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Lecture 1

Review I 

CLM - Assumptions

• Typical Assumptions

(A1) DGP: y = Xβ + εεεε is correctly specified. 

(A2) E[εεεε|X] = 0

(A3) Var[εεεε|X] = σ2 IT
(A4) X has full column rank – rank(X)=k-, where T ≥ k.

• Assumption (A1) is called correct specification. We know how the DGP. 

• Assumption (A2) is called regression.  From (A2) we get:

(i) E[εεεε|X] = 0 => E[y|X] =  f(X, θ) + E[εεεε|X] = f(X, θ) 
(ii) Using the Law of Iterated Expectations (LIE):

E[εεεε] = EX[E[εεεε|X]] = EX[0] = 0

Least Squares Estimation - Assumptions

• From Assumption (A3) we get

Var[εεεε|X] = σ2IT => Var[εεεε] = σ2IT

This assumption implies

(i) homoscedasticity => E[εi2|X] = σ2 for all i.

(ii) no serial/cross correlation => E[ εi εj |X] = 0 for i≠j.

• From Assumption (A4) => the k independent variables in X are 
linearly independent. Then, the kxk matrix X’X will also have full 
rank –i.e., rank(X’X) = k.

Least Squares Estimation – f.o.c.

• Objective function: S(xi, θ) =Σi εi2

• We want to minimize w.r.t to θ. The f.o.c. deliver the normal 
equations:

-2 Σi [yi - f(xi, θLS)] f ‘(xi, θLS) = -2 (y- Xb)′ X =0

• Solving for b delivers the OLS estimator:

b = (X′X)-1 X′y

Note: (i) b = βOLS. (Ordinary LS. Ordinary=linear)

(ii) b is a (linear) function of the data (yi ,xi).

(iii) X′(y-Xb) = X′y - X′X(X′X)-1X′y = X′e = 0=> e ⊥ X.

OLS Estimation - Properties

Under the typical assumptions, we can establish properties for b.

1) E[b|X]= ββββ

2) Var[b|X] = E[(b-ββββ) (b-ββββ)′|X] =(X′X)-1 X’E[εεεε εεεε′|X] X(X′X)-1

= σ2 (X′X)-1

3) b is BLUE (or MVLUE) => The Gauss-Markov theorem.

(4) If (A5) εεεε|X ~N(0, σ2IT) => b|X ~N(ββββ, σ2(X’ X)-1)

=> bk|X ~N(βk, σ
2(X’ X)kk

-1)

(the marginals of a multivariate normal are also normal.)

• Estimating σ2

Under (A5),  E[e′′′′e|X]  =  (T-k)σ2

The unbiased estimator of σ2 is s2 = e′′′′e/(T-k).  
=> there is a degrees of freedom correction.

Goodness of Fit of the Regression

• After estimating the model, we judge the adequacy of the model. 

There are two ways to do this:

- Visual: plots of fitted values and residuals, histograms of residuals.

- Numerical measures: R2, adjusted R2, AIC, BIC, etc. 

• Numerical measures. We call them goodness-of-fit measures. Most 
popular: R2.

R2 = SSR/TSS = b′′′′X′′′′M0Xb/y′′′′M0y = 1 - e′′′′e/y′′′′M0y

Note:  R2 is bounded by zero and one only if:

(a) There is a constant term in X --we need e’ M0X=0! 

(b) The line is computed by linear least squares.

(c)  R2 never falls when regressors are added to the regression.
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Adjusted R-squared

• R2 is modified with a penalty for number of parameters: Adjusted R2

= 1  - [(T-1)/(T-k)](1 - R2) = 1  - [(T-1)/(T-k)] RSS/TSS

= 1 - [RSS/(T-k)] [(T-1)/TSS]

=> maximizing adjusted R2 <=> minimizing [RSS/(T-k)]= s2

• Degrees of freedom --i.e., (T-k)-- adjustment assumes something about 
“unbiasedness.”

• Adjusted-R2 includes a penalty for variables that do not add much 
fit.  Can fall when a variable is added to the equation. 

• It will rise when a variable, say z, is added to the regression if and 
only if the t-ratio on z is larger than one in absolute value.

2

R

Other Goodness of Fit Measures

• There are other goodness-of-fit measures that also incorporate 
penalties for number of parameters (degrees of freedom).

• Information Criteria

- Amemiya: [e′′′′e/(T – K)] × (1 + k/T)

- Akaike Information Criterion (AIC)

AIC = -2/T(ln L – k) L: Likelihood

=> if normality AIC = ln(e’e/T) + (2/T) k         (+constants)

- Bayes-Schwarz Information Criterion (BIC)

BIC = -(2/T ln L – [ln(T)/T] k)

=> if normality AIC = ln(e’e/T) + [ln(T)/T] k   (+constants)

Maximum Likelihood Estimation

• We assume the errors, εεεε, follow a distribution. Then, we select the 
parameters of the distribution to maximize the likelihood of the
observed sample.

