RS — EC 2: Lecture 9

Lecture 9
Models for Censored and
Truncated Data — Truncated
Regression and Sample Selection

Censored and Truncated Data: Definitions

* Y is censored when we observe X for all observations, but we only
know the true value of Y for a restricted range of observations.
Values of Y in a certain range are reported as a single value or there is
significant clustering around a value, say 0.

-IfY =korY >k forallY =Y is censored from below ot left-censored.
-IfY =korY <k forallY =Y is censored from above ot right-censored.

We usually think of an uncensored Y, Y* the true value of Y when
the censoring mechanism is not applied. We typically have all the
observations for {Y,X}, but not {¥* X}.

* Y is truncated when we only observe X for observations where Y
would not be censored. We do not have a full sample for {Y, X}, we
exclude observations based on characteristics of Y.
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Censored from below: Example
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* If Y <5, we do not know its exact value.

Example: A Central Bank intervenes if the exchange rate, Y, hits the
band’s lower limit. IfY<E = Y=E.

Censored from below: Example

PDF(y))

/f(yi ) *
Prob(y; > 5)

Prob(y; < 5)

5 vi

* The pdf of the observable variable, y, is a mixture of discrete
(prob. mass at ¥Y=5) and continuous (Prob[Y*>5]) distributions.
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Censored from below: Example

/Prob(y* <5 Prob(y* > 5)
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* Under censoring we assign the full probability in the censored
region to the censoring point, 5.

Truncated Data: Example
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* If Y < 3, the value of X (or Y) is unknown. (Truncation from below.)

Example: If a family’s income is below certain level, we have no
information about the family’s characteristics.
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Truncated Data: Example
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* Under data censoring, the censored distribution is a combination of
a pmf plus a pdf. They add up to 1. We have a different situation
under truncation. To create a pdf for ¥ we will use a conditional pdf.

Truncated regression

* Truncated regression is different from censored regression in the
following way:

Censored regressions: The dependent variable may be censored, but
you can include the censored observations in the regression

Truncated regressions: A subset of observations are dropped, thus,
only the truncated data are available for the regression.

* Q: Why do we have truncation?

(1) Truncation by survey design: Studies of poverty. By survey’s
design, families whose incomes are greater than that threshold are
dropped from the sample.

(2) Incidental Truncation: Wage offer married women. Only those
who are working have wage information. It is the people’s decision,
not the survey’s design, that determines the sample selection.
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Truncation and OLS

Q: What happens when we apply OLS to a truncated data?
- Suppose that you consider the following regression:

Vi = Bo + Prxi + & = xif + &,
- We have a random sample of size N. All CLM assumptions are
satisfied. (The most important assumption is (A2) E[g;|x;] = 0.)
- Instead of using all the N observations, we use a subsample. Then,
run OLS using this sub-sample (truncated sample) only.

* QQ: Under what conditions, does sample selection matter to OLS?
(A) OLS is Unbiased
(A-1) Sample selection is randomly done.

(A-2) Sample selection is determined solely by the value of x-
variable. For example, suppose that x is age. Then if you select

sample if age is greater than 20 years old, this OLS is unbiased.

Truncation and OLS

(B) OLS is Biased
(B-1) Sample selection is determined by the value of y-variable.

Example: We are studying the determinants of hedging, y. We select
the sample if y is greater than certain threshold. Then this OLS is
biased.

(B-2) Sample selection is correlated with &;.

Example: We run a wage regression y; = By + 1 x; + &, where &;
contains unobserved ability. If sample is selected based on the
unobserved ability, this OLS is biased.

- In practice, this situation happens when the selection is based on the
survey participant’s decision. Since the decision to participate is likely
to be based on unobserved factors which are contained in &;, the
selection is likely to be correlated with &;. 10




RS — EC 2: Lecture 9

Truncation and OLS: When does (A2) hold?

¢ Consider the previous regression:
Yi=Po+ Br1xi +¢&
- All CLM assumptions are satisfied.

