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Lecture 12
Nonparametric Regression

The goal of a regression analysis is to produce a reasonable analysis 
to the unknown response function 𝑓, where for 𝑁 data points (𝑥௜ , 
𝑦௜), the relationship can be modeled as 

𝑦௜ =  𝑚ሺ𝑥௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

Note: 𝑚ሺ𝑥௜ሻ = E[𝑦௜|𝑥௜] if E[௜|𝑥௜]=0 –i.e.,  ┴ 𝑥

We have different ways to model the conditional expectation 
function (CEF), 𝑚ሺ. ሻ:
- Parametric (single, global model).

- Semi-parametric (many local models).

- Nonparametric (all local, local data points have similar behavior)
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Non Parametric Regression: Introduction
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Parametric approach: 𝑚ሺ. ሻ is known and smooth. It is fully 
described by a finite set of parameters, to be estimated. Easy 
interpretation. For example, a linear model:

𝑦௜ = 𝑥௜′  + ௜, 𝑖 = 1, 2, ...., 𝑁.

Nonparametric approach: 𝑚ሺ. ሻ is smooth, flexible, but unknown. 
Let the data determine the shape of 𝑚ሺ. ሻ.  Difficult interpretation.

𝑦௜ =  𝑚ሺ𝑥௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

Semi-parametric approach: 𝑚ሺ. ሻ have some parameters -to be 
estimated-, but some parts are determined by the data.

𝑦௜ = 𝑥௜′  + 𝑚ሺ𝑧௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

3

Non Parametric Regression: Introduction

In general, it is complicated to fit non-parametric regressions when 
there are many explanatory variables (say, with 𝑘 > 3). 

• In the multivariate case, easy to estimate models (and with easier 
interpretation) have been proposed. For example, the additive model:

𝑦௜ = 𝑚 𝑥ଵ,௜ ൅ 𝑚 𝑥ଶ,௜ ൅  … ൅𝑚 𝑥௞,௜ ൅ ௜, 𝑖 = 1, 2, ...., 𝑁.

Semi-parametric additive models can also be used:

𝑦௜ =𝑥ଵ,௜′  ൅ 𝑚 𝑥ଶ,௜ ൅  … ൅𝑚 𝑥௞,௜ ൅ ௜, 𝑖 = 1, 2, ...., 𝑁.

4

Non Parametric Regression: Introduction
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Non Parametric Regression: Introduction

6

Regression: Smoothing

• We want to relate y with x, without assuming any functional form. 
First, we consider the one regressor case:

𝑦௜ =  𝑚ሺ𝑥௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

• In the CLM, a linear functional form is assumed: 𝑚 𝑥௜ ൌ  𝑥௜′  .  

• In many cases, it is not clear that the relation is linear. 

• Non-parametric models attempt to discover the (approximate) 
relation between 𝑦௜ and 𝑥௜ . Very flexible approach, but we need to 
make some assumptions.
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• The functional form between income and food is not clear  from 
the scatter plot. From Hardle (1990).

Regression: Smoothing
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• A reasonable approximation to the regression curve 𝑚ሺ𝑥௜ሻ will be 
the mean of  response variables near a point 𝑥௜ .  This local averaging
procedure can be defined as 

𝑚ෝ௜ሺ𝑥ሻ ൌ
ଵ

ே
∑ 𝑤௜ 𝑥
ே
௜ 𝑦௜ -𝑤௜ 𝑥 ൌ 𝑊௜ሺ𝑁,ℎ, 𝑥௜ሻ

• The averaging will smooth the data. The weights depend on the value 
of  𝑥 and on a ℎ. Recall that as ℎ gets smaller, 𝑚ෝሺ𝑥ሻ is less biased but 
also has greater variance.

Note: Every smoothing method to be described follows this form.  
Ideally, we give smaller weights for 𝑥’s that are farther from 𝑥௜ .

• It is common to call the regression estimator 𝑚ෝሺ𝑥ሻ a smoother and 
the outcome of  the smoothing procedure is called the smooth.

Regression: Smoothing



RS – EC2 - Lecture 11

5

9

• From Hansen (2013).  To illustrate the concept, suppose we use the 
naive histogram estimator as the basis for the weight function, 𝑤௜ 𝑥 :

𝑊ே,௛,௜ 𝑥଴ ൌ ூሾ ௫೔ ି ௫బ  ஸ ௛ሿ

∑ ூሾ ௫೔ ି ௫బ  ஸ ௛ሿಿ
೔సభ

• Let 𝑥଴=2, ℎ =0.5. The estimator 𝑚ෝሺ𝑥 ൌ 2ሻ is the average of  the 𝑦௜
for the observations such that 𝑥௜ falls in the interval [1.5 ≤ 𝑥௜ ≤ 2.5]. 

• Hansen simulates observations (see next Figure) and calculate 𝑚ෝሺ𝑥ሻ
at 𝑥 = 2, 3, 4, 5 & 6. For example, 𝑚ෝሺ𝑥 ൌ 2ሻ = 5.16, shown in the 
Figure as the first solid square. 

• This process is equivalent to partitioning the support of  𝑥௜ into the 
regions [1.5,2.5]; [2.5,3,5]; [3.5,4.5]; [4.5,5.5]; & [5.5,6.5]. It produces a 
step function. Reasonable behavior in the bins, but unrealistic jumps.

Regression: Smoothing – Example 1

10

• Figure 11.1 - Simulated data and 𝑚ෝሺ𝑥ሻ from Hansen (2013). 

• Obviously, we can calculate 𝑚ෝሺ𝑥ሻ at a finer grid for 𝑥. It will track 
the data better. But, the unrealistic jumps (discontinuities) will remain.

Regression: Smoothing – Example 1



RS – EC2 - Lecture 11

6

11

• The source of  the discontinuity is the weights 𝑤௜ are constructed 
from indicator functions, which are themselves discontinuous. 

• If  instead the weights are constructed from continuous functions, 
𝐾ሺ. ሻ, 𝑚ෝሺ𝑥ሻ will also be continuous in 𝑥. It will produce a true smooth! 
For example,

𝑊ே,௛,௜ 𝑥଴ ൌ
௄ሺ

ೣ೔ ష ೣబ
೓

ሻ

∑ ௄ሺ
ೣ೔ ష ೣబ

೓
ሻಿ

೔సభ

• The bandwidth ℎ determines the degree of  smoothing. A large 
ℎincreases the width of  the bins, increasing the smoothness of  𝑚ෝሺ𝑥ሻ . 
A small ℎ decreases the width of  the bins, producing a less smooth 
𝑚ෝሺ𝑥ሻ .

Regression: Smoothing – Example 1

Figure 1. Expenditure of  potatoes as a function of  net income. 

ℎ = 0.1, 1.0, N = 7125, year = 1973.  Blue line is the smooth. From 
Hardle (1990).

Regression: Smoothing – Example 2
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Regression: Smoothing - Interpretation

• Suppose the weights add up to 1 for all 𝑥௜ . The 𝑚ෝሺ𝑥ሻ is a least 
squares estimates at 𝑥 since we can write 𝑚ෝሺ𝑥ሻ as a solution to

𝑚𝑖𝑛
ఏ 

ଵ

ே
 ∑ 𝑊௜ሺ𝑁,ℎ, 𝑥ሻ ே

௜ ሺ𝑦௜ െ 𝜃 ሻ𝟐

That is, a kernel regression estimator is a local constant regression,
since  it sets 𝑚ሺ𝑥ሻ equal to a constant, θ, in the very small 
neighborhood of  𝑥଴:

𝑚𝑖𝑛
ఏ 
ሼ

1
𝑁

 ෍𝑊ே,௛,௜ሺ𝑥ሻ 

ே

௜

ሺ𝑦௜ െ 𝜃 ሻ𝟐 ൌ
1
𝑁

 ෍𝑊ே,௛,௜ሺ𝑥ሻ

ே

௜

ሺ𝑦௜ െ 𝑚ෝሺ𝑥ሻሻ𝟐ሽ

Note: This is just weighted LS!

• Since we are in a LS world, outliers can create problems. Robust 
techniques can be better.

Regression: Smoothing - Issues

• Q: What does smoothing do to the data? 

(1) Since averaging is done over neighboring observations, an estimate 
of  𝑚 𝑥 at peaks or bottoms will flatten them. This finite sample bias 
depends on the local curvature of  𝑚 𝑥 . Solution: Shrink 
neighborhood! 

(2) At the boundary points, half  the weights are not defined. This also 
creates a bias. Solution: Reflect data; augment data.

(3) When there are regions of  sparse data, weights can be undefined –
no observations to average. Solution: Define weights with variable span.

• Computational efficiency is important. 

A naive way to calculate the smooth 𝑚ෝሺ𝑥ሻ consists in calculating the 
𝑤௜ 𝑥௝ ’s for 𝑗 = 1, ..., 𝑁. This results in O(𝑁2) operations. If  we use an 
iterative algorithm, calculations can take very long.
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Kernel Regression

• Kernel regressions are weighted average estimators that use kernel 
functions as weights. 

• Recall that the kernel 𝐾 is a continuous, bounded and symmetric real 
function which integrates to 1. The weight is defined by

𝑊௛,௜ 𝑥଴ ൌ ௄೓ሺ௫೔ ି ௫బሻ 
௙መ೓ ௫బ

where   𝑓መ௛ 𝑥଴ ൌ ଵ

ே
 ∑ 𝐾௛ሺ𝑥௜  െ  𝑥଴ሻ

ே
௜ୀଵ

𝐾௛ 𝑢 ൌ ଵ

௛
 𝐾ሺ௨

௛
ሻ

• The functional form of the kernel virtually always implies that the 
weights are much larger for the observations where  𝑥௜ is close to  𝑥଴. 
This makes sense!

Standard statistical formulas allow us to calculate E[𝑦|𝑥]:

E[𝑦|𝑥] = 𝑚 𝑥 ൌ 𝑦 𝑓׬ 𝑦|𝑥  𝑑𝑦

where 𝑓 𝑦|𝑥 is the distribution of 𝑦 conditional on 𝑥. As always, we 
can express this conditional distribution in several ways. In particular:

E[𝑦|𝑥௜] = 𝑚 𝑥 ൌ
׬ ௬ ௙ ௬,௫ ௗ௬

׬ ௙ ௬,௫ ௗ௬

where the denominator is the marginal distribution 𝑓 𝑥 . 

Q: How can we estimate 𝑚 𝑥 using these formulas? 

- First, consider first the denominator, 𝑓 𝑥 . This is just the density of 
𝑥. Estimate this using the KDE results from last class. For a given 
value of 𝑥 (say, 𝑥଴) as:

𝑓መு௜௦௧ 𝑥଴ ൌ ଵ

ே௛
∑ 𝐾ሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ

Kernel Regression 
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- First, consider first 𝑓 𝑥 :

𝑓መு௜௦௧ 𝑥଴ ൌ ଵ

ே௛
∑ 𝐾ሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ

- Second, extending the KDE results suggests:

𝑦 𝑓׬ 𝑦, 𝑥଴ 𝑑𝑦 ൌ
ଵ

ே௛
∑ 𝐾ሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ 𝑦௜

• Plugging these two kernel estimates of the terms in the numerator 
and the denominator of the expression for 𝑚 𝑥 gives the Nadaraya-
Watson (NW) kernel estimator, or local constant (LC) estimator:

𝑚ෝሺ𝑥଴ሻ ൌ
∑ ௄ሺ

ೣ೔ ష ೣబ
೓

ሻಿ
೔సభ  ௬೔
∑ ௄ሺ

ೣ೔ ష ೣబ
೓

ሻಿ
೔సభ

• The NW estimator gives us a local average: We regress 𝑦௜ locally, 
on a constant, weighting observations via their distance to 𝑥଴.

Kernel Regression: NW Estimator 

• The shape of the kernel weights is determined by 𝐾 and the size of 
the weights is parameterized by ℎ (ℎ plays the usual smoothing role). 

• The normalization of the weights with 𝑓መ௛ 𝑥଴ ൌ ଵ

ே
∑ 𝐾௛ሺ

௫೔ ି ௫బ
௛

ሻே
௜ୀଵ

is called the Rosenblatt-Parzen kernel density estimator. It makes 
sure that the weights add up to 1.

•  Two important constants associated with a kernel function 𝐾ሺ. ሻ are 
its variance 𝜎௄

ଶ ൌ 𝑑௞ and roughness 𝑅௞, (also denoted R 𝐾 ), which 
are defined as: 

𝑑௞ ൌ ׬ 𝑧ଶ𝐾 𝑧 𝑑𝑧

𝑅௞ ൌ ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧׬

Kernel Regression: NW estimator - Different K
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Many 𝐾ሺ. ሻ are possible. Practical and theoretical considerations limit 
the choices. Usual choices: Epanechnikov, Gaussian, Quartic
(biweight), and Tricube (triweight).