Example: The errors, εεεε, follow the normal distribution:

(A5) εεεε|X ~N(0, σ2IT)

• Then, we can write the joint pdf of y as

Taking logs, we have the log likelihood function
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Maximum Likelihood Estimation

• Let θ =(β,σ). Then, we want to

• Then, the f.o.c.:

Note: The f.o.c. deliver the normal equations for β! The solution to 
the normal equation, βMLE, is also the LS estimator, b. That is, 

• Nice result for b: ML estimators have very good properties!
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Properties of ML Estimators

(1) Efficiency. Under general conditions, we have that 

The right-hand side is the Cramer-Rao lower bound (CR-LB). If an 
estimator can achieve this bound, ML will produce it.

(2) Consistency. 

Sn(X; θ)  and (         - θ) converge together to zero (i.e., expectation).

(3) Theorem: Asymptotic Normality

Let the likelihood function be L(X1,X2,…Xn| θ). Under general 
conditions, the MLE of θ is asymptotically distributed as

MLE

^
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(4) Sufficiency. If a single sufficient statistic exists for θ, the MLE of θ
must be a function of it. That is,          depends on the sample 
observations only through the value of a sufficient statistic.

(5) Invariance. The ML estimate is invariant under functional 
transformations. That is, if          is the MLE of θ and if g(θ) is a 
function of θ , then g(        ) is the MLE of g(θ) . 

Properties of ML Estimators

MLEθ̂

MLEθ̂

MLEθ̂
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Specification Errors: Omitted Variables

• Omitting relevant variables:  Suppose the correct model is 

y = X1ββββ1 + X2ββββ2 + εεεε -i.e., with two sets  of variables.  

But, we compute OLS omitting X2. That is,

y = X1ββββ1 + εεεε <= the “short regression.”

Some easily proved results:

(1) E[b1|X] = E [(X1′′′′X1)
-1X1′′′′ y] = ββββ1 + (X1′′′′X1)

-1X1′′′′X2ββββ2 ≠ ββββ1. 

=> Unless X1′′′′X2 =0, b1 is biased.  The bias can be huge. 

(2) Var[b1|X] ≤ Var[b1.2|X] => smaller variance when we omit X2. 

(3) MSE => b1 may be more “precise.”

• Irrelevant variables  

Suppose the correct model is y = X1ββββ1 + εεεε

But, we estimate y = X1ββββ1 + X2ββββ2 + εεεε
Let’s compute OLS with X1, X2. This is called “long regression.”

Some easily proved results: 

(1) Since the variables in X2 are truly irrelevant, then ββββ2 = 0, 

so E[b1.2|X] = ββββ1 => No bias

(2) Inefficiency: Bigger variance

Specification Errors: Irrelevant Variables

Linear Restrictions

• Q: How do linear restrictions affect the properties of the least 
squares estimator?

Model ( DGP): y =  Xββββ +  εεεε

Theory (information): Rββββ - q =  0

Restricted LS estimator:   b*  =  b - (X′′′′X)-1R′′′′[R(X′′′′X)-1R′′′′]-1(Rb - q)

1. Unbiased?  YES. E[b*|X] = ββββ
2. Efficiency? NO. Var[b*|X] < Var[b|X]

3. b* may be more “precise.”

Precision  = MSE  = variance + squared bias.

4. Recall:  e′′′′e = (y -Xb)′′′′(y-Xb) ≤ e*′′′′e* = (y –Xb*)′′′′(y-Xb*)
=> Restrictions cannot increase R2 => R2≥ R2*

The General Linear Hypothesis:  H0: Rββββ - q = 0

• We have J joint hypotheses. Let R be a Jxk matrix and q be a Jx1
vector.

• Two approaches to testing (unifying point: OLS is unbiased):

(1)  Is Rb - q close to 0?  Basing the test on the discrepancy vector:  
m = Rb - q. Using the Wald statistic:

W = m′′′′(Var[m|X])-1m Var[m|X] = R[σ2(X’X)-1]R′′′′. 
W = (Rb – q)′′′′{R[σ2(X’X)-1]R}-1(Rb – q)

Under the usual assumption and assuming σ2 is known,  W ~ χJ
2

In general, σ2 is unknown, we use s2= e′′′′e/(T-k) 
W*= (Rb - q)′′′′{R[s2(X’X)-1]R}-1(Rb - q)

= (Rb – q)′′′′{R[σ2(X’X)-1]R}-1(Rb – q)/(s2/σ2 )
F = W/J / [(T-k) (s2/σ2)/(T-k)] = W*/J ~ FJ,T-k.

(2)  We know that imposing the restrictions leads to a loss of fit. R2

must go down.  Does it go down a lot?  -i.e., significantly? 

Recall (i)  e* = y – Xb* = e – X(b*– b)

(ii) b*= b – (X′′′′X)-1R′′′′[R(X′′′′X)-1R′′′′]-1(Rb – q)

=> e*′′′′e* - e′′′′e = (Rb – q)′′′′[R(X′′′′X)-1R′′′′]-1(Rb – q)

Recall

-W = (Rb – q)′′′′{R[σ2(X’X)-1]R}-1(Rb – q) ~ χJ
2 (if σ2 known)

- e′′′′e/σ2 ~ χT-k
2 . 

