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Lecture 26
Introduction to Nonparametric 

Regression: Density Estimation

(for private use, not to be posted/shared online)

The goal of a regression analysis is to produce a reasonable analysis 
to the unknown response function 𝑓, where for 𝑁 data points (𝑥௜ , 
𝑦௜), the relationship can be modeled as 

𝑦௜ =  𝑚ሺ𝑥௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

Note: 𝑚ሺ𝑥௜ሻ = E[𝑦௜|𝑥௜] if E[௜|𝑥௜]=0 –i.e.,  ┴ 𝑥

We have different ways to model the conditional expectation 
function (CEF), 𝑚ሺ. ሻ:
- Parametric approach

- Nonparametric approach

- Semi-parametric approach.

2

Non Parametric Regression: Introduction
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Parametric approach: 𝑚ሺ. ሻ is known and smooth. It is fully 
described by a finite set of parameters, to be estimated. Easy 
interpretation. For example, a linear model:

𝑦௜ = 𝑥௜′  + ௜, 𝑖 = 1, 2, ...., 𝑁.

Nonparametric approach: 𝑚ሺ. ሻ is smooth, flexible, but unknown. 
Let the data determine the shape of 𝑚ሺ. ሻ.  Difficult interpretation.

𝑦௜ =  𝑚ሺ𝑥௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

Semi-parametric approach: 𝑚ሺ. ሻ have some parameters -to be 
estimated-, but some parts are determined by the data.

𝑦௜ = 𝑥௜′  + 𝑚ሺ𝑧௜ሻ + ௜, 𝑖 = 1, 2, ...., 𝑁.

3

Non Parametric Regression: Introduction

4

Non Parametric Regression: Introduction



RS – EC2 - Lecture 11

3

Parametric and non-parametric approaches use a weighted sum of 
the 𝑦’s to obtain the fitted values, 𝑦ො௜. That is,

𝑦ො௜ = ∑ 𝑤௜
ே
௜ 𝑦௜

Instead of using equal weights as in OLS or weights proportional to 
the inverse of variance as often in GLS, a different rationale 
determines the choice of weights in nonparametric regression.

In the single regressor case, the observations with the most 
information about 𝑓ሺ𝑥଴ሻ should be those at locations 𝑥௜ closest to 
𝑥଴. 

• Thus, a decreasing function of the distances of their locations 𝑥௜
from 𝑥଴ determines the weights assigned to 𝑦௜’s. 5

Non Parametric Regression: Introduction

A decreasing function of the distances of their locations 𝑥௜ from 𝑥଴
determine the weights assigned to 𝑦௜’s. 

The points closest to 𝑥଴ receive more weight than those more 
remote from 𝑥଴. Often, points remote from 𝑥଴ receive little or no 
weight.

6

Non Parametric Regression: Introduction
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We have a large number of observations on a RV 𝑋. We would like 
to “draw” the pdf of 𝑋. Ideally, we want to recover the underlying 
DGP’s pdf. 

The easiest way to draw a pdf is a histogram, which produces a step 
function.

• But, in this lecture, we emphasize kernel density estimation 
(KDE), which produces a smooth function. KDE is the most 
popular method for density estimation. 

7

Density Estimation: Univariate Case

In a histogram we divide the range of 𝑋 into a small number of 
intervals (bins), ℎ, and count the number of times 𝑋, 𝑛௜, is observed 
in each interval 𝑖:

𝑝௜ = 
௡೔ሺ௛ሻ

ே

The LLN tells us that 𝑝௜ approximates the probability of observing a 
new point in the interval 𝑖. 

Q: How wide should the bins be? Too small (too many bins) 
distribution looks jerky, too large (few bins), shape is not easy to 
visualize.

Two questions: - Do we want the same bin-width everywhere?

- Do we believe the density is zero for empty bins? 8

Density Estimation: Histogram
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Density Estimation – Bins: Example

Changes in SF Home Prices - 50 bins

Changes in Prices

F
re

q
u
e
n
cy

-4 -2 0 2 4

0
5

1
0

1
5

2
0

2
5

• We use two histograms to fit percentage changes in monthly San 
Francisco home prices, with two ℎ (large ℎ, 10 bins; small ℎ, 50 bins). 

 Smaller ℎ, more resolution.

The histogram is close to, but not truly density estimation.

It does not try to estimate 𝑓ሺ𝑥ሻ at every 𝑥.  Rather, it partitions the 
sample space into bins, and only approximate the density at the center 
of each bin. 

Two problems with histograms:

(1) For a given number of bins, moving their exact location 
(boundary points) can change the graph.

(2)  The density function produced is a step function and the 
derivative either equals zero or is not defined (when at the cutoff 
point for two bins). 

- This is a problem if we are trying to maximize a likelihood function 
that is defined in terms of the densities of the distributions. 10

Density Estimation: Problems with Histograms
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First, define the density function for a variable 𝑥. For a particular 
value of 𝑥, call it 𝑥଴, the density function is:

For a sample of data on 𝑥 of size 𝑁, a histogram with a column width 
of 2ℎ, centering the column around 𝑥଴ can be approximated by:

𝑓መு௜௦௧ 𝑥଴ ൌ
1
𝑁
෍

𝐼ሾ𝑥଴ െ ℎ ൏  𝑥௜  ൏  𝑥଴ ൅ ℎሿ
2ℎ

ே

௜ୀଵ

ൌ
1
𝑁ℎ

෍𝐼ሺ
 𝑥௜  െ 𝑥଴

ℎ
൏ 1ሻ

ே

௜ୀଵ

This function equals the fraction of the sample that lies within ℎ of 
𝑥଴, divided by the column width (2ℎ). This is the naive estimator. 