- Instead of using all the N observations, we use a subsample. Let s;
be a selection indicator: If s; = 1, then person i is included in the
regression. If s; = 0, then person i is dropped from the data.

e If we run OLS using the selected subsample, we use only the
observation with s; = 1. That is, we run the following regression:

Si¥i = PBo Si + P1SiXi t5; &
Now, s;X; is the explanatory variable, and u;= s; &;is the error term.

* OLS is unbiased if E[ui =Si & |Si xl-] =0.
= under what conditions is this new (A2) satisfied?

Truncation and OLS: When does (A2) hold?

QZ When does E[ui =S & |Si .X'l'] hold?
It is sufficient to check: E[u; | s; x;]. (If this is zero, then new (A2) is
also zero.)

* E[u;|s; x;] = s; E[&; | i x;] - s; is in the conditional set.
* It is sufficient to check the condition which ensures E[&; | x;, 5;] = 0.

* CASES:

(A-1) Sample selection is done randomly.

s; is independent of €; and x; = E[g; | x;, 5;] = E[&; | x;]

Since CLLM assumptions are satisfied = we have E[g& | x;] = 0.
= OLS is unbiased. |,
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Truncation and OLS: When does (A2) hold?

(A-2) Sample is selected based solely on the value of x-variable.

Example: We study trading in stocks, y;. One of the dependent
variables, X;, is wealth, and we select person i if wealth is greater than

50K. Then,
N 1 ifxl- = 50K,
si=0 if x; < 50K,

-Now, §; is a deterministic function of Xx;.

» Since s; is a deterministic function of x;, §;(x;), it drops out from the
conditioning set. Then,
Ele; [x;,5i] = Ele; | %3, 5:(x:)]
=E[g|x;] =0 - CLM assumptions satisfied.
= OLS is unbiased.

Truncation and OLS: When does (A2) hold?

(B-1) Sample selection is based on the value of y-variable.

Example: We study determinants of wealth, y. We select individuals
whose wealth is smaller than 150K. Then, s; = 1 if y; <150K.

- Now, s; depends on y; (and &;). It cannot be dropped out from the
conditioning set like we did before. Then,

Elg;|x;, si] # E[&;|x;] = 0.

* For example, E[g; | x;, 5;] = E[&; | xi, 5:(x;)]

Elg;|x;,5; = 1] = E[g; | x;, ¥; < 150K]
= E[g; | xi, fo + b1 x; + & < 150K]
= [&i | x;, &= 150K = (Bo + B1 x;)]
#Elgi|xi] =0 = OLS is biased.

14
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Truncation and OLS: When does (A2) hold?

(B-2) Sample selection is correlated with u;.

The inclusion of a person in the sample depends on the person’s
decision, not the surveyor's decision. This type of truncation is called
the zncidental truncation. The bias that arises from this type of sample
selection is called the Sample Selection Bias,

Example: Dividend payments model:

Yi=PBo + P1x; +&.

Since it is a company’s decision to pay dividends —i.e., to participate—,
this sample selection is likely to be based on some unobservable factors
which are contained in &;. Like in (B-1), s; cannot be dropped out from
the conditioning set:

Ele;|x;, 8] # Elgi|x;] =0 = OLS is biased. _

Truncation and OLS: When does (A2) hold?

* CASE (A-2) can be more complicated, when the selection rule based
on the x-variable may be correlated with &;.

Example: x is IQ. A survey participant responds if 1Q > v.

Now, the sample selection is based on x-variable and a random error v.

Q: If we run OLS using only the truncated data, will it cause a bias?
Two cases:
- (1) If v is independent of &, then it does not cause a bias.

- (2) If v is correlated with &, then this is the same case as (B-2). Then,
OLS will be biased.

16
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Estimation with Truncated Data.

* CASES
- Under cases (A-1) and (A-2), OLS is appropriate.
- Under case (B-1), we use Truncated regression.

