

Censored and Truncated Data: Definitions

• Y is **censored** when we observe X for all observations, but we only know the true value of Y for a restricted range of observations. Values of Y in a certain range are reported as a single value or there is significant clustering around a value, say 0.

1

- If Y = k or Y > k for all $Y \Rightarrow Y$ is censored from below or left-censored.
- If Y = k or Y < k for all $Y \Rightarrow Y$ is censored from above or right-censored.

We usually think of an uncensored Y, Y^* , the true value of Y when the censoring mechanism is not applied. We typically have all the observations for $\{Y, X\}$, but not $\{Y^*, X\}$.

• *Y* is **truncated** when we only observe *X* for observations where *Y* would not be censored. We do not have a full sample for $\{Y, X\}$, we exclude observations based on characteristics of *Y*.

Truncated regression

• Truncated regression is different from censored regression in the following way:

Censored regressions: The dependent variable may be censored, but you can include the censored observations in the regression

Truncated regressions: A subset of observations are dropped, thus, only the truncated data are available for the regression.

• Q: Why do we have truncation?

(1) *Truncation by survey design*: Studies of poverty. By survey's design, families whose incomes are greater than that threshold are dropped from the sample.

(2) **Incidental Truncation**: Wage offer married women. Only those who are working have wage information. It is the people's decision, not the survey's design, that determines the sample selection.

Truncation and OLS

Q: What happens when we apply OLS to a truncated data?

- Suppose that you consider the following regression:

 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i = \mathbf{x}'_i \boldsymbol{\beta} + \varepsilon_i,$

- We have a random sample of size *N*. All CLM assumptions are satisfied. (The most important assumption is (A2) $E[\varepsilon_i | x_i] = 0$.)

- Instead of using all the N observations, we use a subsample. Then, run OLS using this sub-sample (truncated sample) only.

• Q: Under what conditions, does sample selection matter to OLS?

(A) OLS is Unbiased

(A-1) Sample selection is randomly done.

(A-2) Sample selection is determined solely by the value of x-variable. For example, suppose that x is age. Then if you select sample if age is greater than 20 years old, this OLS is unbiased.

Truncation and OLS

(B) OLS is Biased

(B-1) Sample selection is determined by the value of *y*-variable.

Example: We are studying the determinants of hedging, y. We select the sample if y is greater than certain threshold. Then this OLS is biased.

(B-2) Sample selection is correlated with ε_i .

Example: We run a wage regression $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where ε_i contains unobserved ability. If sample is selected based on the unobserved ability, this OLS is biased.

- In practice, this situation happens when the selection is based on the survey participant's decision. Since the decision to participate is likely to be based on unobserved factors which are contained in ε_i , the selection is likely to be correlated with ε_i .

Truncation and OLS: When does (A2) hold?

• Consider the previous regression:

 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

- All CLM assumptions are satisfied.

- Instead of using all the *N* observations, we use a subsample. Let s_i be a selection indicator: If $s_i = 1$, then person *i* is included in the regression. If $s_i = 0$, then person *i* is dropped from the data.

• If we run OLS using the selected subsample, we use only the observation with $s_i = 1$. That is, we run the following regression:

 $s_i y_i = \beta_0 s_i + \beta_1 s_i x_i + s_i \varepsilon_i$

Now, $s_i x_i$ is the explanatory variable, and $u_i = s_i \varepsilon_i$ is the error term.

OLS is unbiased if E[u_i = s_i ε_i | s_i x_i] = 0.
 ⇒ under what conditions is this new (A2) satisfied?

11

Truncation and OLS: When does (A2) hold?

Q: When does $E[u_i = s_i \epsilon_i | s_i x_i]$ hold? It is sufficient to check: $E[u_i | s_i x_i]$. (If this is zero, then new (A2) is also zero.) • $E[u_i | s_i x_i] = s_i E[\epsilon_i | s_i x_i] - s_i$ is in the conditional set. • It is sufficient to check the condition which ensures $E[\epsilon_i | x_i, s_i] = 0$. • CASES: (A-1) Sample selection is done randomly. s_i is independent of ϵ_i and $x_i \implies E[\epsilon_i | x_i, s_i] = E[\epsilon_i | x_i]$ Since CLM assumptions are satisfied \implies we have $E[\epsilon_i | x_i] = 0$. \implies OLS is unbiased. 12

Truncation and OLS: When does (A2) hold?

(A-2) Sample is selected based solely on the value of x-variable.