Then,

F = (e*′′′′e* – e′′′′e)/J / [e′′′′e/(T-k)] ~ FJ,T-K.
Or

F = { (R2 - R*2)/J } / [(1 - R2)/(T-k)] ~ FJ,T-K.

The General Linear Hypothesis:  H0: Rββββ - q = 0
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Example: Testing  H0: Rββββ - q = 0

• We can use, F = (e*′′′′e* – e′′′′e)/J / [e′′′′e/(T-k)] ~ FJ,T-K.

• In the linear model 
y = X ββββ + εεεε = ββββ1 + X2 ββββ2 + X3 ββββ3 + X4 ββββ4 + εεεε

• We want to test if the slopes X3, X4 are equal to zero. That is,

Define
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32

Functional Form: Chow Test

• Assumption (A1) restricts f(X,β) to be a linear function: f(X,β) = X β. 
But, within the framework of OLS estimation, we can be more flexible: 
(1) We can impose non-linear functional forms, as long as they are 
linear in the parameters (intrinsic linear model).

(2) We can use qualitative variables (dummies) to create non-linearities
(splines, changes in regime, etc.) A Chow test (an F-test) can be used to 
check for regimes/categories or structural breaks.

(a) Run OLS with no distinction between regimes. Keep RSSR.

(b) Run two separate OLS, one for each regime (Unrestricted 
regression). Keep RSS1 and RSS2 => RSSU= RSS1 + RSS2. 

(3) Run a standard F-test (testing Restricted vs. Unrestricted models):
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• To test the specification of the functional form, we can use the RESET 
test. From a regression, we keep the fitted values, ŷ = Xb.

• Then, we add ŷ2 to the regression specification. If ŷ2 is added to the 
regression specification, it should pick up quadratic and interactive 
nonlinearity: 

y = X ββββ + ŷ2 γ + ε

• We test H0 (linear functional form): γ=0 

H1 ( non linear functional form): γ≠0

=> t-test on the OLS estimator of γ.

• If the t-statistic for ŷ2 is significant  => evidence of nonlinearity. 

3

Functional Form: Ramsey’s RESET Test 

Prediction Intervals

• Prediction: Given x0 => predict y0.

(1) Estimate: E[y|X, x0] = β′β′β′β′x0; 

(2) Prediction: y0 = β′β′β′β′x0 + ε0

• Predictor:  ŷ0 = b’x0 + estimate of ε0.  (Est. ε0=0, but with variance)

• Forecast error. We predict y0 with ŷ0 = b′′′′x0. 

ŷ0 - y0 = b′′′′x0 - β′β′β′β′x0 - ε0 = (b - ββββ)′′′′x0 - ε0

=> Var[(ŷ0-y0)|x0] = E[(ŷ0-y0)′′′′(ŷ0-y0)|x0]= x0′′′′Var[(b - ββββ)|x0]x0 + σ2

• How do we estimate this?  Two cases:

(1) If x0 is a vector of constants  => Form C.I. as usual.

(2) If x0 has to be estimated => Complicated (what is the 
variance of the product?). Use bootstrapping. 

Forecast Variance

• Variance of the forecast error is  

σ2 + x0’ Var[b|x0]x0 = σ2 + σ2[x0’ (X’X)-1x0]

If the model contains a constant term, this is

(where Z is X without x1=ί). In terms squares and cross products of 
deviations from means.  

Note: Large σ2, small n, and large deviations from the means, decrease 
the precision forecasting error.

• Interpretation:  Forecast variance is smallest in the middle of our 
“experience” and increases as we move outside it. 
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Forecasting performance of a model: Tests and 

measures of performance

• Evaluation of a model’s predictive accuracy for individual (in-
sample and out-of-sample) observations

• Evaluation of a model’s predictive accuracy for a group of (in-
sample and out-of-sample) observations 

• Chow prediction test 

Evaluation of forecasts

• Summary measures of out-of-sample forecast accuracy 
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CLM: Asymptotics

• To get exact results for OLS, we rely on (A5)  εεεε|X ~iid N(0, σ2IT)
But, (A5) in many situations is unrealistic. Then, we study on the 
behavior of b (and the test statistics) when T →∞ i.e., large samples. 

• New assumptions:

(1)  {xi,εi}  i=1, 2, ...., T   is a sequence of independent observations.

- X is stochastic, but independent of the process generating ε.

- We require that X have finite means and variances. Similar 
requirement for ε, but we also require E[ε]=0.

(2) Well behaved X:

plim (X′′′′X/T) =  Q (Q a pd matrix of finite elements)

=> (not too much dependence in X).

• Now, we have a new set of assumptions in the CLM: 

(A1) DGP:  y = X β + εεεε. 