𝑓መு௜௦௧ 𝑥଴ ൌ
ଵ

ே௛
∑ 𝑤ሺ

 ௫೔ ି ௫బ
௛

ሻே
௜ୀଵ 𝑤 𝑢 ൌ ൝

ଵ

ଶ
              𝑖𝑓 𝑢 ൏ 1

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note: 𝑥଴ is any value of 𝑋, not necessarily an 𝑥௜ value in the sample. 
11

Density Estimation: Definition of  Histogram
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Dealing with the two problems: 

(1) Arbitrary location of the bin cutoff points

Solution: Define a “moving” bin that is defined for every possible 
value of 𝑥. Then, count how many actual 𝑥௜ ’s are within ℎ/2 of the 
hypothetical point, and “normalizes” this count by the number of total 
observations (𝑁) and the “bandwidth,” ℎ.

(2) Discontinuity in the function. 

Solution: Kernel density estimation (KDE). It avoids the discontinuities in 
the estimated (empirical) density function. In terms of histogram 
formula, the kernel is everything to the right of the summation sign. 
The general formula for the kernel estimator (Parzen window): 

. 𝑓መு௜௦௧ 𝑥଴ ൌ ଵ

ே௛
∑ 𝐾ሺ ௫೔ ି ௫బ 

௛
ሻே

௜ୀଵ
12

Density Estimation: Problems Revisited
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The kernel estimator is given by: 𝑓መு௜௦௧ 𝑥଴ ൌ ଵ

ே௛
∑ 𝐾ሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ

That is, 𝑓መு௜௦௧ 𝑥 is a superposition of 𝑁 density functions.
13

Kernel Density Estimation (KDE)

Assume 𝐾ሺ. ሻ ~ N(0, 1). Then, 𝑓መு௜௦௧ 𝑥଴ ൌ ଵ

ே௛
∑ 𝑑𝑛𝑜𝑟𝑚ሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ

d_h <- matrix(0, N, 2) # N=359

h <- 1 # bandwidth

for (j in 1:N){

d_h[j,1] <- r_sf[j]

for (i in 1:N){

d_h[j,2] <- d_h[j,2] + dnorm((r_sf[i]-d_h[j,1])/h)

}

d_h[j,2] <- d_h[j,2]/(N*h)

}

plot(d_h, xlab="Changes in Prices", ylab="Frequency",main = "Changes in SF Home Prices -
Normal kernel, h=1")

• A lot of calculations: 𝑁2=128,881  Not practical for large 𝑁. 14

KDE: SF Prices Example With Normal Kernel
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Q: Is  𝑓መு௜௦௧ሺ𝑥ሻ a legitimate density function? It needs to satisfy:

(1) nonnegative 

(2) integrate to one.

Easy to do: Require the Kernel (window) function, 𝐾ሺ. ሻ to satisfy: 

(1) 𝐾ሺ𝑥ሻ ≥ 0

𝐾׬ (2) 𝑢  𝑑𝑢 = 1

Define the function: 𝛿௡ሺ𝑥ሻ ൌ
ଵ

௛
 𝐾ሺ௫

௛
ሻ

Then, 𝑓መு௜௦௧ሺ𝑥ሻ can be written as 

𝑓መு௜௦௧ 𝑥 ൌ ଵ

ே
∑ 𝛿ሺ𝑥௜ െ 𝑥଴ሻ
ே
௜ୀଵ 15

Kernel Density Estimation (KDE): Properties

Check the properties of 𝑓መு௜௦௧ሺ𝑥ሻ and 𝛿௡ሺ𝑥ሻ:

𝛿௡׬ 𝑥 െ 𝑥௜  𝑑𝑥 ൌ ׬
ଵ

௛
𝐾 ሺ

௫ ି ௫೔
௛
ሻ  𝑑𝑥 ൌ 𝐾׬ 𝑢  𝑑𝑢 ൌ 1

𝑓መு௜௦௧׬ 𝑥  𝑑𝑥 ൌ ׬
ଵ

ே
∑ 𝛿௡ሺ𝑥 െ 𝑥௜ሻ
ே
௜ୀଵ 𝑑𝑥 ൌ ଵ

ே
∑ 𝛿௡ሺ𝑥 െ 𝑥௜ሻ׬
ே
௜ୀଵ 𝑑𝑥 ൌ  1

• The kernel function can be generalized. 

Note: Any density function satisfies our requirements. For example, 
𝐾ሺ. ሻ can be a normal density.

𝑓መு௜௦௧ሺ𝑥ሻ is a superposition of 𝑁 density functions.

16

KDE: Properties
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• The kernel function 𝐾ሺ𝑧ሻ is a continuous and bounded (usually 
symmetric around zero) real function which integrates to 1.

ℎ is a smoothing parameter (bandwidth), 2ℎ is called the window width.

The order of a kernel, 𝑣, is defined as the order of the first non-zero 
moment, κ௞. For example, if κ1(𝐾) = 0 and κ2(𝐾) > 0 then 𝐾 is a 2nd

order kernel. The order of a symmetric kernel is always even.

Symmetric non-negative kernels are second-order kernels. We will 
emphasize these kernels (𝑣=2).

Higher-order kernels are obtained by multiplying a second-order 
kernel by an (2𝑣-1)-th order polynomial in z2: See Hansen (2009).

