M-Estimation

• An extremum estimator is one obtained as the optimizer of a criterion function, \(q(z, b) \).

Examples:

- OLS: \(b = \arg \max \left (-\mathbf{e}'\mathbf{e}/T \right) \)
- MLE: \(b_{\text{MLE}} = \arg \max \ln L = \sum_{i=1, \ldots, T} \ln f(y_i, x_i, b) \)
- GMM: \(b_{\text{GMM}} = \arg \max -g(y_i, x_i, b)' W g(y_i, x_i, b) \)

• There are two classes of extremum estimators:
 - M-estimators: The objective function is a sample average or a sum.
 - Minimum distance estimators: The objective function is a measure of a distance.

• "M" stands for a maximum or minimum estimators -- Huber (1967).
M-Estimation

- The objective function is a sample average or a sum.
- We want to minimize a population (first) moment:
 \[\min_{\beta} E[q(z,\beta)] \]

 - Using the LLN, we move from the population first moment to the sample average:
 \[\sum q(z_i,\beta) / T \rightarrow E[q(z,\beta)] \]
 - We want to obtain: \(\beta = \text{argmin} \sum q(z_i,\beta) \) (or divided by \(T \))
 - In general, we solve the f.o.c. (or zero-score condition):
 \[\text{Zero-Score: } \sum \frac{\partial q(z_i,\beta)}{\partial \beta'} = 0 \]
 - To check the s.o.c., we define the (pd) Hessian:
 \[H = \sum \frac{\partial^2 q(z_i,\beta)}{\partial \beta \partial \beta'} \]

M-Estimation

- If \(s(z,\beta) = \frac{\partial q(z,\beta)}{\partial \beta'} \) exists (almost everywhere), we solve
 \[\sum s(z_i,\beta_M) / T = 0 \quad (*) \]

- If, in addition, \(E_X[s(z,\beta)] = \frac{\partial}{\partial \beta'} E_X[q(z,\beta)] \) - i.e., differentiation and integration are exchangeable-, then
 \[E_X[\partial q(z,\beta) / \partial \beta'] = 0. \]

- Under this assumptions the M-estimator is said to be of \(\phi \)-type (\(\phi = s(z,\beta) \)=score). Often, \(\beta_M \) is taken to be the solution of (*) without checking whether it is indeed a minimum).

- Otherwise, the M-estimator is of \(\rho \)-type. (\(\rho = q(z,\beta) \)).
M-Estimation: LS & ML

- Least Squares
 - DGP: \(y = f(x; \beta) + \varepsilon, \quad z = [y, x] \)
 - \(q(z; \beta) = S(\beta) = \varepsilon' \varepsilon = \sum_{i=1,...,T} (y_i - f(x_i; \beta))^2 \)
 - Now, we move from population to sample moments
 - \(q(z; b) = S(b) = e' e = \sum_{i=1,...,T} (y_i - f(x_i; b))^2 \)
 - \(\hat{b}_{NLLS} = \text{argmin } S(b) \)

- Maximum Likelihood
 - Let \(f(x; \beta) \) be the pdf of the data.
 - \(L(x; \beta) = \prod_{i=1,...,T} f(x_i; \beta) \)
 - \(\log L(x; \beta) = \sum_{i=1,...,T} \ln f(x_i; \beta) \)
 - Now, we move from population to sample moments
 - \(q(z; b) = -\log L(x; b) \)
 - \(\hat{b}_{MLE} = \text{argmin } -\log L(x; b) \)

M-Estimation: Minimum \(L_p \)-estimators

- Minimum \(L_p \)-estimators
 - \(q(z; \beta) = (1/p) |x - \beta|^p \) for \(1 \leq p \leq 2 \)
 - \(s(z; \beta) = |x - \beta|^{p-1} \)
 - \(s(z; \beta) = -|x - \beta|^{p-1} \)

- Special cases:
 - \(p = 2 \) : We get the sample mean (LS estimator for \(\beta \)).
 - \(s(z; \beta) = \sum_i (x_i - \hat{b}_M) = 0 \) \(\Rightarrow \hat{b}_M = \sum_i x_i / T \)
 - \(p = 1 \) : We get the sample median as the estimator with the least absolute deviation (LAD) for the median \(\beta \). (There is no unique solution if \(T \) is even.)

Note: Unlike LS, LAD does not have an analytical solving method. Numerical optimization is not feasible. Linear programming is used.
The Score Vector

- Let \(\{X = X_i; X_2; \ldots \} \) be i.i.d.
- If \(s(z,b) = \partial q(z,b)/\partial b' \) exists, we solve
 \[
 \sum_i s(z_i,b_M)/T = 0 \quad (s(z,b) \text{ is a } k \times 1 \text{ vector}).
 \]
 - \(E[s(z,b_0)] = E[\partial q(z,b)/\partial b'] = 0 \)
 - Using the LLN: \(\sum s(z_i,b)/T \xrightarrow{p} E[s(z,b_0)] = 0 \)
 - \(V = \text{Var}[s(z,b_0)] = E[s(z,b)s(z,b)'] \quad (V \text{ is a } k \times k \text{ matrix}). \)
 - \(E[\partial q(z,b)/\partial b'] (\partial q(z,b)/\partial b) \)
 - Using the LLN: \(\sum [s(z_i,b)s(z_i,b)']/T \xrightarrow{p} \text{Var}[s(z,b_0)] \)

- Using the Lindeberg-Levy CLT: \(\sum s(z_i,b)/\sqrt{T} \xrightarrow{d} N(0,V) \)

Note: We have already shown these results for the ML case.

