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Lecture 8
Models for Censored and 

Truncated Data - Tobit Model

(For private use, not to be posted/shared online).

• In some data sets we do not observe values above or below a 
certain magnitude, due to a censoring or truncation mechanism. 

Examples: 

- A central bank intervenes to stop an exchange rate falling below or 
going above certain levels. 

- Dividends paid by a company may remain zero until earnings reach 
some threshold value.

- A government imposes price controls on some goods. 

- A survey of only working women, ignoring non-working women.

In these situations, the observed data consists of a combination of 
measurements of some underlying latent variable and observations  
that arise when the censoring/truncation mechanism is applied. 2

Censored and Truncated Data
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Censored and Truncated Data: Definitions

• 𝑌 is censored when we observe 𝑋 for all observations, but we only 
know the true value of  𝑌 for a restricted range of  observations. Values 
of  𝑌 in a certain range are reported as a single value or there is 
significant clustering around a value, say 0.

- If  𝑌 = 𝑘 or 𝑌 > 𝑘 for all 𝑌 𝑌 is censored from below or left-censored.

- If  𝑌 = 𝑘 or 𝑌 < 𝑘 for all 𝑌 𝑌 is censored from above or right-censored.

We usually think of  an uncensored Y, Y*, the true value of  𝑌 when the 
censoring mechanism is not applied. We typically have all the 
observations for {𝑌,𝑋}, but not {Y*, 𝑋}.

• 𝑌 is truncated when we only observe 𝑋 for observations where 𝑌
would not be censored. We do not have a full sample for {𝑌, 𝑋}, we 
exclude observations based on characteristics of  𝑌. 

• We observe the full range of  𝑌 and the full range of  𝑋.
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Censored and Truncated Data: Example 1



RS – Lecture 17

3

• If  𝑌 ≥ 6, we do not know its exact value. 

Example: A Central Bank intervenes if  the exchange rate, 𝑆௧, hits the 
band’s upper limit. Thus, if  𝑆௧ ≥ Ē  𝑆௧= Ē
. 

Censored from above
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Censored and Truncated Data: Example 2

• The pdf  of  the exchange rate, 𝑆௧, is a mixture of  discrete (mass at 
𝑆௧=Ē) and continuous (Prob[𝑆௧ < Ē]) distributions. 

Censored and Truncated Data: Example 2
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Censored from below
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Censored and Truncated Data: Example 3

• If  𝑌 ≤ 5, we do not know its exact value. 

Example: A Central Bank intervenes if  the exchange rate hits the 
band’s lower limit. Thus, if  𝑆௧ ≤ Ē  𝑆௧= Ē

8

𝑓ሺ𝑦*)

Prob(𝑦*>5)

y*5

Prob(𝑦*< 5)

PDF(𝑦*)

Censored and Truncated Data: Example 3

• The pdf  of  the observable variable, y, is a mixture of  discrete 
(prob. mass at Y=5) and continuous (Prob[𝑦*>5]) distributions. 
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Prob(𝑦* < 5)

Y

Prob(𝑦* > 5)

5

PDF(𝑦*)

Censored and Truncated Data: Example 3

• Under censoring we assign the full probability in the censored 
region to the censoring point, 5.

• If  𝑌 < 3, the value of  𝑋 (or 𝑌) is unknown. (Truncation from below.)

Example: If  a family’s income is below certain level, we have no 
information about the family’s characteristics.  

Truncated
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Censored and Truncated Data: Example 4
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• Under data censoring, the censored distribution is a combination of  
a pmf plus a pdf. They add up to 1. We have a different situation 
under truncation. To create a pdf  for 𝑌 we will use a conditional pdf. 

Censored and Truncated Data: Example 4
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Prob[𝑌>3] < 1.0

3 𝑌

• Moments: 

Let 𝑦*~ N(𝜇*, σ2) and 𝛼 = 
ሺ ି ఓ∗) 


. Then

- Data: 𝑦 = 𝑦* if 𝑦* ≥ 𝑐
= 𝑐 if 𝑦* ≤ 𝑐

- Prob(𝑦 = 𝑐 |𝑥) = Prob(𝑦* ≤ 𝑐 |𝑥) = Prob[ 
ሺ௬∗ି ఓ∗) 


≤ 

ሺ ି ఓ∗) 


 |𝑥]