KDE: Kernels

• Most common kernel functions:

- Uniform kernel:        𝐾ሺ𝑧ሻ = 0.5 for |𝑧| ≤ 1

= 0 for |𝑧| > 1

- Epanechnikov kernel:  𝐾ሺ𝑧ሻ = 0.75 * ሺ1 െ 𝑧ଶሻ for |𝑧| ≤ 1

= 0 for |𝑧| > 1

- Gaussian (normal) kernel: 𝐾ሺ𝑧ሻ =  ଵ

ଶగ 
𝑒ି

భ
మ

  ௭మ

- Quartic (biweight) kernel: 𝐾ሺ𝑧ሻ = 15/16 * ሺ1 െ 𝑧ଶሻ2 for |𝑧| ≤ 1

= 0 for |𝑧| > 1

- Triweight kernel: 𝐾ሺ𝑧ሻ = 35/32 * ሺ1 െ 𝑧ଶሻ3 for |𝑧| ≤ 1

= 0 for |𝑧| > 1

• Density graph: Plot 𝑓መு௜௦௧ሺ𝑥ሻ against 𝑥଴ and connect points.

KDE: Kernels
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• Two kernels: 
- Epanechnikov kernel 𝐾௘ሺ𝑧ሻ = 0.75 ∗ ሺ1 െ 𝑧ଶ) ∗ Iሺ|𝑧| ≤ 1ሻ

- Gaussian kernel 𝐾௚ሺ𝑧ሻ =  ଵ

ଶగ 
𝑒ି

భ
మ

  ௭మ

KDE: Kernels - Examples

• A drawback of  the Gaussian kernel is that its support is R; in many 
situation, we want to restrict the support, like in the Epanechnikov
kernel (not differentiable at ± 1).

In practice, the choice of the kernel does not matter very much in 
terms of getting a good approximation to the true density function. 
Below, we show two estimations (gaussian and quartic) to simulated 
data.

KDE: Kernels - Examples
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We use a Gaussian and Epanechnikov kernels to fit percentage 
changes in monthly San Francisco home prices, with same ℎ. Very 
similar results!

KDE: Kernels - Examples

Expectation

where we use a change of variables 𝑢 ൌ ௫೔ ି ௫బ
௛

. 

We approximate the integral using a Taylor expansion of 𝑓ሺ𝑥଴ ൅ ℎ𝑢ሻ
around 𝑥଴ (as ℎ ⟶ 0):

Then, for a 𝑣-th order 𝐾ሺ. ሻ (then, κ௝  = 0, for 𝑗 < 𝑣):

KDE: Expectation & Bias
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Then, the expectation is: 

E[𝑓መ 𝑥଴ ሿ ൌ  𝑓 𝑥଴ ൅  ଵ
௩!
𝑓௩ 𝑥଴  ℎ௩  κ௩൅ 𝑜ሺℎ௩ሻ

It is a biased! The bias depends on ℎ, the curvature of 𝑓ሺ. ሻ, and 𝐾ሺ. ሻ. 

• For a 2nd-order kernel, the bias is:

𝑏𝑖𝑎𝑠 𝑓መ 𝑥଴ ൌ 𝐸ሾ𝑓መ 𝑥଴ ሿ  െ  𝑓 𝑥଴ ൌ ଵ

ଶ 
𝑓ᇱᇱ 𝑥଴  ℎଶ  κଶ൅ 𝑜ሺℎଶሻ

When we let ℎ→ 0, the bias shrinks at a rate O(ℎଶ). The bias will be 
larger at points where the density function curves a lot (KDE 
smoothing reduces the bump).

Note: When higher-order kernels are used, the bias is proportional to 
ℎ௩; which is of lower order than ℎଶ. Then, higher-order kernels are

bias-reducing kernels.

KDE: Expectation & Bias

Variance

- From the analysis of bias we know the 2nd term is ൌ 𝑂ሺଵ
ே
ሻ. Recall,

E[𝑓መሺ𝑥଴ሻ] = 𝑓ሺ𝑥଴ሻ + 𝑜ሺ1ሻ

- For the 1st term, we make a change of variables and use a 1st-order 
Taylor expansion:
ଵ

௛
𝐸ሾ𝐾 ሺ ௫೔ ି ௫బ

௛
ሻଶሿ ൌ ଵ

௛
𝐾 𝑢׬ ଶ𝑓 𝑥଴ ൅ ℎ𝑢 𝑑𝑢

ൌ 𝐾 𝑢׬ ଶ𝑓 𝑥଴ ൅ 𝑜ሺℎሻ 𝑑𝑢 ൌ 𝑓 𝑥଴ 𝑅 𝐾 ൅ 𝑜ሺℎሻ

where 𝑅 𝐾 ൌ ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧׬ is called the roughness of the kernel, 𝐾 . .
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KDE: Variance
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Then, the variance is:

𝑉𝑎𝑟 𝑓መ 𝑥଴ ൌ  ௙ ௫బ  ோሺ௄ሻ

ே௛
൅ 𝑜ሺଵ

ே
)

 The variance depends on the 𝑁, ℎ, 𝑓ሺ. ሻ, and 𝐾ሺ. ሻ. It will go to 0 
as 𝑁ℎ → ∞. 

Note: We can combine the previous results (bias and variance) to 
measure precision of 𝑓መሺ𝑥଴ሻ as the MSE: 

MSEሾ𝑓መሺ𝑥଴ሻሿ = ሾ𝑏𝑖𝑎𝑠 𝑓መ 𝑥଴ ሿଶ ൅ V𝑎𝑟 𝑓መ 𝑥଴

= ሾ κೡ
௩!
𝑓௩ 𝑥଴  ℎ௩ሿଶ + 

௙ ௫బ  ோሺ௄ሻ

ே௛

which is called Asymptotic MSE (AMSE). It depends on 𝑁, ℎ, 𝑓ሺ. ሻ, 
and 𝐾ሺ. ሻ. The bias is increasing in ℎ, the variance decreasing in 𝑁ℎ.

KDE: Variance & MSE

Consistency 

For an i.i.d. sample of the RV X, for any 𝑥଴ & a fixed ℎ, 𝑓መሺ𝑥଴ሻ is a 
biased estimate of 𝑓ሺ𝑥଴ሻ. Yet the bias goes to zero if ℎ→ 0 as 𝑁→ ∞. 

