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Lecture 8
Models for Censored and 

Truncated Data - Tobit Model

(For private use, not to be posted/shared online).

• In some data sets we do not observe values above or below a 
certain magnitude, due to a censoring or truncation mechanism. 

Examples: 

- A central bank intervenes to stop an exchange rate falling below or 
going above certain levels. 

- Dividends paid by a company may remain zero until earnings reach 
some threshold value.

- A government imposes price controls on some goods. 

- A survey of only working women, ignoring non-working women.

In these situations, the observed data consists of a combination of 
measurements of some underlying latent variable and observations  
that arise when the censoring/truncation mechanism is applied. 2

Censored and Truncated Data
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Censored and Truncated Data: Definitions

• 𝑌 is censored when we observe 𝑋 for all observations, but we only 
know the true value of  𝑌 for a restricted range of  observations. Values 
of  𝑌 in a certain range are reported as a single value or there is 
significant clustering around a value, say 0.

- If  𝑌 = 𝑘 or 𝑌 > 𝑘 for all 𝑌 𝑌 is censored from below or left-censored.

- If  𝑌 = 𝑘 or 𝑌 < 𝑘 for all 𝑌 𝑌 is censored from above or right-censored.

We usually think of  an uncensored Y, Y*, the true value of  𝑌 when the 
censoring mechanism is not applied. We typically have all the 
observations for {𝑌,𝑋}, but not {Y*, 𝑋}.

• 𝑌 is truncated when we only observe 𝑋 for observations where 𝑌
would not be censored. We do not have a full sample for {𝑌, 𝑋}, we 
exclude observations based on characteristics of  𝑌. 

• We observe the full range of  𝑌 and the full range of  𝑋.
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Censored and Truncated Data: Example 1
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• If  𝑌 ≥ 6, we do not know its exact value. 

Example: A Central Bank intervenes if  the exchange rate, 𝑆௧, hits the 
band’s upper limit. Thus, if  𝑆௧ ≥ Ē  𝑆௧= Ē
. 

Censored from above
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Censored and Truncated Data: Example 2

• The pdf  of  the exchange rate, 𝑆௧, is a mixture of  discrete (mass at 
𝑆௧=Ē) and continuous (Prob[𝑆௧ < Ē]) distributions. 

Censored and Truncated Data: Example 2
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Censored from below
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Censored and Truncated Data: Example 3

• If  𝑌 ≤ 5, we do not know its exact value. 

Example: A Central Bank intervenes if  the exchange rate hits the 
band’s lower limit. Thus, if  𝑆௧ ≤ Ē  𝑆௧= Ē

8

𝑓ሺ𝑦*)

Prob(𝑦*>5)

y*5

Prob(𝑦*< 5)

PDF(𝑦*)

Censored and Truncated Data: Example 3

• The pdf  of  the observable variable, y, is a mixture of  discrete 
(prob. mass at Y=5) and continuous (Prob[𝑦*>5]) distributions. 
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Prob(𝑦* < 5)

Y

Prob(𝑦* > 5)
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PDF(𝑦*)

Censored and Truncated Data: Example 3

• Under censoring we assign the full probability in the censored 
region to the censoring point, 5.

• If  𝑌 < 3, the value of  𝑋 (or 𝑌) is unknown. (Truncation from below.)

Example: If  a family’s income is below certain level, we have no 
information about the family’s characteristics.  

Truncated
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Censored and Truncated Data: Example 4
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• Under data censoring, the censored distribution is a combination of  
a pmf plus a pdf. They add up to 1. We have a different situation 
under truncation. To create a pdf  for 𝑌 we will use a conditional pdf. 

Censored and Truncated Data: Example 4
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Prob[𝑌>3] < 1.0

3 𝑌

• Moments: 

Let 𝑦*~ N(𝜇*, σ2) and 𝛼 = 
ሺ௖ ି ఓ∗) 

஢
. Then

- Data: 𝑦௜ = 𝑦௜* if 𝑦௜* ≥ 𝑐
= 𝑐 if 𝑦௜* ≤ 𝑐

- Prob(𝑦 = 𝑐 |𝑥) = Prob(𝑦* ≤ 𝑐 |𝑥) = Prob[ 
ሺ௬∗ି ఓ∗) 

஢
≤ 

ሺ௖ ି ఓ∗) 

஢
 |𝑥]

= Prob[𝑧 ≤ 
ሺ௖ ି ఓ∗) 