= Prob[𝑧 ≤ 
ሺ ି ఓ∗) 


 |𝑥] = Φሺ𝛼ሻ

- Prob(𝑦 > 𝑐 |𝑥) = Prob(𝑦* > 𝑐|𝑥) = 1 െΦሺ𝛼ሻ

- First Moment

- Conditional: E[𝑦|𝑦* > 𝑐 ] = 𝜇* + σ λ 𝛼

- Unconditional: E[𝑦] = Φ 𝛼  𝑐  (1 െΦሺ𝛼ሻ) ሾ𝜇* + σ λ 𝛼 ሿ
12

Censored Normal
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• To get the first moment, we use a useful result –proven later- for a 
truncated normal distribution. If 𝑣 is a standard normal variable and 
the truncation is from below at 𝑐, a constant, then

E[𝑣 |𝑣 > 𝑐ሻ ൌ 𝐹ିଵ𝑓 ൌ  థ ሺሻ 

ଵିሺሻ 

ൌ  థ ሺିሻ 

ሺିሻ 

In our conditional model, 𝑐 = -(𝒙′𝛽). (Note that the expectation is 
also conditioned on 𝒙, thus 𝒙 is treated as a constant.). 

Note: The ratio 𝐹ିଵ𝑓 (a pdf divided by a CDF) is called Inverse 
Mill’s ratio, usually denoted by λ . –the hazard function. If the 
truncation is from above:

λ 𝑐 ൌ థሺሻ 

ଵିሺሻ 

13

Censored Normal
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• Moments (continuation):

- Unconditional first moment: 

E[𝑦] = Φ 𝛼  𝑐  (1 െΦሺ𝛼ሻ) ሾ𝜇* + σ λ 𝛼 ሿ

If 𝑐 ൌ 0  Eሾ𝑦ሿ = ሺ1 െΦሺ𝛼ሻሻ ሾ𝜇* + σ λ 𝛼 ሿ (𝛼 = 
ሺ ି ఓ∗) 


)

= Φሺఓ
∗ 


ሻ ሾ𝜇* + σ λ 𝛼 ሿ

- Second Moment

Var[𝑦*|𝑦 > 𝑐] = σ2 ∗ ሾ1 െ  Φ 𝛼 ሿ  ∗ ሾ 1 െ 𝛿  𝜆 െ  𝛼 ଶ Φ 𝛼 ሿ

where 𝛿 ൌ λ * [λ െ 𝛼] 0 ≤ 𝛿≤ 1

14

Censored Normal
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• The moments depend on λ 𝑐 , the Inverse Mill’s ratio or hazard rate 
evaluated at 𝑐:

λ 𝑐 ൌ
𝜙ሺ𝑐ሻ 

1 െΦሺ𝑐ሻ 

ൌ  
𝜙 ሺെ𝑐ሻ 

Φሺെ𝑐ሻ 

It is a monotonic function that begins at zero (when 𝑐 = െ∞) and 
asymptotes at infinity (when 𝑐 = ∞). See plot below for (–𝑐).

15

Censored Normal – Hazard Function

• Moments: 

Let 𝑦*~ N(𝜇∗, σ2) and 𝛼 = 
ሺ ି ఓ∗) 


. 

- First moment: 

E[𝑦*|𝑦 > 𝑐] = 𝜇∗ + σ λ 𝛼 <= This is the truncated regression.

 If 𝜇 >0 and the truncation is from below –i.e., λ 𝛼 >0–, the mean 
of the truncated variable is greater than the original mean 

Note: For the standard normal distribution λ 𝛼 is the mean of the 
truncated distribution.

- Second moment:

- Var[𝑦*|𝑦 > 𝑐] = σ2[1 െ 𝛿 𝛼 ሿ where 𝛿 𝛼 = λ 𝛼 [λ 𝛼 െ 𝛼]

 Truncation reduces variance! This result is general, it applies to 
upper or lower truncation given that 0 ≤ 𝛿 𝛼 ≤ 1 16

Truncated Normal
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f(𝑦|𝑦* > 0, 𝒙)

F(0|𝒙)

0
𝒙
ᇱ𝛽  σλ

Model: 𝑦
∗= 𝒙

ᇱ𝛽  𝜀
Observed Data: 𝑦 ൌ 𝑦

∗|𝑦
∗  0

• Truncated regression model:
E 𝑦  𝑦

∗  0,𝒙ሿ ൌ 𝒙
ᇱ𝛽  σλ

𝒙
ᇱ𝛽

f(𝑦∗|𝒙)

Truncated Normal

• To model the relation between the observed 𝑦 and 𝒙, we consider a 
latent variable 𝑦* that is subject to censoring/truncation. A change in 
𝒙 affects 𝑦 only through the effect of  𝒙 on 𝑦*. 