Kernel Regression: NW estimator - Different K

• Below we present the kernels functions, along with the roughness 
and variance for the most popular (second order) kernels: 
Epanechnikov, Gaussian, Quartic (biweight), and Tricube (triweight).

• Figure 11.1 shows the NW estimator with Epanechnikov kernel and 
ℎ = 0.5 with the dashed line. (The full line uses a uniform kernel.)

• The Epanechnikov kernel enjoys optimal properties and, in general, 
is the preferred kernel in statistics. 

Kernel Regression: NW estimator - Different K
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• Figure 11.1 - Simulated data and 𝑚ෝሺ𝑥ሻ from Hansen (2013). 

• Obviously, we calculated 𝑚ෝሺ𝑥ሻ before with a constant in each 
interval. Now, we estimate 𝑚ෝሺ𝑥ሻ under NW (dashed line) .

Kernel Regression: NW estimator – Example 1

Figure 3. The effective kernel weights for the food/ income data: At 
𝑥 = 1 and 𝑥 = 2.5 for ℎ = 0.1 (label 1, blue), ℎ = 0.2 (label 2, green), 
ℎ = 0.3 (label 3, red) with Epanechnikov kernel. From Hardle (1990). 

Kernel Regression: Epanechnikov kernel.

• The smaller ℎ, the more concentrated the 𝑤௜ ’s. In sparse regions, say 
𝑥 ൌ 2.5 (low marginal pdf), it gives more weight to observations 
around 𝑥.
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• The NW estimator is defined by

𝑚ෝ௛ሺ𝑥଴ሻ ൌ
∑ ௄೓ሺ௫೔ ି ௫బሻ
ಿ
೔సభ  ௬೔
∑ ௄೓ሺ௫೔ ି ௫బሻ
ಿ
೔సభ

ൌ  ∑ 𝑤ே,௛,௜ 𝑥଴
ே
௜ୀଵ  𝑦௜

• Similar situation as in KDE: No finite sample distribution theory for 
𝑚ෝ௛ሺ𝑥ሻ. All statistical properties are based on asymptotic theory. 

• Details. One regressor ሺ𝑑 ൌ 1ሻ, but straightforward to generalize.

Fix 𝑥. Note that 𝑦௜ ൌ 𝑚 𝑥௜ ൅ ௜ ൌ 𝑚 𝑥 ൅ ሾ𝑚 𝑥௜ െ 𝑚 𝑥 ሿ ൅ ௜
Then,
ଵ

ே௛
∑ 𝐾 ሺ

 ௫೔ ି ௫

௛
ሻே

௜ୀଵ 𝑦௜ =

= 
ଵ

ே௛
∑ 𝐾

 ௫೔ ି ௫

௛
∗ ሺ𝑚 𝑥 ൅ ሾ𝑚 𝑥௜ െ 𝑚 𝑥 ሿ ൅ ௜ሻே

௜ୀଵ  

= 𝑓መ 𝑥 𝑚 𝑥 ൅ ଵ

ே௛
∑ 𝐾  ௫೔ ି ௫

௛
ሺ𝑚 𝑥௜ െ 𝑚 𝑥 ሻ ൅ே

௜ୀଵ
ଵ

ே௛
𝐾  ௫೔ ି ௫

௛
௜

Kernel Regression: NW estimator – Properties

It follows that

𝑚ෝሺ𝑥ሻ = 𝑚 𝑥 ൅ 𝑚ෝଵሺ𝑥ሻ/𝑓መ 𝑥 ൅ 𝑚ෝଶሺ𝑥ሻ/ 𝑓መሺ𝑥ሻ

(1) 𝒎ෝ 𝟐ሺ𝒙ሻ=
ଵ

ே௛
𝐾  ௫೔ ି ௫

௛
௜

- Mean. 

Since E[௜|𝑥௜] = 0  E[𝑚ෝଶሺ𝑥ሻ] = 0. 

- Variance.

𝑉𝑎𝑟 𝑚ෝଶሺ𝑥ሻ ൌ
ଵ

ே௛మ
𝐸ሾ𝐾 ሺ

 ௫೔ ି ௫

௛
ሻ௜ሿଶ ൌ

ଵ

ே௛మ
𝐸ሾ𝐾 ሺ

 ௫೔ ି ௫

௛
ሻଶ𝜎ଶ 𝒙௜ ሿ

(by conditioning), and then

𝑉𝑎𝑟 𝑚ෝଶሺ𝑥ሻ ൌ ଵ

ே௛మ
𝐾ሺ׬

௭ ି௫

௛
ሻଶ𝜎ଶ 𝑧 𝑓 𝑧  𝑑𝑧

Next, change of variables, 
௭ ି௫

௛
ൌ 𝑢; ℎ 𝑑𝑢 ൌ 𝑑z:

Kernel Regression: NW estimator – Properties
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- Variance.

Change of variables, 
௭ ି௫

௛
ൌ 𝑢. Assume 𝜎ଶ 𝑥 and 𝑓 𝑥 are smooth:

𝑉𝑎𝑟 𝑚ෝଶሺ𝑥ሻ ൌ ଵ

ே௛మ
𝐾ሺ𝑢ሻଶ𝜎ଶ׬ 𝑥 ൅ ℎ𝑢 𝑓 𝑥 ൅ ℎ𝑢  ሺℎ𝑑𝑢ሻ

= 
ଵ

ே௛
𝐾ሺ𝑢ሻଶ𝜎ଶ׬ 𝑥 𝑓 𝑥  𝑑𝑢 ൅ 𝑜ሺ ଵ

ே௛
ሻ

= 
ఙమ ௫ ௙ ௫

ே௛
 𝑅 𝐾 ൅ 𝑜ሺ ଵ

ே௛
ሻ

- Distribution

We can apply the CLT to obtain that as ℎ → 0, and 𝑁ℎ→ ∞:

𝑁ℎ 𝑚ෝଶ 𝑥
   ௗ   

𝑁ሺ0,𝜎ଶ 𝑥 𝑓 𝑥 𝑅 𝐾 ሻ

Kernel Regression: NW estimator – Properties

(2) 𝒎ෝ 𝟏ሺ𝒙ሻ =
ଵ

ே௛
∑ 𝐾  ௫೔ ି ௫

௛
ሺ𝑚 𝑥௜ െ 𝑚 𝑥 ሻ

 
ே
௜ୀଵ

- Mean 

𝐸ሾ𝑚ෝଵ 𝑥 ሿ ൌ  ଵ
௛

 𝐸 ∑ 𝐾  ௫೔ ି௫

௛
𝑚 𝑥௜ െ 𝑚 𝑥ே

௜ୀଵ ൌ

𝐾׬ = 𝑢  𝑚 𝑥 ൅ ℎ𝑢 െ𝑚 𝑥 𝑓 𝑥 ൅ ℎ𝑢  𝑑𝑢

Expand 𝑚 𝑥 ൅ ℎ𝑢 and 𝑓 𝑥 ൅ ℎ𝑢 into (2nd- and 1st-order, 
respectively) Taylor expansions around 𝑥: Up to 𝑜ሺℎଶሻ we get:

𝐸ሾ𝑚ෝଵ 𝑥 ሿ = ׬𝐾 𝑢  𝑚 𝑥 ൅ ℎ𝑢 െ𝑚 𝑥 𝑓 𝑥 ൅ ℎ𝑢  𝑑𝑢

𝐾׬= 𝑢  ሺ𝑚 𝑥 ൅ ℎ𝑢𝑚ᇱ 𝑥 ൅ ௛௨ మ

ଶ
𝑚ᇱᇱ 𝑥  െ𝑚 𝑥 ሻ  ∗ ሺ𝑓 𝑥 ൅ ℎ𝑢 𝑓ᇱ 𝑥 ሻ𝑑𝑢

ൎ ℎ𝑚ᇱ 𝑥 𝑓 𝑥 𝐾׬ 𝑢  𝑢 𝑑𝑢 + ℎଶሼ
௠ᇲᇲ ௫ ௙ ௫

ଶ
൅ 𝑚ᇱ 𝑥 𝑓ᇱ 𝑥 ሽ 𝐾׬ 𝑢 𝑢ଶ 𝑑𝑢

ൎ ℎ𝑚ᇱ 𝑥 𝑓 𝑥  κ1+ ℎଶ ሼ
௠ᇲᇲ ௫ ௙ ௫

ଶ
൅ 𝑚ᇱ 𝑥 𝑓ᇱ 𝑥 ሽ κ2 = ℎଶ 𝐵 𝑥  κ2 𝑓 𝑥

Kernel Regression: NW estimator – Properties
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• Then, we get

𝐸ሾ𝑚ෝଵ 𝑥 ሿ = ℎଶ κ2 
𝐵 𝑥 𝑓 𝑥

where 𝐵 𝑥 = ሼ௠
ᇲᇲ ௫ ௙ ௫

ଶ
൅ 𝑚ᇱ 𝑥 𝑓ᇱ 𝑥 ሽ /𝑓 𝑥

- Variance. A similar expansion shows that Var[𝑚ෝଵሺ𝑥ሻ] is O(
௛మ

ே௛
), 

which is of smaller order than O(
ଵ

ே௛
).

Thus, as ℎ → 0, & 𝑁ℎ→ ∞, 𝑁ℎ ሾ𝑚ෝଵ 𝑥 െ ℎଶ κ2 
𝐵 𝑥 𝑓 𝑥 ሿ 

  ௣  
0

and since 𝑓መሺ𝑥ሻ
  ௣  

𝑓 𝑥  𝑁ℎሾ௠
ෝభ ௫

௙መ ௫
െ ℎଶ κ2 

𝐵 𝑥 ሿ 
  ௣  

0

Kernel Regression: NW estimator – Properties

• This bias is of size O(ℎଶ). Intuitively, the bias is larger the “curvier” 
𝑚(𝑥଴) is -i.e., the larger 𝑚′(𝑥଴) and 𝑚′′(𝑥଴) are.

The kernel regression estimator, 𝑚ෝሺ𝑥ሻ, is consistent. But, convergence 
is at the rate sqrt(𝑁ℎ), not the usual sqrt(𝑁).

• By CLT, we get under general assumptions, asymptotically normality:

𝑁ℎ ሾ𝑚ෝ 𝑥 െ𝑚 𝑥 െ ℎଶ κ2 
𝐵 𝑥 ሿ 

  ௗ  
𝑁ሺ0, ఙమ ௫ ோ ௄ ሻ 

௙ ௫
ሻ

• The MSE = variance + bias2. Given our asymptotic results, we can 
get the AMSE[𝑚ෝሺ𝑥ሻ]: 

AMSE[𝑚ෝሺ𝑥ሻ] ൎ ଵ

ே௛

ఙమ ௫ ோ ௄ ሻ 
௙ ௫

൅ ሾℎଶ κ2 
𝐵 𝑥 ሿଶ

Kernel Regression: NW estimator – Properties
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• Notes about asymptotic distribution:

- The asymptotic distribution depends on the kernel through 𝑅 𝐾 –
the roughness- and κ2 –the 2nd moment of 𝑧. 

- The optimal kernel minimizes 𝑅௞; the same as for density 
estimation. Therefore, the Epanechnikov family is optimal for 
regression.

- The optimal ℎ depends on the first and second derivatives of 𝑚 𝑥 , 
not on 𝑓 𝑥

- Rules of thumb for ℎ designed for 𝑓 𝑥 have no justification.

Kernel Regression: NW estimator – Properties

Given the asymptotic normality, it is easy to construct C.I.’s. 

Usual steps: 

1) Compute 𝑚ෝሺ𝑥ሻ, and, using kernel density estimation, 𝑓መ 𝑥 .

2) Estimate 𝜎ଶ 𝑥 . 𝑅௞, the roughness, can be obtained from Tables.  

3) Select α% level and use usual formula. 

Note that we are not estimating the bias: 

𝐵𝑖𝑎𝑠 𝑚ෝ 𝑥 െ ℎଶ κ2 
𝐵 𝑥  𝑓 𝑥

where 𝐵 𝑥 = ሼ௠
ᇲᇲ ௫ ௙ ௫

ଶ
൅ 𝑚ᇱ 𝑥 𝑓ᇱ 𝑥 ሽ /𝑓 𝑥

It is complicated, since it needs estimates of derivatives. In general, it 
adds noise to the C.I. That is, we do not estimate an asymptotic exact 
C.I.

Kernel Regression: NW estimator – C.I.s
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C.I.’s tend to be wider at the boundaries and when the data is sparse.

Even if we compute the bias, asymptotic C.I.’s are an approximation. 
A bootstrap may work better.

