RS — Lecture 17

Lecture 8
Models for Censored and
Truncated Data - Tobit Model

(For private use, not to be posted/shared online).

Censored and Truncated Data

* In some data sets we do not observe values above or below a
certain magnitude, due to a censoring or truncation mechanism.

Examples:

- A central bank intervenes to stop an exchange rate falling below or
going above certain levels.

- Dividends paid by a company may remain zero until earnings reach
some threshold value.

- A government imposes price controls on some goods.

- A survey of only working women, ignoring non-working women.

In these situations, the observed data consists of a combination of
measurements of some underlying /atent variable and observations
that atise when the censoring/truncation mechanism is applied. 2
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Censored and Truncated Data: Definitions

* Y is censored when we observe X for all observations, but we only
know the true value of Y for a restricted range of observations. Values
of Y in a certain range are reported as a single value or there is
significant clustering around a value, say 0.

-IfY=kotY >k forallY =Y is censored from below ot left-censored.
-IfY =kotY <k forallY =Y is censored from above ot right-censored.

We usually think of an uncensored Y, Y*, the true value of Y when the
censoring mechanism is not applied. We typically have all the
observations for {Y,X}, but not {¥* X}.

* Y is truncated when we only observe X for observations where Y
would not be censored. We do not have a full sample for {Y, X}, we
exclude observations based on characteristics of Y.

Censored and Truncated Data: Example 1

No censoring or truncation
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* We observe the full range of Y and the full range of X.
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Censored and Truncated Data: Example 2

Censored from above
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* If Y = 6, we do not know its exact value.

Example: A Central Bank intervenes if the exchange rate, S¢, hits the
band’s upper limit. Thus, if S > E = S$;=E

Censored and Truncated Data: Example 2
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* The pdf of the exchange rate, S, is a mixture of discrete (mass at
S;=E) and continuous (Prob[S; < E]) distributions.
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Censored and Truncated Data: Example 3

Censored from below
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* If Y <5, we do not know its exact value.

Example: A Central Bank intervenes if the exchange rate hits the
band’s lower limit. Thus, if S, <E = S5,=E

Censored and Truncated Data: Example 3

PDF(y")

Prob(y'< 5)

5 y*

* The pdf of the observable variable, y, is a mixture of discrete
(prob. mass at Y=5) and continuous (Prob[y“>5]) distributions.
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Censored and Truncated Data: Example 3

PDF(y")

/Prob(y* <5) Prob(y*>5)

5 Y

* Under censoring we assign the full probability in the censored
region to the censoring point, 5.

Censored and Truncated Data: Example 4

Truncated
10 -
L 4
8 ) 4 \ g
& < <*
6 4 ————————————————e&———@¢——¢——
> < < <*
4 - 2 2
&
2
(0]
(0] 2 4 6

* If Y < 3, the value of X (orY) is unknown. (Truncation from below.)

Example: If a family’s income is below certain level, we have no
information about the family’s characteristics.
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Censored and Truncated Data: Example 4

045 PDF(Y)
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* Under data censoring, the censored distribution is a combination of
a pmf plus a pdf. They add up to 1. We have a different situation
under truncation. To create a pdf for ¥ we will use a conditional pdf.

Censored Normal

* Moments:

Lety'~ N, 0% and a = %. Then

- Data: yi = y;i* ify;*=c
=c ify;*<c

- Prob(y = ¢ |x) = Prob(y" < ¢ | x) = Prob][

O'-w) _(c-w) %]
o - o
= Prob[z < % |x] = ®(a)

-Prob(y > ¢ |x) = Prob(y" > c|x) = 1 — ®(a)

- First Moment
- Conditional: Ey|y" >c]=u"+ocAa)
- Unconditional: ~ E[y] = ®(a) c+ (1 — ®(a)) [+ o A(a)]

12
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Censored Normal

* To get the first moment, we use a useful result —proven later- for a
truncated normal distribution. If v is a standard normal variable and
the truncation is from below at ¢, a constant, then

$©) _ 60
1-d(c)  ®(-c)

Ev |v>c)=F1f =

In our conditional model, ¢ = -(x;'). (Note that the expectation is
also conditioned on X, thus X is treated as a constant.).