- Model the true, latent variable: 𝑦
∗ ൌ 𝑓 𝒙 ൌ 𝒙

ᇱ𝛽  𝜀
- Observed Variable:  𝑦 ൌ ℎሺ𝑦

∗)

• Q: What is this latent variable?

Considered the variable “Dividends paid last quarter”?

- For all the respondents with 𝑦 ൌ 0 (left censored from below), we think 
of  a latent variable for “excess cash” that underlies “dividends paid 
last quarter.” Extremely cash poor would pay negative dividends if  
that were possible.

Censored and Truncated Data: Intuition
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• In the presence of  censoring/truncation, we have a dependent 
variable, 𝑦, with special attribute(s): 

(1) constrained and
(2) clustered of  observations at the constraint.

Examples:
- Consumption (1, not 2)
- Wage changes (2, not 1)
- Labor supply (1 & 2)

• These attributes create problems for the linear model. 

Censored and Truncated Data: Problems

• Censoring in a regression framework (from Ruud).

Censored and Truncated Data: Problems

• If  𝑦 is constrained and if  there is clustering

– OLS on the complete sample biased and inconsistent.

– OLS on the unclustered part biased and inconsistent.
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• The dependent variable is partly continuous, but with positive mass 
at one or more points.  

Two different cases:

(1) Data censoring (from above or below)

- Surveys for wealth (upper category $250,000 or more)

- Duration in unemployment

- Demand for stadium tickets

 𝑦
∗ is not observed because of  constraints, selection technique or 

measuring method (data problem)

- We are interested in the effect of  𝑥 on 𝑦
∗: E(𝑦

∗|𝒙). 
 𝑦

∗ ൌ 𝒙
ᇱ𝛽  𝜀, 𝛽 measures the effect of  a change of 𝑥 on 𝑦

∗. 

Data Censoring and Corner Solutions

(2) Corner solutions: A significant fraction the data has zero value. 

- Hours worked by married women: Many married women do not 
work –i.e, zero worked hours are reported.

- Luxury goods, charitable donations, alcohol consumption, etc.

 𝑦
∗cannot be observed because of  the nature of  topic.

- Contrast to data censoring: Observing the dependent variable is not 
a problem  (For modeling, we will use a latent model, 𝑦

∗.)

- We are interested in E(𝑦|𝒙), we want to study the effect of  a 
change in education on 𝑦, hours worked by married women. 

 If   𝑦
∗ ൌ 𝒙

ᇱ𝛽  𝜀 , 𝛽 is not what we are interested.

Data Censoring and Corner Solutions
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- These data sets are typical of  microeconomics. We think of  these 
data sets as a result of  utility maximization problems with two 
decisions:

(1) Do something or not (work or not, buy IBM or not, donate or not)

 The participation decision: A binary choice problem (𝑦 = 0 or 
𝑦 0).

(2) How much we do something (how many hours married women 
work,  how much to invest on IBM, how much to donate to charity).

 The amount decision: This a truncated sample problem (how 
much 𝑦 is, if  𝑦 > 0).

Note: Last class, we have gone over this type of  data, when the 
decision amount was a “count.” (a hurdle model).

Corner Solutions

Example: We are interested on the effect of education, 𝒙, on the 
married women’s hours worked, 𝑦.

- A model for the latent variable y*, which is only partially observed:

 𝑦
∗ = 𝛽 + 𝛽ଵ 𝑥 + 𝜀 = 𝒙

ᇱ𝛽 + 𝜀, 𝜀 ~ N(0, σ2) 

- Data (truncated sample)

- If  𝑦
∗> 0  𝑦 = Actual hours worked =  𝑦

∗ = 𝒙
ᇱ𝛽 + 𝜀. 