The Hessian Matrix

- \(H(z,b) = E[\partial s(z,b)/\partial b] = E[\partial^2 q(z,b)/\partial b\partial b'] \)
- Using the LLN: \(\sum [\partial s(z,b)/\partial b]/T \xrightarrow{p} H(z,b_0) \)

- In general, the Information (Matrix) Equality does not hold. That is, \(H \neq V \). The equality only holds if the model is correctly specified.

 - Recall the Mean Value Theorem: \(f(x) = f(a) + f'(b) (x-a) \quad a<b<x \)
 - Apply MVT to the score:
 \[
 \sum_i s(z_i,b_M) = \sum_i s(z_i,b_0) + \sum_i H(z_i,b^*) (b_M-b_0) \quad b_0<b^*<b_M
 \]
 - \(\sum_i s(z_i,b_0) + \sum_i H(z_i,b^*) (b_M-b_0) \)
 - \(\Rightarrow (b_M-b_0) = [\sum_i H(z_i,b^*)]^{-1} \sum_i s(z_i,b_0) \)
 - \(\Rightarrow \sqrt{T} (b_M-b_0) = [\sum_i H(z_i,b^*)/T]^{-1} \sum_i s(z_i,b_0)/\sqrt{T} \)
The Asymptotic Theory

- **Theorem:** Consistency of M-estimators

Let \(\{X = X_1; X_2; \ldots \} \) be i.i.d. and assume

1. \(b \in B \), where \(B \) is compact. ("compact")
2. \(\sum q(X_i, b)/T \xrightarrow{p} g(b) \) uniformly in \(b \) for some continuous function \(g: B \rightarrow \mathbb{R} \) ("continuity")
3. \(g(b) \) has a unique global minimum at \(b_0 \). ("identification")

Then, \(b_M \xrightarrow{p} b_0 \)

Remark: a) Since \(X \) are i.i.d. by the LLN (without uniformity) it must hold \(g(b) = E_X[q(Xb)] \), thus \(E_X[q(z, b_0)] = \min_{b \in B} E_X[q(z, \beta)] \).

b) If \(B \) is not compact, find a compact subset \(B_0 \), with \(b_0 \in B_0 \) and \(P[b_M \in B_0] \rightarrow 1 \).

The Asymptotic Theory

- **Theorem:** Asymptotic Normality of M-estimators

Assumptions:

1. \(b_M \xrightarrow{p} b_0 \) for some \(b_0 \in B \)
2. \(b_M \) is of \(\psi \)-type and \(s \) is continuously (for almost all \(x \)) differentiable w.r.t. \(b \).
3. \(\sum [\partial s(z, b)/\partial b]/T \xrightarrow{p} H(z, b_0) \) for \(b^* \xrightarrow{p} b_0 \)
4. \(\sum s(z, b)/\sqrt{T} \xrightarrow{d} N(0, V_0) \) \(V_0 = \text{Var}[s(z, b_0)] < \infty \)

Then, \(\sqrt{T} (b_M - b_0) = \left(\sum H(z, b^*)/T \right)^{-1} \left[-\sum s(z, b_0)/\sqrt{T} \right] \)

\[
\Rightarrow \sqrt{T} (b_M - b_0) \xrightarrow{d} N(0, H_0^{-1}V_0H_0^{-1})
\]

- \(V = E[s(z, b)s(z, b)^*] = E[(\partial q(z, b)/\partial b)(\partial q(z, b)/\partial b)] \)
- \(H = \partial s(z, b)/\partial b = E[\partial^2 q(z, b)/\partial b \partial b^*] \)
Asymptotic Normality

- Summary
 - $b_M \xrightarrow{d} b_0$
 - $b_M \xrightarrow{d} N(b_0, \text{Var}[b_0])$
 - $\text{Var}[b_M] = (1/T) H_0^{-1} V_0 H_0^{-1}$
 - If the model is correctly specified: $-H = V$

Then, $\text{Var}[b] = V_0$

- H and V are evaluated at b_0;
 - $H = \sum_i [\partial^2 q(z, b)/\partial b \partial b']$
 - $V = \sum_i [\partial q(z, b)/\partial b][\partial q(z, b)/\partial b']$

M-Estimation: Example

- DGP: $y = f(x, \beta) + \epsilon = \exp(x \beta) + \epsilon$
- Objective function:
 $q(X, \beta) = \frac{1}{2} \epsilon' \epsilon = \frac{1}{2} [y - \exp(X \beta)]' [y - \exp(X \beta)]$