- Under case (B-2) —i.e., incidental truncation-, we use the Heckman
Sample Selection Correction method. This is also called the Heckit
model.

17

Truncated Regression

* Data truncation is (B-1): the truncation is based on the y-variable.

* We have the following regression satisfies all CLM assumptions:
Vi = Xif + &, & ~ N(0, 0%

- We sample only if y; < ¢;
= Observations are dropped if y; = ¢; by design.

- We know the exact value of ¢; for each person.

* We know that OLS on the truncated data will be biased. The model
that produces unbiased estimate is based on ML Estimation.

18
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Truncated Regression

) C el These
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Biased regression when
applying OLS to truncated data

Truncated Regression: Conditional Distribution

¢ Given the normality assumption for &, ML is easy to apply.
- For each, & =y; — x;p, the likelihood contribution is f(¢&;).
- But, we select sample only if y; < ¢;

=> we have to use the density function of &; conditional on y; < ¢;:

fleilyi<c) =f(gil ei<ci —xiB) = P(‘EL

i< ci—x{B)
_ f(&) = f(€i),
=) (15
e

(e}

20

10
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Truncated Normal (Again)

* Moments:

Let y'~ N(u*, o and a = %

- First moment:
E[y"|y > c] = u* + 0 AM(a) <= This is the truncated regression.

= If u >0 and the truncation is from below —i.e., A(a)>0—, the mean
of the truncated variable is greater than the original mean

Note: For the standard normal distribution A(a) is the mean of the
truncated distribution.

- Second moment:

-Var[y'|y > c] = o[l = §(a)] where § (a)= A(a) AM(a) — a]

= Truncation reduces variance! This result is general, it applies to
upper or lower truncation given that 0 < §(a) <1 2

Truncated Normal (Again)

Model: yi=xiB + ¢
Observed Data: yi=yi|ly; >0

flyly™>0, x)
/

frix)
——

x:,g x{ﬁ + O'}\i

* Truncated (from below, y; > 0) regression model:

Elyil y{ > 0,x;] = x;B + oA; > E[y;|x;] »

11
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Truncated Regression: ML Estimation

* The likelihood contribution for i*" observation is given by
!
1, Yi—xB
A,
. —_a o
b,0) ==

In(joint density of N values of y;")

* The likelihood function is given by (with ¢; = 0):
A
v N I
Log L(B,0)= ) log L, =——I[log(2m)+log(c”)] - €;
g(B);g S llog(2m) + log(6™)] 262;

N 1
> 1og[q>(ﬂ)} log(joint probability
=) ° of ¥/ > 0)

* The values of (8, 0) that maximizes Log L are the ML estimators of
the Truncated Regression. 23

The partial effects

* The estimated parameters [5;, measures the effect of x; on y for
participating individual. Thus,

8E[yi|y: > 0, xyp] _ SA(x(B) _ SA(xiB) _
5 “heto = T =hto ==
=PBr* (1 —d;)

with d; = A(x}B) *[A(xiB) + x.B].

24

12
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Truncated Regression: MLE — Example

* DATA: From a survey of family income in Japan
(JPSC_familyinc.dta). The data is originally not truncated.

Model: vi = Bo + b1 x; +v;
y; = family income in JPY 10,000

x;: husband’s education

* Three cases:
EX1. Use all observations to estimate model

EX2. Truncate sample from above (y; < 800). Then run the OLS using
on the truncated sample.

