RS — Lecture 1

Lecture 1
Review I

CLM - Assumptions

® Typical Assumptions

(A1) DGP:y = Xp + € is cotrectly specified.

(A2) E[e|X] =0

(A3) Var[e|X] = 6> L;

(A4) X has full column rank — rank(X)=4-, where T = £.

* Assumption (A1) is called correct specification. We know how the DGP.

* Assumption (A2) is called regression. From (A2) we get:
0] Efg|X]=0 =>E[y|X]= X, 0) + E[g|X] =X, )
(ii) Using the Law of Iterated Expectations (LIE):

Ele] = Ex[E[e[X]] = Ex[0] =0

Least Squares Estimation - Assumptions

* From Assumption (A3) we get
Var[e|X] = 6%, => Varlg] = 6°L;.

This assumption implies
(i) homoscedasticity =>E[e?|X] = 6? for all i.
(ii) 70 serial cross correlation =>E[g¢g |X] =0 for i#j.

* From Assumption (A4) => the £ independent variables in X are
linearly independent. Then, the £x£& matrix XX will also have full
rank —i.e., rank(X°X) = 4.

Least Squares Estimation — f.o.c.

* Objective function: S(x;, ) =%, €2

* We want to minimize w.r.t to 6. The f.o.c. deliver the normal
equations:

2% [yi- g, O 9] [ (x5, O ) = -2 (y- Xb)' X =0
* Solving for b delivers the OLS estimator:
b= (XX)' Xy

Note: () b =Bgs.  (Ordinary LS. Ordinary=linear)
(ii) b is a (linear) function of the data (y;,x)).
(iii) X'(y-Xb) = X'y - XXXX) ' Xy =Xe=0=>e L X

OLS Estimation - Properties

Under the typical assumptions, we can establish properties for b.

1) E[b|X]=B

2) Varlp|X] = E[(b-B) b-B)'|X] =XX)"' X’E[e €'|X] X(XX)!
=2 (X'X)'l

3) b is BLUE (or MVLUE) => The Gauss-Markov theorem.

(4) If (A5) €[X ~N(0,0’I)  =>Db|X ~NB, ’X* X))
=> b, X ~N(B,, *X* X))

(the marginals of a multivariate normal are also normal.)

* Estimating ¢°
Under (A5), Efe’e|X] = (T:4)02
The unbiased estimator of 62 is > = e’e/(1-£).

=> there is a degrees of freedom correction.

Goodness of Fit of the Regression

® After estimating the model, we judge the adequacy of the model.
There are two ways to do this:

- Visual: plots of fitted values and residuals, histograms of residuals.

- Numerical measures: R?, adjusted R%, AIC, BIC, etc.
* Numerical measures. We call them goodness-of-fit measures. Most
popular: R2
R2 = SSR/TSS = b’X’MXb/y’Mly = 1 - e’e/y’MCy

Note: R?is bounded by zero and one only if:

(a) There is a constant term in X --we need € M’X=0!
(b) The line is computed by linear least squares.
(¢) R2never falls when regtessors are added to the regression.
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Adjusted R-squared Other Goodness of Fit Measures
* R?is modified with a penalty for number of parameters: Adjusted R? .
Ez =1 - [(TU/TH]1-RY =1 - [(T-)/(T-6)] RSS/TSS * There are other goodness-of-fit measures that also incorporate

penalties for number of parameters (degrees of freedom).
=1~ [RSS/(I"A)] [(T-1)/TSS]

=> maximizing adjusted R? <=> minimizing [RSS/(I-4)]|= # « Information Criteria

- Amemiya: [€'e/ (T - K)| X (1 + £/T)
- Akaike Information Criterion (AIC)
AIC =-2/T(n L— ) L: Likelihood
=> if normality AIC = In(e’e/T) + (2/T) (+constants)

* Degrees of freedom --i.e., (I-k)-- adjustment assumes something about
“unbiasedness.”

*  Adjusted-R? includes a penalty for variables that do not add much
fit. Can fall when a variable is added to the equation. ) o
- Bayes-Schwarg Information Criterion (BIC)

BIC = -(2/TIn L—[In(T)/T] 4

e It will rise when a variable, say z, is added to the regression if and

only if the t-ratio on z is larger than one in absolute value. => if normality AIC =In(e’e/T) + [In(T)/T] & (+constants)
Maximum Likelihood Estimation Maximum Likelihood Estimation
® We assume the etrors, €, follow a distribution. Then, we select the * Let 0=(8,0). Then, we want to

parameters of the distribution to maximize the likelihood of the

T T, 1 ,
MaxgIn L®1 y,X)=——In2n——0" ——(y— XB)' (y — X|
observed sample. oln L(®1y,X) y =56 Py (y=XBY(y—XB)