- Score: $s(z, \beta) = \partial q(z, \beta)/\partial \beta = \partial f(x, \beta)/\partial \beta' \epsilon$
 $= - [\exp(X \beta)X]' [y - \exp(X \beta)]$
 $= - [\exp(X \beta)X]' \epsilon = -X' \exp(X \beta)' y + X' \exp(2\sum x_i \beta)$

- $V = \text{Var}[s(z, \beta)] = E[[\exp(X \beta)X]' \epsilon \epsilon' [\exp(X \beta)X]]$

- $H = E[\partial^2 q(z, \beta)/\partial \beta \partial \beta'] = E[\partial f(x, \beta)/\partial \beta' \partial f(x, \beta)/\partial \beta']$
 - $\partial^2 f(x, \beta)/\partial \beta \partial \beta' \epsilon = E[\exp(X \beta)X'X \exp(X \beta)' - \exp(X \beta)X' \epsilon]$

- $\text{Var}[b_M] = (1/T) H_0^{-1} V_0 H_0^{-1}$
M-Estimation: Example

- \(\text{Var}[b_M] = (1/T) \, H_0^{-1} \, V_0 \, H_0^{-1} \)

- We approximate
 \[
 \text{Var}[b_M] = (1/T) \left\{ \sum \left[\frac{\partial s(z_i, b_M)}{\partial b_M} \right]^2 \right\}^{-1} \left[\sum s(z_i, b_M) \, s(z_i, b_M)' \right]
 \times \left[\sum \left[\frac{\partial s(z_i, b_M)}{\partial b_M} \right]^2 \right]^{-1}
 \]

 \[s(z_i, b_M) = - \left[\exp(\mathbf{x}_i' b_M) \mathbf{x}_i \right]' \left[\mathbf{y}_i - \exp(\mathbf{x}_i' b_M) \right] = - \mathbf{x}_i' \exp(\mathbf{x}_i' b_M)' \mathbf{e}_i\]

Two-Step M-Estimation

- Sometimes, nonlinear models depend not only on our parameter of interest \(\beta \), but nuisance parameters or unobserved variables in some way. It is common to estimate \(\beta \) using a “two-step” procedure:
 1st-stage: \(y_2 = g(w_i; \gamma) + \nu \Rightarrow \) we estimate \(\gamma \), say \(c \)
 2nd-stage \(y = f(x; \beta, c) + \varepsilon \Rightarrow \) we estimate \(\beta \), given \(c \).

- The objective function: \(\min_{\beta} \{ \sum q(x; \beta, c) = \varepsilon' \varepsilon \} \)

- Examples:
 1. DHW Test for endogeneity
 2. Weighted NLLS: \(\min_{\beta} \{ \sum (y - f(x; \beta))^2 / g(z; c) \} \)
 3. Selection Bias Model: \(y = X\beta + \delta \hat{h} + \varepsilon \), \(\hat{h} = G(z; c) \).
Two-Step M-Estimation

- Properties --Pagan (1984, 1986), generated regressors:
 - Consistency. We need to apply a uniform weak LLN.
 - Asymptotic normality: We need to apply CLT.

- Two interesting results:
 - The 2S estimator can be consistent even in some cases where \(g(z;\gamma) \) is not correctly specified --i.e., situations where \(c \) may be inconsistent.
 - The S.E. --i.e., \(\text{Var}[b_{2S}] \) needs to be adjusted by the 1st stage estimation, in most cases.

Two-Step M-Estimation

Recall

\[\sqrt{T}(b_M - b_0) = H_0^{-1}[-\sum s(z_i, b_{0i}, c)/\sqrt{T}] + o(1) \] (*)

The question is whether the following equation holds:

\[\sum s(z_i, b_{0i}, c)/\sqrt{T} = \sum s(z_i, b_{0i}, c_0)/\sqrt{T} + o(1) \] (**)

where \(c_0 \) is the true value of \(\gamma \).

If this equality holds, \(b_M \) would be consistent.

- Let’s do a 1st order Taylor expansion:

\[\sum s(z_i, b_{0i}, c)/\sqrt{T} \approx \sum s(z_i, b_{0i}, c_0)/\sqrt{T} + F_0(c - c_0)/\sqrt{T} \] (***)

where \(F_0 = \partial s(z, b_{0i}, c)/\partial \gamma \)

Note: If \(c = c_0 \) or \(F_0 = 0 \), then (***) holds.
Two-Step M-Estimation
• We can also write
\[
\sqrt{T} (c - c_0) = H_{c0}^{-1} \left[\sum_i s(w_i, c) / \sqrt{T} \right] + o(1)
= \sum_i h(w_i, c) / \sqrt{T} + o(1)
\]

• Then, substituting back in (***) and then in (*), we have
\[
\sqrt{T} (b_M - b_0) = H_0^{-1} \left[\sum_i r(z_i, b_0, c_0) / \sqrt{T} \right] + o(1), \quad (***)
\]

where \(r(z_i, b_0, c_0) = s(z_i, b_0, c_0) + F_0 h(w_i, c_0) \)

Note: Difference between (*) and (***): \(r(z_i, b_0, c_0) \) replaces \(s(z_i, b_0, c_0) \). The second term in \(r(z_i, b_0, c_0) \) reflects the 1st-stage adjustment.