- If  𝑦
∗≤ 0  𝑦 = 0  ( 𝑦

∗ can be negative, but if it is, 𝑦=0)

- Probability Model -- 𝜀 ~ N(0, σ2) 

- Prob(𝑦=0|𝒙) = P(𝑦* ≤ 0|𝒙) = P[(𝑦* െ Xβ)/σ ≤ (0 െ Xβ)/σ|𝒙]

= P(𝑧 ≤ െXβ/σ|𝒙) = ΦሺെXβ/σ) =  1 െ Φ(Xβ/σ) 

- Prob(𝑦>0|𝒙) = P(𝑦* > 0|𝒙ሻ ൌ 1 െΦሺെXβ/σ) = ΦሺXβ/σ)
24

Tobit Model (Censored Normal Regression)
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- Expectations of interest:

- Unconditional Expectation

E[𝑦|𝒙] = P(𝑦 > 0|𝒙) * E[𝑦|𝑦 > 0, 𝒙] + Prob(𝑦 = 0|𝒙) * 0 

= P(𝑦 > 0|𝒙) * E[𝑦|𝑦 > 0, 𝒙] 
= Φ(𝒙

ᇱ𝜷/σ) * E[𝑦|𝑦 > 0, 𝒙]

-Conditional Expectation  (Recall: E[𝑦| 𝑦
∗ > 𝑐, 𝒙] = μ* + σ 𝜆(α))

E[𝑦|𝑦 > 0, 𝒙] = 𝒙′𝜷 + σ 𝜆ሺ𝒙
ᇱ𝜷ሻ

Remark: The presented Tobit model –also called Type I Tobit Model- can 
be written as a combination of two models:

(1) A Probit model: It determines whether 𝑦 = 0 (No) or 𝑦 >0 (Yes). 

(2) A truncated regression model for 𝑦 > 0. 25

Tobit Model (Censored Normal Regression)

26

𝑦*, 𝑦

𝒙 (Education)

When 𝑦* is 
negative, 
actual hours 
worked is 
zero.

- Expectations of  interest: 

E[𝑦|𝒙], E[𝑦 | 𝑦  0, 𝒙].
E[𝑦

∗|𝒙]

Tobit Model – Sample Data
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• Suppose we do OLS, only for the part of the sample with 𝑦 > 0. 
The estimated model:

𝑦 ൌ 𝒙
ᇱ𝛽  𝜐 for 𝑦 > 0

- Let’s look at the density of 𝜐, 𝑓జሺ. ሻ, which must integrate to 1:

- The 𝜀’s density, normal by assumption in the Tobit Model:

- Then, 𝑓జሺ. ሻ can be written as:

27

Tobit Model - OLS
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• The pdf of 𝜐 and the pdf of 𝜀 are different. In particular, 

The 𝜀’s density, normal by assumption in the Tobit Model:

- Then, E[𝜐|𝒙] = σ 𝐹 -1 𝑓 = σ 𝜆ሺ𝒙
ᇱ𝜷ሻ ≠ 0  (& it depends on 𝒙′𝜷) 

 E[𝑦|𝑦  0, 𝒙′𝜷] = 𝒙′𝜷  σ𝜆ሺ𝒙
ᇱ𝜷ሻ

 OLS in truncated part is biased (omitted variables problem).
28

Tobit Model - OLS
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• OLS in truncated part only is biased. We have an omitted variables 
problem. With a bit more work, we can show OLS is inconsistent too 
(show it!)

• Also E[𝜐2|x] = σ2 െσ2 𝒙
ᇱ𝜷 ∗ 𝜆ሺ𝒙

ᇱ𝜷ሻ

 The error term, 𝜐, not only has non-zero mean but it is also 
heteroskedastic.

29

Tobit Model - OLS

• Now, we  can write

𝑦 = E[𝑦|𝑦 > 0, 𝒙] + 𝜀 = 𝒙
ᇱ𝜷  σ 𝜆ሺ𝒙

ᇱ𝜷ሻ + 𝜀, for 𝑦 > 0.

- There is a non-linear relation between 𝒙 on 𝑦. NLLS is a possibility 
here, though we need a consistent estimator of 𝜷 to evaluate 𝜆ሺ𝒙

ᇱ𝛽ሻ
and it is not clear where to get it. Since we have heteroscedasticity, we 
need to allow for it. Weighted NLLS may work well.

Note: A non-linear relation appears even if all observations are used 
(positive and negative values of 𝑦): 

E[𝑦|𝒙] = P(𝑦
∗>0|𝒙) * E( 𝑦

∗|𝑦 > 0, 𝒙) = 𝐹 ∗ (𝒙
ᇱ𝛽 + σ𝐹 -1𝑓)

= Φሺ𝒙
ᇱ𝜷ሻ  ∗{𝒙

ᇱ𝜷 + σ 𝜙ሺ𝒙
ᇱ𝜷ሻ}

30

Tobit Model - NLLS
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• Given our assumption for 𝜀, we do ML estimation.