Kernel Regression: NW estimator – C.I.s

Example: We use NW to estimate a CAPM like non-parametric 
relation between IBM excess returns (ibm_x) and Market excess 
returns (Mkt_RF). We use the np R package.
SFX_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv", 
head=TRUE, sep=",")

## Extract variables from imported data

x_ibm <- SFX_da$IBM # extract IBM price data

x_Mkt_RF <- SFX_da$Mkt_RF # extract Market excess returns (in %)

x_RF <- SFX_da$RF # extract Risk-free rate (in %)

# Define log returns & adjust size of variables accordingly

T <- length(x_ibm) # sample size

lr_ibm <- log(x_ibm[-1]/x_ibm[-T]) # IBM log returns (in decimal returns)

Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust sample size to ( T-1) 

RF <- x_RF[-1]/100 # Adjust sample size & use decimal returns.

ibm_x <- lr_ibm - RF

library(np)

bw <- npregbw(formula = ibm_x ~ Mkt_RF)    # pick h with LS CV bandwidths (NW is default)

Kernel Regression: NW estimator – CAPM
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Example (continuation):
model <- npreg(bws = bw, gradients = TRUE)

summary(model)

capm_ibm <- lm(ibm_x ~ Mkt_RF)

plot(bw, plot.errors.method="bootstrap", main = "NP-CAPM for IBM")

points(Mkt_RF, ibm_x, cex=.4, col="blue")

abline(capm_ibm, col="red")

ℎ = 0.0129 

Kernel Regression: NW estimator – CAPM

(1) Applied to truly linear data, the NW estimator can be poor.

- Let 𝑑 = 1 and the true conditional mean is linear 𝑦௜ = 𝑥௜′  , with 
no error. The behavior of the NW estimator depends on the marginal 
distribution of 𝑋. 

- If they are not spaced at uniform distances, then 𝑚ෝሺ𝑥ሻ ≠𝑚(𝑥). The 
NW estimator applied to purely linear data yields a nonlinear output.

- The choice of ℎ may not help. As ℎ increases, the estimator 
becomes a constant, not a linear function. 

(2) Poor behavior at the boundaries of 𝑋. Suppose 𝑚(𝑥) is positively 
sloped, at the right boundary, the NW estimator will be upward 
biased. In fact, the estimator is inconsistent at the boundary. 

- This restricts application of the NW estimator to interior points.

Kernel Regression: NW estimator – CAPM
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• The same principles behind kernel estimation can be used to 
estimates the derivatives of the regression function. These derivatives 
can be used to estimate partial effects.  

• If the weights are sufficiently smooth and ℎ is properly chosen, the 
derivative estimator is consistent.

• Taking the 𝑘-th derivative of 𝑚ෝሺ𝑥ሻ:

• The kernel estimate of the k-th derivative is also a local average.
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Kernel Regression: Derivatives

• We motivated the NW estimator at 𝑥 as an average of the 𝑦௜’s for 
observations in a neighborhood of 𝑥: A local constant approximation. 

• Instead, we can do OLS in the same neighborhood. If we use a 
weighting function, this is called the local linear (LL) estimator. 

• The idea is to fit the local linear model 

𝑦௜ = 𝛼 ൅ ሺ𝑥௜ െ 𝑥ሻ′  + ௜, 

• We use (𝑥௜ െ 𝑥) rather than 𝑥௜ to have 𝑚ሺ𝑥௜ሻ = E[𝑦௜|𝑥௜ ൌ 𝑥] = 𝛼.

• We do OLS with observations such that |𝑥௜ െ 𝑥| ≤ ℎ. That is, 

𝑚𝑖𝑛
ఈ, 

 ଵ
ே

 ∑ ሺ𝑦௜ െ 𝛼 ൅  ሺ𝑥௜ െ 𝑥ሻ′ ሻ𝟐 𝐼ሾ|𝑥௜ െ 𝑥| ≤ ℎሿே
௜

Kernel Regression: Local Linear Estimator
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• We have a (locally) weighted regression of 𝑦௜ on 𝑥௜ and a constant, 
with the indicator (uniform) function as a weight function. Then, the 
LL LS estimator is:

𝛿መ 𝑥 ൌ ሺ∑ 𝐼 |𝑥௜ െ 𝑥| ≤ ℎே
௜ 𝒁௜′𝒁௜ሻିଵ ሺ∑ 𝐼 |𝑥௜ െ 𝑥| ≤ ℎே

௜ 𝑍௜′𝑦௜ሻ

where 𝛿 ൌ 𝛼,  ′, and  𝒁௜ = [1  (𝑥௜ െ 𝑥)]’. 

• We have a weighted LS (WLS) problem, which can be generalized to:

𝑚𝑖𝑛
ఈ, 

 ଵ
ே

 ∑ 𝑊௜ሺ𝑁,ℎ, 𝑥ሻ ே
௜ ሺ𝑦௜ െ 𝛼 ൅  ሺ𝑥௜ െ 𝑥ሻ′ ሻ𝟐 

where 𝑊௜ሺ𝑁,ℎ, 𝑥ሻ ൌKሺሻ. A higher order polynomial can also be used.

• We get different (𝛼, ) at different 𝑥଴. 

Kernel Regression: Local Linear Estimator

• Using matrix notation:

𝑚𝑖𝑛
ఋ 

 𝑦 െ 𝒁𝛿 ′ 𝐾ሺ𝒁ሻ 𝑦 െ 𝒁𝛿

where 𝛿 ൌ 𝛼,  ′,  𝒁௜ = [1  (𝑥௜ െ 𝑥)]’, and 𝐾ሺ𝒁ሻ is an 𝑁x𝑁 diagonal 
matrix with 𝑖-th element 𝐾ሺ௫೔ି௫

௛
ሻ. 

• Then:

𝛿መ 𝑥 ൌ
𝛼ොሺ𝑥ሻ
෠ሺ𝑥ሻ

ൌ ሺ∑ 𝐾ሺ௫೔ି௫
௛
ሻே

௜ 𝑍௜′𝑍௜ሻିଵ ሺ∑ 𝐾ሺ௫೔ି௫
௛
ሻே

௜ 𝑍௜′𝑦௜ሻ

ൌ ሺ𝒁ᇱ𝐾 𝒁 𝒁ሻିଵ 𝒁ᇱ𝐾 𝒁 𝑦

• We have a (locally) WLS of 𝑦௜ on 𝑥௜ , with the kernel providing 
weights.

Note: OLS is just a special case of LL estimation, we set 𝐾 𝒁 ൌ 𝑰.

Kernel Regression: LL Estimator – WLS
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• LL estimator is more popular than the LC (NW) estimator since it 
preserves linear data & behaves better at the boundaries.  

• In principle, we can add higher order polynomial terms, which would 
make it easier to take higher order derivatives. In these cases, we get a 
Local-polynomial (LP) LS estimator. 

For example, with a second-order polynomial,

𝑦௜ = 𝛼 ൅ ሺ𝑥௜ െ 𝑥ሻ ଵ ൅ 𝑥௜ െ 𝑥 ଶ ଶ ൅ ௜, 

which, by defining 𝒁௜ = [1  (𝑥௜ െ 𝑥) 𝑥௜ െ 𝑥 ଶሿ, can be again easily 
estimated, locally, with WLS:

𝛿መ 𝑥 ൌ ሺ𝒁ᇱ𝐾 𝒁 𝒁ሻିଵ 𝒁ᇱ𝐾 𝒁 𝑦

Kernel Regression: LL Estimator – WLS

40

• Figure 11.1 - Simulated data and 𝑚ෝሺ𝑥ሻ from Hansen (2013). 

• 𝑚ෝሺ𝑥ሻ estimated under NW (dashed line) and LL (points). Overall, 
very similar smooths.

Kernel Regression: LL Estimator – Example
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• A popular local regression estimator is locally weighted scatterplot 
smoothing (lowess or just loess) introduced by Cleveland (1979). 

• It uses a smoothing variable ℎ, a distance function from 𝑥଴ to 𝑥௞ (its 
𝑘-th NN), and weights given by a tricubic kernel:

𝐾ሺ𝑧௜ሻ = 1 * ሺ1 െ 𝑧௜ ଷሻ3  𝐼 𝑧௜ ൏ 1 .

where 𝑧௜ is a ratio, determined by |𝑥଴ െ 𝑥௜ |/𝑑௞, where 𝑑௞ is the 
maximum distance from point 𝑥௜ to the farthest point in the 
neighborhood considered. The weights vary from 1 at the smoothing 
point where 𝑥௜ ൌ 𝑥଴ to 0 at the point 𝑥௜ = furthest in the 
neighborhood considered.

• In principle, we work with a λ-degree polynomial, where λ is usually 
set as 1 or 2.

Kernel Regression: LL Estimator – LOWESS

• A popular local regression estimator is locally weighted scatterplot 
smoothing (lowess or just loess) introduced by Cleveland (1979). 

• It uses a smoothing variable ℎ, a distance function around 𝑥଴, and 
weights given by a tricubic kernel:

𝐾ሺ𝑧௜ሻ = 1 * ሺ1 െ 𝑧௜ ଷሻ3  𝐼 𝑧௜ ൏ 1 .

where 𝑧௜ is a ratio, given by |𝑥଴ െ 𝑥௜ |/𝑑௤, where 𝑑௤ሺ𝑥ሻ is computed 
such that the proportion of 𝑥௜ ’s values within 𝑥଴ is 𝑞. That is,

𝑑௤ሺ𝑥ሻ ൌ min ሼ𝑑 ൐ 0: ଵ
ே
∑ 𝐼 𝑥௜ െ 𝑥  ≤ 𝑑ே
௜ ൏ 𝑞ሽ

A usual choice for 𝑞 = 0.5.

• In principle, we can work with a 𝑝-degree polynomial; in general 𝑝 is 
usually set as 1 or 2.

Kernel Regression: LL Estimator – LOWESS
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Example: We use LOWESS to estimate the relation  between  
(ibm_x) & (Mkt_RF). We use R command lowess (default ℎ = 1).

plot(ibm_x, Mkt_RF, xlab = "Market", ylab = "IBM", pch ="*",  main = "LOWESS CAPM")

low_fit <-lowess(ibm_x ~ Mkt_RF)

lines(lowess(ibm_x ~ Mkt_RF), col="green")

abline(capm_ibm, col="red")

Kernel Regression: LL Estimator – Example 1

Example (continuation): 
plot(ibm_x, Mkt_RF, xlab = "Market", ylab = "IBM", pch ="*",  main = "LOWESS CAPM -
Different h")lines(lowess(ibm_x ~ Mkt_RF), col="green")

lines(lowess(ibm_x ~ Mkt_RF, f = 0.3), col='purple') # f = h = span

lines(lowess(ibm_x ~ Mkt_RF, f = 3), col='steelblue')

legend('topleft',       col = c('green', 'purple', 'steelblue'),       

lwd = 2,       c('Smoother = 1', 'Smoother = 0.3', 'Smoother = 3'))

Kernel Regression: LL Estimator – Example 1
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Rice expenditures as a total of Log total expenditures.

Kernel Regression: LL Estimator – Example 2

• In contrast to the NW estimator, the LL estimator preserves linearity 
in the data. That is, if the true data is linear, for any sub-sample, a local 
linear regression fits exactly, so 𝑚ෝ 𝑥଴ ൌ 𝑚 𝑥଴ . 

As ℎ→ ∞, the LL estimator collapses to OLS of 𝑦௜ on 𝑥௜ . That is, we 
can think of LL as a nonparametric generalization of OLS. 

• The asymptotic distribution of the LL estimator is similar to that of 
the NW estimator. The bias term is simpler, the 𝑚′ 𝑥଴ and 𝑓′ 𝑥଴
disappear. The asymptotic variance is the same.

Q: If LL improves on NW, why not use a local polynomial of order p? 
It is possible and doable. In practice, when 𝑑 ൐ 1, applying 
polynomial methods is not easy.

Kernel Regression: NW or LL Estimator?
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• Strictly speaking, we cannot rank the AMSE of the NW versus the 
LL estimator. 

• The AMSE of the LL estimator only depends on 𝑚′′ 𝑥଴ ; while that

of the NW estimator also depends on 𝑚′ 𝑥଴ . We expect this to 
translate into reduced bias.

• Since both estimators have the same asymptotic variance, the

statistics literature prefers the LL estimator. 

• According to Bruce Hansen (2013), caution is warranted. In simple   
simulations, the LL estimator does not always beat the NW estimator. 

Kernel Regression: NW or LL Estimator?

• Hansen’s interesting findings: 

- When the regression function 𝑚 𝑥଴ is quite flat, the NW estimator 
does better. When the regression function is steeper and curvier, the 
LL estimator tends to do better. 

- Intuition from above result: In finite samples the NW estimator 
tends to have a smaller variance. An advantage in contexts where 
estimation bias is low (such as when the regression function is flat). 