• \(\text{Var}[b_M] = (1 / T) H_0^{-1} \text{Var}[r(z_i, b_0, c_0)] H_0^{-1} \)

Applications
• Heteroscedasticity Autocorrelation Consistent (HAC) Variance-Covariance Matrix
 – Non-spherical disturbances in NLLS

• Quasi Maximum Likelihood (QML)
 – Misspecified density assumption in ML
 – Information Equality may not hold
Special case of M-estimation: NL Regression

• We start with a regression model: \(y_i = f(x_i, \beta) + \varepsilon_i \)

• Q: What makes a regression model nonlinear?

• Recall that OLS can be applied to nonlinear functional forms. But, for OLS to work, we need intrinsic linearity –i.e., the model linear in the parameters.

Example: A nonlinear functional form, but intrinsic linear:
\[y_i = \exp(\beta_1) + \beta_2 x_i + \beta_2 x_i^2 + \varepsilon_i \]

Example: A non intrinsic linear model:
\[y_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i. \]

Nonlinear Least Squares

• Least squares: Min _\beta_ \(S(\beta) = \{ \frac{1}{2} \sum_i [y_i - f(x_i, \beta)]^2 \} = \frac{1}{2} \sum_i \varepsilon_i^2 \)

F.o.c.:
\[
\frac{\partial}{\partial \beta} \left(\frac{1}{2} \sum_i [y_i - f(x_i, \beta)]^2 \right) = \frac{1}{2} \sum_i (-2) [y_i - f(x_i, \beta)] \frac{\partial f(x_i, \beta)}{\partial \beta} = -\sum_i c_i x_i^0
\]

\Rightarrow -\sum_i c_i x_i^0 = 0 \quad \text{we solve for } b_{\text{NLLS}}

In general, there is no explicit solution, like in the OLS case:
\[b = g(X, y) = (XX)'X'y \]

• In this case, we have a nonlinear model: the f.o.c. cannot be solved explicitly for \(b_{\text{NLLS}} \). That is, the nonlinearity of the f.o.c. defines a nonlinear model.
Nonlinear Least Squares: Example

• Q: How to solve this kind of set of equations?

Example: Min β $S(\beta) = \{\frac{1}{2} \sum_i [y_i - f(x_i, \beta)]^2 \} = \frac{1}{2} \sum_i e_i^2$

$f_i = f(x, \beta) + e_i = \beta_0 + \beta_1 x_i \beta_2 + e_i$.

f.o.c.:

$\frac{\partial}{\partial \beta_0} [\frac{1}{2} \sum_i e_i^2] = \sum_i (-1) (y_i - \beta_0 - \beta_1 x_i \beta_2) = 0$

$\frac{\partial}{\partial \beta_1} [\frac{1}{2} \sum_i e_i^2] = \sum_i (-1) (y_i - \beta_0 - \beta_1 x_i \beta_2) x_i \beta_2 = 0$

$\frac{\partial}{\partial \beta_2} [\frac{1}{2} \sum_i e_i^2] = \sum_i (-1) (y_i - \beta_0 - \beta_1 x_i \beta_2) \beta_1 x_i \beta_2 \ln(x_i) = 0$

• Nonlinear equations require a nonlinear solution. This defines a nonlinear regression model: the f.o.c. are not linear in β.

Note: If $\beta_2 = 1$, we have a linear model. We would get the normal equations from the f.o.c.

Nonlinear Least Squares: Example

Example: Min β $S(\beta) = \{\frac{1}{2} \sum_i [y_i - (\beta_0 + \beta_1 x_i \beta_2)]^2 \}$

• From the f.o.c., we cannot solve for β explicitly. But, using some steps, we can still minimize RSS to obtain estimates of β.

• Nonlinear regression algorithm:
1. Start by guessing a plausible values for β, say β^0.
2. Calculate RSS for β^0, => get $RSS(\beta^0)$.
3. Make small changes to β^0, => get β^1.
4. Calculate RSS for β^1, => get $RSS(\beta^1)$.
5. If $RSS(\beta^1) < RSS(\beta^0)$, => β^1 becomes your new starting point.
6. Repeat steps 3-5 until you $RSS(\beta)$ cannot be lowered. => get β^*.