Example: We study trading in stocks, y_i . One of the dependent variables, x_i , is wealth, and we select person *i* if wealth is greater than 50K. Then,

<i>s</i> _{<i>i</i>} = 1	if $x_i \ge 50$ K,
s _i = 0	if $x_i < 50$ K.

-Now, s_i is a deterministic function of x_i .

• Since s_i is a deterministic function of x_i , $s_i(x_i)$, it drops out from the conditioning set. Then,

 $E[\varepsilon_i | x_i, s_i] = E[\varepsilon_i | x_i, s_i(x_i)]$ $= E[\varepsilon_i | x_i] = 0 - CLM a$

CLM assumptions satisfied.
 ⇒ OLS is unbiased.

13

14

Truncation and OLS: When does (A2) hold?

(B-1) Sample selection is based on the value of y-variable.

Example: We study determinants of wealth, *y*. We select individuals whose wealth is smaller than 150K. Then, $s_i = 1$ if $y_i < 150$ K.

- Now, s_i depends on y_i (and ε_i). It cannot be dropped out from the conditioning set like we did before. Then,

$$\mathrm{E}[\varepsilon_i | x_i, s_i] \neq \mathrm{E}[\varepsilon_i | x_i] = 0.$$

• For example, $E[\varepsilon_i | x_i, s_i] = E[\varepsilon_i | x_i, s_i(x_i)]$ $E[\varepsilon_i | x_i, s_i = 1] = E[\varepsilon_i | x_i, y_i \le 150K]$ $= E[\varepsilon_i | x_i, \beta_0 + \beta_1 x_i + \varepsilon_i \le 150K]$ $= [\varepsilon_i | x_i, \varepsilon_i \le 150K - (\beta_0 + \beta_1 x_i)]$ $\neq E[\varepsilon_i | x_i] = 0 \implies OLS \text{ is biased.}$

Truncation and OLS: When does (A2) hold?

(B-2) Sample selection is correlated with u_i .

The inclusion of a person in the sample depends on the person's decision, not the surveyor's decision. This type of truncation is called the *incidental truncation*. The bias that arises from this type of sample selection is called the **Sample Selection Bias**.

Example: Dividend payments model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

Since it is a company's decision to pay dividends –i.e., to participate–, this sample selection is likely to be based on some unobservable factors which are contained in ε_i . Like in **(B-1)**, s_i cannot be dropped out from the conditioning set:

 $\mathbf{E}[\boldsymbol{\varepsilon}_i \,|\, \boldsymbol{x}_i, \boldsymbol{s}_i] \neq \mathbf{E}[\boldsymbol{\varepsilon}_i \,|\, \boldsymbol{x}_i] = 0$

 \Rightarrow OLS is biased.

Truncation and OLS: When does (A2) hold?

• CASE (A-2) can be more complicated, when the selection rule based on the *x*-variable may be correlated with ε_i .

Example: x is IQ. A survey participant responds if IQ > v. Now, the sample selection is based on x-variable *and* a random error v.

Q: If we run OLS using only the truncated data, will it cause a bias? Two cases:

- (1) If v is independent of ε , then it does not cause a bias.

- (2) If v is correlated with ε , then this is the same case as **(B-2)**. Then, OLS will be biased.

Estimation with Truncated Data.

- CASES
- Under cases (A-1) and (A-2), OLS is appropriate.
- Under case (B-1), we use Truncated regression.

- Under case (B-2) –i.e., incidental truncation-, we use the *Heckman Sample Selection Correction* method. This is also called the Heckit model.

17

Truncated Regression

- Data truncation is (B-1): the truncation is based on the *y*-variable.
- We have the following regression satisfies all CLM assumptions: $y_i = \mathbf{x}'_i \mathbf{\beta} + \mathbf{\varepsilon}_i, \qquad \mathbf{\varepsilon}_i \sim N(0, \sigma^2)$

- We sample only if $y_i < c_i$

 \Rightarrow Observations are dropped if $y_i \ge c_i$ by design.

- We know the exact value of c_i for each person.

• We know that OLS on the truncated data will be biased. The model that produces unbiased estimate is based on ML Estimation.