* Then, the f.o.c.:
Example: The errors, €, follow the normal distribution:

dlnL 1 P _ Lo _
(A5) €]X ~N(0, 0°Iy) P =5 (2XI-2X AP =— (XY= XXB) =0
* Then, we can write the joint pdf of y as amL__ T +L(y—x[i)'(y— =0
P00 =) exple— (5, D)) ¥’ 207 20
mﬂ | ° | | | Note: The f.o.c. deliver the normal equations for 8! The solution to
L=f(y1.ygmeeesyr IB’GZ)=HII:‘(2T[02 )% expk 22 -x'B’l= P XPEgé’?’) the normal equation, B, 1, is also the LS estimator, b. That is,
Taking logs, we have the log likelihood function E’MLE b= (XX) XY ézm _ eT'e
mL=-Lion-Line?-—L e . . -
2 2 262 * Nice result for b: ML estimators have very good properties!
Properties of ML Estimators Properties of ML Estimators
(1) Efficiensy. Under general conditions, we have that @z (4) Sufficiency. 1f a single sufficient statistic exists for 6, the MLE of 0

must be a function of it. That is, & y.¢ depends on the sample

-1
Var( 8u ) 2 [nl (6)] observations only through the value of a sufficient statistic.

The right-hand side is the Cramer-Rao lower bound (CR-LB). If an

estimator can achieve this bound, ML will produce it. ) ) o ) )
(5) Invariance. The ML estimate is invariant under functional

transformations. That is, if 6 e is the MLE of 0 and if g(f) is a

(2) Consistency. function of 6, then g(éMLE) is the MLE of g(0) .

S.(X; ) and (6,,,, - 0) converge together to zero (i.e., expectation).

(3) Theorem: Asymptotic Normality
Let the likelihood function be L.(X,,X,,...X,| €). Under general
conditions, the MLE of @ is asymptotically distributed as

0y —2— N(e,[nl (e)]")




RS — Lecture 1

Specification Errors: Omitted Variables Specification Errors: Irrelevant Variables

* Omitting relevant variables: Suppose the correct model is

* Irrelevant variables
y=XB +X,B,+e -i.e., with two sets of variables. s 0 &l X
- - . S t i = +
But, we compute OLS omitting X,,. That is, uppose the correct model sy lBl €
B stimat =X,B, +X.B,+
y=XB, +€ <= the “short regression.” ut, we estimate y B B.+e

Let’s compute OLS with X, X,,. This is called “long regression.”

Some easily proved results:

S ily red results:
(1) Elb, [X] = B (X)X, y] = B, + (X/X)"X,/X,B, % B,. o ey prover T .
=> Unless X,"X, =0, b, is biased. The bias can be huge (1) Since the variables in X, are truly irrelevant, then B, = 0,
S , b, is . S . )
D = =>
(2) Var[b, | X] < Var[b,,|X] => smaller variance when we omit X,. S()_Elbl'z | Xl B, . No bias
(3) MSE => b, may be more “precisc.” (2) Incfficiency: Bigger variance

Linear Restrictions The General Linear Hypothesis: Hy: RB-q =0

* Q: How do linear restrictions affect the properties of the least * We have ] joint hypotheses. Let R be a Jx& matrix and q be a Jx7

squares estimator? vector.
Model ( DGP): y=Xp +¢e ) . ] ) )
Th (inf ion) RB 0 * Two approaches to testing (unifying point: OLS is unbiased):
C()ry mnrormation): - q =
1) Is Rb - q close to 0? Basing the test on the discrepancy vector:
q ¢lo! g the pancy
Restricted LS estimator: b* = b - XX)'R’[RX'X)'R’]"\(Rb - q) m = Rb - q. Using the Wald statistic:
1. Unbiased? YES. E[b*|X] =B 7= m’(Var[m | X]) 'm Var[m|X] = R[> X°X)|R".
- _aY 200X TR -1 (Rb —
2. Efficiency? NO. Var[b*|X] < Var[b|X] 7= Rb - g {R[C°XX) R} |(Rb — )

Under the usual assumption and assuming ¢ is known, W ~ y/?
3. b* may be more “precise.” /

Precision = MSE = variance + squared bias. In general, & is unknown, we use = e’e/(1-£)

4. Recall: e’e = (y -Xb)’(y-Xb) < e¥’e* = (y —Xb*)’(y-Xb*) W*= (Rb - )" {R[*X°X)"]R}'(Rb - q)
=> Restrictions cannot increase RZ => R2> R = (Rb - q)’{R[X’X)'|R} (Rb - q)/(/ 0°)
F=W/]/ [(1-8) (/) /(T-k)] = W*/] ~ Fjpy.