(A2’) X stochastic, but E[X’ εεεε]= 0  and E[ε]=0.
(A3) Var[εεεε|X] = σ2 IT
(A4’) plim (X’X/T) = Q (p.d. matrix with finite elements, rank= k)

• We want to study the large sample properties of OLS:

Q 1: Is b consistent? s2? YES & YES

Q 2: What is the distribution of b? b N(β,(σ2/T)Q-1)

Q 3: What about the distribution of the tests?

=> tT =[(zT - µ)/sT] N(0,1)

=> W = (zT - µµµµ) ′′′′ST-1(zT - µµµµ)         χ2
rank(ST)

=>  F χ2
rank(Var[m]) 

CLM: New Assumptions

→d

→a

→d

→d

Asymptotic Tests: Small sample behavior?

• The p-values from asymptotic tests are approximate for small 
samples. They may be very bad. Their performance depends on:

(1) Sample size, T.

(2) Distribution of the error terms, εεεε.
(3) The number of regressors, k, and their properties

(4) The relationship between the error terms and the regressors.

• A simulation/bootstrap can help.

• Bootstrap tests tend to perform better than tests based on 
approximate asymptotic distributions. 

• The errors committed by both asymptotic and bootstrap tests 
diminish as T increases.

The Delta Method

• It is used to obtain the asymptotic distribution of a non-linear 
function of a RV (usually, an estimator). 

Tools: (1) A first-order Taylor series expansion 

(2) Slutsky’s theorem.

• Let xn be a RV, with plim xn=θ and Var(xn)=σ
2 < ∞. 

We use the CLT to obtain n½(xn - θ)/σ N(0,1)

• Goal: g(xn) ? (g(xn) is a continuous differentiable 
function, independent of n.)

Steps:

(1) Taylor series approximation around θ :  

g(xn) = g(θ) + g′(θ) (xn - θ) + higher order terms

We assume the higher order terms are o(n) --as n grows, they vanish.

→a

→d

The Delta Method

(2) Use Slutsky theorem: plim g(xn) = g(θ)

plim g’(xn) = g’(θ)

Then, as n grows, g(xn) ≈ g(θ) + g′(θ) (xn - θ)
=> n½([g(xn) - g(θ)]) ≈ g′(θ) [n½(xn - θ)].

=> n½([g(xn) - g(θ)]/σ) ≈ g′(θ) [n½(xn - θ)/σ].

The asymptotic distribution of (g(xn) - g(θ)) is given by that of [n
½(xn -

θ)/σ], which is a standard normal. Then,

n½([g(xn) - g(θ)])        N(0, [g′(θ)]2 σ2).

After some work (“inversion”), we obtain:

g(xn)        N(g(θ), [g′(θ)]2 σ2/n).→a

→a

Delta Method: Example

Let xn N(θ, σ2/n)

Q:  g(xn)=δ/xn ? (δ is a constant)

First, calculate the first two moments of g(xn):

g(xn) = δ/xn => plim g(xn)=(δ/θ)

g’(xn) = -(δ/xn
2) => plim g’(xn)=-(δ/θ

2)

Recall delta method formula: g(xn)        N(g(θ), [g′(θ)]2 σ2/n).
Then,

g(xn)          N(δ/θ, (δ2/θ4)σ2/n)

→a

→a

→a

→a
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• What makes b consistent when X'εεεε /T 0 is that approximating 
(X'εεεε/T ) by 0 is reasonably accurate in large samples.

• Now, we challenge the assumption that {xi,εi} is a sequence of 
independent observations. 

• Now, we assume plim (X’εεεε/T) ≠ 0     => This is the IV Problem!

• Q: When might X be correlated εεεε? 

- Correlated shocks across linked equations

- Simultaneous equations 

- Errors in variables

- Model has a lagged dependent variable and a serially correlated error 
term

→p

The IV Problem

• We start with our linear model

y = Xββββ + εεεε.

• Now, we assume  plim(X’εεεε/T) ≠ 0.
plim (X’X/T) = Q

• Then, plim b = plim ββββ + plim (X’X/T)-1 plim (X′ε′ε′ε′ε/T)

= ββββ + Q-1 plim (X′ε′ε′ε′ε/T) ≠ ββββ
=> b is not a consistent estimator of ββββ.

• New assumption: we have l instrumental variables, Z such that 

plim(Z’X/T) ≠ 0 but  plim(Z’εεεε/T) = 0

The IV Problem

• To get a  consistent estimator of ββββ, we also assume:

{xi, zi, εi} is a sequence of RVs, with:

E[X’X] = Qxx (pd and finite) (LLN => plim(X’X/T) =Qxx )

E[Z’Z] = Qzz (finite) (LLN => plim(Z’Z/T) =Qzz )

E[Z’X] = Qzx (pd and finite) (LLN => plim(Z’X/T) =Qzx )

E[Z’εεεε] = 0 (LLN => plim(Z’εεεε/T) = 0)

• Following the same idea as in OLS, we get a system of equations: 
W'Z’X bIV = W'Z’y

• We have two cases where estimation is possible:

- Case 1: l = k -i.e., number of instruments = number of regressors.