EXe. Run the truncated regression model for the data truncated from

above.
25
. reg familyinc huseduc
source 5§ df [ Nurber of obs = 7695
F( 1, 7693) = 924.22
Model | 38305900.9 1 38305900.9 Prob > F = (.0000 :
Residual | 318850122 7693 41446.7856 Rsquared = 0.1073 OLS using all the
Adj R-squared = 0.1071 1 1
Total | 3STISGOZ3 7634 464200705 OCNSE - 203.58 observations, unbiased
estimated ;= 32.93413.
familyinc Coef.  Std. Err. t o plt] [95% conf. Interval]
huseduc 2.93413 1.083325  30.40 0,000  30.81052  35.05775
_cons 143.895 15.09181  9.53 0.000 1143109  173.479

. reg familyinc huseduc if familyinc<800

source sS df NS Number of obs = 6274
F( 1, 6272) = 602.70 OLS on truncated
Wodel | 115032411 1 1150341.1 Prob>F = 0.0000
Residual | 120645494 6272 19235.5699 R-squared = 0.0877 sample.
Adj R-squared = (0.0875
Total | 13238735 6273 21080.621 ROt MSE = 138,69
The parameter on
familyinc Coef,  Std. Err. t Plt] [95% Conf. Interval] husband’s education is
huseduc | 2027929 8260432 2455 0.000 1669996  21.89861 biased towards zero.
cons | 44523 1L38 2L 0.000 223084 2667383 26
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. truncreg familyinc huseduc, ul(800) Truncated regression model
(note: 1421 obs. truncated)

on the truncated sample

Fitting full model:

Tteration 0:  Tog Tikelihood = -39676.762
Iteration 1: Tog Tikelihood = -39618.757
Tteration 2: Tog Tikelihood = -39618.629
Iteration 3:  Tog Tikelihood = -39618.629

Truncated regression

Limit:  Tower = -inf Nunber of obs = 6274
upper = 800 Wald chi2(1) = 569.90
Log Tikelihood = -39618.629 Prob > chi2 = 0.0000

famiTyinc Coef,  Std. Err. 7 Pzl [95% conf, Interval]

huseduc € 24502760 1.0264  23.87 0.000  22.49105  26.51446
_cons | 203.6856 13.75721  14.81 0.000  176.7219  230.6492

[signa | 1531291 1805717 84.80 0.000 149.59 1566683

Note: Bias seems to be corrected, but not perfect in this example. 27

Sample Selection Bias Correction Model

* The most common case of truncation is (B-2): Incidental truncation.

* This data truncation usually occurs because sample selection is
determined by the people’s decision, not the surveyor’s decision.

* Back to the wage regression example. If person i has chosen to
participate (work), person i has self-selected into the sample. 1f person i has
decided not to participate, person 7 has self-selected out of the sample.

* The bias caused by this type of truncation is called sample selection bias.

* This model involves two decisions: (1) participation and (2) amount.

It is a generalization of the Tobit Model. "

14
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Tobit Model: Type II

* Different ways of thinking about how the latent variable and the
observed variable interact produce different Tobit Models.

* The Type I Tobit Model presents a simple relation:
-¥i=0 if y;=xiB+¢& =0
= yi=x;p+¢, if yj=xiB+¢&>0

The effect of the X’s on the probability that an observation is censored
and the effect on the conditional mean of the non-censored
observations are the same: f.

* The Type 11 Tobit Model presents a more complex relation:
-yi =0 ify; =x'a+ e, <0, £, ~NQO,1)
=x/'B + & if yi = x;'u+&5; >0, &,;~N(©0, 0%

Now, we have different effects of the X’s. 2

Tobit Model: Type II

¢ The Type 11 Tobit Model:
-yi =0 if yi =x/a+e,; <0, g, ~N(©, 0,°=1)
=xi'B + & if y7 = x;'a+ e, >0, &, ~N(©, 0%

- A more flexible model. X can have an effect on the decision to
participate (Probit part) and a different effect on the amount decision
(truncated regression).

* Type Lis a special case: €, ; = €1 ; and @ = B.

Example: Age affects the decision to donate to charity. But it can have
a different effect on the amount donated. We may find that age has a
positive effect on the decision to donate, but given a positive donation,
younger individuals donate more than older individuals.

30

15
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Tobit Model: Type II

* The model assumes a bivariate normal distribution for (&1 ;, €5 ;);
with covariance given by g1, (= p 0,03).