The General Linear Hypothesis: Hy: RB-q =0 Example: Testing Hyi: RB-q =0

(2) We know that imposing the restrictions leads to a loss of fit. R? * In the linear model
must go down. Does it go down a lot? -i.e., significantly? y=XB+e=B,+X, B, +X;B; + X, B, +€
Recall (i) e* =y — Xb* = e — X(b*~ b)

(i) b*= b — (X'X) 'RRX'X) 'R (Rb — )

* We want to test if the slopes X3, X, ate equal to zero. That is,

H,:B,=B,=0
=> e¥’e* - ¢'e = (Rb - q)'[RX'X)'R|'(Rb - q) H,:B,#00or B,#0 orboth B and B, #0
Recall * We can use, F=(e*e* - e'e)/]/ [e'e/(T-R)] ~ Iy
7= (Rb - g {R[6*(X’X) R} {Rb — q) ~ 3 (if & known) ’
OV YUY J Define Y=g+ 6,X,+¢€ RSS ¢
Then, _
> Y=0+BX,+BX;+0,X,+& RSS
F=(e¥e*— '¢)/] / [e'e/(T4)] ~ Fry. it BXot BiXa+ By v
o RSS-RSS, | kky

F (cost in df; unconstr df) =
F={®-R2)/]} / [(1 -R)/(TA] ~ Fyr. (cost S s, [ T
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Functional Form: Chow Test

* Assumption (A1) restricts /X,B) to be a linear function: fX,B) = X .
But, within the framework of OLS estimation, we can be more flexible:
(1) We can impose non-linear functional forms, as long as they are
linear in the parameters (intrinsic linear model).

(2) We can use qualitative variables (dummies) to create non-linearities
(splines, changes in regime, etc.) A Chow test (an F-test) can be used to
check for regimes/categoties or structural breaks.

(a) Run OLS with no distinction between regimes. Keep RSSg.

(b) Run two separate OLS, one for each regime (Unrestricted
regression). Keep RSS, and RSS, => RS§,,= RSS, + RSS,,.

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

_ (RSSg —RSSy) /(ky —kg) _ (RSSz —[RSS, +RSS,1)/k

(RSS,) (T —ky) (RSS, +RSS,) (T =2k) -

Functional Form: Ramsey’s RESET Test
* To test the specification of the functional form, we can use the RESET
test. From a regression, we keep the fitted values, § = Xb.

* Then, we add §? to the regtession specification. If §2 is added to the
regression specification, it should pick up quadratic and interactive
nonlinearity:

y=XB+§yte
* We test H, (linear functional form): y=0
H, (non linear functional form): y#0
=> t-fest on the OLS estimator of .

« If the ~statistic for §? is significant => evidence of nonlinearity.

Prediction Intervals

* Prediction: Given x” => predict y°.
(1) Estimate:  E[y|X, x%] = B’x
(2) Prediction: y° = B’x? + €°
* Predictor: §° = b’x” + estimate of €. (Est. €'=0, but with variance)

* Porecast error. We predict y” with 39 = b’x’.
P - = b - B0 - g0 = (b - B)xD - g
=> Varl ) |x7] = E[G%y)6) [ x]= x"Var(b - B) [ x]x® + o2

* How do we estimate this? Two cases:
(1) If x" is a vector of constants => Form C.I. as usual.

(2) If x" has to be estimated => Complicated (what is the
variance of the product?). Use bootstrapping.

Forecast Variance
* Variance of the forecast etror is
02 +x” Var[b |x%]x" = 02 + 6?[x” (X°X)'x"]
If the model contains a constant term, this is
0 2 ISP 0 0rg ik
0 2 0 - 0 - - i
Vare']=0”| 1+~ + I = F)( = XN ZMZY
=1 k=1

(where Z is X without x,=i). In terms squares and cross products of
deviations from means.

Note: Large 62, small 7, and large deviations from the means, decrease
the precision forecasting error.

* Interpretation: Forecast variance is smallest in the middle of our
“experience” and increases as we move outside it.