஢
 |𝑥] = Φሺ𝛼ሻ

- Prob(𝑦 > 𝑐 |𝑥) = Prob(𝑦* > 𝑐|𝑥) = 1 െΦሺ𝛼ሻ

- First Moment

- Conditional: E[𝑦|𝑦* > 𝑐 ] = 𝜇* + σ λ 𝛼

- Unconditional: E[𝑦] = Φ 𝛼  𝑐 ൅ (1 െΦሺ𝛼ሻ) ሾ𝜇* + σ λ 𝛼 ሿ
12

Censored Normal
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• To get the first moment, we use a useful result –proven later- for a 
truncated normal distribution. If 𝑣 is a standard normal variable and 
the truncation is from below at 𝑐, a constant, then

E[𝑣 |𝑣 > 𝑐ሻ ൌ 𝐹ିଵ𝑓 ൌ  థ ሺ௖ሻ 

ଵି஍ሺ௖ሻ 

ൌ  థ ሺି௖ሻ 

஍ሺି௖ሻ 

In our conditional model, 𝑐 = -(𝒙௜′𝛽). (Note that the expectation is 
also conditioned on 𝒙, thus 𝒙 is treated as a constant.). 

Note: The ratio 𝐹ିଵ𝑓 (a pdf divided by a CDF) is called Inverse 
Mill’s ratio, usually denoted by λ . –the hazard function. If the 
truncation is from above:

λ 𝑐 ൌ థሺ௖ሻ 

ଵି஍ሺ௖ሻ 

13

Censored Normal

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

• Moments (continuation):

- Unconditional first moment: 

E[𝑦] = Φ 𝛼  𝑐 ൅ (1 െΦሺ𝛼ሻ) ሾ𝜇* + σ λ 𝛼 ሿ

If 𝑐 ൌ 0  Eሾ𝑦ሿ = ሺ1 െΦሺ𝛼ሻሻ ሾ𝜇* + σ λ 𝛼 ሿ (𝛼 = 
ሺ௖ ି ఓ∗) 

஢
)

= Φሺఓ
∗ 

஢
ሻ ሾ𝜇* + σ λ 𝛼 ሿ

- Second Moment

Var[𝑦*|𝑦 > 𝑐] = σ2 ∗ ሾ1 െ  Φ 𝛼 ሿ  ∗ ሾ 1 െ 𝛿 ൅ 𝜆 െ  𝛼 ଶ Φ 𝛼 ሿ

where 𝛿 ൌ λ * [λ െ 𝛼] 0 ≤ 𝛿≤ 1

14

Censored Normal
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• The moments depend on λ 𝑐 , the Inverse Mill’s ratio or hazard rate 
evaluated at 𝑐:

λ 𝑐 ൌ
𝜙ሺ𝑐ሻ 

1 െΦሺ𝑐ሻ 

ൌ  
𝜙 ሺെ𝑐ሻ 

Φሺെ𝑐ሻ 

It is a monotonic function that begins at zero (when 𝑐 = െ∞) and 
asymptotes at infinity (when 𝑐 = ∞). See plot below for (–𝑐).

15

Censored Normal – Hazard Function

• Moments: 

Let 𝑦*~ N(𝜇∗, σ2) and 𝛼 = 
ሺ௖ ି ఓ∗) 

஢
. 

- First moment: 

E[𝑦*|𝑦 > 𝑐] = 𝜇∗ + σ λ 𝛼 <= This is the truncated regression.

 If 𝜇 >0 and the truncation is from below –i.e., λ 𝛼 >0–, the mean 
of the truncated variable is greater than the original mean 

Note: For the standard normal distribution λ 𝛼 is the mean of the 
truncated distribution.

- Second moment:

- Var[𝑦*|𝑦 > 𝑐] = σ2[1 െ 𝛿 𝛼 ሿ where 𝛿 𝛼 = λ 𝛼 [λ 𝛼 െ 𝛼]

 Truncation reduces variance! This result is general, it applies to 
upper or lower truncation given that 0 ≤ 𝛿 𝛼 ≤ 1 16

Truncated Normal
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f(𝑦|𝑦* > 0, 𝒙)

F(0|𝒙)

0
𝒙௜
ᇱ𝛽 ൅ σλ௜

Model: 𝑦௜
∗= 𝒙௜

ᇱ𝛽 ൅ 𝜀௜
Observed Data: 𝑦௜ ൌ 𝑦௜

∗|𝑦௜
∗ ൐ 0

• Truncated regression model:
E 𝑦௜  𝑦௜

∗ ൐ 0,𝒙௜ሿ ൌ 𝒙௜
ᇱ𝛽 ൅ σλ௜

𝒙௜
ᇱ𝛽

f(𝑦∗|𝒙)

Truncated Normal

• To model the relation between the observed 𝑦 and 𝒙, we consider a 
latent variable 𝑦* that is subject to censoring/truncation. A change in 
𝒙 affects 𝑦 only through the effect of  𝒙 on 𝑦*. 