• For women who are working, we have  𝑦
∗> 0  𝑦>0. Then,

𝜀 = 𝑦 െ ሺ𝛽 + 𝛽ଵ 𝑥ሻ
 Likelihood function for a working woman is given by: 

𝐿  = 
ଵ

ଶగఙమ 
𝑒ି

𝟏
𝟐

 
ሺష ഁబ ష ഁభ ೣሻ

𝟐

ಚ𝟐 ൌ ଵ


 ଵ

ଶగ 
𝑒ି

భ
మ

  ሺ
ష ഁబ ష ഁభ ೣ


ሻమ

ൌ ଵ

ఙ
 𝜙ሺ௬ି ఉబ ି ఉభ ௫

ఙ
)

• For women who are not working, we have  𝑦
∗≤ 0  𝑦 = 0. 

 𝐿 ൌ 𝑃 𝑦
∗  0 ൌ 𝑃ሺ𝛽 + 𝛽ଵ 𝑥      0ሻ

ൌ 𝑃ሺ  െሺ𝛽 + 𝛽ଵ 𝑥ሻሻ ൌ 𝑃ሺ 
ఙ
 െఉబ + ఉభ ௫

ఙ
ሻ

ൌ Φ െఉబ + ఉభ ௫
ఙ

ൌ 1 െ  Φ ఉబ + ఉభ ௫
ఙ 31

Tobit Model: Estimation

• Summary,

𝐿  ൌ ଵ

ఙ
 𝜙ሺ௬ି ఉబ ି ఉభ ௫

ఙ
ሻ if 𝑦

∗ > 0. 

ൌ 1 െ  Φ ఉబ + ఉభ ௫
ఙ

if 𝑦
∗  0. 

• We have a combination of a pdf (for the observed part of the 
distribution) and a CDF (for the truncated part of the distribution): a 
linear part and a Probit part.

• Let 𝐷 be a dummy variable that takes 1 if 𝑦 > 0. Then, the above 
likelihood for consumer 𝑖 can be written as:

𝐿 ൌ  ሼଵ
ఙ

 𝜙 ௬ି ఉబ ି ఉభ ௫
ఙ

ሽ  ∗ ሼ1 െ  Φ ఉబ + ఉభ ௫
ఙ

ሽଵି
32

Tobit Model: Estimation
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• The likelihood function, L, for the whole sample is:

𝐿ሺ𝛽, 𝛽ଵ,𝜎ሻ ൌ ∏  ሼ
ଵ

ఙ
 𝜙

௬ି ఉబ ି ఉభ ௫
ఙ

ሽ  ∗ ሼ1 െ  Φ
ఉబ + ఉభ ௫

ఙ
ሽଵି

• The values of 𝛽, 𝛽ଵ and 𝜎 that maximize the likelihood function are 
the Tobit estimators of the parameters.

• As usual, we work with the Log(L):

33

Tobit Model: Estimation
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• Amemiya (1973) presents the following representation for the 
information matrix:
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Tobit Model: Estimation – Information Matrix
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• Corner Solution Case – DATA: Female labor supply (mroz.wf1)

    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
       hours |       753    740.5764    871.3142          0       4950 
    nwifeinc |       753    20.12896     11.6348  -.0290575         96 
        educ |       753    12.28685    2.280246          5         17 
       exper |       753    10.63081     8.06913          0         45 
         age |       753    42.53785    8.072574         30         60 
     kidsge6 |       753    1.353254    1.319874          0          8 
     kidslt6 |       753    .2377158     .523959          0          3 

0

100

200

300

400

0 1000 2000 3000 4000 5000

Series: HOURS
Sample 1 753
Observations 753

Mean       740.5764
Median   288.0000
Maximum  4950.000
Minimum  0.000000
Std. Dev.   871.3142
Skewness   0.922531
Kurtosis   3.193949

Jarque-Bera  107.9888
Probability  0.000000

Tobit Model: Application I – Female Labor Supply

• OLS whole sample (𝑁 = 753)

Dependent Variable: HOURS   
Method: Least Squares   
Included observations: 753   
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std. Error t-Statistic Prob.   