Note: The ratio F~ f (a pdf divided by a CDF) is called Inverse

Mill’s ratio, usually denoted by A(.) —the hazard function. 1f the
truncation is from above:

_ _¢@©
Me) = 1-®(c)

Censored Normal

* Moments (continuation):
- Unconditional first moment:

Ely] = ®(a) ¢ + (1~ ®(@)) [u' + 0 A@)]

fe=0= Eyl=(1-0@) K +or@] (@@=

= o) 1+ o A@)]

- Second Moment
Var[y' |y > c] = o+ [1 = ®(a)] *[(1=8) + (A — a)* P(a)]
where 6 = A* [A — a] 0<6<1

14
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Censored Normal — Hazard Function

* The moments depend on A(c), the Inverse Mill’s ratio or hazard rate
evaluated at c:

c —C
PO _ 90
1-®d(c) DP(—0)
It is a monotonic function that begins at zero (when ¢ = —) and
asymptotes at infinity (when ¢ = ). See plot below for (—c).

Hazard Rate (-x} = Norm(-x)/{1-Cum orm(-x))

=Nom(x) ComNomi{x)

- v v 15
Truncated Normal
* Moments:
Let y'~ N(u*, o and a = %

- First moment:
E[y"|y > c] = u* + 0 AM(a) <= This is the truncated regression.

= If u >0 and the truncation is from below —i.e., A(a)>0—, the mean
of the truncated variable is greater than the original mean

Note: For the standard normal distribution A(a) is the mean of the
truncated distribution.

- Second moment:
-Var[y'|y > c] = o[l = §(a)] where § (a)= A(a) [A(a) — a]

= Truncation reduces variance! This result is general, it applies to
upper or lower truncation given that 0 < §(a) <1 °
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Truncated Normal

Model: yi=xiB + ¢
Observed Data: yi=yi|ly; >0

flyly*> 0, x)

F(0|x)
f(y|x)

0N
xi,g x{ﬁ + O'}\i

* Truncated regression model:

Elyi| y; > 0,x;] = xiB + o)

Censored and Truncated Data: Intuition

* To model the relation between the observed y and X, we consider a
latent variable y* that is subject to censoring/truncation. A change in
X affects y only through the effect of x on y™.

- Model the true, latent variable: y; = f(x;) = x;8 + ¢;
- Observed Variable: y; = h(y;)

* Q: What is this latent variable?
Considered the variable “Dividends paid last quarter”?

- For all the respondents with y = O (lft censored from below), we think
of a latent variable for “excess cash” that underlies “dividends paid
last quarter.” Extremely cash poor would pay negative dividends if
that were possible.
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Censored and Truncated Data: Problems

* In the presence of censoring/truncation, we have a dependent

variable, y;, with special attribute(s):
(1) constrained and
(2) clustered of observations at the constraint.

Examples:

- Consumption (1, not 2)
- Wage changes (2, not 1)
- Labor supply (1 & 2)

* These attributes create problems for the linear model.

Censored and Truncated Data: Problems

* Censoring in a regression framework (from Ruud).

o latent
- obsecrved

Figure 28.2 Censored rcgression.

* If y is constrained and if there is clustering
— OLS on the complete sample biased and inconsistent.

— OLS on the unclustered part biased and inconsistent.

10
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Data Censoring and Corner Solutions

* The dependent variable is partly continuous, but with positive mass
at one ofr mote points.

Two different cases:

(1) Data censoring (from above or below)
- Surveys for wealth (upper category $250,000 or more)
- Duration in unemployment
- Demand for stadium tickets

= y; is not observed because of constraints, selection technique or
measuring method (data problem)

- We ate interested in the effect of X on y;: E(y{|x;).
= y; = x;B + &;, B measures the effect of a change of xj, on y;.

Data Censoring and Corner Solutions

(2) Corner solutions: A significant fraction the data has zero value.

- Hours worked by married women: Many married women do not
work —i.e, zero worked hours are reported.

- Luxury goods, charitable donations, alcohol consumption, etc.

= y; cannot be observed because of the nature of topic.

- Contrast to data censoring: Observing the dependent variable is not
a problem (For modeling, we will use a latent model, y;".)

- We are interested in E(Y;|X;), we want to study the effect of a
change in education on y, hours worked by married women.
= 1If y/ =x;B + ¢, B is not what we are interested.