Note: In many economic contexts, it is believed that the regression 
function may be quite flat with respect to many regressors. In this 
context it may be better to use NW rather than LL.

Kernel Regression: NW or LL Estimator?
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• Hall et al. (1999) proposed a weighted NW estimator as defined by

𝑚ෝ௛ሺ𝑥଴ሻ ൌ
∑ 𝑝௜ሺ𝑥଴ሻ𝐾௛ሺ𝑥௜  െ  𝑥଴ሻ
ே
௜ୀଵ  𝑦௜
∑ 𝑝௜ሺ𝑥଴ሻ𝐾௛ሺ𝑥௜  െ  𝑥଴ሻே
௜ୀଵ

ൌ  ෍𝑤ே,௛,௜ 𝑥଴

ே

௜ୀଵ

 𝑦௜

where 𝑝௜ሺ𝑥ሻ are weights. The weights satisfy: 

𝑝௜ሺ𝑥ሻ ≥ 0

∑ 𝑝௜ሺ𝑥ሻ
ே
௜ ൌ 1.

∑ 𝑝௜ሺ𝑥ሻ
ே
௜ 𝐾௛ሺ𝑥௜  െ 𝑥ሻ ሺ𝑥௜  െ 𝑥ሻ = 1.

• The first two requirements define 𝑝௜ሺ𝑥ሻ as weights. The third 
equality requires the weights to force the kernel function to satisfy 
local linearity.

Kernel Regression: Weighted NW Estimator?

• The weights are determined by empirical likelihood. Specifically, for 
each 𝑥; you maximize ∑ 𝑙𝑛 ሾ𝑝௜ሺ𝑥ሻሿ

ே
௜ s.t. the above constraints.

The solutions take the form

where λ is a LM, found by numerical optimization. 

• The estimator 𝑚ෝሺ𝑥ሻ has the same asymptotic distribution as the LL 
estimator.

Kernel Regression: Weighted NW Estimator?
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• When 𝑦௜ ≥ 0; the standard and weighted NW estimators also satisfy 
𝑚ෝሺ𝑥ሻ ≥ 0. This is good (𝑚ሺ𝑥ሻ is non-negative!). On the other side, 
the LL estimator is not necessarily non-negative.

Disadvantage:  More computationally intensive than the LL estimator. 
The EL weights must be found separately for each 𝑥଴ at which 𝑚ෝሺ𝑥଴ሻ
is calculated.

Kernel Regression: Weighted NW Estimator?

• We are used to use the fitted residuals to construct GOF measures. 
The residuals are defined as usual:

𝑒௜ ൌ 𝑦௜ െ 𝑚ෝሺ𝑥௜ሻ, 𝑖 = 1, 2, ...., 𝑁.

Problem: In general, but especially when ℎ is small, it is hard to view 
𝑒௜ as a GOF measure. As ℎ→ 0, 𝑚ෝ (.) → 𝑦௜ (and 𝑒௜ → 0). This 
indicates overfitting as the true error is not zero. 

Solution: Measure the fit of the regression at 𝑥 = 𝑥௜ by re-estimating 
the model excluding the 𝑖-th observation (notation: “െ𝑖,” the 𝑖-th
observation excluded). This is the leave-one-out estimation For NW 
regression, we get:

𝑚ෝି௜ሺ𝑥ሻ ൌ
∑ ௄೓ሺ௫ ି ௫ೕሻ
ಿ
ೕಯ೔  ௬ೕ
∑ ௄೓ሺ௫ ି ௫ೕሻ
ಿ
ೕಯ೔

ൌ ∑ 𝑤ே,௛,ି௜ሺ𝑥ሻ
ே
௝ஷ௜  𝑦௝

Kernel Regression: Residuals, Fit & CV
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• Now, the leave-one-out residuals are defined as:

𝑒ି௜ ൌ 𝑦௜ െ 𝑚ෝି௜ሺ𝑥௜ሻ, 𝑖 = 1, 2, ...., 𝑁.

𝑒ି௜ is not a function of 𝑦௜ ⇒ no tendency to overfit for small ℎ.

• The mean squared leave-one-out residual is  

𝐶𝑉 ℎ ൌ ଵ

ே
 ∑ ሺ𝑒ି௜ሺℎሻሻ𝟐

ே
௜

This function of ℎ is known as the cross-validation criterion. This 
criterion can be used to select the bandwidth. It is common to trim 
the sample, to avoid the usual poor fitting at the tails.

• The CV bandwidth ℎ஼௏ is the value that minimizes 𝐶𝑉 ℎ . Usually, 
the restriction ℎ஼௏ ≥ ℎ௅஻ is imposed, where ℎ௅஻ is a lower bound for 
ℎ஼௏, to make sure the bandwidth is not too small.

Kernel Regression: Residuals, Fit & CV

• The  CV bandwidth ℎ஼௏ is calculated numerically. 

• A grid search is popular. Plots of 𝐶𝑉 ℎ against ℎ are also used.

• It turns out that 𝐶𝑉 ℎ is an estimator of the mean-squared forecast 
error (𝑀𝑆𝐹𝐸). That is,

E[𝐶𝑉 ℎ ሿ ൌ 𝑀𝑆𝐹𝐸ேିଵ1 ℎ ൌ 𝑀𝐼𝑆𝐸ேିଵ ℎ ൅  𝜎𝟐

Kernel Regression: Residuals, Fit & CV
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• Plots of 𝐶𝑉 ℎ against ℎ for Hansen’s simulated data for the NW 
and Local Linear estimators (with Epanechinikov kernel). From 
Hansen (2013).

Kernel Regression: Residuals, Fit & CV

• The NW estimator is defined by

𝑚ෝ௛ሺ𝑥଴ሻ ൌ
∑ 𝐾௛ሺ𝑥௜  െ  𝑥଴ሻ
ே
௜ୀଵ  𝑦௜
∑ 𝐾௛ሺ𝑥௜  െ  𝑥଴ሻே
௜ୀଵ

ൌ  ෍𝑤ே,௛,௜ 𝑥଴

ே

௜ୀଵ

 𝑦௜

• The last expression simply shows that this estimator can be thought 
of as a weighted average of the observations of y. In matrix notation, 
we can write Ŷ = 𝑴ሺℎሻ Y, with

Kernel Regression: NW Multivariate Estimator
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• Kernel regression predictions: Ŷ = 𝑴 ℎ  𝒀
• Liner regression predictions: Ŷ = Px 𝒀.

• A multivariate kernel is constructed, row by row, by computing the 
product of marginal densities for each variable in the matrix of 
regressors 𝑿. That is,

• Usually, we use leave-one-out kernels. That is, the current observation 
is excluded in the kernel construction to avoid overfitting — the

principal diagonal in 𝑴ሺℎሻ is zeroes.

Kernel Regression: NW Multivariate Estimator

• Mean (uniform) smoother

𝑚ෝ௛ሺ𝑥଴ሻ ൌ
∑ 𝑤ሺ

𝑥௜  െ  𝑥଴
ℎ ሻே

௜ୀଵ  𝑦௜

∑ 𝑤ሺ
𝑥௜  െ  𝑥଴

ℎ ሻே
௜ୀଵ

where

𝑤ሺ𝑢ሻ ൌ ቊ
1 |𝑢| ൏ 1
0 |𝑢| ൒ 1

• Kernel smoother

𝑚ෝ௛ሺ𝑥଴ሻ ൌ
∑ 𝐾ሺ

𝑥௜  െ  𝑥଴
ℎ ሻே

௜ୀଵ  𝑦௜

∑ 𝐾ሺ
𝑥௜  െ  𝑥଴

ℎ ሻே
௜ୀଵ

where 𝐾ሺ. ሻ is Gaussian.

Comparison: Mean vs Kernel Smoother
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Comparison: Mean vs Kernel Smoother

Comparison: Mean vs Kernel Smoother
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• 𝑘-NN methods are more commonly used for regression than for 
density estimation. The classic k-NN smoother is defined as

𝑚ෝ௞ 𝑥଴ ൌ ଵ

௞
 ∑ 𝐼 ∥ 𝑥௜  െ  𝑥଴ ∥ ൑ 𝑑௞ 𝑥଴

ே
௜ୀଵ 𝑦௜

This is the average value of 𝑦௜ among the observations which are the k
nearest neighbors of 𝑥଴. (𝑑௞ is the distance between 𝑥 and 𝑥଴.)

• A smooth 𝑘-NN estimator is: 

𝑚ෝ௞ሺ𝑥଴ሻ ൌ
∑ ௪ೖሺ∥௫೔ ି ௫బ∥ ஸ ௗೖ ௫బ ሻಿ
೔సభ  ௬೔
∑ ௪ೖሺ∥௫೔ ି ௫బ∥ ஸௗೖ ௫బ ሻಿ
೔సభ

ൌ  ∑ 𝑤ே,௞,௜ 𝑥଴
ே
௜ୀଵ  𝑦௜

a weighted average of the 𝑘 nearest neighbors.

𝒌-Nearest Neighbor Estimator

Example: 

We have a sample {𝑋, 𝑌}={(1,5), (7,12), (3,1), (4,0), (5,4)}. Set 𝑘 = 3. 
We want to calculate 𝑚ෝ௞ሺ𝑥଴ ൌ 4ሻ for the classic 𝑘-NN estimator, 
using Euclidian distance, 𝑑௞ୀଷ 𝑥଴ ൌ 4 ൌ 1. Then, Neighborhoodሺ𝑥଴ ൌ
4ሻ ൌ 3, 4, 5 .

The weights are {𝑤ேୀହ,௞ୀଷ,௜ 𝑥଴ ൌ 4 ሽ ൌ {0, 0, 1/3, 1/3, 1/3}

𝑚ෝ௞ 4 ൌ
ଵ

௞
 ∑ 𝐼 ∥ 𝑥௜  െ 4 ∥ ൑ 1ே

௜ୀଵ 𝑦௜ ൌ
ሺଵା଴ାସሻ 

ଷ
ൌ 5/3

Note: If the 𝑋-variable is chosen from an equidistant grid, the 𝑘-NN
weight are equivalent to kernel weights.

• If Epanechnikov weights are used, when observations get thin, the 𝑘-
NN weights spread out more. See the food/income example, when 
𝑥଴ ൌ 2.5. (Very different weights from previous (fixed) case.)

𝒌-Nearest Neighbor Estimator
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Figure 4. The effective 𝑘-NN weights for the food versus net income 
data set. At 𝑥଴ ൌ 1 and 𝑥଴ ൌ 2.5 for 𝑘 = 100 (label 1), 𝑘 = 200 (label 
2), 𝑘 = 300 (label 3) with Epanechnikov kernel. From Hardle (1990).

𝒌-Nearest Neighbor Estimator

• The smoothing parameter 𝑘 regulates the degree of smoothness of 
the estimated curve. It plays a role similar to ℎ for kernel smoothers. 

• The influence of varying 𝑘 on qualitative features of the estimated 
curve is similar to that observed for kernel estimation with a uniform 
kernel. 

• When 𝑘 > 𝑁, the 𝑘-NN smoother is equal to the average of the 
response variables. When 𝑘 = 1, the observations are reproduced at 
𝑥௜ , and for an 𝑥 between two adjacent predictor variables a step 
function is obtained with a jump in the middle between the two 
observations.

• When X is a vector, scaling matters. Then, always scale X.

𝒌-Nearest Neighbor Estimator
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• For the one regressor case, we have similar asymptotic results as in 
the univariate density case. 

Let 𝑁→∞, 𝑘 → 0, and 𝑁𝑘→ ∞.  Bias and variance of the 𝑘-NN 
estimate with uniform weights are given by

Note: The optimal trade-off between bias2 & Variance is achieved in 
an asymptotic sense by setting 𝑘 ~ N4/(4+q), (𝑞 = dimension of X).
 when 𝑞 ൌ 1, 𝑘 ~ 𝑁4/5.

• If 𝑘 ൌ 2𝑁ℎ 𝑓 𝑥 we have exactly the same MSE at 𝑥 for both 
kernel and 𝑘-NN estimators.
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𝒌-Nearest Neighbor Estimator: Properties

• For the multivariate case, the asymptotic analysis is the same as for 
density estimation. 

• Conditional on 𝑑௞ 𝑥଴ ; the bias and variance are approximately as 
for NW regression. The conditional bias is proportional to 𝑑௞ 𝑥଴
and the variance to 1/[𝑁 𝑑௞ 𝑥଴ ௤] (𝑞 = dimension of X).

• The optimal 𝑘 ~ 𝑁 4/(4+q) and the optimal convergence rate is the 
same as for NW estimation.

𝒌-Nearest Neighbor Estimator: Properties
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• A great advantage of the 𝑘-NN smoother is computational.