• For a 2nd-order K(.) the bias is given by:

𝑏𝑖𝑎𝑠 𝑓መ 𝑥଴ ൌ
1
2 
𝑓ᇱᇱ 𝑥଴  ℎଶ  κଶ൅ 𝑜ሺℎଶሻ

ൎ  ଵ
ଶ 
𝑓ᇱᇱ 𝑥଴  ℎଶ ׬ 𝑢ଶ𝐾 𝑢  𝑑𝑢

 The “size” of this bias is O(ℎଶ).

Assuming that ℎ→ 0 as 𝑁→ ∞, the variance of 𝑓መ 𝑥଴ is: 

𝑉𝑎𝑟ሾ𝑓መሺ𝑥଴ሻ] = 
ଵ

ே௛
𝑓ሺ𝑥଴ሻ ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧׬ ൅ oሺ ଵ

ே௛
ሻ

KDE: Consistency
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𝑉𝑎𝑟ሾ𝑓መሺ𝑥଴ሻ] = [1/(𝑁ℎ)] 𝑓ሺ𝑥଴ሻ ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧׬ ൅ oሺ1/ሺ𝑁ℎሻሻ

 The variance will go to 0 as 𝑁ℎ→ ∞, so ℎ must converge to 0 at a 
slower rate than 𝑁→ ∞. 

The previous results are approximations. They were derived by 
approximating integrals by a Taylor expansion of 𝑓ሺ𝑥 ൅ ℎ𝑢ሻ in the 
argument ℎ𝑢 → 0.

The kernel estimator 𝑓መሺ𝑥଴ሻ is pointwise consistent at any point 𝑥଴ if both 
the variance and bias disappear as 𝑁→ ∞ (check AMSE formula), 
which requires that ℎ→ 0 and 𝑁ℎ→ ∞. 

The uniform convergence (stronger) property holds if  𝑁ℎ/ln(ℎ) → ∞. 

See Cameron and Trivedi’s (CT) textbook for formal details.

KDE: Consistency

Asymptotic normality

The kernel estimator is the sample average. A CLT can be applied. 

Using previous results:

- Given the order of the variance, the rate of convergence is 𝑁ℎ, not  
𝑁 as in standard regression estimates.

- The estimator is biased, so we center 𝑓መሺ𝑥଴ሻ around its expectation. 

That is, by the CLT we get:

𝑁ℎ (𝑓መ 𝑥଴ െ E[𝑓መሺ𝑥଴ሻ]) 
  ௗ  

N(0, 𝑓ሺ𝑥଴ሻ (ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧׬

Note: Given the bias, (𝑓መ 𝑥଴ െ 𝐸ሾ𝑓መ 𝑥଴ ሿ, is also asymptotically 
normally distributed, but with a non-zero mean. 

KDE: Asymptotic Normality
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As the previous formulas show, there is a genuine trade-off between 
avoiding bias and reducing the variance of the estimate at any given 
point 𝑥. 

In general, large ℎ reduce the variance by smoothing over a large 
number of points, but this is likely to lead to bias because the points 
are “averaged” in a mechanical way that does not account for the 
particular shape of the distribution. 

In contrast, small ℎ give higher variance but have less bias. In the 
limit, ℎ→ 0, the kernel reproduced the data.

We can play with different ℎ’s, but we would like a data-driven 
bandwidth (“automatic”) selection process.

KDE: Bandwidth

KDE: Bandwidth - Examples
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KDE: Bandwidth - Examples

KDE: Bandwidth - Examples

• We use an Epanechnikov kernels to fit percentage changes in monthly 
San Francisco home prices, with two ℎ = .5, 2 & 5. Different results.
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KDE: Bandwidth - Examples

• Q: How do we deal with the trade-off  between bias and variance? 
A: A “natural” approach is to minimize the MSE:

MSEሾ𝑓መሺ𝑥଴ሻሿ = ሾ𝑏𝑖𝑎𝑠 𝑓መ 𝑥଴ ሿଶ ൅ V𝑎𝑟 𝑓መ 𝑥଴
 optimal bandwith

KDE: Bandwidth - Selection

• A “natural” approach is to minimize the MSE:

MSEሾ𝑓መሺ𝑥଴ሻሿ = ሾ𝑏𝑖𝑎𝑠 𝑓መ 𝑥଴ ሿଶ ൅ V𝑎𝑟 𝑓መ 𝑥଴

• As shown in previous formulas, the bias is O(ℎ2) and the variance is
O(1/𝑁ℎ). Intuitively, ℎ should be chosen to that the (bias)2 and the 
variance are of  the same order. 

• The square of  the bias is O(ℎ4) ⟹ℎ4 = 1/𝑁ℎ, 
⟹ℎ = (1/𝑁)1/5.

That is,  ℎ = O(𝑁ି଴.ଶ) and sqrt(𝑁ℎ) = O(𝑁଴.ସ).

• A more formal derivation is given on C&T. 

• Note: Recall that the MSE is approximated using asymptotic 
expansion. We called it AMSE (asymptotic MSE).
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KDE: Bandwith and MISE

• Rosenblatt (1956) developed a global measure of  accuracy for 𝑓መሺ𝑥଴ሻ: 
Minimizing the SSE at a large number of  hypothetical points. As this 
number goes to infinity, this amounts to minimizing the mean of  the 
integrated squared error (MISE). If  the previous asymptotic 
approximations are used, the MISE becomes AMISE. 