- Conditional expectation:

E[y;|yi >0, x;] = x;'B + 015 A(x;'a) (012(= p 02))

- Unconditional Expectation
E[y;[x;] = Prob(y;>0[x;) * E[y; | y;>0, x;] + Prob(y;=0]x;) * 0
= Prob(y; > 0]x;) * E[y;|y; > 0, x;]
= O(x;'@) * [x;' B + 012 A(x; )]

Note: This model is known as the Heckman selection model, or the
Type 1I Tobit model (Amemiya), or the probit selection model
(Wooldridge). 3

Tobit Model: Type II — Sample selection

* Now, we generalize the model presented, making the decision to

participate dependent on a different variable, Z. Then,

-y; =0 ify; =z/'a+e,; <0, &; ~N(, 0,%2=1)
=xi'B + & if ¥/ =z/'a+e,; >0, &; ~N(, 0%

* This model is called the Sample selection model, due to Heckman.

Example (from Heckman (Econometrica, 1979): Structural Labor model:

* Labor Supply equation:
hi =8,+8 w;+Z;/'8,+¢ (1)
- h;: desired hours by i™ person (latent variable)
- w;: wage that could be earned
- Z;: non-labor income, taste variables (married, kids, etc.)

- & (error term): unobserved taste for work.
32

16
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Tobit Model: Type II — Sample selection

Example (from Heckman) (continuation)
* Market wage equation (equation of interest):
w =B + 2
- x;: productivity, age, education, previous experience, etc.
- U; (error term): unobserved wage earning ability.
- u; & &; are assumed to follow a bivariate distribution (usually, a
normal)

We observe w; for only those who work —i.e., h; >0.

Goal: Estimation of wage offer equation for people of working age

Q: The sample is non longer random. How can we estimate (2) if we
only observe w; (wages) for those who work?

* Problem: Selection bias. Non-participation is rarely random

33

Tobit Model: Type II — Selection Bias

* Selection bias: Non-participation is rarely random
- Not distributed equally across subgroups
- Agents decide to participate or not —i.e., self-select into a group.

Q: Can we test for selection bias?

34

17
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Tobit Model: Type II — Terminology

¢ Terminology:
- Selection equation:

yi =z;/a+e; (often, alatent variable equation, say market

wage vs. value of home production)

- Selection Rule:
-y; =0 ify; <0 =D; =0,
= xi'ﬁ + gZ,i if yl* >0 = Di =1

bl

- Outcome equation:
Vi=X'B + &y (the primary equation of interest)

* To derive moments, we need to make an assumption about the
distribution of the errors, & ; & &; ;. In the Heckman model, we
assume a bivariate normal joint distribution.

35

Tobit Model: Type II — Expectations

* Expectations: Under incidental truncation with a bivariate normal
distribution we have:

- Conditional expectation (when is y; observed) :
Ely:|yi > 0, %] = x;'B + 01, A(if_:x)
- Unconditional Expectation:
Bl %) = S * (1B + 01, AEY)

Note: The results look very similar to the results obtained under

truncation, but now we have a different variable, Z;, determining
truncation.

* Again, OLS estimation on the observed part produces a biased and
inconsistent estimator. The size of the bias depends on a3, (or p).

36

18
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Tobit Model: Type II — Conditional Expectation

* From the conditional expectation:

Elyi|yi > 0,x]=x;B+p o0, A(%) (0=1)

* Above we see that applying OLS to observed sample will produce
biased (and inconsistent) estimators. This is called sazzple selection bias (an
omitted variable problem). It depends on 0y, (or p) and Z.

* But regressing ¥ on X and 4 on the sub-sample with y; > 0 produces
consistent estimates (though SE need correction). But, we need an
estimator for A. This idea is the basis of Heckman’s two-step
estimation.