$\Rightarrow \beta^*$ is the (nonlinear) least squares estimates.
NLLS: Linearization

- We start with a nonlinear model: $y_i = f(x_i \beta) + \epsilon_i$

- We expand the regression around some point, β^0:

 $f(x_i \beta) = f(x_i \beta^0) + \sum_k \left[\left(\frac{\partial f(x_i \beta^0)}{\partial \beta_k} \right) \beta_k - \beta_k^0 \right]$

 $= f(x_i \beta^0) + \sum_k x_{i0} \beta_k - \beta_k^0$

 $= f(x_i \beta^0) - \sum_k x_{i0} \beta_k^0 + \sum_k x_{i0} \beta_k$

 where

 $f_i^0 = f(x_i \beta^0) - x_{i0} \beta^0$ (\(f_i^0\) does not depend on unknowns)

Now, $f(x_i \beta)$ is (approximately) linear in the parameters! That is,

$y_i = f_i^0 + x_{i0} \beta + \epsilon_i^0$ ($\epsilon_i^0 = \epsilon_i + \text{linearization error } i$)

$\Rightarrow y_i = y_i - f_i^0 = x_{i0} \beta + \epsilon_i^0$

- **NLLS: Linearization**

 - We linearized $f(x_i \beta)$ to get:

 $y = f^0 + X^0 \beta + \epsilon^0$ ($\epsilon^0 = \epsilon + \text{linearization error}$)

 $\Rightarrow y^0 = y^0 = y - f^0 = X^0 \beta + \epsilon^0$

 - Now, we can do OLS:

 $b_{\text{NLLS}} = (X^0 X^0)^{-1} X^0 y^0$

 - Note: X^0 are called pseudo-regressors.

 - In general, we get different b_{NLLS} for different β^0. An algorithm can be used to get the best b_{NLLS}.

 - We will resort to numerical optimization to find the b_{NLLS}.

Review of Probability and Statistics in Simulation
NLLS: Linearization

• We can also compute the asymptotic covariance matrix for the NLLS estimator as usual, using the pseudo regressors and the RSS:

\[
\text{Est. Var}[\beta_{\text{NLLS}} | X^0] = s_{\text{NLLS}}^2 (X^0 X^0)^{-1}
\]

\[
\sigma_{\text{NLLS}} = [y - f(x_i, \beta_{\text{NLLS}})]' [y - f(x_i, \beta_{\text{NLLS}})] / (T-k).
\]

• Since the results are asymptotic, we do not need a degrees of freedom correction. However, a \(df\) correction is usually included.

Note: To calculate \(s_{\text{NLLS}}^2\), we calculate the residuals from the nonlinear model, not from the linearized model (linearized regression).

NLLS: Linearization - Example

• Nonlinear model: \(y_i = f(x_i, \beta^0) + \epsilon_i = \beta_0 + \beta_1 x_i \beta_2 + \epsilon_i\)
• Linearize the model to get:

\[
y^0 = y - f^0 = X^0 \hat{\beta} + \epsilon^0,
\]

where \(f^0 = f(x_i, \beta^0) - x_i^0 \beta^0\)

Get \(x_i^0 = \frac{\partial f(x_i, \beta)}{\partial \beta} \bigg|_{\beta = \beta^0}\)

\[
\frac{\partial f(x_i, \beta)}{\partial \beta_0} = 1
\]

\[
\frac{\partial f(x_i, \beta)}{\partial \beta_1} = x_i^2
\]

\[
\frac{\partial f(x_i, \beta)}{\partial \beta_2} = \beta_1 x_i \beta_2 \ln(x_i)
\]

\[
f_{i}^0 = \beta_{0}^0 + \beta_{1}^0 x_{i}^0 \beta_{2}^0 - \{\beta_{0}^0 + \beta_{0}^1 x_{i} \beta_{0}^2 + \beta_{0}^2 \beta_{1}^0 x_{i} \beta_{0}^2 \ln(x_i)\}
\]

\[
y_{i}^0 = \beta_0 + \beta_1 x_i \beta_2 + \beta_2 \beta_1 x_i \beta_2 \ln(x) + \epsilon_{i}^0
\]

To get \(\beta_{\text{NLLS}}\), regress \(y^0\) on a constant, \(x^0 \beta_2\), and \(\beta_0' x^0 \beta_{0}^2 \ln(x)\).
Gauss-Newton Algorithm

- Recall that \mathbf{b}_{NLLS} depends on \mathbf{b}^0. That is,

 $$
 \mathbf{b}_{NLLS}(\mathbf{b}^0) = (\mathbf{X}^0 \mathbf{X}^0)^{-1} \mathbf{X}^0 \mathbf{y}^0
 $$

- We use a Gauss-Newton algorithm to find \mathbf{b}_{NLLS}. Recall GN:

 $$
 \beta_{k+1} = \beta_k + (J^T J)^{-1} J^T \mathbf{e} \\
 \text{Jacobian} = \frac{\delta f(x_i; \beta)}{\delta \beta}.
 $$

- Given a \mathbf{b}_{NLLS} at step m, $\mathbf{b}(m)$, we find the \mathbf{b}_{NLLS} for step $j+1$ by:

 $$
 \mathbf{b}(j+1) = \mathbf{b}(j) + [\mathbf{X}^0(j)^T \mathbf{X}^0(j)]^{-1} \mathbf{X}^0(j)^T \mathbf{e}(j)
 $$