- Model the true, latent variable: 𝑦௜
∗ ൌ 𝑓 𝒙௜ ൌ 𝒙௜

ᇱ𝛽 ൅ 𝜀௜
- Observed Variable:  𝑦௜ ൌ ℎሺ𝑦௜

∗)

• Q: What is this latent variable?

Considered the variable “Dividends paid last quarter”?

- For all the respondents with 𝑦 ൌ 0 (left censored from below), we think 
of  a latent variable for “excess cash” that underlies “dividends paid 
last quarter.” Extremely cash poor would pay negative dividends if  
that were possible.

Censored and Truncated Data: Intuition
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• In the presence of  censoring/truncation, we have a dependent 
variable, 𝑦௜, with special attribute(s): 

(1) constrained and
(2) clustered of  observations at the constraint.

Examples:
- Consumption (1, not 2)
- Wage changes (2, not 1)
- Labor supply (1 & 2)

• These attributes create problems for the linear model. 

Censored and Truncated Data: Problems

• Censoring in a regression framework (from Ruud).

Censored and Truncated Data: Problems

• If  𝑦 is constrained and if  there is clustering

– OLS on the complete sample biased and inconsistent.

– OLS on the unclustered part biased and inconsistent.
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• The dependent variable is partly continuous, but with positive mass 
at one or more points.  

Two different cases:

(1) Data censoring (from above or below)

- Surveys for wealth (upper category $250,000 or more)

- Duration in unemployment

- Demand for stadium tickets

 𝑦௜
∗ is not observed because of  constraints, selection technique or 

measuring method (data problem)

- We are interested in the effect of  𝑥௞ on 𝑦௜
∗: E(𝑦௜

∗|𝒙௜). 
 𝑦௜

∗ ൌ 𝒙௜
ᇱ𝛽 ൅ 𝜀௜, 𝛽௞ measures the effect of  a change of 𝑥௞ on 𝑦௜

∗. 

Data Censoring and Corner Solutions

(2) Corner solutions: A significant fraction the data has zero value. 

- Hours worked by married women: Many married women do not 
work –i.e, zero worked hours are reported.

- Luxury goods, charitable donations, alcohol consumption, etc.

 𝑦௜
∗cannot be observed because of  the nature of  topic.

- Contrast to data censoring: Observing the dependent variable is not 
a problem  (For modeling, we will use a latent model, 𝑦௜

∗.)

- We are interested in E(𝑦௜|𝒙௜), we want to study the effect of  a 
change in education on 𝑦, hours worked by married women. 

 If   𝑦௜
∗ ൌ 𝒙௜

ᇱ𝛽 ൅ 𝜀௜ , 𝛽௞ is not what we are interested.

Data Censoring and Corner Solutions
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- These data sets are typical of  microeconomics. We think of  these 
data sets as a result of  utility maximization problems with two 
decisions:

(1) Do something or not (work or not, buy IBM or not, donate or not)

 The participation decision: A binary choice problem (𝑦௜ = 0 or 
𝑦௜ ൐0).

(2) How much we do something (how many hours married women 
work,  how much to invest on IBM, how much to donate to charity).

 The amount decision: This a truncated sample problem (how 
much 𝑦௜ is, if  𝑦௜ > 0).

Note: Last class, we have gone over this type of  data, when the 
decision amount was a “count.” (a hurdle model).

Corner Solutions

Example: We are interested on the effect of education, 𝒙, on the 
married women’s hours worked, 𝑦௜.

- A model for the latent variable y*, which is only partially observed:

 𝑦௜
∗ = 𝛽଴ + 𝛽ଵ 𝑥௜ + 𝜀௜ = 𝒙௜

ᇱ𝛽 + 𝜀௜, 𝜀௜ ~ N(0, σ2) 

- Data (truncated sample)

- If  𝑦௜
∗> 0  𝑦௜ = Actual hours worked =  𝑦௜

∗ = 𝒙௜
ᇱ𝛽 + 𝜀௜. 