NWIFEINC -3.446636 2.240662 -1.538222 0.1244 
EDUC 28.76112 13.03905 2.205768 0.0277 

EXPER 65.67251 10.79419 6.084062 0.0000 
EXPER^2 -0.700494 0.372013 -1.882983 0.0601 

AGE -30.51163 4.244791 -7.188018 0.0000 
KIDSLT6 -442.0899 57.46384 -7.693359 0.0000 
KIDSGE6 -32.77923 22.80238 -1.437535 0.1510 

C 1330.482 274.8776 4.840273 0.0000 

Tobit Model : Application I – OLS (all y)
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• OLS subsample – 𝑦 (hours worked) > 0 (𝑁 = 428)

Dependent Variable: HOURS   
Method: Least Squares   
Sample: 1 753 IF HOURS>0   
Included observations: 428   
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std. Error t-Statistic Prob.   

NWIFEINC 0.443851 3.108704 0.142777 0.8865 
EDUC -22.78841 16.09281 -1.416061 0.1575 

EXPER 47.00509 15.38725 3.054808 0.0024 
EXPER^2 -0.513644 0.417384 -1.230627 0.2192 

AGE -19.66352 5.845279 -3.364001 0.0008 
KIDSLT6 -305.7209 125.4802 -2.436407 0.0152 
KIDSGE6 -72.36673 31.28480 -2.313159 0.0212 

C 2056.643 351.4502 5.851875 0.0000 

Tobit Model : Application I – OLS (y>0)

Dependent Variable: HOURS   
Method: ML - Censored Normal (TOBIT) (Quadratic hill climbing) 
Included observations: 753   
Left censoring (value) at zero  

 Coefficient Std. Error z-Statistic Prob.   

NWIFEINC -8.814243 4.459100 -1.976687 0.0481 
EDUC 80.64561 21.58324 3.736493 0.0002 

EXPER 131.5643 17.27939 7.613943 0.0000 
EXPER^2 -1.864158 0.537662 -3.467155 0.0005 

AGE -54.40501 7.418502 -7.333693 0.0000 
KIDSLT6 -894.0217 111.8780 -7.991039 0.0000 
KIDSGE6 -16.21800 38.64139 -0.419705 0.6747 

C 965.3053 446.4361 2.162247 0.0306 

 Error Distribution   

SCALE:C(9) 1122.022 41.57910 26.98523 0.0000 

Left censored obs 325      Right censored obs 0 
Uncensored obs 428      Total obs 753 

• Tobit whole sample (𝑁 = 753)

Tobit Model : Application I – Tobit
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Partial Effects (marginal effects)

• The estimated parameters 𝛽 measures the effect of 𝑥 on 𝑦∗. But 
in corner solutions, we are interested in the effect of 𝑥 on actual 𝑦. 

• We calculate partial effects based on two results already derived:

- For positive 𝑦’s –i.e., 𝑦 > 0:

E[𝑦|𝑦>0, 𝒙′𝜷] = 𝒙′𝜷 + σ 𝜆ሺ𝒙
ᇱ𝜷ሻ

- For all 𝑦’s –i.e., 𝑦 ≥ 0:

E[𝑦|𝒙′𝜷] = P(𝑦
∗>0|𝒙) * E(𝑦

∗|𝑦>0, 𝒙) = 𝐹 [𝒙′𝜷 + σ 𝜆ሺ𝒙′𝜷ሻ]

• The partial effects are given by

(1) measures the effect of an 𝑥 change on 𝑦 for working women.
39
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(2) measures the overall effect of an 𝑥 change on hours worked.

• Both partial effects depend on 𝒙. Thus, they vary by person. 

• We are interested in the overall effect rather than the effect for a 
specific person in the data.  Two ways to do this computation: 

- At the sample average: Plug the mean of 𝒙 in the above formula. 

- Average of partial effects: Compute the partial effect for each 
individual in the data. Then, compute the average. 40

Partial Effects (marginal effects)
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     partial         753    34.27517           0   34.27517   34.27517
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

.   su partial

.   gen partial=_b[educ]*(1-lambda*(avxbsig+lambda))

.   gen lambda=normalden(avxbsig)/normal(avxbsig)

.   gen avxbsig=avxbeta/_b[/sigma]

.   egen avxbeta=mean(xbeta)

.   predict xbeta, xb

. *****************************

. *manually                   *

. *on hours for working women *

. *at average of educ         *

. *Compute the Partial effect *

. *****************************

                         0 right-censored observations
                       428     uncensored observations
  Obs. summary:        325  left-censored observations at hours<=0
                                                                              