Truncated Regression: Conditional Distribution

- Given the normality assumption for ε_i , ML is easy to apply.
- For each, $\varepsilon_i = y_i \mathbf{x}'_i \beta$, the likelihood contribution is $f(\varepsilon_i)$.
- But, we select sample only if $y_i < c_i$
 - \Rightarrow we have to use the density function of ε_i conditional on $y_i < c_i$:

$$f(\varepsilon_i | y_i < c_i) = f(\varepsilon_i | \varepsilon_i < c_i - \mathbf{x}_i'\beta) = \frac{f(\varepsilon_i)}{P(\varepsilon_i < c_i - \mathbf{x}_i'\beta)}$$
$$= \frac{f(\varepsilon_i)}{P\left(\frac{\varepsilon_i}{\sigma} < \frac{c_i - \mathbf{x}_i'\beta}{\sigma}\right)} = \frac{f(\varepsilon_i)}{\Phi\left(\frac{c_i - \mathbf{x}_i'\beta}{\sigma}\right)}$$
$$= \frac{\frac{1}{\sigma}\phi(\frac{\varepsilon_i}{\sigma})}{\Phi\left(\frac{c_i - \mathbf{x}_i'\beta}{\sigma}\right)}$$

Truncated Regression: ML Estimation

• The likelihood contribution for i^{th} observation is given by

$$L_{i}(\boldsymbol{\beta}, \sigma) = \frac{\frac{1}{\sigma}\phi(\frac{y_{i}-x_{i}^{\prime}\boldsymbol{\beta}}{\sigma})}{\Phi\left(\frac{c_{i}-x_{i}^{\prime}\boldsymbol{\beta}}{\sigma}\right)}$$

ln(joint density of N values of y_i^*)

• The likelihood function is given by (with $c_i = 0$):

$$Log L(\beta, \sigma) = \sum_{i=1}^{N} \log L_i = -\frac{N}{2} [\log(2\pi) + \log(\sigma^2)] - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \varepsilon_i^2$$
$$\sum_{i=1}^{N} \log \left[\Phi(\frac{x_i \, \beta}{\sigma}) \right] + \log(\text{joint probability} \text{ of } y_i^* > 0)$$

 The values of (β, σ) that maximizes Log L are the ML estimators of the *Truncated Regression*.

The partial effects

• The estimated parameters β_k measures the effect of x_k on y for participating individual. Thus,

$$\frac{\delta \mathbb{E}[y_i | y_i > 0, x_i \beta]}{\delta x} = \beta_k + \sigma \, \frac{\delta \lambda(x_i' \beta)}{\delta x} = \beta_k + \sigma \, \frac{\delta \lambda(x_i' \beta)}{\delta x} = \beta_k * (1 - d_i)$$

with $d_i = \lambda(\mathbf{x}'_i \boldsymbol{\beta}) * [\lambda(\mathbf{x}'_i \boldsymbol{\beta}) + \mathbf{x}'_i \boldsymbol{\beta}].$

Truncated Regression: MLE – Example

• DATA: From a survey of family income in Japan (JPSC_familyinc.dta). The data is originally not truncated.

Model: $y_i = \beta_0 + \beta_1 x_i + v_i$ $y_i =$ family income in JPY 10,000 x_i : husband's education

• Three cases:

EX1. Use all observations to estimate model

EX2. Truncate sample from above ($y_i < 800$). Then run the OLS using on the truncated sample.

EXe. Run the truncated regression model for the data truncated from above. $$_{25}$$

Source	SS	df	I	MS		Number of obs	= 7695		
Model Residual	38305900.9 318850122	1 7693	38305 41446	900.9 .7856		Prob > F R-squared	= 924.22 = 0.0000 = 0.1073		OLS using all the
Total	357156023	7694	46420	.0705		Root MSE	= 0.10/1 = 203.58		estimated β_1 = 32.93
familyinc	Coef.	Std. I	Err.	t	P> t	[95% Conf.	Interval]	L	
huseduc	32.93413	>1.083	325	30.40	0.000	30.81052	35.05775		
_cons	143.895	15.09	181	9.53	0.000	114.3109	173.479		
_cons reg familyi Source	143.895 nc huseduc in SS	15.09 f famil df	181 yinc<8	9.53 300 MS	0.000	114.3109	173.479 5 = 6274	Γ	OLS on truncated
_cons reg familyi Source Model Residual	143.895 nc huseduc i SS 11593241.: 120645494	15.09 f famil df 1 6272	181 yinc<8 1159 1923	9.53 800 MS 3241.1 35.5699	0.000	Number of ob F(1, 6272) Prob > F R-squared	s = 6274 = 602.70 = 0.0000 = 0.0877		OLS on truncated sample.
_cons reg familyi Source Model Residual Total	143.895 nc huseduc i SS 11593241. 12064549 13223873	15.09 f famil df l 1 i 6272 i 6273	181 yinc<8 1159 1923 210	9.53 800 MS 33241.1 35.5699 380.621	0.000	114.3109 Number of ob: F(1, 6272; Prob > F R-squared Adj R-squared Root MSE	173.479 s = 6274) = 602.70 = 0.0000 = 0.0877 d = 0.0875 = 138.69		OLS on truncated sample. The parameter on
cons reg familyi Source Model Residual Total familyinc	143.895 nc huseduc if SS 11593241.: 12064549 13223873 Coef.	15.09 f famil df l 1 i 6272 i 6273 Std.	181 yinc<8 1159 1923 210 Err.	9.53 800 MS 33241.1 35.5699 380.621 t	0.000 P> t	114.3109 Number of ob F(1, 6272) Prob > F R-squared Adj R-squared Root MSE [95% Conf	173.479 S = 6274) = 602.70 = 0.0877 d = 0.0875 = 138.69 . Interval]	- - - -	OLS on truncated sample. The parameter on husband's education i