¢ Estimation
- ML —complicated, but efficient
- Two-step —easier, but not efficient. Not the usual standard errorss

Tobit Model: Type II — Partial Effects

* Marginal effects of changes in exogenous variables have two
components:

- Direct effect on mean of y;, f; via (2)

- If a variable affects the Prob[y;” > 0], then it will affect y; via (1).

* Marginal effect if regressor appears in both z; and x;:

8E i l> O) i’B ' ; i

between 0 and 1

* Suppose p > 0 and E(y;) is greater wheny; > 0 and given that the
last term above is between 0 and 1, then, the additional term reduces
the marginal effects (it controls for increased mean due to probability
impacts). That is, B overstates partial effects.

Note: If p = 0, the partial effect is exactly given by f. 38

19
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Review: Conditional Bivariate Normal

* To derive the likelihood function for the Sample selection model, we
will use results from the conditional distribution of two bivariate

normal RVs.

e Recall the definition of conditional distributions for continuous RVs:

f(x.x,) f(x,x,
flz(x1|x2)zm and /[21(x2‘x1):ﬁ

¢ In the case of the bivariate normal distribution the conditional
distribution of x; given ; is Normal with mean and standard deviation

(using the standard notation):

o, 2
ﬂ,’j:ﬂi"'p;(xj_,uj) and 0y, =0, I-p
J

Review: Conditional Bivariate Normal

Major axis of

ellipses ——

2 ( lula IUZ)

c
Hop =Ho +p—2(x1 —y)
G

C12 X4

o o
)= (0 ) =1, +—1§(x1 )

Note: Moy =My +(
0616, O o)

20
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Tobit Model: Type II — ML Estimation

* The model assumes a bivariate normal distribution for (&1 ;5 €2 ;),
with covariance given by 0y, (= p 0103). We use a participation dummy
variable: D; = 0 (No), D; = 1 (Yes).

* The likelihood reflects two contributions:

(1) Observations with y; =0 —i.e,y; =z;@+€&,;<0 =D; =0.

-Prob(D; = 0|x;) = P(y; = zja + &; < 0]x;) = P(ey; < -zja|x;)
=1-d(z;a)

(2) Obsetvations with y; > 0 e,y =zj@+& ;>0 =D; =1.
-filD; = 1, x;, z;) * Prob(D; = 1]x;, z;, ;)

n. — N _ P =1|x;,y:) * filxi) ,
2.a) filD; =1,x) = P(Di=1,%) (Bayes’ Rule)

where  f(yilx) = (1/05) (i —x'B)/02) ¥

Tobit Model: Type II — ML Estimation

(2.b)  Py|D; = 1|x, 2, y) = Pley; > — zia|x;, )

_ ppELis (p/ 02) * i —xiB) _ ~zi@ = (p/2) * (Vi = xiﬂ)]
/0.12(1_ p)2 {012(1_ p)z
i / 02) * (¥i — x;B)
:1_q)(_zla+(p Py
,012(1— p)2
zia+ (p/ 03) * (i — xB)
= : 22) 2 )
a:2(1— p)

- Moments of the conditional distribution (y;|y,) of a normal RV:

- Mean for RV 1: gy + (012/02%) (y2 — f12) = (p/02) * (i — x; B)
- Variance for RV 1: 6,2 (1 — p») =1— p? (Recall: 6, = 1)

42

21
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Tobit Model: Type II — ML Estimation

* Now, we can put all the contributions together:

L(B) = Iliy,=0 Pi = 0) * ;50 (Pri > 0) * f(yilx, 2;)}

e Taking logs:
log L(B.@,0,p) = XiL1(1 — D) * In(1 — @(z;a)) +

£ SN Dy« Infp (A8t 0L02) (i = xiB)Yy

1 i— X!
+ 2, i+ Inf-p (X))

 Complicated likelihood. The algorithm tends to be badly behaved:
= Iterative methods do not always converge to the MLE.