• That is, an optimal bandwidth minimizes 𝑓 𝑥଴ :
MISE(ℎ) = E[ ∫ ሺ𝑓መ 𝑥଴ െ 𝑓′ሺ𝑥଴ሻሻଶ 𝑑𝑥଴] = Eሾ׬MSEሾ𝑓መ 𝑥଴ ሿ 𝑑𝑥଴ሿ

• Differentiating AMISE(ℎ) w.r.t. ℎ yields the optimal bandwidth:
ℎ* = 𝛿 ሾ׬ሺ𝑓′′ሺ𝑥଴ሻሻଶ 𝑑𝑥଴ሿି଴.ଶ 𝑁ି଴.ଶ, 

where 𝛿 depends on the kernel function used:
𝛿 = ሾ׬ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧ሿ଴.ଶ ሾ׬ 𝑧ଶ 𝐾ሺ𝑧ሻ 𝑑𝑧ሿି଴.ସ. 

Note: Recall,׬ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧 is the roughness of 𝐾 . .

KDE: Optimal Bandwith

• The optimal bandwidth, ℎ* :
ℎ* = 𝛿 ሾ׬ሺ𝑓′′ሺ𝑥଴ሻሻଶ 𝑑𝑥଴ሿି଴.ଶ𝑁ି଴.ଶ

 ℎ* decreases (very slowly) as 𝑁 increases. Then, ℎ* → 0 as 𝑁→ ∞ 
(as required for consistency). 

Note: If  the true density function has a lot of  curvature (𝑓′′ሺ𝑥଴ሻ is 
large), the bandwidth should be smaller.

• ℎ* depends on 𝛿, which is a function of  the kernel 𝐾ሺ. ሻ. For 
example, if  𝐾ሺ. ሻ is Gaussian, 

𝛿 = ሾ׬ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧ሿ଴.ଶ ሾ׬ 𝑧ଶ 𝐾ሺ𝑧ሻ 𝑑𝑧ሿି଴.ସ

= ሾ ଵ

𝟐 గ 
ሿ଴.ଶ [𝜎ଶ ൌ 1]-0.4

= ሾ ଵ

𝟐 గ 
ሿ଴.ଶ (= 0.776388)

• Values for 𝛿 are given in Table 9.1 in C&T.
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KDE: Optimality 

• The optimal ℎ* is unknown –we do not know 𝑓ሺ𝑥଴ሻ or 𝑓′′ሺ𝑥଴ሻ. 
Approximations methods are required. 

• In practice, a normal density is commonly used instead of  𝑓ሺ𝑥଴ሻ. 

• As seen in the graphs, the choice of  the kernel matters very little. 
More formally, MISE(ℎ*) varies little across the different kernels. 

• Technically speaking we can select the best kernel. The one that 
minimizes the AMISE. It is a calculus of  variation problem.

• The Epanechnikov (1969) kernel is “optimal,” but the advantage is 
small. Since the Epanechnikov kernel is the best, it is used to judge the 
efficiency of  a kernel.

KDE: Confidence Intervals

• We can obtain confidence intervals for estimates of  𝑓ሺ𝑥଴ሻ for any 
point 𝑥଴. Use the variance formula above to get the conventional C.I.:

𝑓ሺ𝑥଴ሻ ∈ 𝑓መሺ𝑥଴ሻ – bias(𝑥଴) ± 𝑧ఈ/ଶ sqrt{
ଵ

ே௛
𝑓መሺ𝑥଴ሻ ሾ׬ሺ𝐾ሺ𝑧ሻሻଶ 𝑑𝑧ሿ}

where bias(𝑥଴) is given above and we have assumed that 𝑓መሺ𝑥଴ሻ is 
asymptotically normal. 

• Problem: It can contain negative values. 
Solution: Consider constructing the C.I. by inverting a test statistic.

C(𝑥଴) = {𝑓ሺ. ሻ| 
௙መሺ௫బሻ – ௕௜௔௦ሺ௫బሻ

sqrt{ భ
ಿ೓

 ௙መሺ௫బሻ ሾ׬ሺ௄ሺ௭ሻሻమ ௗ௭ሿ} 
≤ 𝑧ఈ/ଶ}

This set must be found numerically.

• In practice, it is hard to calculate the bias, and, there may not be a 
reason to calculate the C.I. for 𝑓መሺ𝑥଴ሻ. 
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KDE: Confidence Intervals

• A bootstrap can work. Steps:
(1) Get a bootstrap sample –i.e., sample with replacement. 
(2) Use bootstrap sample to construct a bootstrap KDE. 
(3) Repeat (1)-(2) 𝐵 times. We get:

𝑓መሺ𝑥଴ሻଵ, 𝑓መሺ𝑥଴ሻଶ, …., 𝑓መሺ𝑥଴ሻ஻

Now, we  can estimate the variance of  𝑓መሺ𝑥଴ሻ, build CIs, etc.

•  A problem of  these CI is that the theoretical guarantee of  coverage 
is for the expectation of  the KDE 𝐸ሾ𝑓መ 𝑥଴ ሿ, not for the true density 
value 𝑓 𝑥଴ . 

For the 2nd order approximation, the bias is of  order of  Oሺℎଶሻ. Thus, 
if ℎ is fixed or slowly converges to 0, the coverage of  CI will be lower 
than the nominal coverage (this is called undercoverage). 

KDE in Practice

• As mentioned above to calculate ℎ* we need the unknown 𝑓′′ሺ𝑥଴ሻ. 
Approximations methods are required. In practice, a normal density is 
commonly used instead of  𝑓ሺ𝑥଴ሻ. 

1. If  𝑋 ~ Normal, then we get ሾ׬ሺ𝑓′′ሺ𝑥଴ሻሻଶ 𝑑𝑥଴ሿି଴.ଶ = 1.3643
ℎ* = 𝛿 ሾ׬ሺ𝑓′′ሺ𝑥଴ሻሻଶ 𝑑𝑥଴ሿି଴.ଶ𝑁ି଴.ଶ= 1.3643 𝛿 𝑁ି଴.ଶ𝑠, 𝑠=SD(x).