• Calculations can be easily updated. The algorithm requires O(𝑁) 
operations to compute the smooth at all 𝑥௜ ’s. Compare this to O(𝑁2

ℎ) calculations for the kernel estimator. 

• Cross-validation is used to set 𝑘, using leave-one-out errors:

𝐶𝑉 𝑘 ൌ ଵ

ே
 ∑ ሺ𝑒ି௜ሺ𝑘ሻሻଶ

ே
௜ ൌ ଵ

ே
 ∑ ሺ𝑦௜ െ  𝑚ෝି௜ሺ𝑥௜ሻሻଶ

ே
௜

• Li (1987) and Andrews (1991) shows that it is asymptotically 
optimal to pick 𝑘 by cross-validation.

𝒌-Nearest Neighbor Estimator: Computations

Suppose we have the following DGP: 

𝑦௜ = 𝒙௜′  + 𝑚ሺ𝒙௜ , 𝒛௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

E[௜|𝒙௜, 𝒛௜] = 0

௜2 = 𝜎ଶ 𝒙௜ ൅ 𝜂௜, E[𝜂௜|𝒙௜] = 0

- 𝜎ଶ 𝒙௜ : the regression function of ௜2 on 𝒙௜ i. We want to estimate it.

• Problem: If ௜2 were observed  NW or LL regression.

• Solution: Use the non- (or semi-) parametric residual, 𝑒௜ሺ𝑘ሻ:
𝑒௜ 𝑘 ൌ  𝑦௜ െ  𝑚ෝ௜ሺ𝑥௜ሻሻ

• Then, we can use the NW estimator:

𝜎ොሺ𝑥଴ሻ ൌ
∑ ௄ሺ

ೣ೔ ష ೣబ
೓

ሻಿ
೔సభ ௘೔మ

∑ ௄ሺ
ೣ೔ ష ೣబ

೓
ሻಿ

೔సభ

Nonparametric Variance Estimation
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• We have a two-step estimator. Similar situation if we use the LL 
estimator. The bandwidths ℎ are not the same as for estimation of 
𝑚ෝሺ𝑥଴ሻ; although we use the same notation.

Note: the LL estimator is not guaranteed to be non-negative, while the

NW (or weighted NW) estimator is always non-negative (if non-
negative kernels are used).

• Fan and Yao (1998) derive the surprising result that the asymptotic 
distribution of this two-step estimator is identical to that of the one-
step idealized estimator –i.e., using ௜.

Nonparametric Variance Estimation

Series Estimation

• Series estimation is another nonparametric regression method.  The 
idea is to approximate an unknown function, 𝑚ሺ𝑥଴ሻ, with a flexible 
parametric function, with the number of parameters treated similarly 
to the bandwidth in kernel regression.

• A series approximation to 𝑚ሺ𝑥଴ሻ takes the general form: 

𝑚௞ 𝑥 = 𝑚௞ 𝑥,𝛽
where 𝑚௞ 𝑥,𝛽 is a known parametric family and 𝛽 is a vector of 𝑘
unknowns. 

• A linear series approximation takes the form: 

𝑚ෝ௞ ൌ ∑ 𝑧௝௞ 𝑥 𝛽௞
௄
௝ୀଵ ൌ 𝒛௝ሺ𝑥ሻ′𝛽௞

where 𝑧௝௞ 𝑥 are (nonlinear) functions of 𝑥, called basis functions. 
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Series Estimation

Example: The series approximation using a 3௥ௗ order polynomial:

𝑚ෝ௞ ൌ 𝒛௝ሺ𝑥ሻ′𝛽௞ ൌ 𝛽଴ ൅𝛽ଵ𝑥 ൅ 𝛽ଶ𝑥ଶ ൅  𝛽ଷ𝑥ଷ

In this case, the basis functions are 𝑥, 𝑥ଶ, and 𝑥ଷ.

Note: 𝑚ෝ௞ ൌ 𝒛௝ሺ𝑥ሻ′𝛽௞ is an example of a linear basis expansion.

Different basis functions produce different models:

- Linear model: 𝑧௝௞ 𝑥௝ = 𝑥௝
- Polynomial model: 𝑧௝௞ 𝑥௝ = 𝑥௝

- Piecewise constant: 𝑧௝௞ 𝑥௝ = 𝐼ሾ𝑡ଵ ൑ 𝑥௝ ൑  𝑡ଶሿ

- Piecewise linear: 𝑧௝௞ 𝑥௝ = 𝐼ሾ𝑡ଵ ൑  𝛽଴൅ 𝛽ଵ 𝑥௝ ൑  𝑡ଶሿ

Series Estimation: Candidates

• Several candidates to use for series approximation:

(1) Power series. We can use a 𝑝௧௛order polynomial –i.e., 𝑧௝௞ 𝑥 ൌ  𝑥௝

It works well for low 𝑝’s. But, they tend to be unstable for large 𝑝.

(2) Trigonometric series It produces bounded functions. It can 
produce wiggly, wild estimates.

(3) Splines. A continuous piecewise polynomial function. Splines can 
have any polynomial order (linear, quadratic, cubic, etc.). But, it is 
common to use a cubic.  It is common to constrain the spline function to 
have continuous derivatives up to the order of the spline.
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Series Estimation: Splines

Remark: So far, we have used (with kernel and 𝑘-NN regressions) 
local averages or local polynomials to do the estimation. Now, we 
move back to global models. With regression splines and smoothing 
splines, we build our estimator globally, from a set of basis functions.

• The basis functions are splines. There is more than one way to 
define a spline series expansion. All are based on the number of knots
–the points between the segments.

• A (univariate) spline 𝑚 𝑥 of degree 𝑘 with knots 𝑡ଵ< 𝑡ଶ <… < 𝑡்
is a piecewise polynomial of degree 𝑘 that is continuous and has 
continuous derivatives of orders 1, …, 𝑘 െ 1 at its knots. That is: 

- 𝑚 𝑥 is a 𝑘௧௛degree polynomial on each (∞, 𝑡ଵ], [𝑡ଵ,  𝑡ଶ], …, [𝑡், ∞)

- 𝐷௟𝑚 𝑥 is continuous at each of 𝑡ଵ, …., 𝑡் , for all 𝑙 = 0, …, 𝑘 െ 1.

Series Estimation: Splines

Example: A piecewise linear function, with 2 segments & a knot at 𝑡:

𝑚ෝ௞ ൌ ቊ
𝑚ଵ 𝑥 ൌ 𝛽଴଴ ൅ 𝛽଴ଵሺ𝑥 െ 𝑡ሻ 𝑥 ൏ 𝑡
𝑚ଶ 𝑥 ൌ 𝛽ଵ଴ ൅ 𝛽ଵଵሺ𝑥 െ 𝑡ሻ 𝑥 ൒ 𝑡

The function 𝑚௞ 𝑥 is continuous if 𝛽଴଴ ൌ 𝛽ଵ଴. Enforcing this (and 
transforming the coefficients), we get:

𝑚ෝ௞ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥 ൅  𝛽ଶ 𝑥 െ 𝑡  𝐼ሾ𝑥 ൒ 𝑡ሿ

Notes: Function has 𝑘 ൌ 3 coeficients –like a quadratic polynomial. 

Also, the last term is an example of a truncated power function, 

which, in general, we write, with exponent 𝑗, as 𝑥ା
௝ :

𝑥ା
௝ ൌ ቊ 𝑥௝ 𝑥 ൐ 0

0 𝑥 ൒ 0
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Series Estimation: Splines

• Following the above process, a piecewise quadratic function, with 
one knot and a continuous 1st derivative has 𝑘 ൌ 4. Similarly,  a 
piecewise cubic function, with one knot and a continuous 2nd 
derivative has 𝑘 ൌ 5. The function 𝑚௞ 𝑥 is 

𝑚ෝ௞ሺ𝑥ሻ ൌ 𝛽଴ ൅ 𝛽ଵ 𝑥 ൅ 𝛽ଶ  𝑥ଶ൅ 𝛽ଷ  𝑥ଷ൅ 𝛽ସ ሺ𝑥 െ 𝑡ሻା
ଷ

Note: The polynomial order 𝑝 is selected to control the smoothness 
of the spline, as 𝑚௞ 𝑥 has continuous derivatives up to 𝑝 െ 1.

• The approximation improves as the number of knots increases. For 
example, for a cubic spline with two knots 𝑡ଵ & 𝑡ଶ (𝑡ଵ< 𝑡ଶ). The 
form is:

𝑚ෝ௞ሺ𝑥ሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥 ൅ 𝛽ଶ𝑥ଶ ൅ 𝛽ଷ𝑥ଷ ൅ 𝛽ସ ሺ𝑥 െ 𝑡ଵሻା
ଷ൅ 𝛽ହሺ𝑥 െ 𝑡ଶሻା

ଷ

Series Estimation: Splines – Cubic 

• Then, a 𝑝௧௛ order spline with 𝑇 knots at 𝑡ଵ, 𝑡ଶ, .., 𝑡் (𝑡ଵ<𝑡ଶ<..< 𝑡்) is

𝑚ෝ௞ ൌ ∑ 𝛽௝  𝑥௝ ൅ ௣
௝ୀ଴ ∑ 𝛾௧ ்

௧ୀଵ ሺ𝑥 െ 𝑡ଵሻା
௣

which has 𝑘 ൌ 𝑇 ൅ 𝑝 ൅ 1 coefficients.

Remark (from Ryan Tibshirani): “It is said that a cubic spline is so 
smooth, that one cannot detect the locations of its knots by eye!”

• In spline approximations, the usual approach is to treat 𝑝 as fixed, and 
select the number of knots, 𝑇, to determine the complexity of the 
approximation. Sometimes, the 𝑇 knots are referred as “interior 
knots,” to distinguish them from the endpoints of the sample. 

• The  𝑡௧’s are typically treated as fixed. It is common to set evenly 
spaced  𝑡௧’s. When this happens, the knot sequence is called uniform.
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Series Estimation: Splines – Regression

• For a given set of knots, the function 𝑚௞ 𝑥 is linear in the 
parameters  LS estimation is possible!

Example: Suppose we use a cubic spline & two knots 𝑡ଵ & 𝑡ଶ (𝑡ଵ< 𝑡ଶ):

𝐸ሾ𝑦|𝑥, 𝑡ଵ, 𝑡ଶሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥 ൅ 𝛽ଶ𝑥ଶ ൅ 𝛽ଷ𝑥ଷ ൅ 𝛽ସ ሺ𝑥 െ 𝑡ଵሻା
ଷ൅ 𝛽ହሺ𝑥 െ 𝑡ଶሻା

ଷ

ൌ 𝒁 𝜷𝒌
where 𝒁 is an 𝑁x𝑘 matrix and is an 𝑘x1 with elements:

𝒁 ൌ

1 𝑥ଵ 𝑥ଵଶ … 𝑥ଵ െ 𝑡ଶ ା
ଷ

1 𝑥ଶ 𝑥ଶଶ … 𝑥ଶ െ 𝑡ଶ ା
ଷ

… … … … …
1 𝑥ே 𝑥ேଶ … 𝑥ே െ 𝑡ଶ ା

ଷ

& 𝜷௞ ൌ

𝛽଴
𝛽ଵ
⋮

 𝛽ହ

 𝜷෡௞ = ሺ𝒁′𝒁ሻିଵ 𝒁ᇱ𝒚

Then, the fitted values (“linear smoother”): 𝒚ෝ = 𝒁 ሺ𝒁′𝒁ሻିଵ 𝒁′ 𝒚

Series Estimation: B-Splines

• Another popular class of series approximation are called B-splines. 
(“B” for basis). They are basis functions which are bounded, integrable
and density-shaped. They can be constructed or composed from a 
variety of basic shapes, usually polynomials.

• Let 𝑡 be a sequence of knots –i.e., non-decreasing real number–, with 
𝑡ଵ< 𝑡ଶ <… < 𝑡் , which we augment with 2 𝑚 exterior knots: 𝑡ିሺ௠ିଵሻ, 
…, 𝑡଴, 𝑡்ାଵ, ..., 𝑡்ା௠.

• For each knot 𝑡௡, we recursively define the 𝑡-th B-spline basis function 
of degree 𝑗, 𝐵௧,௝ (for 𝑗 = 0, 1, … , 𝑟 , where 𝑟 is the order B-spline). For 
example, a 1st order B-spline is given by: 

𝐵௧,ଵ ൌ ቊ1 if 𝑡௧ ൑  𝑥 ൏ 𝑡௧ାଵ
0 otherwise
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Series Estimation: B-Splines

• A 1st order B-spline is given by: 

𝐵௧,ଵ ൌ ቊ1 if 𝑡௧ ൑  𝑥 ൏ 𝑡௧ାଵ
0 otherwise

Note: A 1st order B-spline can form any piecewise constant function.