Forecasting performance of a model: Tests and
measures of petformance

* Evaluation of a model’s predictive accuracy for individual (in-
sample and out-of-sample) observations

* Evaluation of a model’s predictive accuracy for a group of (in-
sample and out-of-sample) observations

* Chow prediction test

Evaluation of forecasts

* Summary measures of out-of-sample forecast accuracy

| T 1 e
Mean Error = = Z(«‘A'"«‘"):* Ze’
s mis
1 T4+m 1 T+m
Mean Absolute Error (MAE) = - Dsi-n - Sl
i ==
| T L
Mean Squared Error (MSE) = - Z@ —y) - o
i=T+1 =T+

Root Mean Square Error (RMSE)=

Theil’s U-stat =
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CLM: Asymptotics

* To get exact results for OLS, we rely on (A5) €|X ~id N(0, o2L;)
But, (A5) in many situations is unrealistic. Then, we study on the
behavior of b (and the test statistics) when T —00 i.e., large samples.

* New assumptions:
1) {x,&} i=1,2,..., T is asequence of independent observations.
- X is stochastic, but independent of the process generating &.

- We require that X have finite means and variances. Similar
requirement for &, but we also require E[]=0.

(2) Well behaved X:
plim X’X/T)= Q  (Q a pd matrix of finite elements)

=> (not too much dependence in X).

CLM: New Assumptions

* Now, we have a new set of assumptions in the CLM:

(A) DGP: y =XB +&.

(A2’) X stochastic, but E[X’ €]= 0 and E[g]=0.

(A3) Var[e|X] = 0% L,

(A4) plim X°X/T)=Q  (p.d. matrix with finite elements, rank= £)

* We want to study the large sample properties of OLS:

Q 1: Is b consistent? 52 YES & YES

Q 2: What is the distribution of b b —%— N(B,(c?/T)Q™")
Q 3: What about the distribution of the tests?

=> f =[(zr- /51—, NOJD)

=>W = (zy- W) Sy 2y - W) — Xkt

=> F— Lk varm)

Asymptotic Tests: Small sample behavior?

* The p-values from asymptotic tests are approximate for small
samples. They may be very bad. Their performance depends on:

(1) Sample size, T.

(2) Distribution of the error terms, €.

(3) The number of regressors, 4, and their properties

(4) The relationship between the error terms and the regressors.

* A simulation/bootstrap can help.

* Bootstrap tests tend to perform better than tests based on
approximate asymptotic distributions.

* The errors committed by both asymptotic and bootstrap tests
diminish as T increases.

The Delta Method

e It is used to obtain the asymptotic distribution of a non-linear
function of a RV (usually, an estimator).

Tools: (1) A first-order Taylor series expansion
(2) Slutsky’s theorem.

* Let x;, be a RV, with plim x,=¢ and Var(x,)=0? < 0.
We use the CLT to obtain #(x, - )/ —— N(0,1)

e Goal: g(x,) —— ? (g(x,) is a continuous differentiable
function, independent of 7.)

Steps:
(1) Taylor series approximation around 6:

9x) = g0) + £(0) (x, - 0) + higher order terms
We assume the higher order terms are o(#) --as # grows, they vanish.

The Delta Method

(2) Use Slutsky theorem: plim g(x,) = g(0)
plim £'(x,) =£'(9)

Then, as 7 grows, 2(x) = g0) + 4O (x,-0)

=> (g, - 4O = O) [, - O]

== #(glx,) - 401/0) = £(O) [, - 0)/0].
The asymptotic distribution of (g(x,) - g(0)) is given by that of [#”(x, -
6)/0], which is a standard normal. Then,

#([gx,) - 4(O)]) == N, [ OF o).

After some work (“inversion”), we obtain:

46,) == N(g(0), [&'(O) o>/ n).

Delta Method: Example
Let x, — N(0, 6*/n)
Q: gx)=8/x, == ? (8 is a constant)
First, calculate the first two moments of g(x,):
&) =8/x, => plim g(x,)=(3/0)
g =-(8/%)) => plim g{(x;)=-(3/0?)
Recall delta method formula:  g(x,) —— N(g(0), [¢"(0)]? 6%/ n).

Then,
gx,) —— N(8/0, 3%/ 0>/ n)
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The IV Problem

* What makes b consistent when X'€ /T — 0 is that approximating
(X'e/T) by 0 is reasonably accurate in large samples.

* Now, we challenge the assumption that {x;¢;} is a sequence of
independent observations.

* Now, we assume plim (X’€/7) # 0 => This is the IV Problem!

* Q: When might X be correlated €7

- Correlated shocks across linked equations
- Simultaneous equations

- Errors in variables

- Model has a lagged dependent variable and a serially correlated error
term

The IV Problem

* We start with our linear model
y=Xp+e

* Now, we assume plim(X’e/T) # 0.
plim (X°X/T) = Q

*Then, plimb =plim B + plim X°X/T)" plim X'€/T)
= B+ QpimXe/D) 7B

=> b is not a consistent estimator of p.