11
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Corner Solutions

- These data sets are typical of microeconomics. We think of these
data sets as a result of utility maximization problems with two
decisions:

(1) Do something or not (work or not, buy IBM or not, donate or not)

=> The participation decision: A binary choice problem (y; = 0 or
Vi >O)

(2) How much we do something (how many hours married women
work, how much to invest on IBM, how much to donate to charity).

=> The amount decision: This a truncated sample problem (how
much Vi is, if Vi > 0)

Note: Last class, we have gone over this type of data, when the
decision amount was a “count.” (a hurdle model).

Tobit Model (Censored Normal Regression)

Example: We are interested on the effect of education, X, on the
married women’s hours worked, y;.

- A model for the latent variable y*, which is only partially observed:
yi=Bo+PrxitEa=xf+¢g, & ~ N(, 6%

- Data (truncated sample)
-If ¥y >0 = y; = Actual hours worked = y; = x;f + ¢;.
-If y<0 = y; =0 (y; can be negative, but if it is, ¥;=0)

- Probability Model -~ & ~ N(0, 6?)
- Prob(y=0|x) = P(y* < 0|x) = P[(y* — XB)/o < (0 — XB)/0|x]
=Pz <—XB/o|x) = P(—XB/o) = 1— DXB/0)
- Prob(y>0|x) = P(y* > 0]|x) = 1 — ®(—XB/0) = ®(XB/0)

24

12
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Tobit Model (Censored Normal Regression)

- Expectations of interest:
- Unconditional Expectation
Elyi|xi] = P(y; > 0]x;) * E[yi[y; > 0, %] + Prob(y; = 0x;) * 0
=Pl > 0[xy) * E[yi[yi > 0, %]
= O(x;B/0) * E[y;|y; > 0, x;]

-Conditional Expectation (Recall: E[y; | ¥; > ¢, x;] = p* + 0 A(«))
Elyi|yi > 0, %] = x;'B + 0 A(x;B)

Remark: The presented Tobit model —also called Type I Tobit Model- can
be written as a combination of two models:

(1) A Probit model: It determines whether y = 0 (No) or y >0 (Yes).

(2) A truncated regression model for y > 0. 25

Tobit Model — Sample Data

* ] °
yoy When y* is

negative,
actual hours o
worked is
Zero. o

x (Education)

- Expectations of interest:
Elyi|xi], E[yil yi > 0, x;].
E[y; |x;]

26

13
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Tobit Model - OLS

* Suppose we do OLS, only for the part of the sample with y; > 0.
The estimated model:

yi=x2,8+vi foryl->0
- Let’s look at the density of vy, f;,(. ), which must integrate to 1:
[, fomdn =1

- The &;’s density, normal by assumption in the Tobit Model:

» B w1 Ly
Se(mydn =F, = Sfo(m)dn = ——e
J.—x, ] J.—oo J.—oo [272,0_ 2
- Then, f,(.) can be written as:
1 2
S =F = F e
270’ 27

Tobit Model - OLS

* The pdf of v; and the pdf of &; are different. In particular,
The €;’s density, normal by assumption in the Tobit Model:

E]=[" af.ndn=F"[  uf.pdy

1,7 1.7
e - e 1 =
=F n ! e dnp=F" 1 e’ dn

A Ny T

=F [-of. (M1, integration by substitution

1

—GF0 (=[P

- Then, E[Ui |xl-] =0 Fi‘l fl =0 A(x;ﬁ) ?ﬁ 0 (& it depends on xi'ﬁ)

= Elyi|y: > 0,x,'B] = x;'B + o A(xiB)
= OLS in truncated part is biased (omitted variables problem).
28

14
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Tobit Model - OLS

* OLS in truncated part only is bzased. We have an omitted variables
problem. With a bit more work, we can show OLS is inconsistent too
(show it!)

* Also E[v?|x] = 0> = o”x;B * A(x;B)

= The error term, v, not only has non-zero mean but it is also
heteroskedastic.

29

Tobit Model - NLLS

* Now, we can write
vi= Ei|yi > 0,x] + & = xiB + 0 A(x;B) + &, fory; >0.

- There is a non-linear relation between X; on y;. NLLS is a possibility
here, though we need a consistent estimator of B to evaluate 1(x;f3)

and it is not clear where to get it. Since we have heteroscedasticity, we
need to allow for it. Weighted NLLS may work well.