Columns of $\mathbf{X}^0(j)$ are the derivatives:

$$
\frac{\partial f(x_i, \mathbf{b}(j))}{\partial \mathbf{b}(j)^T}
$$

$$
\mathbf{e}(j) = \mathbf{y} - f(x, \mathbf{b}(j))
$$

- The update vector is the slopes in the regression of the residuals on \mathbf{X}^0. The update is zero when they are orthogonal. (Just like OLS)

Box-Cox Transformation

- It’s a simple transformation that allows non-linearities in the CLM.

 $$
 \begin{align*}
 \mathbf{y} &= f(\mathbf{x}, \mathbf{b}) + \mathbf{e} = \sum_k \mathbf{x}_k(\lambda) \beta_k + \mathbf{e} \\
 \mathbf{x}_k(\lambda) &= (\mathbf{x}_k^\lambda - 1)/\lambda \\
 \lim_{\lambda \to 0} (\mathbf{x}_k^\lambda - 1)/\lambda &= \ln \mathbf{x}_k
 \end{align*}
 $$

- For a given λ, OLS can be used. An iterative process can be used to estimate λ. OLS standard errors have to be corrected. Probably, not a very efficient method.

- NLLS or MLE will work fine.

- We can have a more general Box-Cox transformation model:

 $$
 \mathbf{y}^{(x1)} = \sum_k \mathbf{x}_k^{(x2)} \beta_k + \mathbf{e}
 $$
Testing non-linear restrictions

- Testing linear restrictions as before.
- Non-linear restrictions introduce slight modification to the usual tests. We want to test:
 \[H_0: R(\beta) = 0 \]
 where \(R(\beta) \) is a non-linear function, with rank \(\frac{\partial R(\beta)}{\partial \beta} = G(\beta) \) = J.

- A Wald test can be based on \(m = R(b_{NLLS}) - 0 \):
 \[W = m'(\text{Var}[m | X])^{-1}m = R(b_{NLLS})'(\text{Var}[R(b_{NLLS}) | X])^{-1}R(b_{NLLS}) \]

Problem: We do not know the distribution of \(R(b_{NLLS}) \), but we know the distribution of \(b_{NLLS} \).

Solution: Linearize \(R(b_{NLLS}) \) around \(\beta \)
\[R(b_{NLLS}) \approx R(\beta) + G(b_{NLLS})(b_{NLLS} - \beta) \]

Testing non-linear restrictions

- Linearize \(R(b_{NLLS}) \) around \(\beta (=b_0) \)
 \[R(b_{NLLS}) \approx R(\beta) + G(b_{NLLS})(b_{NLLS} - \beta) \]

- Recall \(\sqrt{T} (b_M - b_0) \rightarrow N(0, \text{Var}[b_0]) \)
 where \(\text{Var}[b_0] = H(\beta)^{-1}V(\beta)H(\beta)^{-1} \)
 \[=> \sqrt{T} [R(b_{NLLS}) - R(\beta)] \rightarrow N(0, G(\beta) \text{Var}[b_0] G(\beta)') \]
 \[=> \text{Var}[R(b_{NLLS})] = (1/T) G(\beta) \text{Var}[b_0] G(\beta)' \]

- Then,
 \[W = TR(b_{NLLS})'(G(b_{NLLS}) \text{Var}[b_{NLLS}] G(b_{NLLS})')^{-1}R(b_{NLLS}) \]
 \[=> W \rightarrow \chi^2_J \]
NLLS - Application: A NIST Application (Greene)

<table>
<thead>
<tr>
<th>Y</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.138</td>
<td>1.309</td>
</tr>
<tr>
<td>3.421</td>
<td>1.471</td>
</tr>
<tr>
<td>3.597</td>
<td>1.490</td>
</tr>
<tr>
<td>4.340</td>
<td>1.565</td>
</tr>
<tr>
<td>4.882</td>
<td>1.611</td>
</tr>
<tr>
<td>5.660</td>
<td>1.680</td>
</tr>
</tbody>
</table>

The equation is:

\[
y = \beta_0 + \beta_1 x^{\beta_2} + \epsilon.
\]

NLLS - Application: Iterations (Greene)

```
NLSQ;LHS=Y ;FCN=b0+B1*X^B2 ;LABELS=b0,B1,B2 ;MAXIT=500;TLF;TLB;OUTPUT=1;DFC;START=0,1,5  
BEGIN NLSQ iterations. Linearized regression.
Iteration= 1; Sum of squares= 149.719219 ; Gradient= 149.718223
Iteration= 2; Sum of squares= 5.04072877 ; Gradient= 5.03960538
Iteration= 3; Sum of squares= .137768222E-01; Gradient= .125711747E-01
Iteration= 4; Sum of squares= .186786786E-01; Gradient= .174668584E-01
Iteration= 5; Sum of squares= .121182327E-02; Gradient= .301702148E-08
Iteration= 6; Sum of squares= .121182025E-02; Gradient= .134513256E-15
Iteration= 7; Sum of squares= .121182025E-02; Gradient= .644990175E-20
Convergence achieved
```