      /sigma     1122.022   41.57903                      1040.396    1203.647
                                                                              
       _cons     965.3053   446.4358     2.16   0.031     88.88528    1841.725
     kidsge6      -16.218   38.64136    -0.42   0.675    -92.07675    59.64075
     kidslt6    -894.0217   111.8779    -7.99   0.000    -1113.655   -674.3887
         age    -54.40501   7.418496    -7.33   0.000    -68.96862    -39.8414
     expersq    -1.864158   .5376615    -3.47   0.001    -2.919667   -.8086479
       exper     131.5643   17.27938     7.61   0.000     97.64231    165.4863
        educ     80.64561   21.58322     3.74   0.000     38.27453    123.0167
    nwifeinc    -8.814243   4.459096    -1.98   0.048    -17.56811   -.0603724
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

Log likelihood = -3819.0946                       Pseudo R2       =     0.0343
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(7)      =     271.59
Tobit regression                                  Number of obs   =        753

. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

Partial effect at average 
for working women: 
Computing manually.

Partial Effects – Application I (y>0)
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                         0 right-censored observations
                       428     uncensored observations
  Obs. summary:        325  left-censored observations at hours<=0
                                                                              
      /sigma     1122.022   41.57903                      1040.396    1203.647
                                                                              
       _cons     965.3053   446.4358     2.16   0.031     88.88528    1841.725
     kidsge6      -16.218   38.64136    -0.42   0.675    -92.07675    59.64075
     kidslt6    -894.0217   111.8779    -7.99   0.000    -1113.655   -674.3887
         age    -54.40501   7.418496    -7.33   0.000    -68.96862    -39.8414
     expersq    -1.864158   .5376615    -3.47   0.001    -2.919667   -.8086479
       exper     131.5643   17.27938     7.61   0.000     97.64231    165.4863
        educ     80.64561   21.58322     3.74   0.000     38.27453    123.0167
    nwifeinc    -8.814243   4.459096    -1.98   0.048    -17.56811   -.0603724
                                                                              
       hours        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

Log likelihood = -3819.0946                       Pseudo R2       =     0.0343
                                                  Prob > chi2     =     0.0000
                                                  LR chi2(7)      =     271.59
Tobit regression                                  Number of obs   =        753

. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

                                                                              
    educ     34.27517     9.11708    3.76   0.000    16.406  52.1443   12.2869
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  1012.0327
      y  = E(hours|hours>0) (predict, e(0,.))
Marginal effects after tobit

.   mfx, predict(e(0,.)) varlist(educ)

. ***********************************

. * for working women automatically *

. * at average of educ on hours     *

. * Compute the partial effect      *

. ***********************************

Partial effect at 
average for working 
women: Compute 
automatically.

Partial Effects – Application I (y>0)
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 partial_all         753    48.73409           0   48.73409   48.73409
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

. su partial_all

. gen partial_all=_b[educ]*normal(avxbsig)

. 

. *****************************************

. *manually                               *

. *of education for the entire observation*

. *Compute the Partial effect at average  *

. *****************************************

. 

                                                                              
    educ     48.73409      12.963    3.76   0.000   23.3263  74.1419   12.2869
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  611.57078
      y  = E(hours*|hours>0) (predict, ystar(0,.))
Marginal effects after tobit

. mfx, predict(ystar(0,.)) varlist(educ)

. 

. *****************************************

. *automatically                          *

. *of education for the entire observation*

. *Compute the Partial effect at average  *

. *****************************************

Partial effect at average for all 
observations: Compute 
manually.

Partial effect at average 
for all observations: 
Compute automatically

Partial Effects – Application I (all y)

• Now, we can compare the marginal effect of  education on actual 
hours worked. 

• We compare OLS (whole sample) and Tobit estimates, on the basis 
of  the marginal effect of  education actual 𝑦, for an average individual:

OLS TOBIT

' 
  
 

k

x 


80.65   0.604

28.76 48.73

Partial Effects – Application I (all y)

Interpretation: On average, an additional year of  education increases 
the labor supply by 48.7 hours (for an average individual).

 OLS underestimates
the effect of  education 
on the labor supply (in 
the average of  the 
explanatory variables).

𝛽መ,ைௌ
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• In a regression model, we scale the observations by their standard 
deviation (𝑥/σ) transforming the model back to CLM framework

• In the Tobit model, we naturally work with the likelihood. The Log L 
for the homoscedastic Tobit model is:

• Introducing heteroscedasticity in the Log L:

Tobit Model: Heteroscedasticity
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• Now, we went from 𝑘+1 parameters to 𝑘+N parameters. Impossible 
to estimate with N observations. 