Note: A non-linear relation appears even if all observations are used
(positive and negative values of y;):

Ely; | x;] = Py >0|x;) * E(y{ |y; > 0, %)) = Fy * (xif + o Fi"'fy)
= ®(x;B) *{xiB + o d(xiB)}

30

15
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Tobit Model: Estimation

* Given our assumption for &;, we do ML estimation.
* For women who are working, we have y;>0 = y;>0. Then,
& =Yi— (Bo + B1 %)
= Likelihood function for a working woman is given by:
1 1= Bo-B1 xp? L1 (yl._ Bo - B1 xi)z

Li_ e 2 o2 =-—e 2 o
2mo? o+\21m

g g

1 i~ Bo— i
__¢(y Bo ﬁlx)

* For women who are not working, we have y;<0 = y; =0.

= Li=POi <0 =PE+hix + & <0)
& + ;
=P(g < —(Bo + P1x1)) =P(;§ —%)
:cp(_M):l — q)(M)

o o 31

Tobit Model: Estimation

* Summary,

Li zi ¢(yi_ BOG_ lei) 1fyl* >0
Bo T B1xi e %
=1 - o (BAx) if y; <0.

* We have a combination of a pdf (for the observed part of the
distribution) and a CDF (for the truncated part of the distribution): a
linear part and a Probit part.

* Let D; be a dummy variable that takes 1 if y; > 0. Then, the above
likelihood for consumer i can be written as:

L= &gt bmypi g - o (Btbx)

16
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Tobit Model: Estimation

* The likelihood function, L, for the whole sample is:
1 i— Bo — B1%i\yD; Bo t B1xi\y1-p;
L(Bo, B1,0) =TI; & ¢ (PP Briippis (1 — o (B fri)pny

* The values of 8y, f1 and ¢ that maximize the likelihood function atre
the Tobit estimators of the parameters.

* As usual, we work with the Log(L):

L(By. B1,0) = iD[ log{;¢(M)}+(I_Dinog[l_®(w)}

= g[log( o) +log(27)]+

- _ i— B _ﬁlxi)z _ _ By + Bix;
+;Dl{ . +(1 Dl.)log[l D( . )GH

Tobit Model: Estimation — Information Matrix

* Amemiya (1973) presents the following representation for the
information matrix:

T (-
Z‘alXiX;I Zbixl
tZI(KxK) :tZIle)
I(@) ___; —————— -:-_T_
((k+1)x (K+1)) S hX 1Yo,
lz(llxK) : l(:lXI)
where:
_ X B _ B f(zi)2 -
Zi = —_ a; = {zlf(zl) TR G F(z;)
_ 2 77|f(7i)“
P [ZIT(Z')+f(Zi) I F(Zi)]
- - — 2 NG}
c; = 40_4[zif(zi)+zif(zi) e 2F (z;)

17
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Tobit Model: Application I — Female Labor Supply

* Corner Solution Case — DATA: Female labor supply (mroz.wfl)

400
Series: HOURS
Sample 1 753
Observations 753
300
Mean 740.5764
Median 288.0000
200 Maximum 4950.000
Minimum 0.000000
Std. Dev. 871.3142
Skewness 0.922531
100 Kurtosis 3.193949
Jarque-Bera 107.9888
0 Probability 0.000000
USUT U
0 1000 2000 3000 4000 5000
Variable | Obs Mean std. Dev Min Max
,,,,,,,,,,,,, o
hours | 753 740.5764 871.3142 0 4950
nwifeinc | 753 20.12896 11.6348 -.0290575 96
educ | 753 12.28685 2.280246 5 17
exper | 753 10.63081 8.06913 0 45
age | 753 42.53785 8.072574 30 60
kidsge6 | 753 1.353254 1.319874 0 8
kidslt6 | 753 .2377158 .523959 0 3

« OLS whole sample (N = 753)

Dependent Variable: HOURS
Method: Least Squares
Included observations: 753
White Heteroskedasticity-Consistent Standard Errors & Covariance

Tobit Model : Application I — OLS (all y)

Variable Coefficient Std. Error t-Statistic Prob.
NWIFEINC -3.446636 2.240662 -1.538222 0.1244
EDUC 28.76112 13.03905 2.205768 0.0277
EXPER 65.67251 10.79419 6.084062 0.0000
EXPER"2 -0.700494 0.372013 -1.882983 0.0601
AGE -30.51163 4.244791 -7.188018 0.0000
KIDSLT6 -442.0899 57.46384 -7.693359 0.0000
KIDSGE6 -32.77923 22.80238 -1.437535 0.1510
C 1330.482 274.8776 4.840273 0.0000