* New assumption: we have /instrumental variables, Z such that

plim(ZX/T) # 0 but plim(Z’e/T) = 0

Instrumental Variables: Assumptions

*To geta consistent estimator of B, we also assume:

{x, 3, &} is a sequence of RVs, with:

E[X’X] = Q,, (pd and finite) @LLN => plimX’X/T) =Q,,)
E[2Z] = Q,, (finite) (LIN => plimZ’Z/T) =Q,,)
E[Z’X] = Q,, (pd and finite) (LLN => plim(Z’X/T) =Q,,)
E[Z€] = 0 (LLN => plim(Z’€/T) = 0)

* Following the same idea as in OLS, we get a system of equations:
W'2’X b, = W'Zy

* We have two cases where estimation is possible:
- Case 1: /=k -i.e, number of instruments = number of regressors.

- Case 2: /> k_-i.e., number of instruments > number of regressors.

Instrumental Variables: Estimation

* To get the IV estimator, we start from the system of equations:
W'Z2X b, = W'2Zy

e Casel: /= £ -ie., number of instruments = number of regressors.
- Z has the same dimensions as X: Tx£ =>2’X is a Axk matrix
- In this case, W is irrelevant, say, W=I.
- Then,
by = (2X)'Zy

IV Estimators

* Properties of by,
(1) Consistent
by = @X)'Zy = @X)'Z(XB+e)
= @X/Ty' @X/T) B+ 2°X/T)y'Z/T
=B+ @X/1)' /T — B (under assumptions)

(2) Asymptotic normality
NT by -B) =T @X)'2%
= @X/Ty'NT @/ T)
Using the Lindberg-Feller CLT \T (Ze/T) —= N(0, 6°Q,,)
Then,  NT(by-B) — NO,0’Q,'Q.Q.")

IV Estimatots

* Propetties of 62 under IV estimation:
- We define 6% :

T T

. 1 2 1 2

6" =— ey =— (y; —x'by )~
T; v T; Vi v

where ey =y - X by =y - X(2X) 12y = [I - X(Z’X)'2Zly = M, y
- Then,
6°= ey'ey /T =€M, "M, &/T
=g'e/T-2€X (ZX)'2¢/T + &'Z (2'X)'X’X(Z’X) 2/ T

=> plim 2 = plim(&'e/T) - 2 plim[€'X/T) (Z’X/T)" (Z'e/T)] +
+ plim€'Z (Z’X) ' X’X(2’X)'Z’¢/T) = o*

Est Asy. Var[byy] = E[(Z'X)"! Z’¢€'Z (Z’X)'|= §2(Z’X)" Z'Z(Z’X)"!
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IV Estimators: 2SLS (2-Stage Least Squares)

e Case 2: /> £ -i.e., number of instruments > number of regressors.

- This is the usual case. We can throw /£ instruments, but throwing
away information is never optimal.

- The IV normal equations are an /x & system of equations:
2y = 2’XB+ Z’¢
Note: We cannot approximate all the Z’€ by 0 simultenously. There
will be at least /& non-zero residuals. (Similar setup to a regression!)

- From the IV normal equations => W'ZX b,, = W'2y
- We define a different IV estimator
-LetZW = Z(Z’Z)'Z’X =P, X = X
- Then, X'P,X by, = X'Py
by =(X'P,X)"'X'P,y=(X'P,P,X) ' X'P,P,y=(X'X)"'X'3

IV Estimators: 2SLS (2-Stage Least Squares)

* We can easily detive properties for by:
by =(X'PLX)" X Py = (X' PP, X) ' X PPy y
=X X)) Xy=X'X)"'X'p
(1) byy is consistent
(2) byy is asymptotically normal.
- This is estimator is also called GIVE (Generalized 117 estimator)

¢ Interpretations of by,

by =bygs = (X' X)Xy This is the 2SLS interpretation
by =(X'x)"' X'y This is the usual IV Z = X

Asymptotic Efficiency

* The variance is larger than that of OLS. (A large sample type
of Gauss-Markov result is at work.)

(1) OLS is inconsistent.

(2) Mean squared error is uncertain:

MSE [estimator | B] = Variance + square of bias.

* IV may be better or worse. Depends on the data: X and e.

Problems with 2SLS

*  Z’X/T may not be sufficiently large. The covariance matrix for
the IV estimator is Asy. Cov(b) = o?[(Z’X)(2°Z) ' (X°Z)]!
— IfZ°X/T goes to 0 (weak instruments), the vatiance explodes.