- Case 2: l > k -i.e., number of instruments > number of regressors.

Instrumental Variables: Assumptions

• To get the IV estimator, we start from the system of equations: 
W'Z’X bIV = W'Z’y

• Case 1: l = k -i.e., number of instruments = number of regressors.

- Z has the same dimensions as X: Txk => Z’X is a kxk matrix

- In this case, W is irrelevant, say, W=I. 

- Then, 

bIV =  (Z’X)-1Z’y

Instrumental Variables: Estimation

IV Estimators

• Properties of bIV

(1) Consistent

bIV = (Z’X)-1Z’y = (Z’X)-1Z’(Xββββ+εεεε)

= (Z’X/T)-1 (Z’X/T) ββββ + (Z’X/T)-1Z’ε/T

= ββββ + (Z’X/T)-1 Z’ε/T  ββββ (under assumptions)

(2) Asymptotic normality

√T (bIV - ββββ) = √T (Z’X)-1Z’ε

= (Z’X/T)-1 √T (Z’ε/T)

Using the Lindberg-Feller CLT √T (Z’ε/T)        N(0, σ2Qzz)

Then,        √T (bIV - ββββ)           N(0, σ2Qzx
-1QzzQxz

-1)

→p

→d

→d

IV Estimators

• Properties of      , under IV estimation:

- We define      :

where eIV= y - X bIV = y - X(Z’X)-1Z’y = [I - X(Z’X)-1Z’]y = Mzx y

- Then, 

=  eIV'eIV /T = εεεε'Mzx'Mzxεεεε/T
= εεεε'εεεε/T – 2 εεεε'X (Z’X)-1Z’εεεε/T + εεεε'Z (Z'X)-1X’X(Z’X)-1Z’εεεε/T

=> plim = plim(εεεε'εεεε/T) - 2 plim[(εεεε'X/T) (Z’X/T)-1 (Z'εεεε/T)] +

+  plim(εεεε'Z (Z’X)-1X’X(Z’X)-1Z’εεεε/T) = σ2 

Est Asy. Var[bIV] = E[(Z'X)
-1 Z’εεεεεεεε'Z (Z’X)-1]= (Z’X)-1 Z'Z(Z’X)-1

2
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• Case 2: l > k -i.e., number of instruments > number of regressors.

- This is the usual case. We can throw l-k instruments,  but throwing 
away information is never optimal.

- The IV normal equations are an l x k system of equations:

Z’y = Z’Xββββ+ Z’εεεε

Note: We cannot approximate all the Z’εεεε by 0 simultenously. There 
will be at least l-k non-zero residuals. (Similar setup to a regression!)

- From the IV normal equations =>  W'Z’X bIV = W'Z’y

- We define a different IV estimator

- Let ZW = Z(Z’Z)-1Z’X = PZX = 

- Then, X'PZX bIV = X'PZy

X̂

yXXXyPPXXPPXyPXXPXb ZZZZZZIV ˆ'ˆ)ˆ'ˆ(')'(')'( 111 −−− ===

IV Estimators: 2SLS (2-Stage Least Squares)

• We can easily derive properties for bIV:

(1) bIV is consistent

(2) bIV is asymptotically normal.

- This is estimator is also called GIVE (Generalized IV estimator) 

• Interpretations of bIV

This is the 2SLS interpretation

This is the usual IV XZ ˆ=

IV Estimators: 2SLS (2-Stage Least Squares)

yXXXb

yXXXbb

IV

SLSIV
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Asymptotic Efficiency

• The variance is larger than that of 0LS.  (A large sample type 
of Gauss-Markov result is at work.)

(1) OLS is inconsistent.

(2)  Mean squared error is uncertain:

MSE[estimator|ββββ] = Variance  +  square of bias.

• IV may be better or worse.  Depends on the data: X and ε.

Problems with 2SLS

• Z’X/T may not be sufficiently large.  The covariance matrix for 
the IV estimator is Asy. Cov(b) = σ2[(Z’X)(Z’Z)-1(X’Z)]-1

– If Z’X/T goes to 0 (weak instruments), the variance explodes.

• When there are many instruments,      is too close to X; 2SLS 
becomes OLS.

• Popular misconception: “If only one variable in X is correlated with 
εεεε, the other coefficients are consistently estimated.” False.  

=> The problem is “smeared” over the other coefficients.

• What are the finite sample properties of bIV? We do not have the 
condition E[ε|X] = 0, we cannot conclude that bIV is unbiased, or 
that it has a Var[b2SLS] equal to its asymptotic covariance matrix. 

=> In fact, b2SLS can have very bad small-sample properties.

X̂

Endogeneity Test (Hausman)

Exogenous               Endogenous
OLS      Consistent, Efficient    Inconsistent

2SLS     Consistent, Inefficient  Consistent

• Base a test on  d =  b2SLS - bOLS

- We can use a Wald statistic: d’[Var(d)]-1d

Note: Under H0 (plim (X’εεεε/T) = 0) bOLS = b2SLS = b

Also, under H0: Var[b2SLS ]= V2SLS > Var[bOLS ]= VOLS

=> Under H0, one estimator is efficient, the other one is not.