- If  𝑦௜
∗≤ 0  𝑦௜ = 0  ( 𝑦௜

∗ can be negative, but if it is, 𝑦௜=0)

- Probability Model -- 𝜀௜ ~ N(0, σ2) 

- Prob(𝑦=0|𝒙) = P(𝑦* ≤ 0|𝒙) = P[(𝑦* െ Xβ)/σ ≤ (0 െ Xβ)/σ|𝒙]

= P(𝑧 ≤ െXβ/σ|𝒙) = ΦሺെXβ/σ) =  1 െ Φ(Xβ/σ) 

- Prob(𝑦>0|𝒙) = P(𝑦* > 0|𝒙ሻ ൌ 1 െΦሺെXβ/σ) = ΦሺXβ/σ)
24

Tobit Model (Censored Normal Regression)
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- Expectations of interest:

- Unconditional Expectation

E[𝑦௜|𝒙௜] = P(𝑦௜ > 0|𝒙௜) * E[𝑦௜|𝑦௜ > 0, 𝒙௜] + Prob(𝑦௜ = 0|𝒙௜) * 0 

= P(𝑦௜ > 0|𝒙௜) * E[𝑦௜|𝑦௜ > 0, 𝒙௜] 
= Φ(𝒙௜

ᇱ𝜷/σ) * E[𝑦௜|𝑦௜ > 0, 𝒙௜]

-Conditional Expectation  (Recall: E[𝑦௜| 𝑦௜
∗ > 𝑐, 𝒙௜] = μ* + σ 𝜆(α))

E[𝑦௜|𝑦௜ > 0, 𝒙௜] = 𝒙௜′𝜷 + σ 𝜆ሺ𝒙௜
ᇱ𝜷ሻ

Remark: The presented Tobit model –also called Type I Tobit Model- can 
be written as a combination of two models:

(1) A Probit model: It determines whether 𝑦 = 0 (No) or 𝑦 >0 (Yes). 

(2) A truncated regression model for 𝑦 > 0. 25

Tobit Model (Censored Normal Regression)

26

𝑦*, 𝑦

𝒙 (Education)

When 𝑦* is 
negative, 
actual hours 
worked is 
zero.

- Expectations of  interest: 

E[𝑦௜|𝒙௜], E[𝑦௜ | 𝑦௜ ൐ 0, 𝒙௜].
E[𝑦௜

∗|𝒙௜]

Tobit Model – Sample Data
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• Suppose we do OLS, only for the part of the sample with 𝑦௜ > 0. 
The estimated model:

𝑦௜ ൌ 𝒙௜
ᇱ𝛽 ൅ 𝜐௜ for 𝑦௜ > 0

- Let’s look at the density of 𝜐௜, 𝑓జሺ. ሻ, which must integrate to 1:

- The 𝜀௜’s density, normal by assumption in the Tobit Model:

- Then, 𝑓జሺ. ሻ can be written as:

27

Tobit Model - OLS
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• The pdf of 𝜐௜ and the pdf of 𝜀௜ are different. In particular, 

The 𝜀௜’s density, normal by assumption in the Tobit Model:

- Then, E[𝜐௜|𝒙௜] = σ 𝐹௜ -1 𝑓௜ = σ 𝜆ሺ𝒙௜
ᇱ𝜷ሻ ≠ 0  (& it depends on 𝒙௜′𝜷) 

 E[𝑦௜|𝑦௜ ൐ 0, 𝒙௜′𝜷] = 𝒙௜′𝜷 ൅ σ𝜆ሺ𝒙௜
ᇱ𝜷ሻ

 OLS in truncated part is biased (omitted variables problem).
28

Tobit Model - OLS
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• OLS in truncated part only is biased. We have an omitted variables 
problem. With a bit more work, we can show OLS is inconsistent too 
(show it!)

• Also E[𝜐௜2|x] = σ2 െσ2 𝒙௜
ᇱ𝜷 ∗ 𝜆ሺ𝒙௜

ᇱ𝜷ሻ

 The error term, 𝜐, not only has non-zero mean but it is also 
heteroskedastic.

29

Tobit Model - OLS

• Now, we  can write

𝑦௜ = E[𝑦௜|𝑦௜ > 0, 𝒙௜] + 𝜀௜ = 𝒙௜
ᇱ𝜷 ൅ σ 𝜆ሺ𝒙௜

ᇱ𝜷ሻ + 𝜀௜, for 𝑦௜ > 0.

- There is a non-linear relation between 𝒙௜ on 𝑦௜. NLLS is a possibility 
here, though we need a consistent estimator of 𝜷 to evaluate 𝜆ሺ𝒙௜

ᇱ𝛽ሻ
and it is not clear where to get it. Since we have heteroscedasticity, we 
need to allow for it. Weighted NLLS may work well.

Note: A non-linear relation appears even if all observations are used 
(positive and negative values of 𝑦௜): 

E[𝑦௜|𝒙௜] = P(𝑦௜
∗>0|𝒙௜) * E( 𝑦௜

∗|𝑦௜ > 0, 𝒙௜) = 𝐹௜ ∗ (𝒙௜
ᇱ𝛽 + σ𝐹௜ -1𝑓௜)

= Φሺ𝒙௜
ᇱ𝜷ሻ  ∗{𝒙௜

ᇱ𝜷 + σ 𝜙ሺ𝒙௜
ᇱ𝜷ሻ}

30

Tobit Model - NLLS
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• Given our assumption for 𝜀௜, we do ML estimation.