*  When there are many instruments, )2 is too close to X; 2SL.S
becomes OLS.

* Popular misconception: “If only one variable in X is correlated with
€, the other coefficients are consistently estimated.” False.
=> The problem is “smeared” over the other coefficients.

e What are the finite sample properties of by,? We do not have the
condition E[e|X] = 0, we cannot conclude that by, is unbiased, or
that it has a Var[b,g, <] equal to its asymptotic covariance mattix.

=> In fact, byg ¢ can have very bad small-sample properties.

Endogeneity Test (Hausman)

Exogenous Endogenous
OLS | Consistent, Efficient Inconsistent
2SLS| Consistent, Inefficient Consistent

*Baseateston d = b,y - b
- We can use a Wald statistic: d’[Var(d)]"'d

Note: Under H (plim (X’€/T) = 0) by s = byg s =b
Also, under Hy: Var[byg g |= V,g 5 > Var[bg, s |= Vg
=> Under H,,, one estimator is efficient, the other one is not.

OLS
&

* Q: What to use for Var(d)?
- Hausman (1978): V = Var(d) = Vg5 - V¢

H = (bysis - bors)’ [Vasts - Vors ' 0asis - bors) —«, XZmnk(V)

Endogeneity Test: The Wu Test

* The Hausman test is complicated to calculate

* Simplification: The Wu test.

* Consider a regression y = XB + g, an array of proper instruments Z,
and an array of instruments W that includes Z plus other variables
that may be either clean or contaminated.

* Wu test for H: X is clean. Setup

(1) Regress X on Z. Keep fitted values X= Z2Z)'2’X

(2) Using W as instruments, do a 2SLS regression of y on X, keep
RSS,.

(3) Do a 2SLS regression of y on X and a subset of # columns of X
that are lineatly independent of X. Keep RSS,.

(4) Do an F-test: F = [(RSS, - RSS,)/m|/[RSS,/ (T-£)].
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Endogeneity Test: The Wu Test

* Under Hy: X'is clean, the F statistic has an approximate F, 1.,
distribution.

Davidson and MacKinnon (1993, 239) point out that the DWH test
really tests whether possible endogeneity of the right-hand-side
variables not contained in the instruments makes any difference to
the coefficient estimates.

* These types of exogeneity tests are usually known as DWH (Durbin,
Wu, Hausman) tests.

Endogeneity Test: Augmented DWH Test

* Davidson and MacKinnon (1993) suggest an augmented regression
test (DWH test), by including the residuals of each endogenous right-

hand side vatriable.

* Model: y = Xp+Uy+g, wesuspect X is endogenous.

* Steps for augmented regression DWH test:
1. Regress x on IV (Z) and U:
x=ZIT+Ug¢+v =>save tesiduals v,
2. Do an augmented regression: y=Xp+Uy+vd+E
3. Do a #test of 8. 1f the estimate of 8, say d, is significantly different

from zero, then OLS is not consistent.

Measurement Error

*DGP: y* = Bx* +¢ -&~idD(0,02)

* But, we do not observe or measure cotrectly x*. We observe x, y:
x = x* +u u ~ #dD(0, 6,?) -no correlation to €v

y = y* +v v ~ iidD(0, 0,?) -no correlation to &u
* Let’s consider two cases:

CASE 1 - Only x* is measured with error (y=y*):
y = Bx-u)+e=Px+€-Pu =Px+w
E[xw] = E[(x* +u)’€-Bu)] = -fo,7#0

=> CLLM assumptions violated => OLS inconsistent!

Measurement Error

CASE 2 - Only y* is measured with error.
y¥ =y-v :BX*"’E
=> y =Pxt+e+tv=Pxt+E€+vV)

* Q: What happens when y is regressed on x?
A: Nothing! We have our usual OLS problem since € and v are
independent of each other and x". CLM assumptions are not
violated!

Finding an Instrument: Not Easy

® The IV problem requires data on variables (Z) such that
1) Cov(x,Z) # 0 -relevance condition

(2) Cov(Zg) =0 -valid (exogeneity) condition

Then, we do a first-stage regression to obtain fitted values of X:
x = ZI1 + U6 +V -V ~N(0, o)

Then, using the fitted values we estimate and do tests on .

* Finding a Z that meets both requirements is not easy.
- The valid condition is not that complicated to meet.

- The relevant condition is more complicated: Finding a Z correlated
with X. But, the explanatory power of Z may not be enough to allow
inference on B. In this case, we say Z is a weak instrument.

Weak Instruments: Finance application

* Finance example: The consumption CAPM.

* In both linear and nonlineat versions of the model, IVs are weak, --
see Neeley, Roy, and Whiteman (2001), and Yogo (2004).