18
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Tobit Model : Application I — OLS (y>0)

+ OLS subsample — y; (hours worked) > 0 (N = 428)

Dependent Variable: HOURS

Method: Least Squares

Sample: 1 753 IF HOURS>0
Included observations: 428
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.
NWIFEINC 0.443851 3.108704 0.142777 0.8865
EDUC -22.78841 16.09281 -1.416061 0.1575
EXPER 47.00509 15.38725 3.054808 0.0024
EXPER"2 -0.513644 0.417384 -1.230627 0.2192
AGE -19.66352 5.845279 -3.364001 0.0008
KIDSLT6 -305.7209 125.4802 -2.436407 0.0152
KIDSGEG6 -72.36673 31.28480 -2.313159 0.0212
C 2056.643 351.4502 5.851875 0.0000

Tobit Model : Application I — Tobit

* Tobit whole sample (N = 753)

Dependent Variable: HOURS
Method: ML - Censored Normal (TOBIT) (Quadratic hill climbing)
Included observations: 753

Left censoring (value) at zero

Coefficient Std. Error z-Statistic Prob.
NWIFEINC -8.814243 4.459100 -1.976687 0.0481
EDUC 80.64561 21.58324 3.736493 0.0002
EXPER 131.5643 17.27939 7.613943 0.0000
EXPER”"2 -1.864158 0.537662 -3.467155 0.0005
AGE -54.40501 7.418502 -7.333693 0.0000
KIDSLT6 -894.0217 111.8780 -7.991039 0.0000
KIDSGE6 -16.21800 38.64139 -0.419705 0.6747
C 965.3053 446.4361 2.162247 0.0306

Error Distribution

SCALE:C(9) 1122.022 41.57910 26.98523 0.0000
Left censored obs 325 Right censored obs 0
Uncensored obs 428 Total obs 753
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Partial Effects (marginal effects)

* The estimated parameters 5, measutes the effect of X on y™*. But
in corner solutions, we are interested in the effect of X, on actual y;.

* We calculate partial effects based on two results already derived:

- For positive y’s —i.e., y; > 0:

Elyi |yi>0,x/B] = x;'B + 0 A(x;B)

- Forall y’s —i.e., y; = 0O:

Elyi |x;'B] = P(yi>0]x;) * By |yi>0, x;) = F; [x;'B + 0 A(x;'B)]

* The partial effects are given by

OE(y|y>0,x)
6xk

0 =Bk{l—x(ﬂ)[ﬁw(ﬂ)}}=Bk(1—6k>
(& (& (&)
(1) measures the effect of an x), change on y for working women.

Partial Effects (marginal effects)

= Py overstates the marginal impact of a change in xy,

Elyi | xir : . . .
2) %}Lxﬁ] = Sk gb(%) (see derivation in Greene)

(2) measures the overall effect of an X, change on hours worked.
* Both partial effects depend on x. Thus, they vary by person.

¢ We are interested in the overall effect rather than the effect for a
specific person in the data. Two ways to do this computation:

- At the sample average: Plug the mean of X in the above formula.

- Average of partial effects: Compute the partial effect for each
individual in the data. Then, compute the average. 40

20
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Partial Effects — Application I (y>0)

. tobit hours nwifeinc educ exper expersq age kids1t6 kidsge6, 11(0)

Tobit regression Number of obs = 753
LR chi2(7) 271.59
prob > chi2 0.0000
Log Tikelihood = -3819.0946 Pseudo R2 = 0.0343
hours Coef. std. Err. t P>[t] [95% conf. Interval]
nwifeinc -8.814243  4.459096 -1.98 0.048 -17.56811 -.0603724
educ 80.64561  21.58322 3.74  0.000 38.27453 123.0167
exper 131,5643  17.27938 7.61  0.000 97.64231  165.4863
expersq -1.864158  .5376615 7 0.001 -2.919667  -.8086479
age -54,40501 7.418496 3 0.000 -68.96862 -39.8414
kids1t6 | -894,0217 111.8779 99 0.000 -1113.655 -674.3887
kidsge6 -16.218  38.64136 .42 0.675 -92.07675 59.64075
_cons 965.3053  446.4358 2.16 0.031 88.88528  1841.725
/sigma 1122.022  41.57903 1040.396 1203.647

