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Lecture 9
Models for Censored and 

Truncated Data – Truncated 
Regression and Sample Selection 

Censored and Truncated Data: Definitions

• 𝑌 is censored when we observe 𝑋 for all observations, but we only 
know the true value of  𝑌 for a restricted range of  observations. 
Values of  𝑌 in a certain range are reported as a single value or there is 
significant clustering around a value, say 0.

- If  𝑌 = 𝑘 or 𝑌 > 𝑘 for all 𝑌 𝑌 is censored from below or left-censored.

- If  𝑌 = 𝑘 or 𝑌 < 𝑘 for all 𝑌 𝑌 is censored from above or right-censored.

We usually think of  an uncensored Y, Y*, the true value of  𝑌 when 
the censoring mechanism is not applied. We typically have all the 
observations for {𝑌,𝑋}, but not {Y*, 𝑋}.

• 𝑌 is truncated when we only observe 𝑋 for observations where 𝑌
would not be censored. We do not have a full sample for {𝑌, 𝑋}, we 
exclude observations based on characteristics of  𝑌. 
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Censored from below
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Censored from below: Example 

• If  Y ≤ 5, we do not know its exact value. 

Example: A Central Bank intervenes if  the exchange rate, Y, hits the 
band’s lower limit. If  Y ≤ Ē   Y = Ē.

4

f(𝑦௜
∗)

Prob(𝑦௜
∗ > 5)

𝑦௜
∗5

Prob(𝑦௜
∗< 5)

PDF(𝑦௜
∗)

• The pdf  of  the observable variable, y, is a mixture of  discrete 
(prob. mass at Y=5) and continuous (Prob[Y*>5]) distributions. 

Censored from below: Example 
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Prob(𝑦* < 5)
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• Under censoring we assign the full probability in the censored 
region to the censoring point, 5.

Censored from below: Example 

• If  Y < 3, the value of  X (or Y) is unknown. (Truncation from below.)

Example: If  a family’s income is below certain level, we have no 
information about the family’s characteristics.  

Truncated
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Truncated Data: Example
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• Under data censoring, the censored distribution is a combination of  
a pmf plus a pdf. They add up to 1. We have a different situation 
under truncation. To create a pdf  for 𝑌 we will use a conditional pdf. 
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Truncated Data: Example

Truncated regression

• Truncated regression is different from censored regression in the 
following way:

Censored regressions: The dependent variable may be censored, but 
you can include the censored observations in the regression

Truncated regressions: A subset of observations are dropped, thus, 
only the truncated data are available for the regression.

• Q: Why do we have truncation?

(1) Truncation by survey design: Studies of poverty. By survey’s 
design, families whose incomes are greater than that threshold are 
dropped from the sample.  

(2) Incidental Truncation: Wage offer married women. Only those 
who are working have wage information. It is the people’s decision, 
not the survey’s design, that determines the sample selection.

8
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Truncation and OLS

Q: What happens when we apply OLS to a truncated data? 

- Suppose that you consider the following regression:

𝑦௜ = 𝛽଴ + 𝛽ଵ 𝑥௜ + 𝜀௜ = 𝒙௜
ᇱ𝛽 + 𝜀௜, 

- We have a random sample of size 𝑁. All CLM assumptions are 
satisfied. (The most important assumption is (A2) Eሾ𝜀௜|𝒙௜ሿ = 0.)

- Instead of using all the 𝑁 observations, we use a subsample. Then, 
run OLS using this sub-sample (truncated sample) only. 

• Q: Under what conditions, does sample selection matter to OLS?

(A) OLS is Unbiased

(A-1) Sample selection is randomly done.

(A-2) Sample selection is determined solely by the value of 𝒙-
variable. For example, suppose that 𝑥 is age. Then if you select 
sample if age is greater than 20 years old, this OLS is unbiased. 9

(B) OLS is Biased

(B-1) Sample selection is determined by the value of 𝒚-variable. 

Example: We are studying the determinants of hedging, 𝑦. We select 
the sample if 𝑦 is greater than certain threshold. Then this OLS is 
biased.

(B-2) Sample selection is correlated with 𝜀௜. 
Example: We run a wage regression 𝑦௜ = 𝛽଴ + 𝛽ଵ 𝑥௜ + 𝜀௜, where 𝜀௜
contains unobserved ability. If sample is selected based on the 
unobserved ability, this OLS is biased. 

- In practice, this situation happens when the selection is based on the 
survey participant’s decision. Since the decision to participate is likely 
to be based on unobserved factors which are contained in 𝜀௜, the 
selection is likely to be correlated with 𝜀௜. 10

Truncation and OLS
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• Consider the previous regression:

𝑦௜ = 𝛽଴ + 𝛽ଵ 𝑥௜ + 𝜀௜
- All CLM assumptions are satisfied. 

- Instead of using all the 𝑁 observations, we use a subsample. Let 𝑠௜
be a selection indicator: If 𝑠௜ = 1, then person 𝑖 is included in the 
regression. If 𝑠௜ = 0, then person 𝑖 is dropped from the data.

• If we run OLS using the selected subsample, we use only the 
observation with 𝑠௜ = 1. That is, we run the following regression:

𝑠௜ 𝑦௜ = 𝛽଴ 𝑠௜ + 𝛽ଵ 𝑠௜  𝑥௜ + 𝑠௜  𝜀௜
Now,  𝑠௜𝑥௜ is the explanatory variable, and 𝑢௜= 𝑠௜  𝜀௜is the error term.