Gradient = \[e^0 'X^0 \cdot [X^0 'X^0]^{-1} \cdot X^0 ' \cdot e^0\]
NLLS - Application: Results (Greene)

User Defined Optimization
Nonlinear least squares regression
LHS=Y
Mean = 4.00633
Standard deviation = 1.23398
Number of observs. = 6
Model size
Parameters = 3
Degrees of freedom = 3
Residuals
Sum of squares = .00121
Standard error of e = .02010
Fit
R-squared = .99984

| Variable | Coefficient | Standard Error | b/St.Er. | P[|Z|>z] |
|----------|-------------|----------------|----------|--------|
| B0 | -.54559** | .22460 | -2.429 | .0151 |
| B1 | 1.08072*** | .13698 | 7.890 | .0000 |
| B2 | 3.37287*** | .17847 | 18.899 | .0000 |

NLLS – Application: Solution (Greene)

The pseudo regressors and residuals at the solution are:

X10 X20 X30
1 xβ2 β1xβ2lnx e0
1 2.47983 0.721624 .0036
1 3.67566 1.5331 -.0058
1 3.83826 1.65415 -.0055
1 4.52972 2.19255 -.0097
1 4.99466 2.57397 .0298
1 5.75358 3.22585 -.0124

X0’e0 = .3375078D-13
.3167466D-12
.1283528D-10
Application 2: Doctor Visits (Greene)

- German Individual Health Care data: N=27,236
- Model for number of visits to the doctor

Application 2: Conditional Mean and Projection

Notice the problem with the linear approach. Negative predictions.
Application 2: NL Model Specification (Greene)

- Nonlinear Regression Model \(y = \exp(\mathbf{X}\beta) + \varepsilon \)

\(\mathbf{X} = \text{one, age, health_status, married, educ., household_income, nkids} \)

- \(\text{nlsq;lhs=docvis;start=0,0,0,0,0,0,0;labels=k_b;fcn=exp(b1'x);maxit=25;out...} \)

Begin NLSQ iterations. Linearized regression.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Sum of squares</th>
<th>Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1014865.00</td>
<td>257025.070</td>
</tr>
<tr>
<td>2</td>
<td>.130154610E+11</td>
<td>.130145942E+11</td>
</tr>
<tr>
<td>3</td>
<td>.175441482E+10</td>
<td>.175354986E+10</td>
</tr>
<tr>
<td>4</td>
<td>235369144.</td>
<td>234509185.</td>
</tr>
<tr>
<td>5</td>
<td>3161046.6</td>
<td>30763872.3</td>
</tr>
<tr>
<td>6</td>
<td>4684627.59</td>
<td>3871393.70</td>
</tr>
<tr>
<td>7</td>
<td>1224759.31</td>
<td>467169.410</td>
</tr>
<tr>
<td>8</td>
<td>778596.192</td>
<td>33500.289</td>
</tr>
<tr>
<td>9</td>
<td>746343.830</td>
<td>450.321350</td>
</tr>
<tr>
<td>10</td>
<td>745898.272</td>
<td>.287180441</td>
</tr>
<tr>
<td>11</td>
<td>745897.985</td>
<td>.929822308E-03</td>
</tr>
<tr>
<td>15</td>
<td>745897.984</td>
<td>.188041512E-10</td>
</tr>
</tbody>
</table>

Application 2: NL Regression Results (Greene)

<table>
<thead>
<tr>
<th>Nonlinear least squares regression</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LHS=DOCVIS Mean</td>
<td>3.183525</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>5.689690</td>
</tr>
<tr>
<td>WTS=none Number of observs.</td>
<td>27326</td>
</tr>
<tr>
<td>Model size Parameters</td>
<td>7</td>
</tr>
<tr>
<td>Degrees of freedom</td>
<td>27319</td>
</tr>
<tr>
<td>Residuals Sum of squares</td>
<td>745898.0</td>
</tr>
<tr>
<td>Standard error of e</td>
<td>5.224584</td>
</tr>
<tr>
<td>Fit R-squared</td>
<td>.1567778</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>.1568087</td>
</tr>
<tr>
<td>Info crit. LogAmemiya Prd. Crt.</td>
<td>3.307006</td>
</tr>
<tr>
<td>Akaike Info. Criter.</td>
<td>3.307263</td>
</tr>
<tr>
<td>Not using OLS or no constant.</td>
<td>R^2 & P may be < 0.</td>
</tr>
</tbody>
</table>

| Variable | Coefficient | Standard Error | b/St.Er. | P[|Z|>z] |
|-----------|--------------|-----------------|----------|----------|
| B1 | 2.37667859 | .06972582 | 34.086 | .0000 |
| B2 | .00809310 | .00088490 | 9.146 | .0000 |
| B3 | -.21721398 | .00313992 | -69.178 | .0000 |
| B4 | .00371129 | .02051147 | .181 | .8564 |
| B5 | -.01096227 | .00435601 | -2.517 | .0118 |
| B6 | -.26584001 | .05664473 | -4.693 | .0000 |
| B7 | -.09152326 | .02128053 | -4.301 | .0000 |
Partial Effects in the Nonlinear Model (Greene)

What are the slopes?
Conditional Mean Function = \(E[y|x] = \exp(\mathbf{x}'\beta) \)
Derivatives of the conditional mean are the partial effects
\[
\frac{\partial E[y|x]}{\partial \mathbf{x}} = \exp(\mathbf{x}'\beta) \times \beta
\]
= a scaling of the coefficients that depends on the data
Usually computed using the sample means of the data.