• We use a recursive formula to define a 2nd order B-spline:

𝐵௧,ଶሺ𝑥ሻ ൌ 𝛼௧,ଵ 𝑥  ∗ 𝐵௧,ଵ 𝑥 ൅ ሺ1 െ 𝛼௧ାଵ,ଵ 𝑥 ሻ ∗  𝐵௧ାଵ,ଵ 𝑥
where

𝛼௧,ଵ 𝑥 ൌ ቐ
௫ ି ௧೟

௧೟శభ ି ௧೟
if 𝑡௧ ്  𝑡௧ାଵ

0 otherwise

Series Estimation: B-Splines

• For the 𝑗th order B-spline we have:  

𝐵௧,௝ାଵሺ𝑥ሻ ൌ 𝛼௧,௝ାଵ 𝑥  ∗ 𝐵௧,௝ 𝑥 ൅ ሺ1 െ 𝛼௧ାଵ,௝ାଵ 𝑥 ሻ ∗  𝐵௧ାଵ,௝ 𝑥

where

𝛼௧,௝ 𝑥 ൌ ቐ
௫ ି ௧೟

௧೟శೕ ି ௧೟
if 𝑡௧ ്  𝑡௧ା௝

0 otherwise
(if dividing by 0, set to 0)

• Convention: If dividing by 0, set basis element equal to 0.

• The first term, 𝐵଴,௥ is sometimes called the “intercept.” It can be set to 
zero to minimize multicollinearity problems.
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Series Estimation: B-Splines Function

• The B-spline function of degree (𝑟 െ 1) is a linear combination of 
the basis B-splines, 𝐵௧,௥, of degree (𝑟 െ 1):

𝐵ሺ𝑥ሻ ൌ ∑ 𝜃௡𝐵௧,௥ሺ𝑥|𝑡ଵ, .., 𝑡்ሻ
்ା௥
௧ୀଵ ൌ 𝜃𝒌′𝒛ሺ𝑥ሻ 𝑥 ∈ [𝑡଴, 𝑡்ାଵ]

where 𝒛ሺ𝑥ሻ is the vector of the basic functions. 

• The 𝜃௡ (the “parameters”) are usually called  “control points.” They 
can be estimated with LS.

• The number of basis functions, 𝐾, equals the sum of the degree of 
the B-spline basis functions & the number of interior knots plus one.

 Dim(𝜃) = 𝐾 = 𝑇 ൅ 𝑟 ൅ 1.

Series Estimation: B-Splines Function

• Example: A cubic-spline with 𝑇 knots is given by:

𝑚ෝ௞ ൌ ∑ 𝜃௧𝐵௧,ସሺ𝑥|𝑡ଵ, .., 𝑡்ሻ
்ାସ
௧ୀଵ ൌ 𝒛ሺ𝑥ሻ 𝜽𝒌

which is a simple linear model with 𝐾 ൌ 𝑇 ൅ 4 parameters. It can be 
estimated with OLS:

𝒛ሺ𝑥ሻ ൌ

𝐵ଵ,ସሺ𝑥ଵሻ 𝐵ଶ,ସሺ𝑥ଵሻ . . . 𝐵்ାସ,ସሺ𝑥ଵሻ
𝐵ଵ,ସሺ𝑥ଶሻ 𝐵ଶ,ସሺ𝑥ଶሻ . . . 𝐵்ାସ,ସሺ𝑥ଶሻ

. . . . . . . . . . . .
𝐵ଵ,ସሺ𝑥ேሻ 𝐵ଶ,ସሺ𝑥ேሻ . . . 𝐵்ାସ,ସሺ𝑥ேሻ

& 𝜽௞ ൌ
𝜃ଵ
⋮

𝜃்ାସ

where 𝒛ሺ𝑥ሻ is a 𝑁xሺ𝑇 ൅ 𝑟ሻ matrix. Then,

𝜃෠௞ = ሺ𝒛ሺ𝑥ሻ′𝒛ሺ𝑥ሻሻିଵ 𝒛 𝑥 ᇱ𝒚

• Now, the predictor (“linear smoother”) is: 𝑚ෝ௝ሺ𝑥ሻ ൌ 𝒛ሺ𝑥ሻ𝜽෡௞
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Series Estimation: B-Splines Function

• The 𝑗-th predictor is:

𝑚ෝ௝ሺ𝑥ሻ ൌ 𝒛 𝑥  𝜽෡௞ ൌ 𝒛 𝑥 ሺ𝒛ሺ𝑥ሻ′𝒛ሺ𝑥ሻሻିଵ 𝒛 𝑥 ᇱ𝒚

• We want 𝑚ෝ௝ሺ𝑥ሻ to be flexible, we want to use lots of basis functions, 
say, setting 𝐾 ൌ 15 or larger. But, we penalize 𝑚ෝ௝ሺ𝑥ሻ for being too 
“jerky.”

• Common approach is to restrict (penalize) the second derivative –
i.e., how much the slope of 𝑚ෝ௝ሺ𝑥ሻ can change– over range of the 
predictor.

Series Estimation: B-Splines – Remarks

• A B-spline includes all polynomials of the same degree or less over 
[𝑡଴, 𝑡ேାଵ]. We can think of B-splines regression as a generalization of 
polynomial regression.

• For example, a B-spline of order 𝑟 ൌ 2 includes all constant (𝑟 ൌ 0), 
linear (𝑟 = 1), and quadratic (𝑟 = 2) functions over [𝑡଴, 𝑡்ାଵ] as 
special cases.

•  It is not easy to choose the optimal number of knots and their
locations, which is an infinite dimensional optimization problem.

• It is common to use equally spaced (uniform, equidistant) knots or 
set the knots equal to quartiles, for example, with 𝑇 ൌ 3, set 𝑡ଵ ൌ
 0.25th, 𝑡ଶ ൌ 0.50th & 𝑡ଷ ൌ 0.75th quartiles, respectively.
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Series Estimation: B-Splines – Remarks

• There is a large literature on knot selection for regression splines, 
using Cross-validation penalties or recursive partitioning.

• In general, at the boundaries the estimates tend to have high 
variance, which gets worse as 𝐾 increases. (A common solution is to 
use a lower degree B-spline function at the boundaries.)

• Multivariate extensions, including 𝑞 explanatory variables, are 
possible, though, in practice, can be computationally complicated.

Example: We use B-splines to estimate the relation  between  
(ibm_x) & (Mkt_RF). We use the splines R package.

library(splines) #  fit spline regression model

spline_capm <- lm(ibm_x ~ bs(Mkt_RF, knots=c(-.05, 0, .05)))

summary(spline_capm) #view summary of spline regression model

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)                          -0.225119   0.057163  -3.938 9.17e-05 ***

bs(Mkt_RF, knots = c(-0.05, 0, 0.05))1  0.004606   0.090888   0.051 0.959596    

bs(Mkt_RF, knots = c(-0.05, 0, 0.05))2  0.187755   0.058214   3.225 0.001327 ** 

bs(Mkt_RF, knots = c(-0.05, 0, 0.05))3  0.201675   0.058638   3.439 0.000623 ***

bs(Mkt_RF, knots = c(-0.05, 0, 0.05))4  0.307874   0.058400   5.272 1.88e-07 ***

bs(Mkt_RF, knots = c(-0.05, 0, 0.05))5  0.295133   0.068745   4.293 2.05e-05 ***

bs(Mkt_RF, knots = c(-0.05, 0, 0.05))6  0.374930   0.075455   4.969 8.78e-07 ***
---

Residual standard error: 0.05888 on 604 degrees of freedom

Multiple R-squared:  0.319, Adjusted R-squared:  0.3123 

F-statistic: 47.16 on 6 and 604 DF,  p-value: < 2.2e-16

Series Estimation: B-Splines – Application
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Example (continuation):

x_lim <- range(Mkt_RF)

i <- 2; 

k <- 20; 

x_r <- (abs(x_lim[1]) + x_lim[2])/k

x_v <- matrix(0,k+1,1)

x_v[1] <- x_lim[1]

while (i <= k+1 ) 

{

x_v[i] <- x_v[i-1] + x_r

i <- i + 1

}

newdata <- data.frame(Mkt_RF = x_v)

preds <- predict(spline_capm, newdata)

plot(Mkt_RF, ibm_x, cex=1.5, pch="*", main="Spline Regression - CAPM")

lines(x_v, preds, col="red", lwd=2)

Series Estimation: B-Splines – Application

Spline Smoothing

• Determination of 𝐾 (or ℎ) is not easy. A perfect fit can be achieved 
by giving a lot of local flexibility to 𝑚ෝ 𝑥 . The result of this flexibility 
will be a jerky, difficult to interpret 𝑚ෝ 𝑥 . 

• Spline smoothing quantifies the competition between two goals:

- producing a good fit to the data –traditionally measured as SSR

- producing a good curve –i.e., without too much rapid local variation. 

• The regression curve 𝑚ෝఒ 𝑥 is obtained by minimizing a penalized 
sum of squares:

min {𝑆ఒ 𝑚 ൌ ∑ ሺ𝑦௜  െ  𝑚ሺ𝑥௜ሻሻଶ
ே
௜ୀଵ ൅ 𝜆 {ሺ𝐷௤𝑚ሺ𝑥ሻሻଶ 𝑑𝑥׬

for 𝑞 ൌ 𝐾 ൅ 1, where 𝑚 is 𝑞-times differentiable function on [𝑎, 𝑏], 
and 𝜆 governs the trade-off between “fit” and jerkiness of the (𝑞-1)th
derivative of the curve 𝑚. The most common application is 𝐾 ൌ 3.
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• When 𝐾 ൌ 3, the term ׬ሺ𝑚′′ሺ𝑥ሻሻଶ 𝑑𝑥 is a roughness penalty.

• The above minimization problem is an infinite-dimensional 
optimization problem over all functions 𝑚ሺ𝑥ሻ for which the criterion 
is well-defined and finite.

• It turns out that the problem over the class of all twice differentiable 
functions on [𝑎, 𝑏] has a unique solution: the natural cubic spline

• A natural spline 𝑚 𝑥 of degree 𝑘 with knots 𝑡ଵ< 𝑡ଶ <… < 𝑡் is a 
piecewise polynomial of degree 𝑘 such that 

- 𝑚 𝑥 is a 𝑘௧௛degree polynomial on each (∞, 𝑡ଵ], [𝑡ଵ,  𝑡ଶ], …, [𝑡், ∞)

- 𝑚 𝑥 is a ሺ𝑘 െ 1ሻ௧௛degree polynomial on each (∞, 𝑡ଵ], and [𝑡் , ∞)

- 𝐷௟𝑚 𝑥 is continuous at each of 𝑡ଵ, …., 𝑡் , for all 𝑙 = 0, …, 𝑘 െ 1.

Spline Smoothing: Natural Spline

• Implicitly, natural splines are only defined for an odd degree 𝑘
(linear, cubic, etc.). At the boundary points, the behavior is different! 

• The unique solution is the (natural) cubic spline. with knots at the 
input points 𝑥ଵ, 𝑥ଶ, …, 𝑥ே

𝑚ෝఒ 𝑥 is a cubic polynomial between two successive 𝑋-values.

This result is known as the Representer Theorem; the proof is in 
Green and Silverman (1993).

• At the 𝑥௜ , 𝑚ෝఒ 𝑥 and its first two derivatives are continuous. At the 
boundary points 𝑥ଵ and 𝑥ே, the second derivative is zero. 

Note: These properties follow from the choice of penalty. A different 
penalty produces different solutions.

Spline Smoothing: Natural Spline
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Figure 5. A spline smooth (Motorcycle data set). From Hardle (1990).