Note: If p = 0 this log likelihood is just the sum a Gaussian linear
regression log likelihood and a probit log likelihood. 3

Tobit Model: Type II — Two-step estimator

e It is much easier two use Heckman’s two-step (Heckit) estimator:
(1) Probit part: Estimate & using M. = get @&

(2) Truncated regression:

- For each D; = 1 (participation), calculate 1; = A(z;@).

- Regress y; against X; & A(Z;@) = getb & by (= poy).
* Problems:

- Consistent, but not efficient (relative to MLE)
- Getting Var[b] is not easy (we are estimating @ too).

* We can get consistent estimators of p & 07, individually. For each
observation, the true conditional variance of the disturbance would be

0;2= 0% (1-p*8;) (6(a)=AMa) [AM(a) — a])

where we can estimate

8" =+ QLidi/N) by & p="2 .

22



RS — EC 2: Lecture 9

Tobit Model: Type II — Two-step estimator

¢ In theory, we can use the delta method to get SE for p & g,. But, we
have heteroscedasticity and the usual 2-step SE estimation problem.

* Heckman (1979) shows the correct asymptotic covariance matrix for
B & P is given by: the following:

Est.Asy.Var[B,B}‘] =
&2 (XX Xu(1-pA) X +Q | XiX ]!
where (l—ﬁ.&) is a diagonal matrix with

(1 —p28-l) on the diagonal
Xi* :[Xi’;\'i]
Q = p2(z'Ax,)Var[@](z'AX.)

Note: Murphy and Topel (1985) SE for 2-step estimators can be used.

Tobit Model: Type II — Identification

* In general, it is difficult to justify different variables for z; and X;.
This is a problem for the estimates. It creates an identification problem.

* Technically, the parameters of the model are identified, even when
z; = x;. But, identification is based on the distributional assumptions.

* Estimates are very sensitive to assumption of bivariate normality -
Winship and Mare (1992) and z; = x;.

* p parameter very sensitive in some common applications. Sartori
(2003) comes with 95% C.I. for p =-.999999 to +0.99255!

* Identification is driven by the non-linearity in the selection equation,
through A; (and, thus, we need variation in the Z;’s tool).

46

23



RS — EC 2: Lecture 9

Tobit Model: Type II — Identification

* In general, it is difficult to justify different variables for Z; and X;.
This is a problem for the estimates. It creates an identification problem.

* We find that when z; = X;, identification tends to be tenuous unless

there are many observations in the tails, where there is substantial
nonlinearity in the 4;. We need exclusion restrictions.

47

Tobit Model: Type II — Testing the model

* Q: Do we have a sample selection problem?

Based on the conditional expectation, a test is very simple. We need to
test if there is an omitted variable. That is, we need to test if A; belongs
in the conditional expectation E[y; |y; > 0].

* Easy test: Hy: 5, = 0.

We can do this test using the estimator for 83, by, from the second step
of Heckman’s two-step procedure.

* Usual problems with testing;

- The test assumes correct specification. If the selection equation is
incorrect, we may be unable to reject H,

- Rejection of H,, does not imply accepting the alternative —i.e., sample

selection problem. We may have non-linearities in the datal "
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Tobit Model: Type II — Testing the model

* Rejection of H,, does not imply accepting the alternative —i.e., sample
selection problem. We may have non-linearities in the datal

Identification issue 11

We are not sure about the functional form. We may not be comfortable
interpreting nonlinearities as evidence for endogeneity of the

covariates.

49

Tobit Model: Type II — Application

irst create selection
. gen s=0 if wage
(428 missing values generated)

. replace s=1 if wage~=.
(428 real changes made)

. *Next, estimate the probit
. *selection equation

: probit s educ exper expersq nwifeinc age kids1t6 kidsge6

Iteration 0:  log likelihood = -514.8732
Iteration 1:  log likelihood = -405.78215
Iteration 2:  Tlog likelihood = -401.32924
Iteration 3:  Tlog likelihood = -401.30219
Iteration 4: Tog Tikelihood = -401.30219

Estimating Heckit Manually.
(note: you will not get the
correct standard errors.