te: 14Ž1 ob	nilyinc husedu os. truncated)	c, ul(800)					Truncated regression model on the truncated sample
ting full m	odel:					L	
eration 0: eration 1: eration 2: eration 3:	log likeliho log likeliho log likeliho log likeliho log likeliho	od = -39676 od = -39618 od = -39618 od = -39618	.782 .757 .629 .629				
uncated regr nit: lower upper g likelihood	ression ? = -inf ? = 800 I = -39618.629				Number of ob: Wald chi2(1) Prob > chi2	s = 627 = 569.9 = 0.000	4 0 0
	a (Std. Err.	Z	P> z	[95% Conf.	Interval	-]
familyinc	Coet.						
familyinc huseduc _cons	COET. 24.50276 203.6856	1.0264 13.75721	23.87 14.81	0.000 0.000	22.49105 176.7219	26.5144 230.649	6 2

Tobit Model: Type II

• Different ways of thinking about how the latent variable and the observed variable interact produce different Tobit Models.

• The Type I Tobit Model presents a simple relation:

$-y_i = 0$	if $y_i^* = \mathbf{x}_i' \mathbf{\beta} + \varepsilon_i \le 0$
$= y_i^* = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i,$	if $y_i^* = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i > 0$

The effect of the X's on the probability that an observation is censored and the effect on the conditional mean of the non-censored observations are the same: β .

• The Type II Tobit Model presents a more complex relation: - $y_i = 0$ if $y_i^* = x_i' \alpha + \varepsilon_{1,i} \le 0$, $\varepsilon_{1,i} \sim N(0, 1)$ $= x_i' \beta + \varepsilon_{2,i}$ if $y_i^* = x_i' \alpha + \varepsilon_{2,i} > 0$, $\varepsilon_{2,i} \sim N(0, \sigma_2^2)$ Now, we have different effects of the *x*'s.

Tobit Model: Type II

• The Type II Tobit Model: - $y_i = 0$ if $y_i^* = \mathbf{x}_i' \mathbf{\alpha} + \varepsilon_{1,i} \le 0$, $\varepsilon_{1,i} \sim N(0, \sigma_1^2 = 1)$ $= \mathbf{x}_i' \mathbf{\beta} + \varepsilon_{2,i}$ if $y_i^* = \mathbf{x}_i' \mathbf{\alpha} + \varepsilon_{2,i} > 0$, $\varepsilon_{2,i} \sim N(0, \sigma_2^2)$

- A more flexible model. \boldsymbol{x} can have an effect on the decision to participate (Probit part) and a different effect on the amount decision (truncated regression).

• Type I is a special case: $\varepsilon_{2,i} = \varepsilon_{1,i}$ and $\alpha = \beta$.

Example: Age affects the decision to donate to charity. But it can have a different effect on the amount donated. We may find that age has a positive effect on the decision to donate, but given a positive donation, younger individuals donate more than older individuals.

Tobit Model: Type II

• The model assumes a **bivariate normal distribution** for $(\varepsilon_{1,i}, \varepsilon_{2,i})$; with covariance given by $\sigma_{12} (= \rho \sigma_1 \sigma_2)$.