• For women who are working, we have  𝑦௜
∗> 0  𝑦௜>0. Then,

𝜀௜ = 𝑦௜ െ ሺ𝛽଴ + 𝛽ଵ 𝑥௜ሻ
 Likelihood function for a working woman is given by: 

𝐿௜  = 
ଵ

ଶగఙమ 
𝑒ି

𝟏
𝟐

 
ሺ೤೔ష ഁబ ష ഁభ ೣ೔ሻ

𝟐

ಚ𝟐 ൌ ଵ

஢
 ଵ

ଶగ 
𝑒ି

భ
మ

  ሺ
೤೔ష ഁబ ష ഁభ ೣ೔

഑
ሻమ

ൌ ଵ

ఙ
 𝜙ሺ௬೔ି ఉబ ି ఉభ ௫೔

ఙ
)

• For women who are not working, we have  𝑦௜
∗≤ 0  𝑦௜ = 0. 

 𝐿௜ ൌ 𝑃 𝑦௜
∗ ൑ 0 ൌ 𝑃ሺ𝛽଴ + 𝛽ଵ 𝑥௜  ൅  ௜ ൑ 0ሻ

ൌ 𝑃ሺ௜ ൑ െሺ𝛽଴ + 𝛽ଵ 𝑥௜ሻሻ ൌ 𝑃ሺ೔ 
ఙ
൑ െఉబ + ఉభ ௫೔

ఙ
ሻ

ൌ Φ െఉబ + ఉభ ௫೔
ఙ

ൌ 1 െ  Φ ఉబ + ఉభ ௫೔
ఙ 31

Tobit Model: Estimation

• Summary,

𝐿௜  ൌ ଵ

ఙ
 𝜙ሺ௬೔ି ఉబ ି ఉభ ௫೔

ఙ
ሻ if 𝑦௜

∗ > 0. 

ൌ 1 െ  Φ ఉబ + ఉభ ௫೔
ఙ

if 𝑦௜
∗ ൑ 0. 

• We have a combination of a pdf (for the observed part of the 
distribution) and a CDF (for the truncated part of the distribution): a 
linear part and a Probit part.

• Let 𝐷௜ be a dummy variable that takes 1 if 𝑦௜ > 0. Then, the above 
likelihood for consumer 𝑖 can be written as:

𝐿௜ ൌ  ሼଵ
ఙ

 𝜙 ௬೔ି ఉబ ି ఉభ ௫೔
ఙ

ሽ஽೔  ∗ ሼ1 െ  Φ ఉబ + ఉభ ௫೔
ఙ

ሽଵି஽೔
32
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• The likelihood function, L, for the whole sample is:

𝐿ሺ𝛽଴, 𝛽ଵ,𝜎ሻ ൌ ∏  ሼ
ଵ

ఙ
 𝜙

௬೔ି ఉబ ି ఉభ ௫೔
ఙ

ሽ஽೔  ∗ ሼ1 െ  Φ
ఉబ + ఉభ ௫೔

ఙ
ሽଵି஽೔௜

• The values of 𝛽଴, 𝛽ଵ and 𝜎 that maximize the likelihood function are 
the Tobit estimators of the parameters.

• As usual, we work with the Log(L):

33
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• Amemiya (1973) presents the following representation for the 
information matrix:
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Tobit Model: Estimation – Information Matrix
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• Corner Solution Case – DATA: Female labor supply (mroz.wf1)

    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
       hours |       753    740.5764    871.3142          0       4950 
    nwifeinc |       753    20.12896     11.6348  -.0290575         96 
        educ |       753    12.28685    2.280246          5         17 
       exper |       753    10.63081     8.06913          0         45 
         age |       753    42.53785    8.072574         30         60 
     kidsge6 |       753    1.353254    1.319874          0          8 
     kidslt6 |       753    .2377158     .523959          0          3 

0

100

200

300

400

0 1000 2000 3000 4000 5000

Series: HOURS
Sample 1 753
Observations 753

Mean       740.5764
Median   288.0000
Maximum  4950.000
Minimum  0.000000
Std. Dev.   871.3142
Skewness   0.922531
Kurtosis   3.193949

Jarque-Bera  107.9888
Probability  0.000000

Tobit Model: Application I – Female Labor Supply

• OLS whole sample (𝑁 = 753)

Dependent Variable: HOURS   
Method: Least Squares   
Included observations: 753   
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std. Error t-Statistic Prob.   