• OLS is unbiased if Eሾ𝑢௜ = 𝑠௜  𝜀௜|𝑠௜  𝑥௜ሿ = 0. 

 under what conditions is this new (A2) satisfied? 11

Truncation and OLS: When does (A2) hold?

Q: When does Eሾ𝑢௜ = 𝑠௜  𝜀௜|𝑠௜  𝑥௜ሿ hold?

It is sufficient to check: Eሾ𝑢௜|𝑠௜  𝑥௜ሿ. (If this is zero, then new (A2) is 
also zero.)

• Eሾ𝑢௜|𝑠௜  𝑥௜ሿ = 𝑠௜ Eሾ𝜀௜|𝑠௜  𝑥௜ሿ - 𝑠௜ is in the conditional set. 

• It is sufficient to check the condition which ensures Eሾ𝜀௜|𝑥௜ , 𝑠௜ሿ = 0.

• CASES:

(A-1) Sample selection is done randomly. 

𝑠௜ is independent of 𝜀௜ and 𝑥௜  Eሾ𝜀௜|𝑥௜ , 𝑠௜ሿ = Eሾ𝜀௜|𝑥௜ሿ
Since CLM assumptions are satisfied  we have Eሾ𝜀௜|𝑥௜ሿ = 0. 

 OLS is unbiased. 12

Truncation and OLS: When does (A2) hold?
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(A-2) Sample is selected based solely on the value of x-variable.

Example: We study trading in stocks, 𝑦௜. One of the dependent 
variables, 𝑥௜ , is wealth, and we select person 𝑖 if wealth is greater than 
50K. Then, 

𝑠௜ = 1 if 𝑥௜ ≥ 50K, 

𝑠௜ = 0 if 𝑥௜ < 50K. 

-Now, 𝑠௜ is a deterministic function of 𝑥௜ . 

• Since 𝑠௜ is a deterministic function of 𝑥௜ , 𝑠௜ሺ𝑥௜ሻ, it drops out from the 
conditioning set. Then, 

Eሾ𝜀௜|𝑥௜ , 𝑠௜ሿ = Eሾ𝜀௜|𝑥௜ , 𝑠௜ሺ𝑥௜ሻሿ 
= Eሾ𝜀௜|𝑥௜ሿ = 0  - CLM assumptions satisfied. 

 OLS is unbiased.  
13

Truncation and OLS: When does (A2) hold?

(B-1) Sample selection is based on the value of 𝑦-variable.

Example: We study determinants of wealth, 𝑦. We select individuals 
whose wealth is smaller than 150K. Then, 𝑠௜ = 1 if 𝑦௜ <150K. 

- Now, 𝑠௜ depends on 𝑦௜ (and 𝜀௜). It cannot be dropped out from the 
conditioning set like we did before. Then, 

Eሾ𝜀௜|𝑥௜ , 𝑠௜ሿ ≠ Eሾ𝜀௜|𝑥௜ሿ = 0.

• For example, Eሾ𝜀௜|𝑥௜ , 𝑠௜ሿ = Eሾ𝜀௜|𝑥௜ , 𝑠௜ሺ𝑥௜ሻሿ 
Eሾ𝜀௜|𝑥௜ , 𝑠௜ ൌ 1ሿ = Eሾ𝜀௜|𝑥௜ , 𝑦௜ ≤ 150Kሿ

= Eሾ𝜀௜|𝑥௜ , 𝛽଴ + 𝛽ଵ 𝑥௜ + 𝜀௜ ≤ 150Kሿ
= ሾ𝜀௜|𝑥௜ , 𝜀௜≤ 150K െ ሺ𝛽଴ + 𝛽ଵ 𝑥௜ሻሿ
≠ Eሾ𝜀௜|𝑥௜ሿ = 0  OLS is biased.

14

Truncation and OLS: When does (A2) hold?
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(B-2) Sample selection is correlated with 𝑢௜.
The inclusion of a person in the sample depends on the person’s 
decision, not the surveyor's decision. This type of truncation is called 
the incidental truncation. The bias that arises from this type of sample 
selection is called the Sample Selection Bias.

Example: Dividend payments model: 

𝑦௜ = 𝛽଴ + 𝛽ଵ 𝑥௜ + 𝜀௜. 

Since it is a  company’s decision to pay dividends –i.e., to participate–, 
this sample selection is likely to be based on some unobservable factors 
which are contained in 𝜀௜. Like in (B-1), 𝑠௜ cannot be dropped out from 
the conditioning set: 

Eሾ𝜀௜|𝑥௜ , 𝑠௜ሿ ≠ Eሾ𝜀௜|𝑥௜ሿ = 0  OLS is biased.  
15

Truncation and OLS: When does (A2) hold?

• CASE (A-2) can be more complicated, when the selection rule based 
on the 𝒙-variable may be correlated with 𝜀௜. 

Example: 𝑥 is IQ. A survey participant responds if IQ > 𝑣. 

Now, the sample selection is based on 𝑥-variable and a random error 𝑣. 

Q: If we run OLS using only the truncated data, will it cause a bias? 

Two cases:

- (1) If 𝑣 is independent of 𝜀, then it does not cause a bias.

- (2) If 𝑣 is correlated with 𝜀, then this is the same case as (B-2). Then, 
OLS will be biased.