- Conditional expectation:

$$E[y_i | y_i > 0, \boldsymbol{x}_i] = \boldsymbol{x}_i' \boldsymbol{\beta} + \sigma_{12} \lambda(\boldsymbol{x}_i' \boldsymbol{\alpha}) \qquad (\sigma_{12}(= \rho \sigma_2))$$

- Unconditional Expectation

$$E[y_i | \boldsymbol{x}_i] = \operatorname{Prob}(y_i > 0 | \boldsymbol{x}_i) * E[y_i | y_i > 0, \boldsymbol{x}_i] + \operatorname{Prob}(y_i = 0 | \boldsymbol{x}_i) * 0$$

=
$$\operatorname{Prob}(y_i > 0 | \boldsymbol{x}_i) * E[y_i | y_i > 0, \boldsymbol{x}_i]$$

=
$$\Phi(\boldsymbol{x}_i'\boldsymbol{\alpha}) * [\boldsymbol{x}_i'\boldsymbol{\beta} + \sigma_{12} \lambda(\boldsymbol{x}_i'\boldsymbol{\alpha})]$$

<u>Note</u>: This model is known as the Heckman selection model, or the Type II Tobit model (Amemiya), or the probit selection model (Wooldridge).

31

32

Tobit Model: Type II – Sample selection

• Now, we generalize the model presented, making the decision to participate dependent on a different variable, *z*. Then,

• This model is called the **Sample selection model**, due to Heckman.

Example (from Heckman (Econometrica, 1979): Structural Labor model:

• Labor Supply equation:

$$h_i^* = \delta_0 + \delta_1 w_i + \mathbf{Z}_i' \boldsymbol{\delta}_2 + \varepsilon_i \tag{1}$$

- h_i^* : desired hours by i^{th} person (latent variable)
- w_i : wage that could be earned

- \mathbf{Z}_i : non-labor income, taste variables (married, kids, etc.)

- ε_i (error term): unobserved taste for work.

Tobit Model: Type II – Sample selection

Example (from Heckman) (continuation)

• Market wage equation (equation of interest):

 $w_i = x_i' \boldsymbol{\beta} + u_i$

- x_i : productivity, age, education, previous experience, etc.

- u_i (error term): unobserved wage earning ability.

- $u_i \& \varepsilon_i$ are assumed to follow a bivariate distribution (usually, a normal)

(2)

We observe w_i for only those who work –i.e., $h_i^* > 0$.

Goal: Estimation of wage offer equation for people of working age

Q: The sample is non longer random. How can we estimate (2) if we only observe w_i (wages) for those who work?

• Problem: Selection bias. Non-participation is rarely random

33

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

35

Tobit Model: Type II – Expectations

• **Expectations**: Under incidental truncation with a bivariate normal distribution we have:

- Conditional expectation (when is y_i observed) :

$$E[y_i | y_i > 0, \boldsymbol{x}_i] = \boldsymbol{x}_i' \boldsymbol{\beta} + \sigma_{12} \lambda(\frac{\boldsymbol{z}_i' \boldsymbol{\alpha}}{\sigma_1})$$

- Unconditional Expectation:

$$E[y_i | \boldsymbol{x}_i] = \Phi(\frac{z_i' \alpha}{\sigma_1}) * [\boldsymbol{x}_i' \boldsymbol{\beta} + \sigma_{12} \lambda(\frac{z_i' \alpha}{\sigma_1})]$$

<u>Note</u>: The results look very similar to the results obtained under truncation, but now we have a different variable, \mathbf{z}_i , determining truncation.

• Again, OLS estimation on the observed part produces a biased and inconsistent estimator. The size of the bias depends on σ_{12} (or ρ). ³⁶

Tobit Model: Type II – Conditional Expectation

• From the conditional expectation:

$$E[y_i | y_i > 0, x_i] = x_i' \boldsymbol{\beta} + \rho \sigma_1 \sigma_2 \lambda(\frac{z_i' \alpha}{\sigma_1}) \qquad (\sigma_1 = 1)$$

• Above we see that applying OLS to observed sample will produce biased (and inconsistent) estimators. This is called *sample selection bias* (an omitted variable problem). It depends on σ_{12} (or ρ) and \mathbf{z} .

• But regressing y on x and λ on the sub-sample with $y_i^* > 0$ produces consistent estimates (though SE need correction). But, we need an estimator for λ . This idea is the basis of Heckman's two-step estimation.

• Estimation

- ML -complicated, but efficient
- Two-step -easier, but not efficient. Not the usual standard errorsar

Tobit Model: Type II – Partial Effects

- Marginal effects of changes in exogenous variables have two components:
- Direct effect on mean of y_i , β_i via (2)
- If a variable affects the Prob $[y_i^* > 0]$, then it will affect y_i via (1).
- Marginal effect if regressor appears in both z_i and x_i :

$$\frac{\delta \mathbb{E}[y_i \mid y_i > 0, x_i \mid \beta]}{\delta x} = \beta_k - \alpha_k * \rho \sigma_2 * \{\lambda(z_i \mid \alpha)^2 - [(-\frac{z_i \mid \alpha}{\sigma_1}) \lambda(z_i \mid \alpha)]\}$$

• Suppose $\rho > 0$ and $E(y_i)$ is greater when $y_i^* > 0$ and given that the last term above is between 0 and 1, then, the additional term reduces the marginal effects (it controls for increased mean due to probability impacts). That is, β_k overstates partial effects.