Asymptotic Variance of the Slope Estimator (Greene)

\[\hat{\delta} = \text{estimated partial effects} = \frac{\partial \hat{E}[y|x]}{\partial \mathbf{x}} \big| (\mathbf{x} = \bar{x}) \]

To estimate \(\text{Asy.Var}[\hat{\delta}] \), we use the delta method:
\[\hat{\delta} = \exp(\bar{x}'\hat{\beta}) \hat{\beta} \]
\[\hat{\mathbf{G}} = \frac{\partial \hat{\delta}}{\partial \beta} = \exp(\bar{x}'\hat{\beta}) \mathbf{I} + \hat{\beta} \exp(\bar{x}'\hat{\beta})\bar{x}' \]
\[\text{Est.Asy.Var}[\hat{\delta}] = \hat{\mathbf{G}} \text{Est.Asy.Var}[\hat{\beta}] \hat{\mathbf{G}}' \]
Computing the Slopes (Greene)

calc;k=col(x)$
nlsq;lhs=docvis;start=0,0,0,0,0,0,0
 ;labels=k_b;fcn=exp(b1'x);
matr;xbar=mean(x)$
calc;mean=exp(xbar'b)$
matr;me=b*mean$
matr;g=mean*iden(k)+mean*b*xbar$
matr;vme=g*varb*g'$
matr;stat(me,vme)$

Partial Effects at the Means of X (Greene)

| Variable | Coefficient | Standard Error | b/St. Er. | P[|Z|>z] |
|----------|-------------|----------------|-----------|---------|
| Constant | 6.48148*** | .20680 | 31.342 | .0000 |
| AGE | .02207*** | .00239 | 9.216 | .0000 |
| HSAT | -.59241*** | .00660 | -89.740 | .0000 |
| MARRIED | .01005 | .05593 | .180 | .8574 |
| EDUC | -.02988** | .01186 | -2.519 | .0118 |
| HHNINC | -.72495*** | .15450 | -4.692 | .0000 |
| HHKIDS | -.24958*** | .05796 | -4.306 | .0000 |
What About Just Using LS? (Greene)

| Variable | Coefficient | Standard Error | b/St.Er. | P(|Z|>z) | Mean of X |
|----------|-------------|----------------|----------|----------|-----------|
| Constant | .02385640 | .00327769 | 7.278 | .0000 | 43.5256898 |
| AGE | -.02458941 | .01441043 | -.294 | .7688 | .75861817 |
| NEWHSAT | -.86828751 | .01455653 | -60.254 | .0000 | 6.78566201 |
| MARRIED | -.02458941 | .01441043 | -.294 | .7688 | .75861817 |
| EDUC | -.04909154 | .01455653 | -3.372 | .0000 | 11.3206310 |
| HHINCOME | -.02174923 | .01455653 | -5.353 | .0000 | 11.3206310 |
| HHKIDS | -.38033746 | .07513138 | -5.062 | .0000 | 40.073000 |

Least Squares Coefficient Estimates

| Variable | Coefficient | Standard Error | t-Value | P(|t|>t) |
|----------|-------------|----------------|---------|---------|
| Constant | 9.12437987 | .25731934 | 35.459 | .0000 |
| AGE | .02385640 | .00327769 | 7.278 | .0000 |
| NEWHSAT | -.86828751 | .01441043 | -60.254 | .0000 |
| MARRIED | -.02458941 | .01441043 | -.294 | .7688 |
| EDUC | -.04909154 | .01455653 | -3.372 | .0000 |
| HHINCOME | -.02174923 | .01455653 | -5.353 | .0000 |
| HHKIDS | -.38033746 | .07513138 | -5.062 | .0000 |

Estimated Partial Effects

<table>
<thead>
<tr>
<th>ME_1</th>
<th>Constant term, marginal effect not computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME_2</td>
<td>.02207102</td>
</tr>
<tr>
<td>ME_3</td>
<td>-.59237330</td>
</tr>
<tr>
<td>ME_4</td>
<td>.01012122</td>
</tr>
<tr>
<td>ME_5</td>
<td>-.02989567</td>
</tr>
<tr>
<td>ME_6</td>
<td>-.72498339</td>
</tr>
<tr>
<td>ME_7</td>
<td>-.24959690</td>
</tr>
</tbody>
</table>