16

Truncation and OLS: When does (A2) hold?
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Estimation with Truncated Data.

• CASES

- Under cases (A-1) and (A-2), OLS is appropriate. 

- Under case (B-1), we use Truncated regression.

- Under case (B-2) –i.e., incidental truncation-, we use the Heckman 
Sample Selection Correction method. This is also called the Heckit
model.

17

Truncated Regression

• Data truncation is (B-1): the truncation is based on the 𝑦-variable. 

• We have the following regression satisfies all CLM assumptions:

𝑦௜ = 𝒙௜
ᇱ𝛽 + 𝜀௜, 𝜀௜ ~ N(0, σ2)

- We sample only if 𝑦௜ < 𝑐௜
 Observations are dropped if 𝑦௜ ≥ 𝑐௜ by design. 

- We know the exact value of 𝑐௜ for each person.

• We know that OLS on the truncated data will be biased. The model 
that produces unbiased estimate is based on ML Estimation.

18
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Biased regression when 
applying OLS to truncated data

Truncated Regression

• Given the normality assumption for 𝜀௜, ML is easy to apply. 

- For each,  𝜀௜ = 𝑦௜ െ 𝒙௜
ᇱ𝛽, the likelihood contribution is 𝑓ሺ𝜀௜ሻ. 

- But, we select sample only if 𝑦௜ < 𝑐௜
 we have to use the density function of 𝜀௜ conditional on 𝑦௜ < 𝑐௜:

𝑓 𝜀௜| 𝑦௜  < 𝑐௜ ൌ 𝑓 𝜀௜| 𝜀௜< 𝑐௜ െ 𝒙௜
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Truncated Regression: Conditional Distribution
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Truncated Normal (Again)

• Moments: 

Let 𝑦*~ N(𝜇∗, σ2) and 𝛼 = 
ሺ௖ ି ఓ∗) 

஢
. 

- First moment: 

E[𝑦*|𝑦 > 𝑐] = 𝜇∗ + σ λ 𝛼 <= This is the truncated regression.

 If 𝜇 >0 and the truncation is from below –i.e., λ 𝛼 >0–, the mean 
of the truncated variable is greater than the original mean 

Note: For the standard normal distribution λ 𝛼 is the mean of the 
truncated distribution.

- Second moment:

- Var[𝑦*|𝑦 > 𝑐] = σ2[1 െ 𝛿 𝛼 ሿ where 𝛿 𝛼 = λ 𝛼 [λ 𝛼 െ 𝛼]

 Truncation reduces variance! This result is general, it applies to 
upper or lower truncation given that 0 ≤ 𝛿 𝛼 ≤ 1

22

𝑓(𝑦|𝑦* > 0, 𝒙)

𝐹(0|𝒙)

0
𝒙௜
ᇱ𝛽 ൅ σλ௜

Model: 𝑦௜
∗= 𝒙௜

ᇱ𝛽 ൅ 𝜀௜
Observed Data: 𝑦௜ ൌ 𝑦௜

∗|𝑦௜
∗ ൐ 0

• Truncated (from below, 𝑦௜
∗ ൐ 0) regression model:

E 𝑦௜  𝑦௜
∗ ൐ 0,𝒙௜ሿ ൌ 𝒙௜

ᇱ𝛽 ൅ σλ௜ ൐E 𝑦௜ 𝒙௜ሿ

𝒙௜
ᇱ𝛽

𝑓(𝑦∗|𝒙)

Truncated Normal (Again)
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• The likelihood contribution for 𝑖௧௛ observation is given by
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• The likelihood function is given by (with 𝑐௜ = 0): 

• The values of (𝜷,σ) that maximizes Log L are the ML estimators of 
the Truncated Regression. 23
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Truncated Regression: ML Estimation

log(joint probability 
of  𝑦௜

∗ > 0)

ln(joint density of  𝑁 values of  𝑦௜
∗)

The partial effects

• The estimated parameters 𝛽௞ measures the effect of 𝑥௞ on 𝑦 for 
participating individual. Thus,

ஔE[௬೔|௬೔ > 0, 𝒙೔ᇱ𝜷]
ஔ௫

ൌ 𝛽௞ ൅ σ 
ஔఒሺ𝒙೔

ᇲ𝜷ሻ

ஔ௫
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ஔఒሺ𝒙೔
ᇲ𝜷ሻ

ஔ௫
ൌ

= 𝛽௞ ∗ ሺ1 െ 𝑑௜ሻ

with 𝑑௜ ൌ 𝜆ሺ𝒙௜
ᇱ𝜷) *[𝜆ሺ𝒙௜

ᇱ𝜷ሻ + 𝒙௜
ᇱ𝜷].

24
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• DATA: From a survey of family income in Japan 
(JPSC_familyinc.dta). The data is originally not truncated. 

Model: 𝑦௜ ൌ 𝛽଴ + 𝛽ଵ 𝑥௜ ൅ 𝜐௜
𝑦௜ ൌ family income in JPY 10,000

𝑥௜ : husband’s education

• Three cases:

EX1. Use all observations to estimate model

EX2. Truncate sample from above (𝑦௜ < 800). Then run the OLS using 
on the truncated sample. 

EXe. Run the truncated regression model for the data truncated from 
above. 