Obs. summary: 325 Teft-censored observations at hours<=0

428 uncensored observations

0 right-censored observations

. *Compute the Partial effect
. *at average of educ

. *on hours for working women *
. *manuall

predict xbeta, xb

egen avxbeta=mean(xbeta)
gen avxbsig=avxbeta/_b[/sigma]
gen lambda=normalden(avxbsig)/normal(avxbsig)

gen partial=_b[educ]*(1-Tambda*(avxbsig+lambda))

Partial effect at average
tor working women:
Computing manually.

su partial
variable ‘ obs Mean std. Dev. Min Max 41
partial | 753 34.27517 0 34.27517  34.27517
. . .
Partial Effects — Application I (y>0)
. tobit hours nwifeinc educ exper expersq age kids1t6 kidsge6, 11(0)
Tobit regression Number of obs = 753
LR chi2(7) = 271.59
prob > chi2 = 0.0000
Log Tikelihood = -3819.0946 Pseudo R2 = 0.0343
hours coef. std. Err. t P>[t] [95% conf. Interval]
nwifeinc -8.814243  4.459096 -1.98 0.048 -17.56811 -.0603724
educ 80.64561  21.58322 3.74  0.000 38.27453 123.0167
exper 131.5643  17.27938 7.61  0.000 97.64231 165.4863
expersq -1.864158  .5376615 -3.47  0.001 -2.919667 -.8086479
age -54,40501 7.418496 -7.33  0.000 -68.96862 -39.8414
kids1t6 -894.0217 111.8779 -7.99  0.000 -1113.655 -674.3887
kidsge6 -16.218  38.64136 -0.42 0.675 -92.07675 59.64075
_cons 965.3053  446.4358 2.16 0.031 88.88528 1841.725
/sigma 1122.022  41.57903 1040.396 1203.647
Obs. summary: 325 Teft-censored observations at hours<=0
428 uncensored observations :
0 right-censored observations Pattlal CffCCt at
Compute the partial effect average fOf U/Oflélﬂg
at average of educ on hours
* for working women automatically wonen. Compute
mfx, predict(e(0,.)) varlist(educ) automaticaﬂy.
Marginal effects after tobit
y = E(hours|hours>0) (predict, e(0,.))
= 1012.0327
variable dy/dx std. Err. z P>|z| [ 95% C.I. ] X
educ 34,27517 9.11708 3.76  0.000 16.406 52.1443 12.2869 42

21
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: gen partial_all=_b[educ]*normal (avxbsig) manually.

Partial Effects — Application I (all y)

Partial effect at average for a//
observations: Compute

. su partial_all

\/am’ab]e} 0bs Mean  Std.-Dev. Min Max

x
partiaLaH‘ 753 48.73409 0 48.73409 48.73409

. *Compute the Partial effect at average *
. *of education for the entire observation*
. *automatically

Partial effect at average
tor all observations:
Compute automatically

: nfx, predict(ystar(0,.)) varlist(educ)

Marginal effects after tobit
y = E(hours*|hours>0) (predi
611.57078

ystar(0,.))

variable dy/dx /Sm./Err. z Pzl [ 9% cCI. ] X
=z
educ 48.73409 12.963  3.76 0.000 23.3263 74.1419 12.2869

43

Partial Effects — Application I (all y)

* Now, we can compare the marginal effect of education on actual
hours worked.

* We compare OLS (whole sample) and Tobit estimates, on the basis

of the marginal effect of education actual y;, for an average individual:

OLS TOBIT
x'B —> OLS underestimates
Br,oLs B ® P the effect of education
on the labor supply (in
80.65 0.604 the average of the
28.76 48.73 explanatory variables).

Interpretation: On average, an additional year of education increases

the labor supply by 48.7 hours (for an average individual).
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Tobit Model: Heteroscedasticity

* In a regression model, we scale the observations by their standard
deviation (x;/0;) transforming the model back to CLM framework

* In the Tobit model, we naturally work with the likelihood. The Log L
for the homoscedastic Tobit model is:

L(ﬂo,ﬂpd)— [log( o)+ log(27)] +

+ ; |:_ Di yi _ﬁ206_2ﬂ1xi) + (1—D1)10g|:1—q)(ﬁ0+6ﬂ1xt) :|:|

¢ Introducing heteroscedasticity in the Log L.:

N
L(B,,5,,0,,0,,....0y) = 710g(27z) +

+i{D,-[log(a,)—W]+a D) log[1- dPrt A% /31 )]}

i=1

Tobit Model: Heteroscedasticity

* Now, we went from k+1 parameters to k+N parameters. Impossible
to estimate with IN observations.