• Q: What to use for Var(d)?
- Hausman (1978): V = Var(d) = V2SLS - VOLS

H = (b2SLS - bOLS)’[V2SLS - VOLS ]
-1(b2SLS - bOLS)          χ

2
rank(V)→d

Endogeneity Test:  The Wu Test

• The Hausman test is complicated to calculate 

• Simplification: The Wu test.

• Consider a regression y = Xβ + ε, an array of proper instruments Z, 
and an array of instruments W that includes Z plus other variables 
that may be either clean or contaminated.

• Wu test for H0: X is clean. Setup

(1) Regress X on Z. Keep fitted values   = Z(Z’Z)-1Z’X

(2) Using W as instruments, do a 2SLS regression of y on X,  keep  
RSS1. 

(3) Do a 2SLS regression of y on X and a subset of m columns of  
that are linearly independent of X. Keep RSS2.

(4) Do an F-test: F = [(RSS1 - RSS2)/m]/[RSS2/(T-k)].

X̂

X̂
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• Under H0: X is clean, the F statistic has an approximate Fm,T-k
distribution.

Davidson and MacKinnon (1993, 239) point out that the DWH test 
really tests whether possible endogeneity of the right-hand-side 
variables not contained in the instruments makes any difference to 
the coefficient estimates. 

• These types of exogeneity tests are usually known as DWH (Durbin, 
Wu, Hausman) tests.

Endogeneity Test:  The Wu Test

• Davidson and MacKinnon (1993) suggest an augmented regression 
test (DWH test), by including the residuals of each endogenous right-

hand side variable.

• Model: y =  X β + Uγ + εεεε, we suspect X is endogenous.

• Steps for augmented regression DWH test:

1. Regress x on IV (Z) and U: 

x = Z П + U φ + υ => save residuals vx
2. Do an augmented regression: y = Xβ + Uγ + vx δ + ε

3. Do a t-test of δ. If the estimate of δ, say d, is significantly different 

from zero, then OLS is not consistent.

Endogeneity Test:  Augmented DWH Test

• DGP: y* =  βx*  + εεεε - εεεε ~ iid D(0, σε
2) 

• But, we do not observe or measure correctly x*. We observe x, y: 

x =  x*  + u u ~ iid D(0, σu
2)  -no correlation to εεεε,v

y =  y*  + v v ~ iid D(0, σv
2)  -no correlation to εεεε,u

• Let’s consider two cases:

CASE 1 - Only x* is measured with error (y=y*):

y =  β(x- u) + εεεε = βx + εεεε - βu = βx + w 

E[x’w] = E[(x*  + u)’(εεεε - βu)] = -βσu2≠ 0

=> CLM assumptions violated => OLS inconsistent!

Measurement Error

CASE 2 - Only y* is measured with error.

y* = y - v = βx* + εεεε

=> y = βx* + εεεε + v = βx* + (εεεε + v)

• Q: What happens when y is regressed on x?  

A: Nothing! We have our usual OLS problem since εεεε and v are 
independent of each other and x*. CLM assumptions are not 
violated! 

Measurement Error

Finding an Instrument: Not Easy

• The IV problem requires data on variables (Z) such that  

(1) Cov(x,Z) ≠ 0 -relevance condition

(2) Cov(Z,εεεε) = 0 -valid (exogeneity) condition

Then, we do a first-stage regression to obtain fitted values of X:

x =  ZП + Uδ + V -V ~N(0, σV
2I)

Then, using the fitted values we estimate and do tests on β.

• Finding a Z that meets both requirements is not easy. 

- The valid condition is not that complicated to meet. 

- The relevant condition is more complicated: Finding a Z correlated 
with X. But, the explanatory power of Zmay not be enough to allow 

inference on β. In this case, we say Z is a weak instrument.

• Finance example:  The consumption CAPM. 

• In both linear and nonlinear versions of the model, IVs are weak, --
see Neeley, Roy, and Whiteman (2001), and Yogo (2004). 

• In the linear model in Yogo (2004):

X (endogenous variable): consumption growth 

Z (the IVs): twice lagged nominal interest rates, inflation, 
consumption growth, and log dividend-price ratio. 

• But, log consumption is close to a random walk, consumption 
growth is difficult to predict. This leads to the IVs being weak. 

=> Yogo (2004) finds F-statistics for H0: П = 0 in the 1st 
stage regression that lie between 0.17 and 3.53 for different countries.

Weak Instruments: Finance application
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Weak Instruments: Summary

• Even if the instrument is “good” –i.e., it meets the relevant 
condition--, matters can be made far worse with IV as opposed to 
OLS (“the cure can be worse...”).

• Weak correlation between IV and endogenous regressor can pose 
severe finite-sample bias.

• Even small Cov(Z,e) will cause inconsistency, and this will be 
exacerbated when Cov(X,Z) is small.