25

Truncated Regression: MLE – Example

26

                                                                              
       _cons      143.895   15.09181     9.53   0.000     114.3109     173.479
     huseduc     32.93413   1.083325    30.40   0.000     30.81052    35.05775
                                                                              
   familyinc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     357156023  7694  46420.0705           Root MSE      =  203.58
                                                       Adj R-squared =  0.1071
    Residual     318850122  7693  41446.7856           R-squared     =  0.1073
       Model    38305900.9     1  38305900.9           Prob > F      =  0.0000
                                                       F(  1,  7693) =  924.22
      Source         SS       df       MS              Number of obs =    7695

. reg familyinc huseduc

                                                                              
       _cons     244.5233   11.33218    21.58   0.000     222.3084    266.7383
     huseduc     20.27929   .8260432    24.55   0.000     18.65996    21.89861
                                                                              
   familyinc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     132238735  6273   21080.621           Root MSE      =  138.69
                                                       Adj R-squared =  0.0875
    Residual     120645494  6272  19235.5699           R-squared     =  0.0877
       Model    11593241.1     1  11593241.1           Prob > F      =  0.0000
                                                       F(  1,  6272) =  602.70
      Source         SS       df       MS              Number of obs =    6274

. reg familyinc huseduc if familyinc<800

OLS using all the 
observations, unbiased 
estimated 𝛽ଵ= 32.93413.

OLS on truncated 
sample.

The parameter on 
husband’s education is 
biased towards zero.
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      /sigma     153.1291   1.805717    84.80   0.000       149.59    156.6683
                                                                              
       _cons     203.6856   13.75721    14.81   0.000     176.7219    230.6492
     huseduc     24.50276     1.0264    23.87   0.000     22.49105    26.51446
                                                                              
   familyinc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -39618.629                             Prob > chi2   = 0.0000
         upper =        800                             Wald chi2(1)  = 569.90
Limit:   lower =       -inf                             Number of obs =   6274
Truncated regression

Iteration 3:   log likelihood = -39618.629  
Iteration 2:   log likelihood = -39618.629  
Iteration 1:   log likelihood = -39618.757  
Iteration 0:   log likelihood = -39676.782  

Fitting full model:

(note: 1421 obs. truncated)
. truncreg familyinc huseduc, ul(800) Truncated regression model 

on the truncated sample

Note: Bias seems to be corrected, but not perfect in this example.

Sample Selection Bias Correction Model

• The most common case of truncation is (B-2): Incidental truncation.

• This data truncation usually occurs because sample selection is 
determined by the people’s decision, not the surveyor’s decision.

• Back to the wage regression example. If person 𝑖 has chosen to 
participate (work), person 𝑖 has self-selected into the sample. If person 𝑖 has 
decided not to participate, person i has self-selected out of the sample.

• The bias caused by this type of truncation is called sample selection bias. 

• This model involves two decisions: (1) participation and (2) amount. 
It is a generalization of the Tobit Model.

28
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• Different ways of  thinking about how the latent variable and the 
observed variable interact produce different Tobit Models.

• The Type I Tobit Model presents a simple relation:
- 𝑦௜ = 0 if   𝑦௜

∗ = 𝒙௜
ᇱ𝜷 + 𝜀௜ ≤ 0

=  𝑦௜
∗ ൌ 𝒙௜

ᇱ𝜷 + 𝜀௜, if   𝑦௜
∗ = 𝒙௜

ᇱ𝜷 + 𝜀௜ > 0

The effect of  the X’s on the probability that an observation is censored 
and the effect on the conditional mean of  the non-censored 
observations are the same: 𝜷.

• The Type II Tobit Model presents a more complex relation:
- 𝑦௜ = 0 if  𝑦௜

∗ = 𝒙௜′α + 𝜀ଵ,௜ ≤ 0, 𝜀ଵ,௜ ~N(0, 1)
= 𝒙௜′𝜷 + 𝜀ଶ,௜ if  𝑦௜

∗ = 𝒙௜′α + 𝜀ଶ,௜ > 0, 𝜀ଶ,௜ ~N(0, σଶଶ)
Now, we have different effects of  the 𝒙’s.

Tobit Model: Type II

30

• The Type II Tobit Model:
- 𝑦௜ = 0 if  𝑦௜

∗ = 𝒙௜′𝜶 + 𝜀ଵ,௜ ≤ 0, 𝜀ଵ,௜ ~N(0, σଵଶ=1)
= 𝒙௜′𝜷 + 𝜀ଶ,௜ if  𝑦௜

∗ = 𝒙௜′𝜶 + 𝜀ଶ,௜ > 0, 𝜀ଶ,௜ ~N(0, σଶଶ)

- A more flexible model. 𝒙 can have an effect on the decision to 
participate (Probit part) and a different effect on the amount decision 
(truncated regression). 

• Type I is a special case: 𝜀ଶ,௜ = 𝜀ଵ,௜ and 𝜶 = 𝜷.

Example: Age affects the decision to donate to charity. But it can have 
a different effect on the amount donated. We may find that age has a 
positive effect on the decision to donate, but given a positive donation, 
younger individuals donate more than older individuals.

Tobit Model: Type II
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• The model assumes a bivariate normal distribution for (𝜀ଵ,௜, 𝜀ଶ,௜); 
with covariance given by 𝜎ଵଶ(= 𝜌 𝜎ଵ𝜎ଶ).