First step:

Probit selection equation

probit regression Number of obs = 753

LR chi2(7) = 227.14

prob > chi2 = 0.0000

Log likelihood = -401.30219 pseudo R2 = 0.2206
s coef. std. Err. z P>|z| [95% conf. Interval

educ .1309047  .0252542 5.18 0.000 .0814074 .180402

exper .1233476  .0187164 6.59  0.000 .0866641  .1600311

expersq | -.0018871 .0006  -3.15 0.002 -.003063  -.0007111

nwifeinc | -.0120237 .0048398  -2.48 0.013  -.0215096 -.0025378

age | -.0528527 .0084772  -6.23 0.000  -.0694678 -.0362376

kids1t6 | -.8683285 .1185223  -7.33 0.000  -1.100628  -.636029

kidsge6 036005  .0434768 0.83  0.408 -.049208  .1212179

_cons .2700768  .508593 0.53 0.595 -.7267473  1.266901

50
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Tobit Model: Type II — Application

. *Then create inverse lambda *

: predict xdelta, xb

. gen Tambda =normalden(xdelta)/normal (xdelta)

. *Finally, estimate the Heckit model *

: reg Twage educ exper expersq lambda

Source sS df NS

Model | 35.04787 4 8.76198719
Residual | 188.279492 423 445105182

Total | 223.327441 427 523015084

Number of obs = 428

F( 4, 43)= 19.69
prob > F = 0.0000
R-squared = 0.1569
Adj R-squared = 0.1490
Root MSE = 66716

regression

are not correct.

Second step: Truncated

Note: The standard errors

Twage Coef,  Std. Err. t o Pt [95% conf. Interval]
educ | .1090655 .015609  6.99 0.000  .0783835  .1397476
exper | .0438873 0163534  2.68 0.008  .0117434 0760313
expersq | -.0008591 .0004414  -1.95 0.052 -.0017267  8.49e-06
Tambda | .0322619 1343877  0.24 0.810 -.2318889  .2964126
_cons | -.5781032 306723 -1.88 0.060  -1.180994  .024788
51
Tobit Model: Type II — Application
. heckman Twage educ exper expersq, select(s=educ exper expersq nwifeinc age kids1t6 kidsge6) twostep
Heckman selection model -- two-step estimates  Number of obs = 753 .
(regression model with sample selection) Censored obs = 325 HCCklt Model
Uncensored obs = 428 R
wald chi2(3) = 51.53 estimated
Prob > chi2 = 0.0000 automatlcally.
coef. std. Err. z P>|z| [95% Conf. Interval]
Twage
educ .1090655 .015523 7.03  0.000 .0786411 .13949
exper .0438873  .0162611 2.70  0.007 .0120163 .0757584
expersq | ~-.0008591 .0004389  -1.96 0.050 -.0017194  1.15e-06
_cons | -.5781032  .3050062  -1.90 0.058  -1.175904 .019698
s
educ 1309047  .0252542 5.18  0.000 .0814074 .180402
exper .1233476  .0187164 6.59 0.000 .0866641  .1600311
expersq | -.0018871 .0006  -3.15 0.002 -.003063 -.0007111

nwifeinc | -.0120237 .0048398  -2.

age | -.0528527 .0084772  -6.23
kids1t6 | -.8683285 .1185223  -7.33
kidsge6 .036005 .0434768 0.83
_cons .2700768 508593 0.53

0.013  -.0215096
0.000  -.0694678
0.000  -1.100628

-.049208

0.595  -.7267473

-.005378 | Note Ho: p =0 cannot

-.0362376

*.636029 . .
i | be rejected. There is

1.266901

mills

Tambda .0322619°  .1336246 0.24

0.809  -.2296376

little evidence that

201613 | sample selection bias

rho 0.04861
sigma .66362875
Tambda | .03226186 .1336246

"is present.
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