• Large T will not help. A&K and Consumption CAPM tests have 
very large samples!

• Symptom: The relevance condition, plim(Z’X/T ) not zero, is close 
to being violated.

• Detection of weak IV: 

– Standard F test in the 1st stage regression of xk on Z. Staiger
and Stock (1997) suggest that F < 10 is a sign of problems.

– Low partial-R2
X,Z.

– Large Var[bIV] as well as potentially severe finite-sample bias.

• Remedy:

– Not much – most of the discussion is about the condition, 
not what to do about it.

– Use LIML? Requires a normality assumption. Probably, not 
too restrictive. (Text, 375-77)

Weak Instruments: Detection and Remedies

• Symptom: The valid condition, plim(Z’ε/T ) zero, is close to being 
violated.

• Detection of instrument exogeneity:

– Endogenous IV’s: Inconsistency of bIV that makes it no 
better (and probably worse) than bOLS

– Durbin-Wu-Hausman test: Endogeneity of the problem 
regressor(s)

• Remedy:

– Avoid endogeneous weak instruments. (Also avoid weak IV!)

– General problem: It is not easy to find good instruments in 
theory and in practice. Find natural experiments.

Weak Instruments: Detection and Remedies M-Estimation

• An extremum estimator is one obtained as the optimizer of a 
criterion function, q(z,b).

Examples:

OLS: b = arg max (-e’e/T)

MLE: bMLE= arg max ln L =∑i=1,…,T ln f (yi,xi,b)

GMM: bGMM= arg max - g(yi,xi,b)’ W g(yi,xi,b) 

• There are two classes of extremum estimators: 

- M-estimators: The objective function is a sample average or a sum.

- Minimum distance estimators: The objective function is a measure 
of a distance.

• "M" stands for a maximum or minimum estimators --Huber (1967).

• The objective function is a sample average or a sum. For example, 
we want to minimize a population (first) moment: 

minb E[q(z,β)]

– Using the LLN, we move from the population first moment to the 
sample average:

∑i q(zi,b)/T E[q(z,β)]

– We want to obtain:   b = argmin ∑i q(zi,b) (or divided by T)

– In general, we solve the f.o.c. (or zero-score condition):

Zero-Score: ∑i ∂q(zi,b)/∂b′ = 0

– To check the s.o.c., we define the (pd) Hessian: 
H = ∑i  ∂2q(zi,b)/∂b∂b′

M-Estimation

→p

• If s(z,b) = ∂q(z,b)/∂b′ exists (almost everywhere), we solve 

∑i  s(zi,bM)/T =0 (*)

• If, in addition, EX[s(z,b)] = ∂/∂b′ EX[q(z,b)] -i.e., differentiation 
and integration are exchangeable-, then 

EX[∂q(z,β)/∂β′] = 0.

• Under these assumptions, the M-estimator is said to be of ψ-type (ψ= 
s(z,b)=score). Often, bM is taken to be the solution of (*) without 
checking whether it is indeed a minimum).

• Otherwise, the M-estimator is of  ρ-type. (ρ= q(z,β)).

M-Estimation
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• Least Squares

– DGP: y = f(x,β) + ε, z =[y,x]

– q(z;β) = S(β) = ε′ε = ∑i=1,…,T (yi - f(xi;β))
2

– Now, we move from population to sample moments 

– q(z;b) = S(b) = e′e = ∑i=1,…,T (yi - f(xi;b))
2

– bNLLS = argmin S(b)

• Maximum Likelihood

– Let f (xi,β) be the pdf of the data. 

– L(x,β) = Πi=1,…,T f (xi;β)

– log L(x,β) = ∑i=1,…,T ln f (xi;β)

– Now, we move from population to sample moments

– q(z,b) = -log L(x,b)

– bMLE = argmin – log L(x;b)

M-Estimation: LS & ML

• Under general assumptions, M-estimators are:

- bM b0

- bM N(b0,Var[b0])

- Var[bM] =(1/T) H0
-1V0 H0

-1

- If the model is correctly specified: -H= V. 

Then, Var[b] = V0

– H and V are evaluated at b0:

- H = ∑i [∂2q (zi,b)/∂b∂b′]
- V = ∑i [∂q(zi,b)/∂b][∂q(zi,b)/∂b′]

→p

→a

M-Estimators: Properties

4

Nonlinear Least Squares: Example

Example:  Min ββββ S(ββββ) ={½ Σi [yi - f(Xβ)]2 } 

• From the f.o.c., we cannot solve for ββββ explicitly. But, using some 
steps, we can still minimize RSS to obtain estimates of ββββ. 

• Nonlinear regression algorithm:

1. Start by guessing a plausible values for ββββ , say ββββ0.

2. Calculate RSS for ββββ0 => get RSS(ββββ0) 

3. Make small changes to ββββ0, => get ββββ1.  

4. Calculate RSS for ββββ1 => get RSS(ββββ1) 

5. If RSS(ββββ1) < RSS(ββββ0) => ββββ1 becomes your new starting point.

6. Repeat steps 3-5 until you RSS(ββββj) cannot be lowered. => get ββββj. 

=> ββββj is the (nonlinear) least squares estimates.