* In the linear model in Yogo (2004):
X (endogenous variable): consumption growth

Z (the 1Vs): twice lagged nominal interest rates, inflation,
consumption growth, and log dividend-price ratio.

* But, log consumption is close to a random walk, consumption
growth is difficult to predict. This leads to the IVs being weak.

=> Yogo (2004) finds F-statistics for Hy: TT = 0 in the 1st
stage regtession that lie between 0.17 and 3.53 for different countries.
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Weak Instruments: Summary

Even if the instrument is “good” —i.c., it meets the relevant
condition--, matters can be made far worse with IV as opposed to
OLS (“the cure can be worse...”).

Weak correlation between IV and endogenous regressor can pose
severe finite-sample bias.

Even small Cov(Z,e) will cause inconsistency, and this will be
exacerbated when Cov(X,Z) is small.

Large T will not help. A&K and Consumption CAPM tests have
very large samples!

Weak Instruments: Detection and Remedies

»  Symptom: The relevance condition, plim(Z°X/T') not zero, is close
to being violated.

¢ Detection of weak IV:

— Standard F test in the 1st stage regression of x, on Z. Staiger
and Stock (1997) suggest that F < 10 is a sign of problems.

— Low partial-RZXYZ.

— Large Var[by] as well as potentially severe finite-sample bias.

*  Remedy:
— Not much — most of the discussion is about the condition,
not what to do about it.
— Use LIML? Requires a normality assumption. Probably, not
too restrictive. (Text, 375-77)

Weak Instruments: Detection and Remedies

»  Symptom: The valid condition, plim(Z’e/T') zero, is close to being
violated.

*  Detection of instrument exogeneity:

— Endogenous IV’s: Inconsistency of by that makes it no
better (and probably worse) than b g

—  Durbin-Wu-Hausman test: Endogeneity of the problem
regressor(s)

*  Remedy:
— Avoid endogencous weak instruments. (Also avoid weak IV!)

— General problem: It is not easy to find good instruments in
theory and in practice. Find natural experiments.

M-Estimation
* An extremum estimator is one obtained as the optimizer of a
criterion function, q(z,b).
Examples:
OLS: b = arg max (-e’¢/T)
MLE: by, = arg max /n L.=Y ", /nf(y,X,b)
GMM: by = arg max - g(y;,x;,b)” W g(y,%;,b)

* There are two classes of extremum estimators:
- M-estimators: The objective function is a sample average or a sum.

- Minimum distance estimators: The objective function is a measure
of a distance.

* "M" stands for a maximum or minimum estimators --Huber (1967).

M-Estimation
* The objective function is a sample average or a sum. For example,

we want to minimize a population (first) moment:
miny, E[q(z,8)]

— Using the LLN, we move from the population first moment to the
sample average:

2iq(z,b)/ T Elq(z.8)]
— We want to obtain: b = argmin ); q(z,b) (or divided by T)
— In general, we solve the f.o.c. (or zero-score condition):

Zero-Scote:  ¥,0q(z,b)/db' =0

— To check the s.o.c., we define the (pd) Hessian:
H =Y, 9°q(z,b)/dbob’

M-Estimation

* If s(z,b) = dq(z,b) /b’ exists (almost everywhere), we solve

Y s(z,by)/T =0 @

« If, in addition, Ex[s(z,b)] = d/db' Ex[q(z,b)] -i.., differentiation
and integration are exchangeable-, then

Ex[0q(z,B)/08 = 0.

* Under these assumptions, the M-estimator is said to be of ¢-pe (=
s(z,b)=score). Often, by, is taken to be the solution of (*¥) without
checking whether it is indeed a minimum).

* Otherwise, the M-estimator is of g-#pe. (0= q(z,B)).
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M-Estimation: LS & ML

* Least Squares
_DGP: y=fxp) +s 2 =[yx|
—qzB) =SPB) = €& =Y+ 0i-fx:B)?
— Now, we move from population to sample moments
— q(zsb) =Sb) =e'e =Y, 1~ fxsb)
— byy1s = argmin S(b)

e Maximum Likelihood
— Let f(x,B) be the pdf of the data.
- Lxp) = Hi:u.,,,’rf(xa;ﬁ)
— lg L(xB) = Zi:L...,T Inf (x;B)
— Now, we move from population to sample moments
— q(z,b) = -log L(x,b)
— by = argmin — /g L(x;b)

M-Estimators: Properties

* Under general assumptions, M-estimators are:
-by —= b,
“by = NbyVarlby))
~Varlby] =(1/1) Hy' V, Hy!
- If the model is correctly specified: -H=V.
Then, Var[b] = V;