If  in addition, 𝐾ሺ. ሻ is normal (𝛿 = 0.776388)  ℎ* = 1.059 𝑁ି଴.ଶ 𝑠.
If  in addition, 𝐾ሺ. ሻ is the Epanechnikov  ℎ* = 2.34 𝑁ି଴.ଶ 𝑠.

2. A refinement of  the formula in (1), to account for outliers, is 
ℎ* = 1.3643 δ 𝑁ି଴.ଶ min[𝑠, iqr/1.349], 

where “iqr” is the (sample) interquartile range.

• These rules for selecting ℎ* are generally called rules of  thumb.
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KDE in Practice: Boundary Effects

• So far, we have not paid much attention to the boundaries of  the 
data, implicitly assuming that the density is supported on the entire R. 

• In many situations, this is not the case. Then, the estimator can 
behave quite poorly due to what are called boundary effects. 

• At the boundaries, 𝑓መሺ𝑥଴ሻ usually underestimates 𝑓ሺ𝑥଴ሻ. Suppose the 
data is positive, then 𝑓መሺ𝑥଴=0) penalizes 𝑥଴=0 for lack of  data. At 
𝑥଴=0, 𝑓መሺ𝑥଴ሻ is inconsistent.

• Many proposed techniques to deal with boundary effects:
– Reflection of  data (“reflect” data at 𝑥଴=0, –𝑥ଵ, –𝑥ଶ ,...,–𝑥ொ).
– Transform data (use a function g(𝑥); estimate 𝑓መሺ𝑥଴ሻ instead).
– Pseudo-Data Methods (“add” reasonable data, say by interpolation). 
– Boundary Kernel Methods (use a non-symmetric K(.) at 𝑥଴ = 0).

• To get 𝑓መு௜௦௧ሺ𝑥ሻ exactly, we must calculate for all 𝑥’s (𝑥ଵ, 𝑥ଶ , ..., 𝑥ே):

𝑓መு௜௦௧ሺ𝑥௝ሻ = 
ଵ

ே௛
∑ 𝐾ሺ

௫೔ ି ௫ೕ
௛

ሻே
௜ୀଵ 𝑗 = 1, …, 𝑁 

• Then, the number of evaluations of 𝐾ሺ. ሻ is proportional to 𝑁2 (for a 
bounded Kernel, like the Epanechnikov, we have ℎ 𝑁2 evaluations). 
This increases the computation time if the 𝑁 is large.

• For graphing the density, we do not need to evaluate 𝐾ሺ. ሻ at all 𝑥’s. 
Instead, 𝑓መு௜௦௧ሺ𝑥ሻ can be computed at using some points, for example 
using an equidistant grid 𝑧ଵ, 𝑧ଶ , ..., 𝑧ெ:

𝑧௞ = 𝑥௠௜௡+ 𝑘/𝑀 (𝑥௠௔௫ – 𝑥௠௜௡), 𝑘 = 1, 2,  ...., 𝑀 << 𝑁

• Now, we only need 𝑀*ℎ*𝑁 𝐾ሺ. ሻ evaluations. But, we can do better 
by “binning” the data –i.e., using a “binned estimator.” 

KDE in Practice: Computational Issues



RS – EC2 - Lecture 11

22

For the SF changes in home prices data, we do KDE, with M=100.

M <- 100

d_h <- matrix(0, M, 2) 

h <- .5

dist <- (max(r_sf)- min(r_sf))/1

for (j in 1:M){

d_h[j,1] <- min(r_sf) + j/M*dist

for (i in 1:N){

d_h[j,2] <- d_h[j,2] + dnorm((r_sf[i] - d_h[j,1])/h)

}

d_h[j,2] <- d_h[j,2]/(N*h)

}

plot(d_h, xlab="Changes in Prices", ylab="Frequency",main = "Changes in SF Home Prices -
Normal kernel, h=.5")

• Still a lot of calculations: M*𝑁 = 35,900 (better than N^2 = 128,881)43

KDE in Practie: Computational Issues -

• Binning or WARPing (Weighted Average of Rounded Points) 
“bins” the data in bins of length 𝑑 starting at the origin 𝑥ଵ. Each 𝑥௜ is 
replaced by the bincenter of the corresponding bin.  

• A usual choice for 𝑑 is to use ℎ/5 or (𝑥௠௜௡  െ 𝑥௠௔௫)/100. In the 
latter case, the effective sample size (or number of grid points) 𝑅 for 
the computation (the number of nonempty bins) can be at most 101. 

• Now, 𝐾ሺ. ሻ needs to be evaluated only at 𝑙 𝑑/ℎ, where 𝑙 =1, ..., 𝑠, 
where 𝑠 is the number of bins which contains the support of 𝐾ሺ. ሻ:

𝑓መு௜௦௧ሺ𝑤௝ሻ = 
ଵ

ே௛
 ∑ 𝑁௜𝐾ሺ

௜ ି௝  ௗೕ
௛

ሻோ
௜ୀଵ 𝑗 = 1, …, 𝑅 

computed on grid 𝑤௝ = (𝑗+0.5) 𝑑 (𝑗 integer) with 𝑁௜ & 𝑁௝ denoting 
the number of observations in the 𝑖-th and 𝑗-th bins, respectively.

KDE in Practice: Computational Issues
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• The WARPing approximation requires (ℎ* 𝑅/𝑑) evaluations of 𝐾ሺ. ሻ
and 𝑁 + (ℎ*𝑅/𝑑) steps in total. 

• Much faster than the exact computation, when 𝑁 is large. 