NWIFEINC -3.446636 2.240662 -1.538222 0.1244 
EDUC 28.76112 13.03905 2.205768 0.0277 

EXPER 65.67251 10.79419 6.084062 0.0000 
EXPER^2 -0.700494 0.372013 -1.882983 0.0601 

AGE -30.51163 4.244791 -7.188018 0.0000 
KIDSLT6 -442.0899 57.46384 -7.693359 0.0000 
KIDSGE6 -32.77923 22.80238 -1.437535 0.1510 

C 1330.482 274.8776 4.840273 0.0000 

Tobit Model : Application I – OLS (all y)



RS – Lecture 17

19

• OLS subsample – 𝑦௜ (hours worked) > 0 (𝑁 = 428)

Dependent Variable: HOURS   
Method: Least Squares   
Sample: 1 753 IF HOURS>0   
Included observations: 428   
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std. Error t-Statistic Prob.   

NWIFEINC 0.443851 3.108704 0.142777 0.8865 
EDUC -22.78841 16.09281 -1.416061 0.1575 

EXPER 47.00509 15.38725 3.054808 0.0024 
EXPER^2 -0.513644 0.417384 -1.230627 0.2192 

AGE -19.66352 5.845279 -3.364001 0.0008 
KIDSLT6 -305.7209 125.4802 -2.436407 0.0152 
KIDSGE6 -72.36673 31.28480 -2.313159 0.0212 

C 2056.643 351.4502 5.851875 0.0000 

Tobit Model : Application I – OLS (y>0)

Dependent Variable: HOURS   
Method: ML - Censored Normal (TOBIT) (Quadratic hill climbing) 
Included observations: 753   
Left censoring (value) at zero  

 Coefficient Std. Error z-Statistic Prob.   

NWIFEINC -8.814243 4.459100 -1.976687 0.0481 
EDUC 80.64561 21.58324 3.736493 0.0002 

EXPER 131.5643 17.27939 7.613943 0.0000 
EXPER^2 -1.864158 0.537662 -3.467155 0.0005 

AGE -54.40501 7.418502 -7.333693 0.0000 
KIDSLT6 -894.0217 111.8780 -7.991039 0.0000 
KIDSGE6 -16.21800 38.64139 -0.419705 0.6747 

C 965.3053 446.4361 2.162247 0.0306 

 Error Distribution   

SCALE:C(9) 1122.022 41.57910 26.98523 0.0000 

Left censored obs 325      Right censored obs 0 
Uncensored obs 428      Total obs 753 

• Tobit whole sample (𝑁 = 753)

Tobit Model : Application I – Tobit
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Partial Effects (marginal effects)

• The estimated parameters 𝛽௞ measures the effect of 𝑥௞ on 𝑦∗. But 
in corner solutions, we are interested in the effect of 𝑥௞ on actual 𝑦௜. 

• We calculate partial effects based on two results already derived:

- For positive 𝑦’s –i.e., 𝑦௜ > 0:

E[𝑦௜|𝑦௜>0, 𝒙௜′𝜷] = 𝒙௜′𝜷 + σ 𝜆ሺ𝒙௜
ᇱ𝜷ሻ

- For all 𝑦’s –i.e., 𝑦௜ ≥ 0:

E[𝑦௜|𝒙௜′𝜷] = P(𝑦௜
∗>0|𝒙௜) * E(𝑦௜

∗|𝑦௜>0, 𝒙௜) = 𝐹௜ [𝒙௜′𝜷 + σ 𝜆ሺ𝒙௜′𝜷ሻ]

• The partial effects are given by

(1) measures the effect of an 𝑥௞ change on 𝑦 for working women.
39
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ఙ
ሻ (see derivation in Greene)

(2) measures the overall effect of an 𝑥௞ change on hours worked.

• Both partial effects depend on 𝒙. Thus, they vary by person. 

• We are interested in the overall effect rather than the effect for a 
specific person in the data.  Two ways to do this computation: 

- At the sample average: Plug the mean of 𝒙 in the above formula. 

- Average of partial effects: Compute the partial effect for each 
individual in the data. Then, compute the average. 40

Partial Effects (marginal effects)
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     partial         753    34.27517           0   34.27517   34.27517
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

.   su partial

.   gen partial=_b[educ]*(1-lambda*(avxbsig+lambda))

.   gen lambda=normalden(avxbsig)/normal(avxbsig)

.   gen avxbsig=avxbeta/_b[/sigma]

.   egen avxbeta=mean(xbeta)

.   predict xbeta, xb

. *****************************

. *manually                   *

. *on hours for working women *

. *at average of educ         *

. *Compute the Partial effect *

. *****************************

                         0 right-censored observations
                       428     uncensored observations
  Obs. summary:        325  left-censored observations at hours<=0
                                                                              