• Usual solution: Model heteroscedasticity, dependent on a few 
parameters: σଶ = σ(α). 

Example: Exponential:  σଶ = exp(zi’α). Then,

• The marginal effects get more complicated under the heteroscedastic 
Tobit model: an exogenous variable, say income, could impact both 
numerator and denominator of  the standardization ratio, Xiβ/σ

Tobit Model: Heteroscedasticity
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• Partial effects get more complicated under the heteroscedastic Tobit 
model: an exogenous variable, say income, could impact both 
numerator, 𝒙′𝛽, and denominator σ . Ambiguous signs are possible.

• Suppose we have 𝒘𝒋 affecting  both 𝒙 and 𝒛. Then,

Heteroscedasticity – Partial Effects
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Elasticity

Homo. Hetero.

Value S.E. Value S.E

Φ(z) 0.259 0.008 0.210 0.011

E(y|y>0) 0.284 0.009 0.395 0.010

E(y) 0.544 0.017 0.606 0.020

• Canadian FAFH expenditures: 9,767 HH’s, 21.2% with $0 
expenditures. 

• Dependent variable is bi-weekly FAFH expenditures
Exogenous Variables:  HHInc, Kids Present?, FullTime? Provincial 
Dummy Variables.

• σଶ = exp(γ0 + γ1 Incomei + γ2 Fulltimei + γ3 Quebeci)

Heteroscedasticity – Partial Effects - Application
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• Different ways of  thinking about how the latent variable and the 
observed variable interact produce different Tobit Models.

• The Type I Tobit Model presents a simple relation:
- 𝑦 = 0 if  𝑦

∗= 𝒙′𝛽 + 𝜀 ≤ 0
= 𝑦

∗= 𝒙′𝜷 + 𝜀 if  𝑦
∗= 𝒙′𝛽 + 𝜀 > 0

The effect of  the 𝒙’s on the probability that an observation is censored 
and the effect on the conditional mean of  the non-censored 
observations are the same: 𝜷 .

• The Type II Tobit Model presents a more complex relation:
- 𝑦 = 0 if  𝑦

∗ = 𝒙′α + 𝜀ଵ, ≤ 0, 𝜀ଵ, ~N(0, 1)
= 𝒙′𝜷 + 𝜀ଶ, if  𝑦

∗ = 𝒙′α + 𝜀ଶ, > 0, 𝜀ଶ, ~N(0, σଶଶ)
Now, we have different effects of  the 𝒙’s.

Tobit Model – Type II
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• The Type II Tobit Model:
- 𝑦 = 0 if  𝑦

∗ = 𝒙′α + 𝜀ଵ, ≤ 0, 𝜀ଵ, ~N(0, 1)
= 𝒙′𝜷 + 𝜀ଶ, if  𝑦

∗ = 𝒙′α + 𝜀ଶ, > 0, 𝜀ଶ, ~N(0, σଶଶ)

- A more flexible model. X can have an effect on the decision to 
participate (Probit part) and a different effect on the amount decision 
(truncated regression). 

- Type I is a special case: 𝜀ଶ, = 𝜀ଵ, and α = 𝜷.

Example:  Age affects the decision to donate to charity. But it can 
have a different effect on the amount donated. We may find that age 
has a positive effect on the decision to donate, but given a positive 
donation, younger individuals donate more than older individuals.

Tobit Model – Type II
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• The Tobit Model assumes a bivariate normal distribution for (1,i;2,i); 
with covariance given by 𝜎ଵଶ(= 𝜌 𝜎ଵ𝜎ଶ.).

- Conditional expectation:

E[𝑦|𝑦 > 0, 𝒙] = 𝒙′𝜷 + 𝜎ଵଶ λ(𝒙′α) 

- Unconditional Expectation

E[𝑦|𝒙] = Prob(𝑦>0|𝒙) * E[𝑦|𝑦>0, 𝒙] + Prob(𝑦>0|𝒙) * 0 

= Prob(𝑦 > 0|𝒙) * E[𝑦|𝑦 > 0, 𝒙] 
= Φ(𝒙′α) * [𝒙′𝜷 + 𝜎ଵଶ λ(𝒙′α)] 

Note: This model is known as the Heckman selection model, or the 
Type II Tobit model (Amemiya), or the probit selection model 
(Wooldridge).

Tobit Model – Type II