• The accuracy of binned estimators has been studied by Hall (1982), 
and Hall and Wand (1996), among others. The accuracy depends on 
the number of grid points 𝑅 and can be made arbitrarily good by 
increasing 𝑅, at the cost of increasing the number of computations.

• Hall and Wand (1996) proposed that using 𝑅 between 100 and 500 
should give a reasonably good approximation.

KDE in Practice: Computational Issues

• For all but very small 𝑁, direct computation of 𝐾ሺ. ሻ is inefficient. 
By noticing that the KDE is based on a convolution of the data with 
𝐾ሺ. ሻ, fast Fourier transformations (FFT) speed up computations:

𝑓ሚ 𝑥 ൌ ଵ

ଶగ 
׬ 𝑒௜௫௧ 𝑓 𝑡  𝑑𝑡 (Fourier transform)

• Recall the convolution theorem: 

If  𝑔ሺ𝑥ሻ and 𝑘ሺ𝑥ሻ are integrable functions with Fourier transforms 
𝑔෤(𝜉) and 𝑘෨ሺ𝜉ሻ respectively, then the Fourier transform of the 
convolution is given by the product of the Fourier transforms 𝑔෤ሺ𝜉ሻ
and 𝑘෨ሺ𝜉ሻ. That is,  

if 𝑓ሺ𝑥ሻ 𝑔ሺ𝑦ሻ 𝑘׬ = 𝑥 െ 𝑦  𝑑𝑦, 

then, 𝑓ሚሺ𝜉ሻ = 𝑔෤ሺ𝜉ሻ 𝑘෨(𝜉). ⟹ invert 𝑓ሚ(𝜉) to get 𝑓ሺ𝜉ሻ! 

• Another approach: Fast Gaussian transformations (FGT). 

KDE in Practice: Computational Issues
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KDE in R

• Kernel density estimates are available in R via the density function:
d <- density(r_sf, kernel=c("epanechnikov"), bw = .5)
plot(d,, main = "Changes in SF Home Prices - Epanechnikov kernel")

which reproduces a previous density plot for SF home price changes, 
using the Epanechnikov kernel, with ℎ = .5  (or bw =.5).

• By default, density uses a Gaussian kernel, but a large variety of  
other kernels are available by specifying the kernel option, like above 
with kernel = c("epanechnikov"), 

• By default, density selects the bandwidth based on a rule of  thumb 
proposed by Silverman (1986, page 48, eqn (3.31)). Other inputs (and 
manual inputs) can be used. 

Estimating the Derivative of  a Density

• Sometimes we need to estimate 𝑓′ሺ𝑥଴ሻ or even 𝑓′′ሺ𝑥଴ሻ –like in a C.I.

• One approach for estimating 𝑓′ሺ𝑥଴ሻ is straightforward:
𝑓′ሺ𝑥଴ሻ = [𝑓መሺ𝑥଴ + Δ) – 𝑓መሺ𝑥଴ െ Δ)]/2Δ,

for some small Δ.

• Alternatively, differentiate expression   𝑓መ 𝑥଴ ൌ ଵ

ே௛
∑ 𝐾ሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ

with respect to 𝑥଴:

𝑓መ′ 𝑥଴ ൌ ଵ

ே௛మ
∑ 𝐾′ሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ

• We can extend this approach to get the 𝑟௧௛ derivative: 

𝑓ሺ௥ሻ = 𝑥଴ ൌ ଵ

ே௛ೝశభ
∑ 𝐾ሺ௥ሻሺ௫೔ ି ௫బ

௛
ሻே

௜ୀଵ
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• So far, ℎ has been fixed. But, this may not be optimal: what works 
fine in areas of  high density may not necessarily be appropriate in a 
low-density regions.

• A possibility is to vary ℎ, to use adaptive bandwidth kernel 
estimators, in which the bandwidth changes as a function of  𝑥଴.

• Idea: where there is a lot of  data, we use a small neighborhood 
around 𝑥଴; but in areas with few data points, we  expand the 
neighborhood. That is, ℎ௜ = ℎሺ𝑥௜ሻ.

• But, note that these estimators introduce added bias in regions with 
little data in order to reduce variance there. The bias-variance trade-
off  is still there.

Density Estimation: Adaptive Kernels

Estimating the Derivative of  a Density

• Since the Gaussian kernel has derivatives of  all orders this is a 
common choice for derivative estimation.

• The estimator of  𝑓ሺ௥ሻሺ𝑥ሻ is biased –same order as for estimation of  
𝑓ሺ𝑥ሻ. But the variance is of  a much larger order.

• We can derive an optimal bandwidth, we can optimize MISEሺℎሻ, as 
before.

• In practice, for either method, you should use a larger bandwidth 
than you use for estimating 𝑓መሺ𝑥଴ሻ.

• We can also ask the question of  which kernel function is optimal. 
Muller (1984) found that the Biweight class is the optimal for the first 
derivative and for a second derivative the Triweight class.
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Density Estimation: 𝒌-Nearest Neighbor

In 𝑘-Nearest Neighbor (𝑘-NN), instead of fixing bin width ℎ and 
counting the number of instances, we fix the instances (neighbors) at
𝑘 and check bin width.

The neighborhood is defined through those 𝑋–variables which are 
among the 𝑘-nearest neighbors of 𝑥. 

• The observations ranked by the distances, or “nearest neighbors,” 
are (𝑥ሺଵሻ, ..., 𝑥ሺேሻ): The 𝑘-th nearest neighbor (or 𝑘-NN of 𝑥 is 𝑥ሺ௞ሻ) 
estimator is given by: 

𝑓መ௞ିேே 𝑥଴ ൌ
𝑘

2𝑁 𝑑௞ሺ𝑥଴ሻ

𝑑௞ሺ𝑥ሻ = ordered distance to 𝑘-th closest instance to 𝑥 (usually the 
Euclidian distance; but others are OK: Minkowski, Manhattan).

