follows a Fm,(T-(m+1)

or
(b) LM = T Re2

2, which χ2
m.

• Koenker’s (1981) studentized LM test is a good variation. It is 
robust to departures from normality:

LM-S = (2 σR
4) LM-BP/[Σ (εi

2-σR
2)2 /T]         χ2

m

Testing for Heteroscedasticity: BP Test

→d
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• Usual calculation of the White test
- Step 1. From your model for the mean, get OLS residuals, e.
- Step 2. (Auxiliary Regression). Regress  e2 on all the explanatory 
variables (Xj), their squares (Xj

2), and all their cross products. For 
example, when the model contains k = 2 explanatory variables, the 
test is based on: 

ei
2 =β0+ β1 x1,i +β2 x2,i+β3 x1,i

2+β4 x2,i
2 + β5 x1x2,i + vi

Let m be the number of regressors in auxiliary regression. Keep R2, 
say Re2

2.
- Step 3. Compute the statistic 

LM = T Re2
2, which follows a χ2

m.

Testing for Heteroscedasticity: White Test

• Drawbacks of the Breusch-Pagan test: 
- Sensitive to violations of the normality assumption.
- Three other popular LM tests: the Glejser test; the Harvey-Godfrey 
test, and the Park test, are also sensitive to such violations.

• Drawbacks of the White test
- With several regressors, the test can consume a lot of df’s. 
- Too general, it does not give us a precise way to model 
heteroscedasticity to do FGLS. The BP test points us in a direction.
- In simulations, it does not perform well relative to others, especially, 
for time-varying heteroscedasticity, typical of financial time series.
- The White test does not depend on normality; but the Koenker’s test 
seems to have more power

Testing for Heteroscedasticity: Remarks
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Testing for Autocorrelation: LM tests

• Several autocorrelation tests. Under the null hypothesis of no 
autocorrelation of order p, we have H0: ρ1 = ... = ρp = 0.

Under H0, we can use OLS residuals.

• Breusch–Godfrey (1978) LM test. Similar to the BP test:

- Step 1. (Auxiliary Regression). Run the regression of ei on all the 
explanatory variables, z. In our example, 

et = Xt’ β + α1 et-1 + .... + αp et-p + vt

- Step 2. Keep the R2 from this regression. Let’s call it Re
2. Then,   

LM = T Re
2, which χ2

p.

Testing for Autocorrelation: Portmanteu tests

• Box-Pierce (1970) test.

It test H0: ρ1 = ... = ρp = 0 using the sample correlation rj:
rj: = Σt=1,...T-j et et-j/ Σ t=1,...T et

2

Then, under H0

Q = T Σj=1,...,p rj
2 χ2

p

• Ljung-Box (1978) test. 
A variation of the Box-Pierce test. It has a small sample correction.

LB = T (T-2) Σj=1,...,p rj
2 /(T-j)

• The LB statistic is widely used. But, the Breusch–Godfrey (1978) 
LM test conditions on X. Thus, it is more powerful.  

→
d
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Building the Model

• Old (pre-LSE school) view:  A feature of the data
– “Account” for heteroscedasticity/autocorrelation in the data.
– Different models, different estimators

• Contemporary view:  Why is there heteroscedasticity and or 
autocorrelation?
– What is missing from the model?
– Build in appropriate dynamic structures
– Autocorrelation should be “built out” of the model
– Use robust procedures (White or Newey-West) instead of 

elaborate models specifically for the autocorrelation.