<u>Note</u>: If $\rho = 0$, the partial effect is exactly given by β_k .

Review: Conditional Bivariate Normal

• To derive the likelihood function for the Sample selection model, we will use results from the conditional distribution of two bivariate normal RVs.

• Recall the definition of conditional distributions for continuous RVs:

$$f_{1|2}(x_1|x_2) = \frac{f(x_1, x_2)}{f_2(x_2)}$$
 and $f_{2|1}(x_2|x_1) = \frac{f(x_1, x_2)}{f_1(x_1)}$

• In the case of the bivariate normal distribution the conditional distribution of x_i given x_j is Normal with mean and standard deviation (using the standard notation):

$$\mu_{i|j} = \mu_i + \rho \frac{\sigma_i}{\sigma_j} (x_j - \mu_j)$$
 and $\sigma_{i|j} = \sigma_i \sqrt{1 - \rho^2}$

Tobit Model: Type II – ML Estimation

• The model assumes a bivariate normal distribution for $(\varepsilon_{1,i}; \varepsilon_{2,i})$, with covariance given by $\sigma_{12} (= \rho \sigma_1 \sigma_2)$. We use a participation dummy variable: $D_i = 0$ (No), $D_i = 1$ (Yes).

• The likelihood reflects two contributions: (1) Observations with $y_i = 0$ -i.e., $y_i^* = \mathbf{z}_i' \boldsymbol{\alpha} + \varepsilon_{1,i} \le 0 \Rightarrow D_i = 0$. - Prob $(D_i = 0 | \mathbf{x}_i) = P(y_i^* = \mathbf{z}_i' \boldsymbol{\alpha} + \varepsilon_{1,i} \le 0 | \mathbf{x}_i) = P(\varepsilon_{1,i} \le -\mathbf{z}_i' \boldsymbol{\alpha} | \mathbf{x}_i)$ $= 1 - \Phi(\mathbf{z}_i' \boldsymbol{\alpha})$ (2) Observations with $y_i > 0$ -i.e., $y_i^* = \mathbf{z}_i' \boldsymbol{\alpha} + \varepsilon_{1,i} > 0 \Rightarrow D_i = 1$. - $f(y_i | D_i = 1, \mathbf{x}_i, \mathbf{z}_i) * Prob(D_i = 1 | \mathbf{x}_i, \mathbf{z}_i, y_i)$

(2.a)
$$f(y_i|D_i = 1, x_i) = \frac{P(D_i = 1 | x_i, y_i) * f(y_i|x_i)}{P(D_i = 1, x_i)}$$
 (Bayes' Rule)
where $f(y_i|x_i) = (1/\sigma_2) \phi((y_i - x_i'\beta)/\sigma_2)$ 41

Tobit Model: Type II – ML Estimation
(2.b)
$$P(y_i|D_i = 1 | \mathbf{x}_i, \mathbf{z}_i, y_i) = P(\varepsilon_{1,i} > -\mathbf{z}'_i \boldsymbol{\alpha} | \mathbf{x}_i, y_i)$$

$$= P[\frac{\varepsilon_{1,i} - (\rho/\sigma_2) * (y_i - \mathbf{x}'_i \boldsymbol{\beta})}{\sqrt{\sigma_1^2(1 - \rho)^2}} > \frac{-\mathbf{z}'_i \boldsymbol{\alpha} - (\rho/\sigma_2) * (y_i - \mathbf{x}'_i \boldsymbol{\beta})}{\sqrt{\sigma_1^2(1 - \rho)^2}}]$$

$$= 1 - \Phi(-\frac{\mathbf{z}'_i \boldsymbol{\alpha} + (\rho/\sigma_2) * (y_i - \mathbf{x}'_i \boldsymbol{\beta})}{\sqrt{\sigma_1^2(1 - \rho)^2}})$$

$$= \Phi(\frac{\mathbf{z}'_i \boldsymbol{\alpha} + (\rho/\sigma_2) * (y_i - \mathbf{x}'_i \boldsymbol{\beta})}{\sqrt{\sigma_1^2(1 - \rho)^2}})$$
- Moments of the conditional distribution $(y_1|y_2)$ of a normal RV:
- Mean for RV 1: $\mu_1 + (\sigma_{12}/\sigma_2^{-2}) (y_2 - \mu_2) = (\rho/\sigma_2) * (y_i - \mathbf{x}'_i \boldsymbol{\beta})$
- Variance for RV 1: $\sigma_1^{-2} (1 - \rho^2) = 1 - \rho^2$ (Recall: $\sigma_1 = 1$)