Density Estimation: 𝒌-Nearest Neighbor

The 𝑘-NN estimator is given by: 

𝑓መ௞ିேே 𝑥଴ ൌ
𝑘

2𝑁 𝑑௞ሺ𝑥଴ሻ
a function of 𝑑௞ሺ𝑥ሻ. Under Euclidian distance, 𝑑௞ሺ𝑥ሻ = ∥ 𝑥 െ 𝑥ሺ௞ሻ∥.

• Intuitively, we allow the bandwidth to vary depending on the 
density of the function. At areas of low density, we use a higher 
bandwidth to average over a larger number of (dispersed) points.

• While the traditional 𝑘-NN estimator uses a uniform kernel, smooth 
kernels can also be used. For example:

𝑓መ௞ିேே 𝑥଴ ൌ ଵ

ே ௗೖሺ௫బሻ
∑ 𝐾 ሺ  ௫೔ ି௫బ

 ௗೖሺ௫బሻ
ሻே

௜ୀଵ

In this case, the estimator is not just a function of 𝑑௞ሺ𝑥ሻ. 
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Example: 

We have a sample {𝑋}={1, 7, 3, 4, 5, 9, 10,12}. Set 𝑘 = 3. We want 
to calculate𝑓መ௞ିேேሺ𝑥଴ ൌ 6ሻ for the classic 𝑘-NN estimator, using 
Euclidian distance, 𝑑௞ୀଷ 𝑥଴ ൌ 6 ൌ 2. 

The distance from 𝑥଴ ൌ 6 to each data point is: {5, 1, 4, 2, 1, 3, 4, 6}

 ordered distances: {1, 1, 2, 3, 4, 4, 5, 6}

Then;

𝑓መ௞ୀଶିேே 𝑥଴ ൌ 6 ൌ ௞

ଶே ௗೖసయሺ଺ሻ
ൌ ଶ

ଶ∗଼∗ଶ
ൌ 1/16.

If 𝑘 ൌ 6, then  𝑑௞ୀ଺ 6 ൌ 4.
Then, 

𝑓መ௞ୀଶିேே 𝑥଴ ൌ 6 ൌ ௞

ଶே ௗೖసలሺ଺ሻ
ൌ ଺

ଶ∗଼∗ସ
ൌ 6/64.

Density Estimation: 𝒌-Nearest Neighbor

Density Estimation: 𝒌-Nearest Neighbor
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Density Estimation: 𝒌-Nearest Neighbor

Density Estimation: Observations

• 𝑘-NN density estimation has a lot of discontinuities (very spiky, not 
differentiable). For small 𝑁, it is not even a density!

• Even for large regions with no observed data the estimated density is 
far from zero (tails are too heavy).

• Same trade-off as in selecting ℎ: A smaller 𝑘 allows only nearby data 
points to be considered (reduce bias); but a larger 𝑘 allows for 
smoothness (reduce variance). Not easy to balance both issues.

• Given the variance-bias trade-off, selecting 𝑘 is similar to selecting ℎ
(though 𝑘 is an integer). There is no clear rule of thumb or optimality 
rule. Some proposals exist, but practitioners insist on “know your data” 
to select 𝑘.
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Density Estimation: Kernel or 𝒌-NN?

The asymptotic analysis of the 𝑘-NN estimator are complicated by 
the fact that 𝑑௞ሺ𝑥ሻ is random. The solution is to condition on 𝑑௞ሺ𝑥ሻ, 
which is similar to treating it as fixed.

Then, the conditional bias and variance are identical to those of the 
standard kernel estimator. 

For the unconditional bias, we need moments of 𝑑௞ሺ𝑥ሻ, under 
Euclidian distance, given by the 𝑘-th order statistics. It turns out that 
the MSE behaves similarly to the kernel estimator’s MSE.

Q: Which one is better?

Not clear. In the tails, the Kernel estimator has smaller bias, but larger 
variance (the 𝑘-NN tends to be smoother in the tails). 

Density Estimation: Multivariate Case

Now suppose that X is a 𝑑-vector and we want to estimate its 
density 𝑓(x) = 𝑓ሺ𝑥ଵ, 𝑥ଶ , ..., 𝑥ௗ). Easy to extend the idea to this 
multivariate cases. Computations and interpretation get complicated 
once we move beyond 3 dimensions.

Multivariate Kernel density estimator

Multivariate Gaussian kernel

- spheric

- ellipsoid
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Density Estimation: Multivariate Case

We can estimate an optimal bandwith, as before, by minimizing 
MISE(ℎ). The optimal bandwith for the 𝑗-th variable is:

ℎ௝* = 𝛿 ሾ׬ሺ𝑓′′ሺ𝑥଴ሻሻଶ 𝑑𝑥଴ሿି଴.ଶ𝑁ି଴.ଶ = 𝐶௩ሺ𝐾,𝑑ሻ 𝑁ିଵ/ሺଶ௩ାௗሻ 𝑠,

The optimal bandwidths will all be of order 𝑁ିଵ/ሺଶ௩ାௗሻand the 
optimal MISE of order 𝑁ିଶ௩/ሺଶ௩ାௗሻThis rates are slower than the 
univariate (𝑑 = 1) case. 

Again, we face the curse of dimensionality: the dimension has an 
adverse effect on convergence rates.

Rules of thumb can be derived for the constant 𝐶௩ሺ𝐾,𝑑ሻ, 
For example, for the Epanechnikov kernel, 𝐶௩ሺ𝐾,𝑑ሻ, is for 𝑑 =2, 
2.20, for 𝑑=3, 2.12; for 𝑑=3, 2.07.
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