      /sigma     1122.022   41.57903                      1040.396    1203.647
                                                                              
       _cons     965.3053   446.4358     2.16   0.031     88.88528    1841.725
     kidsge6      -16.218   38.64136    -0.42   0.675    -92.07675    59.64075
     kidslt6    -894.0217   111.8779    -7.99   0.000    -1113.655   -674.3887
         age    -54.40501   7.418496    -7.33   0.000    -68.96862    -39.8414
     expersq    -1.864158   .5376615    -3.47   0.001    -2.919667   -.8086479
       exper     131.5643   17.27938     7.61   0.000     97.64231    165.4863
        educ     80.64561   21.58322     3.74   0.000     38.27453    123.0167
    nwifeinc    -8.814243   4.459096    -1.98   0.048    -17.56811   -.0603724
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

Log likelihood = -3819.0946                       Pseudo R2       =     0.0343
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(7)      =     271.59
Tobit regression                                  Number of obs   =        753

. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

Partial effect at average 
for working women: 
Computing manually.

Partial Effects – Application I (y>0)
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                         0 right-censored observations
                       428     uncensored observations
  Obs. summary:        325  left-censored observations at hours<=0
                                                                              
      /sigma     1122.022   41.57903                      1040.396    1203.647
                                                                              
       _cons     965.3053   446.4358     2.16   0.031     88.88528    1841.725
     kidsge6      -16.218   38.64136    -0.42   0.675    -92.07675    59.64075
     kidslt6    -894.0217   111.8779    -7.99   0.000    -1113.655   -674.3887
         age    -54.40501   7.418496    -7.33   0.000    -68.96862    -39.8414
     expersq    -1.864158   .5376615    -3.47   0.001    -2.919667   -.8086479
       exper     131.5643   17.27938     7.61   0.000     97.64231    165.4863
        educ     80.64561   21.58322     3.74   0.000     38.27453    123.0167
    nwifeinc    -8.814243   4.459096    -1.98   0.048    -17.56811   -.0603724
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

Log likelihood = -3819.0946                       Pseudo R2       =     0.0343
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(7)      =     271.59
Tobit regression                                  Number of obs   =        753

. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

                                                                              
    educ     34.27517     9.11708    3.76   0.000    16.406  52.1443   12.2869
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  1012.0327
      y  = E(hours|hours>0) (predict, e(0,.))
Marginal effects after tobit

.   mfx, predict(e(0,.)) varlist(educ)

. ***********************************

. * for working women automatically *

. * at average of educ on hours     *

. * Compute the partial effect      *

. ***********************************

Partial effect at 
average for working 
women: Compute 
automatically.

Partial Effects – Application I (y>0)
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 partial_all         753    48.73409           0   48.73409   48.73409
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

. su partial_all

. gen partial_all=_b[educ]*normal(avxbsig)

. 

. *****************************************

. *manually                               *

. *of education for the entire observation*

. *Compute the Partial effect at average  *

. *****************************************

. 

                                                                              
    educ     48.73409      12.963    3.76   0.000   23.3263  74.1419   12.2869
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  611.57078
      y  = E(hours*|hours>0) (predict, ystar(0,.))
Marginal effects after tobit

. mfx, predict(ystar(0,.)) varlist(educ)

. 

. *****************************************

. *automatically                          *

. *of education for the entire observation*

. *Compute the Partial effect at average  *

. *****************************************

Partial effect at average for all 
observations: Compute 
manually.

Partial effect at average 
for all observations: 
Compute automatically

Partial Effects – Application I (all y)

• Now, we can compare the marginal effect of  education on actual 
hours worked. 

• We compare OLS (whole sample) and Tobit estimates, on the basis 
of  the marginal effect of  education actual 𝑦௜, for an average individual:

OLS TOBIT

' 
  
 

k

x 


80.65   0.604

28.76 48.73

Partial Effects – Application I (all y)

Interpretation: On average, an additional year of  education increases 
the labor supply by 48.7 hours (for an average individual).

 OLS underestimates
the effect of  education 
on the labor supply (in 
the average of  the 
explanatory variables).

𝛽መ௞,ை௅ௌ
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• In a regression model, we scale the observations by their standard 
deviation (𝑥௜/σ௜) transforming the model back to CLM framework

• In the Tobit model, we naturally work with the likelihood. The Log L 
for the homoscedastic Tobit model is:

• Introducing heteroscedasticity in the Log L:

Tobit Model: Heteroscedasticity
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• Now, we went from 𝑘+1 parameters to 𝑘+N parameters. Impossible 
to estimate with N observations. 