Tobit Model: Type II – ML Estimation • Now, we can put all the contributions together: $L(\boldsymbol{\beta}) = \prod_{i,y_i=0} P(y_i = 0) * \prod_{i,y_i>0} \{P(y_i > 0) * f(y_i | \boldsymbol{x}_i, \boldsymbol{z}_i)\}$ • Taking logs: $\log L(\boldsymbol{\beta}, \boldsymbol{\alpha}, \sigma, \rho) = \sum_{i=1}^{N} (1 - D_i) * \ln(1 - \Phi(\boldsymbol{z}'_i \boldsymbol{\alpha})) + \sum_{i=1}^{N} D_i * \ln\{\Phi\left(\frac{\boldsymbol{z}'_i \boldsymbol{\alpha} + (\rho/\sigma_2) * (y_i - \boldsymbol{x}'_i \boldsymbol{\beta})}{\sqrt{\sigma_1^2(1 - \rho)^2}}\right)\}$ + $\sum_{i=1}^{N} D_i * \ln\{\frac{1}{\sigma_2}\phi(\frac{y_i - \boldsymbol{x}_i'\boldsymbol{\beta}}{\sigma_2})\}$ • Complicated likelihood. The algorithm tends to be badly behaved: \Rightarrow Iterative methods do not always converge to the MLE.

<u>Note</u>: If $\rho = 0$ this log likelihood is just the sum a Gaussian linear regression log likelihood and a probit log likelihood.

43

Tobit Model: Type II – Two-step estimator • It is much easier two use Heckman's two-step (Heckit) estimator: (1) Probit part: Estimate $\boldsymbol{\alpha}$ using ML \Rightarrow get $\hat{\boldsymbol{\alpha}}$ (2) Truncated regression: - For each $D_i = 1$ (participation), calculate $\lambda_i = \lambda(\mathbf{z}'_i \hat{\boldsymbol{\alpha}})$. - Regress y_i against $\mathbf{x}_i \& \lambda(\mathbf{z}'_i \widehat{\boldsymbol{\alpha}})$ \Rightarrow get **b** & b_{λ} (= $\rho \sigma_2$). • Problems: - Consistent, but not efficient (relative to MLE) - Getting Var[b] is not easy (we are estimating $\boldsymbol{\alpha}$ too). • We can get consistent estimators of $\rho \& \sigma_2$, individually. For each observation, the true conditional variance of the disturbance would be $\sigma_i^2 = \sigma_2^2 \left(1 - \rho^2 \,\delta_i\right)$ $(\delta(\alpha) = \lambda(\alpha) [\lambda(\alpha) - \alpha])$ where we can estimate $\hat{\sigma}_2^2 = \frac{e'e}{N} + \left(\sum_{i=1}^N \delta_i / N\right) b_\lambda \quad \& \quad \hat{\rho} = \frac{b_\lambda^2}{\sigma_2^2}.$ 44

Tobit Model: Type II – Two-step estimator

• In theory, we can use the delta method to get SE for $\rho \& \sigma_2$. But, we have heteroscedasticity and the usual 2-step SE estimation problem.

• Heckman (1979) shows the correct asymptotic covariance matrix for $\boldsymbol{\beta} \ll \boldsymbol{\beta}_{\lambda}$ is given by: the following:

Est.Asy.Var $[\beta,\beta_{\lambda}] =$ $\hat{\sigma}_{\varepsilon}^{2} [X'_{*}X_{*}]^{-1} [X'_{*}(I - \hat{\rho}\hat{\Delta})X_{*} + Q] [X'_{*}X_{*}]^{-1}$ where $(I - \hat{\rho}\hat{\Delta})$ is a diagonal matrix with $(1 - \rho^{2}\delta_{i})$ on the diagonal $X_{i^{*}} = [X_{i},\lambda_{i}]$ $Q = \hat{\rho}^{2} (\mathbf{z}'\hat{\Delta}\mathbf{X}_{*})Var[\hat{\boldsymbol{\alpha}}](\mathbf{z}'\hat{\Delta}\mathbf{X}_{*})$

Note: Murphy and Topel (1985) SE for 2-step estimators can be used. 45

Tobit Model: Type II – Identification

• In general, it is difficult to justify different variables for z_i and x_i . This is a problem for the estimates. It creates an identification problem.