- Conditional expectation:

E[𝑦௜|𝑦௜ > 0, 𝒙௜] = 𝒙௜′𝜷 + 𝜎ଵଶ 𝜆(𝒙௜′𝜶) (𝜎ଵଶ(= 𝜌 𝜎ଶ))

- Unconditional Expectation

E[𝑦௜|𝒙௜] = Prob(𝑦௜>0|𝒙௜) * E[𝑦௜|𝑦௜>0, 𝒙௜] + Prob(𝑦௜=0|𝒙௜) * 0 

= Prob(𝑦௜ > 0|𝒙௜) * E[𝑦௜|𝑦௜ > 0, 𝒙௜] 
= Φ(𝒙௜′𝜶) * [𝒙௜′𝜷 + 𝜎ଵଶ 𝜆(𝒙௜′𝜶)] 

Note: This model is known as the Heckman selection model, or the 
Type II Tobit model (Amemiya), or the probit selection model 
(Wooldridge).

Tobit Model: Type II
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• Now, we generalize the model presented, making the decision to 
participate dependent on a different variable, 𝑧. Then,
- 𝑦௜ = 0 if  𝑦௜

∗ = 𝑧௜′𝜶 + 𝜀ଵ,௜ ≤ 0, 𝜀ଵ,௜ ~N(0, σଶଶ=1)
= 𝒙௜′𝜷 + 𝜀ଶ,௜ if  𝑦௜

∗ = 𝑧௜′𝜶 + 𝜀ଶ,௜ > 0, 𝜀ଶ,௜ ~N(0, σଶଶ)

• This model is called the Sample selection model, due to Heckman.

Example (from Heckman (Econometrica, 1979): Structural Labor model:

• Labor Supply equation:
ℎ௜
∗ ൌ δ0 + δ1 𝑤௜ + 𝒁௜′δ2 + 𝜀௜ (1)

- ℎ௜
∗: desired hours by 𝑖th person (latent variable)

- 𝑤௜ : wage that could be earned 
- 𝒁௜: non-labor income, taste variables (married, kids, etc.)
- 𝜀௜ (error term): unobserved taste for work.

Tobit Model: Type II – Sample selection
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Example (from Heckman) (continuation)
• Market wage equation (equation of  interest):

 𝑤௜ ൌ 𝒙௜′𝜷 + 𝑢௜ (2) 
- 𝒙௜ : productivity,  age, education, previous experience, etc.
- 𝑢௜ (error term): unobserved wage earning ability.
- 𝑢௜ & 𝜀௜ are assumed to follow a bivariate distribution (usually, a 
normal)

We observe  𝑤௜ for only those who work –i.e., ℎ௜
∗ >0.

Goal: Estimation of  wage offer equation for people of  working age

Q: The sample is non longer random. How can we estimate (2) if  we 
only observe  𝑤௜ (wages) for those who work?

• Problem: Selection bias. Non-participation is rarely random

Tobit Model: Type II – Sample selection
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• Selection bias: Non-participation is rarely random
- Not distributed equally across subgroups
- Agents decide to participate or not –i.e., self-select into a group.

Q: Can we test for selection bias?

Tobit Model: Type II – Selection Bias
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• Terminology: 
- Selection equation:

𝑦௜
∗ = 𝒛௜′𝜶 + 𝜀ଵ,௜ (often, a latent variable equation, say market 

wage vs. value of  home production)

- Selection Rule:
- 𝑦௜ = 0 if  𝑦௜

∗ ≤ 0  𝐷௜  ൌ 0,
= 𝒙௜′𝜷 + 𝜀ଶ,௜ if  𝑦௜

∗ > 0  𝐷௜  ൌ 1,

- Outcome equation:
𝑦௜ = 𝒙௜′𝜷 + 𝜀ଶ,௜ (the primary equation of  interest)

• To derive moments, we need to make an assumption about the 
distribution of  the errors, 𝜀ଵ,௜ & 𝜀ଶ,௜ . In the Heckman model, we 
assume a bivariate normal joint distribution.

Tobit Model: Type II – Terminology
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• Expectations: Under incidental truncation with a bivariate normal 
distribution we have:

- Conditional expectation (when is 𝑦௜ observed) :

E[𝑦௜|𝑦௜ > 0, 𝒙௜] = 𝒙௜′𝜷 + 𝜎ଵଶ 𝜆ሺ
𝒛೔
ᇲ𝜶

ఙభ
) 

- Unconditional Expectation:

E[𝑦௜|𝒙௜] = Φ(
𝒛೔
ᇲ𝜶

ఙభ
) * [𝒙௜′𝜷 + 𝜎ଵଶ 𝜆(

𝒛೔
ᇲ𝜶

ఙభ
)] 

Note: The results look very similar to the results obtained under 
truncation, but now we have a different variable, 𝒛௜, determining 
truncation.

• Again, OLS estimation on the observed part produces a biased and 
inconsistent estimator. The size of  the bias depends on  𝜎ଵଶ (or 𝜌).

Tobit Model: Type II – Expectations
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• From the conditional expectation:

E[𝑦௜|𝑦௜ > 0, 𝒙௜] = 𝒙௜′𝜷 + 𝜌 𝜎ଵ𝜎ଶ 𝜆ሺ
𝒛೔
ᇲ𝜶

ఙభ
ሻ ( 𝜎ଵൌ 1)

• Above we see that applying OLS to observed sample will produce 
biased (and inconsistent) estimators. This is called sample selection bias (an 
omitted variable problem). It depends on 𝜎ଵଶ (or 𝜌) and 𝒛.