• Usual solution: Model heteroscedasticity, dependent on a few 
parameters: σ௜ଶ = σ௜(α). 

Example: Exponential:  σ௜ଶ = exp(zi’α). Then,

• The marginal effects get more complicated under the heteroscedastic 
Tobit model: an exogenous variable, say income, could impact both 
numerator and denominator of  the standardization ratio, Xiβ/σ௜

Tobit Model: Heteroscedasticity
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• Partial effects get more complicated under the heteroscedastic Tobit 
model: an exogenous variable, say income, could impact both 
numerator, 𝒙௜′𝛽, and denominator σ௜ . Ambiguous signs are possible.

• Suppose we have 𝒘𝒋 affecting  both 𝒙௜ and 𝒛௜. Then,

Heteroscedasticity – Partial Effects
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Elasticity

Homo. Hetero.

Value S.E. Value S.E

Φ(z) 0.259 0.008 0.210 0.011

E(y|y>0) 0.284 0.009 0.395 0.010

E(y) 0.544 0.017 0.606 0.020

• Canadian FAFH expenditures: 9,767 HH’s, 21.2% with $0 
expenditures. 

• Dependent variable is bi-weekly FAFH expenditures
Exogenous Variables:  HHInc, Kids Present?, FullTime? Provincial 
Dummy Variables.

• σ௜ଶ = exp(γ0 + γ1 Incomei + γ2 Fulltimei + γ3 Quebeci)

Heteroscedasticity – Partial Effects - Application
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• Different ways of  thinking about how the latent variable and the 
observed variable interact produce different Tobit Models.

• The Type I Tobit Model presents a simple relation:
- 𝑦௜ = 0 if  𝑦௜

∗= 𝒙௜′𝛽 + 𝜀௜ ≤ 0
= 𝑦௜

∗= 𝒙௜′𝜷 + 𝜀௜ if  𝑦௜
∗= 𝒙௜′𝛽 + 𝜀௜ > 0

The effect of  the 𝒙’s on the probability that an observation is censored 
and the effect on the conditional mean of  the non-censored 
observations are the same: 𝜷 .

• The Type II Tobit Model presents a more complex relation:
- 𝑦௜ = 0 if  𝑦௜

∗ = 𝒙௜′α + 𝜀ଵ,௜ ≤ 0, 𝜀ଵ,௜ ~N(0, 1)
= 𝒙௜′𝜷 + 𝜀ଶ,௜ if  𝑦௜

∗ = 𝒙௜′α + 𝜀ଶ,௜ > 0, 𝜀ଶ,௜ ~N(0, σଶଶ)
Now, we have different effects of  the 𝒙’s.

Tobit Model – Type II

50

• The Type II Tobit Model:
- 𝑦௜ = 0 if  𝑦௜

∗ = 𝒙௜′α + 𝜀ଵ,௜ ≤ 0, 𝜀ଵ,௜ ~N(0, 1)
= 𝒙௜′𝜷 + 𝜀ଶ,௜ if  𝑦௜

∗ = 𝒙௜′α + 𝜀ଶ,௜ > 0, 𝜀ଶ,௜ ~N(0, σଶଶ)

- A more flexible model. X can have an effect on the decision to 
participate (Probit part) and a different effect on the amount decision 
(truncated regression). 

- Type I is a special case: 𝜀ଶ,௜ = 𝜀ଵ,௜ and α = 𝜷.

Example:  Age affects the decision to donate to charity. But it can 
have a different effect on the amount donated. We may find that age 
has a positive effect on the decision to donate, but given a positive 
donation, younger individuals donate more than older individuals.

Tobit Model – Type II
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• The Tobit Model assumes a bivariate normal distribution for (1,i;2,i); 
with covariance given by 𝜎ଵଶ(= 𝜌 𝜎ଵ𝜎ଶ.).

- Conditional expectation:

E[𝑦௜|𝑦௜ > 0, 𝒙௜] = 𝒙௜′𝜷 + 𝜎ଵଶ λ(𝒙௜′α) 

- Unconditional Expectation

E[𝑦௜|𝒙௜] = Prob(𝑦௜>0|𝒙௜) * E[𝑦௜|𝑦௜>0, 𝒙௜] + Prob(𝑦௜>0|𝒙௜) * 0 

= Prob(𝑦௜ > 0|𝒙௜) * E[𝑦௜|𝑦௜ > 0, 𝒙௜] 
= Φ(𝒙௜′α) * [𝒙௜′𝜷 + 𝜎ଵଶ λ(𝒙௜′α)] 

Note: This model is known as the Heckman selection model, or the 
Type II Tobit model (Amemiya), or the probit selection model 
(Wooldridge).

Tobit Model – Type II