• Technically, the parameters of the model are identified, even when $z_i = x_i$. But, identification is based on the distributional assumptions.

• Estimates are very sensitive to assumption of bivariate normality -Winship and Mare (1992) and $z_i = x_i$.

• ρ parameter very sensitive in some common applications. Sartori (2003) comes with 95% C.I. for ρ = -.9999999 to +0.99255!

• Identification is driven by the non-linearity in the selection equation, through λ_i (and, thus, we need variation in the \mathbf{z}_i 's too!).

Tobit Model: Type II – Identification

• In general, it is difficult to justify different variables for z_i and x_i . This is a problem for the estimates. It creates an identification problem.

• We find that when $\mathbf{z}_i = \mathbf{x}_i$, identification tends to be tenuous unless there are many observations in the tails, where there is substantial nonlinearity in the λ_i . We need exclusion restrictions.

Tobit Model: Type II – Testing the model

• Q: Do we have a sample selection problem?

Based on the conditional expectation, a test is very simple. We need to test if there is an omitted variable. That is, we need to test if λ_i belongs in the conditional expectation $\mathbb{E}[y_i | y_i > 0]$.

• <u>Easy test</u>: $H_0: \beta_{\lambda} = 0.$

We can do this test using the estimator for β_{λ} , b_{λ} , from the second step of Heckman's two-step procedure.

• Usual problems with testing.

- The test assumes correct specification. If the selection equation is incorrect, we may be unable to reject H_0 .

- Rejection of H_0 does not imply accepting the alternative –i.e., sample selection problem. We may have non-linearities in the data!

Tobit Model: Type II – Testing the model

• Rejection of H₀ does not imply accepting the alternative –i.e., sample selection problem. We may have non-linearities in the data!

Identification issue II

We are not sure about the functional form. We may not be comfortable interpreting nonlinearities as evidence for endogeneity of the covariates.

*Then create inverse lambda * ***********************************							Second step: Truncated regression		
********	******	*****	*****	Note: The standard error					
*Finally, es	timate the He	ckit m	odel *	are not correct.					
source	uc exper expe SS	rsq Ia df	mbda MS		Number of obs	= 428			
Model Residual	Model 35.0479487 4 8.76198719 F(4, 423) = 19.69 Residual 188.279492 423 .445105182 R-squared = 0.1569								
Total	223.327441	427	.523015084		Root MSE	= 0.1490 = .66716			
	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval]			
lwage				0.000	.0783835	.1397476			
lwage educ exper expersq	.1090655 .0438873 0008591	.0156 .0163 .0004	1534 2.68 414 -1.95	0.008	.0117434 0017267	.0760313 8.49e-06			

Tol	bit Mc	o del:' ^{expersq, se}	Typ lect(s=e	e II duc exper	-App	plicat	ion dslt6 kidsge6) twostep
Heckman select (regression mo	tion model odel with sam	two-step es ple selectio	timates n)	Number Censore Uncenso Wald ch Prob >	of obs = ed obs = ored obs = hi2(3) = chi2 =	753 325 428 51.53 0.0000	Heckit Model estimated automatically.
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
lwage educ exper expersq _cons	.1090655 .0438873 0008591 5781032	.015523 .0162611 .0004389 .3050062	7.03 2.70 -1.96 -1.90	0.000 0.007 0.050 0.058	.0786411 .0120163 0017194 -1.175904	.13949 .0757584 1.15e-06 .019698	
s educ exper expersq nwifeinc age kidslt6 kidsge6 _cons	.1309047 .1233476 0018871 0120237 0528527 8683285 .036005 .2700768	.0252542 .0187164 .0006 .0048398 .0084772 .1185223 .0434768 .508593	5.18 6.59 -3.15 -2.48 -6.23 -7.33 0.83 0.53	0.000 0.002 0.013 0.000 0.000 0.408 0.595	.0814074 .0866641 003063 0215096 0694678 -1.100628 049208 7267473	.180402 .1600311 0007111 0025378 0362376 636029 .1212179 1.266901	Note $H_0: \rho = 0$ cannot be rejected. There is little evidence that
mills lambda	.0322619	.1336246	0.24	0.809	2296376	.2941613	sample selection bias
rho sigma lambda	0.04861 .66362875 .03226186	.1336246					is present. 52