Spline Smoothing: Example

• From the Representer Theorem, with 𝐾 ൌ 3, we pick a basis 𝜂ଵ, 𝜂ଶ, 
…, 𝜂ே for the set of 3rd degree natural splines with knots at 𝑥ଵ, 𝑥ଶ, …, 
𝑥ே, and reparametrize the minimization problem (2) as

minఉ ∑  ሺ𝑦௜  െ ∑ 𝛽௝𝜂௝ሺ𝑥௜ሻሻଶ
ே
௝ୀଵ

ே
௜ୀଵ ൅ 𝜆 ׬ ሼ∑ 𝛽௝𝜂௝′′ሺ𝑥ሻሽ

ே
௝ୀଵ

ଶ
𝑑𝑥

௕
௔

• We solve for 𝜷෡ ∈ 𝑅ே, the smoothing spline estimator is:

𝑚ෝఒሺ𝑥ሻ ൌ  ∑ 𝛽መ௝ 𝑥 𝜂௝ሺ𝑥௜ሻ
ே
௜ୀଵ 𝐷ଶ

• Let basis matrix 𝑳 ∈ 𝑅ே୶ே & penalty matrix 𝛀 ∈ 𝑅ே୶ே have entries

𝐿௜௝ ൌ 𝜂௝ 𝑥௜ , Ω௜௝ ൎ ׬ 𝐷ଶ𝜂௜ሺ𝑥ሻ𝐷ଶ𝜂௝ሺ𝑥ሻ𝑑𝑥
௕
௔

• Now, we can write the problem as: 

min
ఉ

∥ 𝒚 െ 𝑳𝜷 ∥ଶ
ଶ ൅ 𝜆 𝜷ᇱ𝛀 𝜷 

Spline Smoothing: Ridge Regression
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• We write the problem as: 

min
ఉ

∥ 𝒚 െ 𝑳𝜷 ∥ଶ
ଶ ൅ 𝜆 𝜷ᇱ𝛀 𝜷 

which is similar to a ridge regression problem. Thus, the solution has 
the form:

𝜷෡ = ሺ𝑳ᇱ𝑳 ൅  𝜆 𝛀ሻିଵ 𝑳ᇱ𝒚

• Then, we can write the smoothing spline as:

𝑚ෝఒ 𝑥 ൌ 𝑳 𝑳ᇱ𝑳 ൅  𝜆 𝛀 ିଵ𝑳ᇱ𝒚

ൌ ∑ 𝑤ఒ,௜ 𝑥
ே
௜ୀଵ  𝑦௜

That is, the spline is linear in the 𝑦௜ observations (a linear smoother).

• Q: Is the shape of the weights? 

Spline Smoothing: Ridge Regression

• Silverman (1984) showed for large 𝑁, small 𝜆, and 𝑥௜
ᇱ𝑠 not too close 

to the boundary, 

𝑤ఒ,௜ 𝑥, 𝑥௜ ൎ ଵ 

௙ሺ௫೔ሻ

ଵ 

௛ሺ௫೔ሻ
𝐾ሺ௫ ି ௫೔ 

௛ሺ௫೔ሻ
ሻ

where the local bandwith ℎ 𝑥௜ satisfies 

ℎ 𝑥௜ ൌ ఒ

௙ሺ௫೔ሻ

ିଵ/ସ

and 𝐾ሺ. ሻ is the “Silverman kernel”:

𝐾 𝑧 ൌ  ଵ 

ଶ
exp െ |௭|

ଶ
 ∗ sin ሺ ௭

ଶ
൅  గ 

ସ
ሻ

• That is, the weight function looks like a kernel, an equivalent 
kernel.

Spline Smoothing: Weights & Kernels
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Figure 6. The asymptotic spline kernel function. From Hardle (1990).

𝐾 𝑧 ൌ  
ଵ 

ଶ
exp െ

|௭|

ଶ
 ∗ sin ሺ

௭

ଶ
൅  

గ 
ସ
ሻ

Spline Smoothing: Weight Function – Example

• A variation to compute splines is to solve the equivalent problem

𝑚𝑖𝑛௠ ׬ |𝑚ᇱᇱ 𝑥 |ଶ 𝑑𝑥 subject to ∑ ሺ𝑦௜  െ  𝑚ሺ𝑥௜ሻሻଶ
ே
௜ୀଵ ൑ Δ

• The parameters 𝜆 and Δ have similar meanings, and are connected 
by the relationship

𝜆 ൌ െ|𝐺ሺΔሻ|ିଵ

where

𝐺 Δ ൌ ሺ𝑚ෝ୼׬
ᇱᇱ 𝑥 ሻଶ 𝑑𝑥

and  𝑚ෝ୼ሺ𝑥ሻ solves the above problem. 

Spline Smoothing: Equivalent Formulation
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Table 1. Bias and variance of kernel and 𝑘-NN smoother

kernel 𝑘-NN

bias

variance

Kdxf

xfmfm
h

)(2

))(''2''(2 
Kdxf

xfmfm
nk

)(8

))(''2''(
)/(

3
2 

Kcxnhf

x

)(

)(2
Kck

x)(2 2

Comparison: Kernel, 𝒌-NN & Spline Smoothers

Figure 7. Hardle (1990). A simulated data set. The raw data N=100 
were constructed from                                                           and)1,0(~),1,0(~,)( UXNXmY iiiii 

2)2/1(2001)(  xexxm

Note: Noisy Data.

Comparison: Kernel, 𝒌-NN & Spline Smoothers
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Figure 8. A kernel smooth of  the simulated data set. The black line 
(label 1) denotes the underlying regression curve                                   
The green line (label 2) is the Gaussian kernel smooth 𝑚ෝ௛ሺ𝑥ሻ, ℎ=.05

2)2/1(2001)(  xexxm

Note: As expected, 
kernel goes through 
the data.

Check smoother at  
boundaries (inaccurate 
at left).

Comparison: Kernel, 𝒌-NN & Spline Smoothers

Figure 9. Hardle (1990). A 𝑘-NN kernel smooth of  the simulated 
data set. The black line (label 1) denotes the underlying regression 
curve. The green line (label 2) is the 𝑘-NN smoother. 𝑚ෝ௞ሺ𝑥ሻ, 𝑘=11.

Note: Rougher curve..

Check smoother at  
boundaries (more 
points averaged).

Comparison: Kernel, 𝒌-NN & Spline Smoothers
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Figure 10. Hardle (1990). A spline smooth of  the simulated data set. 
The black line (label 1) denotes the underlying regression curve. The 
green line (label 2) is the spline smoother 𝑚ෝ୼ሺ𝑥ሻ, Δ=75.

Note: As expected, 
very good track of  
observations.

Negative smooth 
(possible, even when all 
observations positive, 
check weights).

Comparison: Kernel, 𝒌-NN & Spline Smoothers

Figure 11. Hardle (1990). Residual plot of  𝑘-NN, kernel and spline 
smoother for the simulated data set. 

Comparison: kernel, 𝒌-NN & Spline smoothers

Note: Similar overall 
pattern. Artificial 
bump at 𝑥 ≈ 0.2.
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Series Estimation: Polynomial Approximations

• A good series approximation 𝑚௞ 𝑥 will have the property that it 
gets close to the true 𝑚 𝑥 as 𝑘 increases. 

• The Stone-Weierstrass theorem, (Weierstrass (1885), Stone (1937, 
1948)) states that any continuous function can be arbitrarily uniformly 
well approximated by a polynomial of sufficiently high order:

sup
௫∈௑

|𝑚௞ 𝑥 െ𝑚 𝑥 | ൑ 𝜀

for any 𝜀 > 0.

• Thus, 𝑚 𝑥 can be arbitrarily well approximately by selecting a 
suitable polynomial. A usual choice is a cubic polynomial (𝑘 ൌ 3):

𝑚௞ 𝑥 ൌ 𝛽଴ ൅ 𝛽ଵ𝑥 ൅ 𝛽ଶ𝑥ଶ ൅  𝛽ଷ𝑥ଷ

Note: In this  case, the basis functions are 𝑥, 𝑥ଶ, and 𝑥ଷ.

• The above result can be strengthened. If the 𝑠-th derivative of 𝑚 𝑥
is continuous, then the uniform approximation error, 𝑟௞,௜ , satisfies

sup
௫∈௑

|𝑟௞,௜ ൌ 𝑚௞ 𝑥 െ𝑚 𝑥 | ൌ 𝑂ሺ 𝐾ିαሻ

as 𝐾→∞ where  α=𝑠/𝑑. (dim 𝑋 ൌ 𝑁 ∗ 𝑑)

• Useful result: It gives a rate at which the approximation 𝑚௞ 𝑥
approaches 𝑚 𝑥 as 𝐾 increases.

• Intuitively, the number of derivatives 𝑠 indexes the smoothness of 
𝑚 𝑥 . The best rate at which a polynomial (or spline) approximates 
𝑚 𝑥 depends on the underlying smoothness of 𝑚 𝑥 .

• Both results hold for spline approximations.

Series Estimation: Polynomial Approximations
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• 𝑚 𝑥 can be arbitrarily well approximately by picking a suitable 
polynomial. We plot approximations of 𝑚 𝑥 ൌ  𝑥 .ଶହ ሺ1 െ 𝑥ሻ.ହ on 
ሾ0, 1ሿ.

Note: The approximation 
with 𝐾 = 3 is fairly crude, 
but improves with 𝐾 = 4 
and it is very good with 
𝐾 = 6.

Series Estimation: Polynomial Approximations

Example: We use 3rd degree polynomial to estimate the relation  
between  (ibm_x) & (Mkt_RF). We use the splines R package.

x <- Mkt_RF

y <- ibm_x

mod_poly <- lm(y ∼poly(Mkt_RF,3))

> summary(mod_poly)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)      -0.000219   0.002386  -0.092    0.927    

poly(Mkt_RF, 3)1  0.980807   0.058965  16.634   <2e-16 ***

poly(Mkt_RF, 3)2  0.003651   0.058965   0.062    0.951    

poly(Mkt_RF, 3)3  0.046379   0.058965   0.787    0.432    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05897 on 607 degrees of freedom

Multiple R-squared:  0.3136, Adjusted R-squared:  0.3102 

F-statistic: 92.43 on 3 and 607 DF,  p-value: < 2.2e-16

Series Estimation: Polynomial Approximations
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Example (continuation):
newdata <- data.frame(Mkt_RF = x_v)

preds <- predict(mod_poly, newdata)

pred_capm <- predict(capm_ibm, newdata)

plot(Mkt_RF, ibm_x, cex=1.5, pch="*", main="Polynomial (k=3) Regression - CAPM")

lines(x_v, preds, col="red", lwd=2)

Series Estimation: Polynomial Approximations

Series & Polynomials: Runge’s Phenomenon

• Despite the excellent approximation implied by the Stone-
Weierstrass theorem, polynomials have the troubling disadvantage that 
they are very poor at simple interpolation. 

The problem is known as Runge’s phenomenon.

• In contrast, splines do not show Runge’s phenomenon. (See next 
Figure.) While the fitted spline displays some oscillation relative to 
𝑚 𝑥 , but they are relatively small.

• Because of Runge’s phenomenon, high-order polynomials are not 
used for interpolation, and are not popular choices for high-order 
series approximations. Instead, splines are widely used.
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• We plot approximations of 𝑚 𝑥௜ ൌ 1/ሺ1 ൅ 𝑥௜ଶሻ on [-5, 5], with 
𝐾=11. Using a 10-th order polynomial. The discrepancy increases to 
infinity with 𝐾.

Note: The approximation 
is not accurate and far 
from the smoother true 
𝑚ሺ𝑥௜ሻ.

Series & Polynomials: Runge’s Phenomenon

Series & Polynomials: Regression

• We have observations on ሺ𝑌, 𝑋ሻ. Steps:

(1) For each 𝑖, and given 𝐾, construct the regressor vector 𝑧௞,௜ ൌ
𝑧௞ሺ𝑥௜ሻ, using the series transformations.

(2) Stack the observations in the matrices 𝒚 and 𝒛௞.

(3) Do OLS  𝑏 ൌ ሺ𝒛௞′𝒛௞ሻିଵ𝒛௞′ 𝒚
(4) Compute the LS regression function: 𝑚ෝ௞ሺ𝑥ሻ ൌ 𝒛௞ሺ𝑥ሻ′𝑏௞
(5) Compute estimated errors: 𝑒௞,௜ ൌ 𝑦௞,௜ െ 𝑚ෝ௞ሺ𝑥௜ሻ ൌ 𝑦௞,௜ െ
𝒛௞ሺ𝑥ሻ′𝑏௞

Note: We estimate one error, 𝜀௞,௜ , but we have two errors: the usual 
model error, 𝜀௜, and the approximation error, 𝑟௞ሺ𝑥௜ሻ ൌ 𝑟௞,௜. That is, 

𝜀௞,௜ ൌ 𝑟௞,௜ + 𝜀௜

• To assess the fit of the regression, we can calculate the R2 as usual.
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Series & Polynomials: Regression – 𝑲
• 𝛽௞ is a function of 𝐾. This reflect the goal to be flexible to 
incorporate greater complexity when the data are sufficiently 
informative. That is, 𝐾 will typically be increasing with sample size 𝑁.

• 𝐾 plays the role of ℎ in kernel estimation. Larger 𝐾 implies smaller 
approximation error but increased estimation variance.

• The number of series terms, 𝐾, can be determined through CV.

• The asymptotics are complicated. We need a new set of assumptions:

Compact set, smoothness of 𝑚 𝑥 , bounded error variance, non 
singularities in 𝑧௞, bounded E[𝑧௞,௜′𝑧௞,௜], 𝐾 is chosen appropriately –i.e, 
a function of 𝑁 and grows slower than 𝑁, etc.