* Usual solution: Model heteroscedasticity, dependent on a few
parameters: 0;% = 0;(a).

Example: Exponential: 6;2 = exp(z,«). Then,

L(ﬂo,ﬂl,a)=§log(zn>+

+3| Dz~ G P B (1 o1 - o Lot By,
e(za) ey
* The marginal effects get more complicated under the heteroscedastic
Tobit model: an exogenous variable, say income, could impact both
numerator and denominator of the standardization ratio, X,3/0;
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Heteroscedasticity — Partial Effects

* Partial effects get more complicated under the heteroscedastic Tobit

model: an exogenous variable, say income, could impact both

numerator, X;' 8, and denominator 0;. Ambiguous signs are possible.

* Suppose we have Wj affecting both X; and z;. Then,

xi’ﬂi _ xi'ﬂi

e o, - exp(z,a /2)
ari _ Pig; _('xi'ﬂ[)(a[ /2)01' _ ﬁi _(xi'ﬂi)(a[ /2)
ow,; B 0'52 B 0,
oD (r;) _ ¢(”i)ﬁ: o(r) Pi —(xi"Bi)a;/2)
awﬂ ﬁwji c;
OE[y; | y; > 0] —B. o, o " o(r;) + ¢(r,)’
5Wji awji O(ry) q’(’”j)2 47

Heteroscedasticity — Partial Effects - Application

¢ Canadian FAFH expenditures: 9,767 HH’s, 21.2% with $0
expenditures.

* Dependent variable is bi-weekly FAFH expenditures

Exogenous Variables: HHInc, Kids Present?, FullTime? Provincial

Dummy Variables.

*0;%2 = exp(y, + v, Income, + y, Fulltime, + y; Quebec))

Homo. Hetero.
Elasticity Value SE. Value SE
D(z) 0.259 0.008 0.210 0.011
E(y|y>0) 0.284 0.009 0.395 0.010
E(y) 0.544 0.017 0.606 0.020
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Tobit Model — Type II

* Different ways of thinking about how the latent variable and the
observed variable interact produce different Tobit Models.

* The Type I Tobit Model presents a simple relation:
-yi=0 if yi=x/B+&=0
=yi=x/'Bte if yi=x'B+& >0

The effect of the X’s on the probability that an observation is censored
and the effect on the conditional mean of the non-censored

observations are the same: f8 .

* The Type 11 Tobit Model presents a more complex relation:

-yi =0 ify; =xa+e,;<0, &,;~NQO1)
=x;/'B + &, if y{ = x'a+e; >0, &;~N(©,03%
Now, we have different effects of the X’s. »

Tobit Model — Type II

¢ The Type 11 Tobit Model:
-yi =0 if y; =x;j'a+€;<0, &,;~N(QO,1)
=xi'B + & if y/ =x'a+ &, >0, &;~N(0,0,%)

- A more flexible model. X can have an effect on the decision to
participate (Probit part) and a different effect on the amount decision
(truncated regression).

- Type L is a special case: £,; = £1; and & = 3.

Example: Age affects the decision to donate to charity. But it can
have a different effect on the amount donated. We may find that age
has a positive effect on the decision to donate, but given a positive
donation, younger individuals donate more than older individuals.

50
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Tobit Model — Type II

* The Tobit Model assumes a bivariate normal distribution for (g, ;;€,,);
with covariance given by 0y, (= p 0105.).

- Conditional expectation:
Ely;|yi > 0,x] = x;/B + 012 Mx;'w)

- Unconditional Expectation
E[yi[x;] = Prob(y;>0[x;) * E[y; | y;>0, x;] + Prob(y;>0[x;) * 0
= Prob(y; > 0]x;) * E[y; |y > 0, x;]
= D(x;'w) * [x;'B + 015 Mx; 0]

Note: This model is known as the Heckman selection model, or the
Type 1I Tobit model (Amemiya), or the probit selection model
(Wooldridge). st
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