• But regressing 𝑦 on 𝒙 and 𝜆 on the sub-sample with 𝑦௜
∗ > 0 produces 

consistent estimates (though SE need correction). But, we need an 
estimator for 𝜆. This idea is the basis of  Heckman’s two-step 
estimation.

• Estimation
- ML –complicated, but efficient
- Two-step –easier, but not efficient. Not the usual standard errors. 

Tobit Model: Type II – Conditional Expectation 
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• Marginal effects of  changes in exogenous variables have two 
components:
- Direct effect on mean of  𝑦௜, 𝛽௜ via (2)
- If  a variable affects the Prob[𝑦௜

∗ > 0], then it will affect 𝑦௜ via (1).

• Marginal effect if  regressor appears in both 𝑧௜ and 𝑥௜ :

ஔE[௬೔|௬೔ > 0, 𝒙೔ᇱ𝜷]
ஔ௫

ൌ 𝛽௞ െ 𝛼௞ ∗ 𝜌𝜎ଶ ∗ ሼ𝜆 𝒛௜
ᇱ𝜶 ଶ െ [ ሺെ

𝒛೔
ᇲ𝜶

ఙభ
ሻ 𝜆 𝒛௜

ᇱ𝜶 ሿሽ

• Suppose 𝜌 > 0 and E(𝑦௜) is greater when𝑦௜
∗ > 0 and given that the 

last term above is between 0 and 1, then, the additional term reduces 
the marginal effects (it controls for increased mean due to probability 
impacts). That is, 𝛽௞ overstates partial effects.

Note: If  𝜌 = 0, the partial effect is exactly given by 𝛽௞.

Tobit Model: Type II – Partial Effects
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• To derive the likelihood function for the Sample selection model, we 
will use results from the conditional distribution of  two bivariate 
normal RVs.

• Recall the definition of  conditional distributions for continuous RVs:

and

• In the case of  the bivariate normal distribution the conditional 
distribution of  xi given xj is Normal with mean and standard deviation 
(using the standard notation):
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•  The model assumes a bivariate normal distribution for (𝜀ଵ,௜; 𝜀ଶ,௜), 
with covariance given by 𝜎ଵଶ(= 𝜌 𝜎ଵ𝜎ଶ). We use a participation dummy 
variable: 𝐷௜ ൌ 0 (No), 𝐷௜ ൌ 1 (Yes).

• The likelihood reflects two contributions: 

(1) Observations with 𝒚𝒊 = 0  –i.e., 𝑦௜
∗ = 𝒛௜

ᇱ𝜶 + 𝜀ଵ,௜ ≤ 0  𝐷௜  ൌ 0.

- Probሺ𝐷௜ ൌ 0|𝒙௜ሻ = P(𝑦௜
∗ = 𝒛௜

ᇱ𝜶 + 𝜀ଵ,௜ ≤ 0|𝒙௜) = P(𝜀ଵ,௜ ≤ -𝒛௜
ᇱ𝜶|𝒙௜) 

= 1 െΦሺ𝒛௜
ᇱ𝜶ሻ

(2) Observations with 𝒚𝒊 > 0  –i.e., 𝑦௜
∗ = 𝒛௜

ᇱ𝜶 + 𝜀ଵ,௜ > 0  𝐷௜  ൌ 1.

- 𝑓ሺ𝑦௜|𝐷௜ ൌ 1, 𝒙௜ , 𝒛௜) * Prob(𝐷௜ ൌ 1|𝒙௜ , 𝒛௜, 𝑦௜)

(2.a) 𝑓ሺ𝑦௜|𝐷௜  ൌ 1, 𝒙௜ሻ ൌ
௉ሺ஽೔ ୀଵ|𝒙೔, ௬೔) * ௙ሺ௬೔|𝒙೔)

௉ሺ஽೔ ୀଵ, 𝒙೔)
(Bayes’ Rule)

where 𝑓 𝑦௜ 𝒙௜ = (1/𝜎ଶ) 𝜙((𝑦௜ െ 𝒙௜′𝜷 )/𝜎ଶ)

Tobit Model: Type II – ML Estimation
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(2.b) Pሺ𝑦௜|𝐷௜ = 1|𝒙௜ , 𝒛௜, 𝑦௜) = P(𝜀ଵ,௜ > െ 𝒛௜
ᇱ𝜶|𝒙௜, 𝑦௜) 

= Pሾ
ఌభ,೔ ି (ఘ/ ఙమ) ∗ ሺ௬೔ ି 𝒙೔

ᇲ𝜷ሻ

ఙభ
2(1− ఘ)2

> 
ି𝒛೔

ᇲ𝜶 ି (ఘ/ఙమ) ∗ ሺ௬೔ ି 𝒙೔
ᇲ𝜷ሻ

ఙభ
2(1− ఘ)2

]

= 1 െ  Φሺെ
𝒛೔
ᇲ𝜶  ା (ఘ/ ఙమ) ∗ ሺ௬೔ ି 𝒙೔

ᇲ𝜷ሻ

ఙభ
2(1− ఘ)2

ሻ

= Φሺ
𝒛೔
ᇲ𝜶 ା (ఘ/ ఙమ) ∗ ሺ௬೔ ି 𝒙೔

ᇲ𝜷ሻ

ఙభ
2(1− ఘ)2

ሻ

- Moments of  the conditional distribution (𝑦ଵ|𝑦ଶ) of  a normal RV:

- Mean for RV 1: 𝜇ଵ + (𝜎ଵଶ/σଶଶ) (𝑦ଶ െ 𝜇ଶሻ = (𝜌/𝜎ଶ) ∗ ሺ𝑦௜ െ 𝒙௜
ᇱ 𝜷ሻ

- Variance for RV 1: σଵଶ (1 െ  𝜌2) = 1 െ  𝜌2 (Recall: σଵ= 1)

Tobit Model: Type II – ML Estimation
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• Now, we can put all the contributions together: 

𝐿 𝜷 ൌ  ∏ 𝑃 𝑦௜ ൌ 0 ∗ ௜,௬೔ୀ଴
∏  ሼ𝑃 𝑦௜ ൐ 0 ∗ 𝑓 𝑦௜ 𝒙௜ , 𝒛௜ ሽ ௜,௬೔வ଴

• Taking logs:
log 𝐿ሺ𝛽,𝜶,𝜎,𝜌ሻ ൌ ∑ ሺ1 െ 𝐷௜ሻ

ே
௜ୀଵ ∗ lnሺ1 െΦሺ𝒛௜

ᇱ𝜶ሻሻ + 

+ ∑ 𝐷௜ ∗ ln ሼΦ
𝒛೔
ᇲ𝜶 ା (ఘ/ఙమ) ∗ ௬೔ ି 𝒙೔

ᇲ𝜷

ఙభ
2(1− ఘ)2

ሽ   ே
௜ୀଵ

+ ∑ 𝐷௜  ∗  ln ሼ ଵ
ఙమ
𝜙ሺ ௬೔ି 𝒙೔ᇱ𝜷

ఙమ
ሻሽ ே

௜ୀଵ

• Complicated likelihood. The algorithm tends to be badly behaved:
 Iterative methods do not always converge to the MLE. 

Note: If  𝜌 ൌ 0 this log likelihood is just the sum a Gaussian linear 
regression log likelihood and a probit log likelihood.

Tobit Model: Type II – ML Estimation
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• It is much easier two use Heckman’s two-step (Heckit) estimator:

(1) Probit part: Estimate 𝜶 using ML  get 𝜶ෝ

(2) Truncated regression: 
- For each 𝐷௜ = 1 (participation), calculate 𝜆௜ = 𝜆(𝒛௜

ᇱ𝜶ෝ). 
- Regress 𝑦௜ against 𝒙௜ & 𝜆(𝒛௜

ᇱ𝜶ෝ)  get b & 𝑏ఒ (= 𝜌𝜎ଶ).

• Problems: 
- Consistent, but not efficient (relative to MLE) 
- Getting Var[b] is not easy (we are estimating 𝜶 too).

• We can get consistent estimators of  𝜌 & 𝜎ଶ, individually. For each 
observation, the true conditional variance of  the disturbance would be

𝜎௜2 =  𝜎ଶଶ (1 – ρଶ δ௜) (𝛿 𝛼 = λ 𝛼 [λ 𝛼 െ 𝛼])
where we can estimate 

𝜎ොଶ
ଶ = 

௘ᇲ௘

ே
൅ ሺ∑ δ௜/𝑁

ே
௜ୀଵ ሻ 𝑏ఒ & ρො ൌ ௕ഊ

మ

ఙమమ
.

Tobit Model: Type II – Two-step estimator
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• In theory, we can use the delta method to get SE for 𝜌 & 𝜎ଶ. But,  we 
have heteroscedasticity and the usual 2-step SE estimation problem.

• Heckman (1979) shows the correct asymptotic covariance matrix for 
𝜷 & 𝜷ఒ is given by: the following:

Q = 𝜌 ෝଶሺ𝒛ᇱΔ෡𝑿∗ሻ𝑉𝑎𝑟 𝜶ෝ ሺ𝒛ᇱΔ෡𝑿∗ሻ

Note: Murphy and Topel (1985) SE for 2-step estimators can be used. 

Tobit Model: Type II – Two-step estimator
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• In general, it is difficult to justify different variables for 𝒛௜  and 𝒙௜ . 
This is a problem for the estimates. It creates an identification problem.

• Technically, the parameters of  the model are identified, even when 
𝒛௜ = 𝒙௜ . But, identification is based on the distributional assumptions. 

• Estimates are very sensitive to assumption of  bivariate normality -
Winship and Mare (1992) and 𝒛௜  = 𝒙௜ .

• 𝜌 parameter very sensitive in some common applications. Sartori
(2003) comes with 95% C.I. for 𝜌 = -.999999 to +0.99255!

• Identification is driven by the non-linearity in the selection equation, 
through 𝜆௜ (and, thus, we need variation in the 𝒛௜’s too!).

Tobit Model: Type II – Identification 
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• In general, it is difficult to justify different variables for 𝒛௜  and 𝒙௜ . 
This is a problem for the estimates. It creates an identification problem.

• We find that when 𝒛௜  = 𝒙௜ , identification tends to be tenuous unless
there are many observations in the tails, where there is substantial
nonlinearity in the 𝜆௜. We need exclusion restrictions.