Series & Polynomials: Regression – Asymptotics

• Convergence

Under certain assumptions (compact set, smoothness of 𝑚 𝑥 , 
bounded error variance, non singularities in 𝑧௞, bounded E[𝑧௞,௜′𝑧௞,௜], 
𝐾 is chosen appropriately –i.e, a function of 𝑁 and grows slower than 
𝑁, etc.), the LS estimator 𝒃௞ converges to 𝛽௞ in m.s. distance. See 
Newey (1997).

• Asymptotic normality

Even though we are in a situation similar to parametric estimation, the 
fact that 𝐾 can grow and the finite sample bias due to the 
approximation error, a new theory needs to be developed.

It turns out that under the same assumptions needed for convergence  
and imposing some mild restrictions on 𝐾 and the bias, the estimator 
is asymptotically normal. See Newey (1997).



RS – EC2 - Lecture 11

57

• The estimator has the asymptotic bias component 𝑟௞ሺ𝑥ሻ, due to the 
finite order series as approximation to the unknown 𝑚 𝑥 . The 
asymptotic distribution shows that the bias term is negligible if 𝐾
diverges fast enough so that 𝑁𝐾-2α→0. (In practical terms, this means 
that 𝐾 is larger than optimal.)

Asymptotic standard errors for the 𝑚 𝑥 can be estimated with:

where

See Newey (1997) for details.

Series & Polynomials: Regression – Asymptotics

• A model is called semiparametric if it is described by θ and 𝜏, 
where θ is finite-dimensional (parametric) and 𝜏 is infinite-dimensional 
(nonparametric). 

• All moment condition models are semiparametric in the sense that 
the distribution of the data (𝜏) is unspecified and infinite dimensional. 
But the settings more typically called semiparametric are those where 
there is explicit estimation of 𝜏.

• In many contexts the nonparametric part 𝜏 is a conditional mean, 
variance, density or distribution function.

• Often θ is the parameter of interest, and  is a nuisance parameter, but 
this is not necessarily the case.

Semiparametric Methods (SPM)
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Example: Feasible Nonparametric GLS 

DGP: 𝒚 = 𝑿 𝜃 +  (dim(𝑿)= Nxq)

E[|𝑿] = 0

E[௜2|𝑿] = σ2(𝑥௜) (𝜏(𝑥௜)= σ2(𝑥௜)) 
where the variance function σ2(𝑥௜) is unknown but smooth in 𝑿.

• We want to estimate 𝜃. GLS is the efficient method, but it is not 
feasible. 

Feasible GLS is possible. Replace σ2(𝑥௜) using a nonparametric 
estimator (a kernel or a 𝑘-NN estimator). 

• Q: What is the asymptotic distribution of the GLS estimator?  

Semiparametric Methods (SPM): Example 1

Example: Generated Regressors

DGP: 𝑦௜ =  𝜽 𝜏ሺ𝑥௜ሻ+ ௜
E[|X] = 0
𝜽 is finite dimensional and 𝜏 is an unknown function.

• Suppose 𝜏 is identified by another equation. We have consistent 
estimate, �̂�ሺ𝒙ሻ. (Imagine a non-parametric Heckman estimator).

• Then, OLS is possible to estimate 𝜽. This problem is called generated 
regressors, as the regressor is a (consistent) estimate of an infeasible 
regressor.

• Q: In general, the OLS estimator is consistent. But what is its 
distribution?

Semiparametric Methods (SPM): Example 2
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• Based on Andrew’s (1994) MINPIN paper.

Setting: 𝜽෡ MINimizes a criterion function, QN (𝜽, �̂�), which depends 
on a Preliminary Infinite dimensional Nuisance parameter estimator.

 𝜽෡ is a two-step estimator

• The usual derivation of asymptotic distributions expands the f.o.c. 
𝑚ሺ𝜽, 𝜏ሻ ൌ 0, We can do this for 𝜽, but not for 𝜏 (it is infinite 
dimensional). 

• To proceed, Andrews uses a stochastic equicontinuity assumption. 
Now, we work with the population version of 𝑚ሺ𝜃, 𝜏) = E[𝑚௜ሺ𝜃, 𝜏ሻ] 
and study the convergence of 

𝜐௡ 𝜏 ൌ 𝑁 ሺ𝑚ഥ௡ 𝜽଴, 𝜏 െ 𝑚 𝜽଴, 𝜏 ሻ

ൌ 1/ 𝑁 ∑ ሼ𝑚௜ 𝜽଴, 𝜏 െ E[𝑚௜ሺ𝜽଴, 𝜏ሻሿሽே
௜ୀଵ

SPM: Asymptotic Distribution

• Under a lot of assumptions: 𝜽෡ and �̂�ሺx) 
  ௣  

to 𝜽଴ and  𝜏଴; f.o.c. equal 
to 0 at (𝜽଴, 𝜏଴ሻ –i.e., identification condition-, convergence of f.o.c.; 
smoothness of underlying functions; and existence of moments), 

𝑁 (𝜽෡ െ 𝜽଴) 
  ௗ   

 𝑁ሺ0,𝑽ሻ,
where

• The theorem says that 𝜽෡ has the same asymptotic distribution as the 
idealized estimator obtained by replacing the nonparametric estimate �̂�
with the true function  𝜏଴.

 the estimator is adaptive. 

SPM: Asymptotic Distribution



RS – EC2 - Lecture 11

60

• But the assumptions are not trivial. The convergence in probability 
assumptions need to be verified. The key assumption is 

𝑚ሺ𝜽଴, 𝜏଴ሻ= δQN(𝜽, 𝜏)/δ𝜃|(𝜽 = 𝜽0, 𝜏= 𝜏଴) = 0. 

• This assumption does not always hold. It turns out, it requires a

sort of orthogonality condition between the estimation of 𝜽 and 𝜏. 

• It holds for example 1 (FGLS with nonparametric variance), but not 
for Example 2 (generated regressors).

SPM: Asymptotic Distribution

• It is easy to define a “partially linear” regression model: 
𝑦௜ =  𝑚௭ሺ𝒛௜ሻ + 𝒙௜′  + ௜ (dim(𝒛௜)=Nxq)
E[௜|𝒙௜, 𝒛௜] = 0
E[௜2|𝒙௜ = 𝒙, 𝒛௜ = 𝒛] = σ2ሺ𝒙, 𝒛ሻ

- The regressors are ሺ𝒙, 𝒛ሻ. 
- The conditional mean is linear in 𝒙௜ , but possibly non-linear in 𝒛௜. 
- Dummy variables are usually put in the 𝒙 vector
- To keep things simple, we assume just one nonlinear variable: 𝑞 =1.

• Goal: Estimate  and 𝑚௭ሺ𝒛௜ሻ, and to obtain C.I.

• Issues: Identification, Distribution of estimates.

SPM: Partially Linear Regression Model
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• Robinson (Econometrica, 1988) shows we can concentrate out 𝑚௭ሺ𝒛௜ሻ
by using a genearlization of residual regression. Start with: 

𝑦௜ =  𝑚௭ሺ𝒛௜ሻ + 𝒙௜′  + ௜, (dim(𝒛) = 𝑁 ∗ 𝑞 )

Taking conditional expectations n Z:

E[𝑦௜|𝒛௜] = E[𝑚௭ 𝒛௜ 𝒛௜ ൅ E[ xi’ β|𝒛௜] = 𝑚௭ 𝒛௜ ൅ E[𝒙௜
ᇱ|𝒛௜] 

- Two conditional means:

- 𝑚௬ 𝒛௜ ൌ E[𝑦௜|𝒛௜]

- 𝑚௫ 𝒛௜ ൌ E[𝒙௜|𝒛௜] 
- Then, 

𝑚௬ 𝒛௜ ൌ 𝑚௭ 𝒛௜ ൅ 𝑚௫ 𝒛௜ ′ 
Subtract from the original equation (𝑚௭ 𝒛௜ disappears):

𝑦௜ െ 𝑚௬ 𝒛௜ = [𝒙௜′ െ 𝑚௫ 𝒛௜ ′]  + ௜

SPM: Estimation

• Rewrite relation in terms of residuals:

𝑦௜ െ 𝑚௬ 𝒛௜ = [𝒙௜′ െ 𝑚௫ 𝒛௜ ′]  + ௜
- ௬௜ = 𝑦௜ െ 𝑚௬ 𝒛௜
- ௫௜ = [𝒙௜′ െ 𝑚௫ 𝒛௜ ′] 

- ௬௜ = ௫௜′  + ௜

That is,  is the coefficient of the regression of ௬௜ on ௫௜. But, we do 
not observe the errors. It is an unfeasible LS estimator!

• Robinson suggests the following steps: 

1) Estimate 𝑚௬ . , 𝑚௫ሺ. ሻ by NW/LL regression  (different ℎ’s, OK). 

2) Get the residuals, ௫௜ & ௬௜ .
3) Using the residuals, do OLS to estimate .

SPM: Estimation
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• The nonparametric regression estimates depend inversely on 𝑓௭෡ሺ𝑧ሻ.

Problem: For values of 𝒛௜ where 𝑓௭෡ሺ𝒛௜ሻ is close to 0. 𝑓௭෡ሺ𝑧ሻ is not 
bounded away from 0. The NW estimates at this point can be poor.

Solution: Trimming. 

Let 𝒃 > 0 be a trimming constant. The trimmed estimator of  is:

෠ = (∑ ௫௜௫௜′ே
௜ୀଵ I[𝑓௭෡ሺ𝒛௜ሻ ≥ 0])-1 ∑ ௫௜௬௜′ே

௜ୀଵ I[fz𝑓௭෡ሺ𝒛௜ሻ ≥ 0]

 This is a trimmed LS residual regression.

The asymptotic theory requires that 𝒃 = 𝒃N →0, but it is not clear  
how to select 𝒃 in practice. Often trimming is ignored in applications. 
Suggestion: Estimate model with and without trimming.

SPM – Estimation: Trimming

• The needed regularity conditions: the data are i.i.d., 𝒛௜ has a density, 
and the regression functions, density, and conditional variance 
function are sufficiently smooth with respect to their arguments.

• Assume ℎ is the same for all 𝑞. The important condition on the ℎ
sequence is

• Equivalently, what is essential is that the estimators themselves 
converge faster than 𝑁 -1/4. From the theory for nonparametric 
regression, these rates hold when ℎ’s are picked optimally and 𝑞 ≤ 3.  

SPM – Asymptotic Distribution
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Theorem (Robinson). Under regularity conditions, including 𝑞 ≤ 3; 
the trimmed estimator satisfies

That is, ෠ is asymptotically equivalent to the infeasible LS estimator. 

• Estimate the variance matrix V as usual, using residuals.

SPM – Asymptotic Distribution

• The model: 

𝑦௜ =  𝑚௭ሺ𝒛௜ሻ + 𝒙௜′  + ௜, (dim(𝒛) = 𝑁 ∗ 𝑞 )

• We estimated . Now, we want to estimate 𝑚௭ሺ𝒛௜ሻ. It looks like an 
iterative algorithm is needed, but since  converges faster than the 
nonparametric rate, we can pretend it is fixed. Then,

• The bandwidth ℎ = (ℎ1, ...,  ℎq) is distinct from those for the first-
stage regressions. Standard errors for 𝑚௭ሺ𝒛௜ሻ as usual for standard 
nonparametric regression.

SPM – Estimation of Nonparametric Part
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• In a semiparametric context, it is important to study the effect a 
bandwidth has on the performance of the estimator of interest before 
determining the bandwidth. 

• In many cases, this requires a nonconventional bandwidth rate.

• However, this problem does not occur in partially linear models. The 
first-step bandwidths ℎ used for 𝑚ෝ௬ሺ𝒛௜ሻ and 𝑚ෝ௫ሺ𝒛௜ሻ are inputs for 
calculation of ෠.  

• ℎ impacts the theory for ෠, through the uniform convergence rates 
for 𝑚ෝ௬ሺ𝒛௜ሻ and 𝑚ෝ௫ሺ𝒛௜ሻ, suggesting that we use conventional 
bandwidth rules, for example CV.

SPM – Bandwidth Choice

There are some specification tests that compare non-parametric 
regressions (“unconstrained” model) with parametric regressions 
(“constrained” model). See Blundell and Duncan (1998), Pagan and 
Ullah (1999) and Yatchew (Chapter 6).

• Recent research has focused on correcting for endogeneity (see 
Yatchew) and heteroscedasticity (see Yatchew). In general, the most 
promising approaches are two-step methods. 

(1) Non-parametrically regress endogenous 𝑥 variables on the IV 𝒛, 
and calculate “errors” as the difference between those 𝑥 variables and 
their (non-parametrically) predicted values. 

(2) Add these errors into the equation of interest.

Further Comments
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