— H and V are evaluated at by:
-H =Y, [0%q (z,b)/dbdb|
- V = 3;[9q(z;,b)/db] [9q(z;,b) /b

Nonlinear Least Squares: Example
Example: Min p S@) ={2 %, [y, - XB)* }

* From the f.o.c., we cannot solve for B explicitly. But, using some
steps, we can still minimize RSS to obtain estimates of B

* Nonlinear regression algorithm:

1. Start by guessing a plausible values for B, say B".

2. Calculate RSS for B => get RSS(B’)

3. Make small changes to B°, => get .

4. Calculate RSS for B! => get RSS(B")

5. IfRSS(B") < RSS(B”) => B! becomes your new starting point.
6. Repeat steps 3-5 until you RSS(B) cannot be lowered. => get .

=> Biis the (nonlinear) least squares estimates.

NLLS: Linearization

* We start with a nonlinear model: y; = fx,B) + g

* We expand the regression around some point, B
.f(’%ﬁ) =f(xi,l3”) + Zk[af(xi’ﬁ()>/ BB - B
=fxp) +Z.x (B, - BO)
.8 - T x" By + Iy x By
£ +2 x'B. = +x"B

where
in :]’(xi,l_’,o) - xi“‘ BO (ﬁ” does not depend on unknowns)

Now, f(xi,ﬁ) is (approximately) linear in the parameters. That is,
y, =) +x" B+ € (€% = & + linearization error i)
=y =y - =x" B+ &

NLLS: Linearization

* We linearized fx,,B) to get:
y =f +X'B+ ¢ (€= € + linearization error)
=>y=y-P=X"B+¢

* Now, we can do OLS:
byis = X" X 1X0y?

Note: X are called psesudo-regressors.

* In general, we get different by, ¢ for different B°. An algorithm can
be used to get the best by .

* We will resort to numetical optimization to find the by .

NLLS: Linearization

* Compute the asymptotic covariance matrix for the NLLS estimator
as usual:

Est. Var[by ;5| X = Py s X X!
Pas = Y A% b)) ¥ - A%, braas)l/ (T-4).

* Since the results are asymptotic, we do not need a degrees of
freedom correction. However, a df correction is usually included.
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Gauss-Newton Algorithm Box-Cox Transformation
* by sdepends on B” . That is, * A simple transformation that allows non-linearities in the CLM.
0 = (X0 X0)1 X0
byirs (B) [6:8 XO) X Yo y :ﬂxi,m + €g=3, xk(‘A) ﬁk + €
* We use a Gauss-Newton algorithm to find the by . Recall GN: x M = x}-1)/k lim,_,, (x*-1)/A=Inx,

B =B+ 0D T2 - J: Jacobian = &f(xi; B)/o. - o
* For a given A, OLS can be used. An iterative process can be used to

« Givena b at step m, b(j), we find the b for step j+1 by: estimate A. OLS s.e. have to be corrected. Not a very efficient method.
NLLS A > B NLLs TOT' S ¥y

b(+1) = b() + X)X X)) e

* NLLS or MLE will work fine.

Columns of X°()) are the detivatives:  9f{x,b())/db()’
e’() =y-/x,b()] * We can have a more general Box-Cox transformation model:

Yy =S, x 2B + €

* The npdate vector is the slopes in the regression of the residuals on

X". The update is zero when they are orthogonal. (Just like OLS)

Testing non-linear restrictions Testing non-linear restrictions
* Testing linear restrictions as before. * Linearize R(by;; ) around B (=bg)
* Non-linear restrictions change he usual tests. We want to test: R(byirs) = RB) + Gbyrs) (bais- B)

Fly RE) =0 N by —— N(O, Var[b
whete R(B) is a non-linear function, with rank[oR(B)/OB=G(B)]=]. Recall Ty -by) == N0, Varlb,])

where Vafb,| = HB)' V(®) H(B)"
« Let m = R(by,, ) — 0. =T Rbyus) - RB)] —— N, GB) Var[b] GB)')
Then, P=m’(Var[m|X])"'m = R(by;5)' (Var[R(byyys) | X]) ' Ribyy ) => Var[R(by, 0] = (1/T) GP) Var[by] GPB)'
But, we do not know the distribution of R(by; ;). We know the * Then,
distribution of by, 5. Then, we linearize R(by ) around B: W = TR(by15)"{ Gbyy1s) Varbyyrs] Gbairs)'t ! Rlbyyrs)
= - sz

Rbyirs) = R(B) + G(byyrs) (niis- B)