Tobit Model: Type II – Identification 
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• Q: Do we have a sample selection problem?
Based on the conditional expectation, a test is very simple. We need to 
test if  there is an omitted variable. That is, we need to test if  𝜆௜ belongs 
in the  conditional expectation Eሾ𝑦௜|𝑦௜ ൐ 0ሿ. 

• Easy test: H0: 𝛽ఒ = 0. 

We can do this test using the estimator for 𝛽ఒ, 𝑏ఒ, from the second step 
of  Heckman’s two-step procedure.

• Usual problems with testing. 
- The test assumes correct specification. If  the selection equation is 
incorrect, we may be unable to reject H0.
- Rejection of  H0 does not imply accepting the alternative –i.e., sample 

selection problem. We may have non-linearities in the data!

Tobit Model: Type II – Testing the model 
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• Rejection of  H0 does not imply accepting the alternative –i.e., sample 
selection problem. We may have non-linearities in the data!

Identification issue II
We are not sure about the functional form. We may not be comfortable 
interpreting nonlinearities as evidence for endogeneity of  the 
covariates.

Tobit Model: Type II – Testing the model 
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       _cons     .2700768    .508593     0.53   0.595    -.7267473    1.266901
     kidsge6      .036005   .0434768     0.83   0.408     -.049208    .1212179
     kidslt6    -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029
         age    -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376
    nwifeinc    -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378
     expersq    -.0018871      .0006    -3.15   0.002     -.003063   -.0007111
       exper     .1233476   .0187164     6.59   0.000     .0866641    .1600311
        educ     .1309047   .0252542     5.18   0.000     .0814074     .180402
                                                                              
           s        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -401.30219                       Pseudo R2       =     0.2206
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(7)      =     227.14
Probit regression                                 Number of obs   =        753

Iteration 4:   log likelihood = -401.30219
Iteration 3:   log likelihood = -401.30219
Iteration 2:   log likelihood = -401.32924
Iteration 1:   log likelihood = -405.78215
Iteration 0:   log likelihood =  -514.8732

. probit s educ exper expersq nwifeinc age kidslt6 kidsge6

. *******************************

. *selection equation           *

. *Next, estimate the probit    *

. *******************************

(428 real changes made)
.     replace s=1 if wage~=.

(428 missing values generated)
.     gen s=0 if wage==.
. ***************************
. * Variable                *
. * First create selection  *
. ***************************
. **********************************************
. * Estimating heckit model manually           *
. **********************************************

Estimating Heckit Manually. 
(note: you will not get the 
correct standard errors.

First step: 
Probit selection equation

Tobit Model: Type II – Application 
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       _cons    -.5781032    .306723    -1.88   0.060    -1.180994     .024788
      lambda     .0322619   .1343877     0.24   0.810    -.2318889    .2964126
     expersq    -.0008591   .0004414    -1.95   0.052    -.0017267    8.49e-06
       exper     .0438873   .0163534     2.68   0.008     .0117434    .0760313
        educ     .1090655   .0156096     6.99   0.000     .0783835    .1397476
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    223.327441   427  .523015084           Root MSE      =  .66716
                                                       Adj R-squared =  0.1490
    Residual    188.279492   423  .445105182           R-squared     =  0.1569
       Model    35.0479487     4  8.76198719           Prob > F      =  0.0000
                                                       F(  4,   423) =   19.69
      Source         SS       df       MS              Number of obs =     428

. reg lwage educ exper expersq lambda

. *************************************

. *Finally, estimate the Heckit model *

. *************************************

.  gen lambda =normalden(xdelta)/normal(xdelta)

.  predict xdelta, xb

. *******************************

. *Then create inverse lambda   *

. *******************************
Second step: Truncated 
regression

Note: The standard errors 
are not correct.

Tobit Model: Type II – Application 
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      lambda    .03226186   .1336246
       sigma    .66362875
         rho      0.04861
                                                                              
      lambda     .0322619   .1336246     0.24   0.809    -.2296376    .2941613
mills         
                                                                              
       _cons     .2700768    .508593     0.53   0.595    -.7267473    1.266901
     kidsge6      .036005   .0434768     0.83   0.408     -.049208    .1212179
     kidslt6    -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029
         age    -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376
    nwifeinc    -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378
     expersq    -.0018871      .0006    -3.15   0.002     -.003063   -.0007111
       exper     .1233476   .0187164     6.59   0.000     .0866641    .1600311
        educ     .1309047   .0252542     5.18   0.000     .0814074     .180402
s             
                                                                              
       _cons    -.5781032   .3050062    -1.90   0.058    -1.175904     .019698
     expersq    -.0008591   .0004389    -1.96   0.050    -.0017194    1.15e-06
       exper     .0438873   .0162611     2.70   0.007     .0120163    .0757584
        educ     .1090655    .015523     7.03   0.000     .0786411      .13949
lwage         
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                Prob > chi2        =    0.0000
                                                Wald chi2(3)       =     51.53

                                                Uncensored obs     =       428
(regression model with sample selection)        Censored obs       =       325
Heckman selection model -- two-step estimates   Number of obs      =       753

. heckman lwage educ exper expersq, select(s=educ exper expersq nwifeinc age kidslt6 kidsge6) twostep

Heckit Model 
estimated 
automatically. 

Note H0: 𝜌 =0 cannot 
be rejected. There is 
little evidence that 
sample selection bias 
is present.

Tobit Model: Type II – Application 