• We start with a nonlinear model:    yi = f(xi,ββββ)  +  εi

• We expand the regression around some point, ββββ0:

f(xi,ββββ)  ≈ f(xi,ββββ0)  + Σk[∂f(xi,ββββ0)/∂βk
0]( βk - βk

0)

= f(xi,ββββ0)  + Σk xi
0 ( βk - βk

0)

= [f(xi,ββββ0) - Σk xi
0 βk

0] + Σk xi
0 βk

=  f0 + Σk xi
0 βk = f

0 + xi
0′ ββββ

where 

fi
0 = f(xi,ββββ0) - xi

0′ ββββ0 (fi
0 does not depend on unknowns)

Now, f(xi,ββββ) is (approximately) linear in the parameters. That is,

yi = fi
0 + xi

0′ ββββ +  ε0i (ε0i = εi + linearization error i)

=> y0i = yi – fi
0 = xi

0′ ββββ +  ε0i

NLLS: Linearization

• We linearized f(xi,ββββ) to get: 
y = f0 + X0 ββββ +  εεεε0 (εεεε0 = εεεε + linearization error)

=> y0 = y - f0 = X0 ββββ + εεεε0

• Now, we  can do OLS:

bNLLS = (X
0′ X0)-1 X0′ y0

Note: X0 are called pseudo-regressors.

• In general, we get different bNLLS for different ββββ0. An algorithm can 
be used to get the best bNLLS. 

• We will resort to numerical optimization to find the bNLLS.

NLLS: Linearization

• Compute the asymptotic covariance matrix for the NLLS  estimator 
as usual: 

Est. Var[bNLLS|X
0] = s2NLLS (X

0′ X0)-1 

s2NLLS = [y - f(xi, bNLLS)]′′′′ [y - f(xi, bNLLS)]/(T-k).

• Since the results are asymptotic, we do not need a degrees of 
freedom correction. However, a df correction is usually included.

NLLS: Linearization
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Gauss-Newton Algorithm

• bNLLS depends on ββββ0 . That is,

bNLLS (ββββ0) = (X0′ X0)-1 X0′ y0

• We use a Gauss-Newton algorithm to find the bNLLS. Recall GN:

βk+1 = βk + (J
T J)-1 JT ε -- J: Jacobian = δf(xi;β)/δβ.

• Given a bNLLS at step m, b(j), we find the bNLLS for step j+1 by:

b(j+1) = b(j) + [X0(j)′X0(j)]-1X0(j)′e0(j)

Columns of X0(j) are the derivatives:    ∂f(xi,b(j))/∂b(j)′
e0(j) = y - f[x,b(j)]

• The update vector is the slopes in the regression of the residuals on 
X0.  The update is zero when they are orthogonal. (Just like OLS)

Box-Cox Transformation

• A simple transformation that allows non-linearities in the CLM.

y = f(xi,ββββ) +  εεεε = Σk xk
(λ) βk +  εεεε

xk
(λ) = (xk

λ -1)/λ limλ→0 (xk
λ -1)/λ = ln xk

• For a given λ, OLS can be used. An iterative process can be used to 
estimate λ. OLS s.e. have to be corrected.  Not a very efficient method.  

• NLLS or MLE will work fine.

• We  can have a more general Box-Cox transformation model:

y(λ1) = Σk xk
(λ2) βk +  εεεε

Testing non-linear restrictions

• Testing linear restrictions as before.

• Non-linear restrictions change he usual tests. We want to test:

H0: R(ββββ) = 0
where R(ββββ) is a non-linear function, with rank[∂R(ββββ)/∂ββββ=G(ββββ)]=J. 

• Let m = R(bNLLS) – 0. 

Then, W=m′′′′(Var[m|X])-1m = R(bNLLS)′′′′(Var[R(bNLLS)|X])
-1 R(bNLLS)

But, we do not know the distribution of R(bNLLS). We know the 
distribution of bNLLS. Then, we linearize R(bNLLS) around ββββ:

R(bNLLS) ≈ R(ββββ)  + G(bNLLS) (bNLLS - ββββ)

Testing non-linear restrictions

• Linearize R(bNLLS) around ββββ (=b0)

R(bNLLS) ≈ R(ββββ)  + G(bNLLS) (bNLLS - ββββ)

• Recall √√√√T (bM - b0) N(0, Var[b0])

where Var[b0] = H(ββββ)-1V (ββββ)H(ββββ)-1

=>√√√√T [R(bNLLS) - R(ββββ)] N(0, G(ββββ) Var[b0] G(ββββ)′ )

=> Var[R(bNLLS)] = (1/T) G(ββββ) Var[b0] G(ββββ)′
• Then, 

W = T R(bNLLS)′′′′{G(bNLLS) Var[bNLLS] G(bNLLS)′}
-1 R(bNLLS)

=> W           χJ
2

→d

→d

→d


