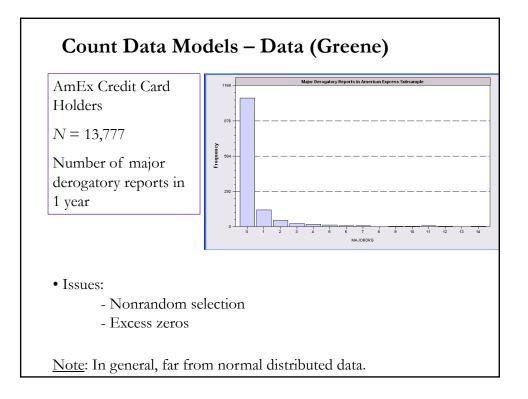
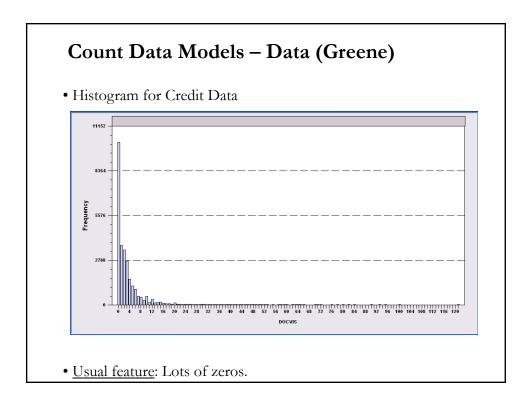
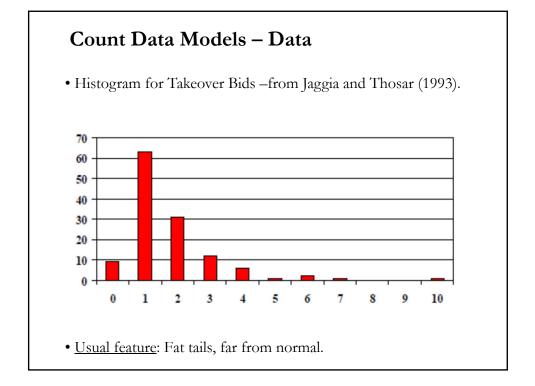


Count Data Models

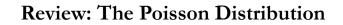

• Counts are non-negative integers. They represent the number of occurrences of an event within a fixed period.


Examples:


- Number of "jumps" (higher than $2^*\sigma$) in stock returns per day.
- Number of trades in a time interval.
- Number of a given disaster –i.e., default- per month.
- Number of crimes on campus per semester.

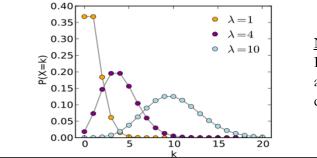
Note: We have *rare events*, in general, far from normal distributed.

- The Poisson distribution is often used for these type of data.
- <u>Goal</u>: Model count data as a function of covariates, *X*.



Review: The Poisson Distribution

- Suppose events are occurring randomly and uniformly in time.
- The events occur with a known average.
- Let *X* be the number of events occurring (arrivals) in a fixed period of time (time-interval of given length).
- Typical example: *X* = number of crime cases coming before a criminal court per year (original Poisson's application in 1838.)
- Then, *X* will have a **Poisson distribution** with parameter λ .


$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $x = 0, 1, 2, 3, ...$

- The *intensity parameter*, λ, represents the expected number of occurrences in a fixed period of time –i.e., λ = E[X].
- It is also the variance of the count: $\lambda = \operatorname{Var}[X] \implies \lambda > 0$.
- Additive property holds.

Example: On average, a trade occurs every 15 seconds. Suppose trades are independent. We are interested in the probability of observing 10 trades in a minute (X = 10). A Poisson distribution can be used with $\lambda = 4$ (4 trades per minute).

• Poisson probability function

<u>Note</u>: As λ increases, the Poisson distribution approximates a normal distribution.

Review: The Poisson Distribution

• We can come up with the Poisson model by thinking of events counts as counts of rare events.

• Specifically, a Poisson RV approximates a binomial RV when the binomial parameter N (number of trials) is large and p (probability of a success) is small.

• The Law of Rare Events.

Count Data Models & Duration Models

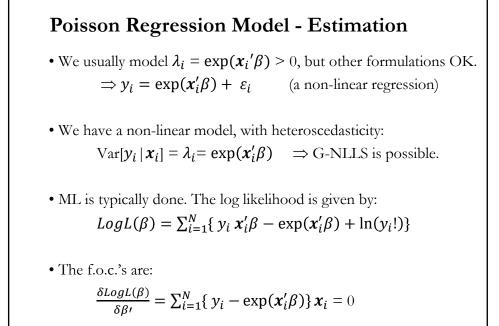
• From the Math Review: There is a relation between counts and durations (or waiting time between events).

• If for every t > 0 the number of arrivals in the time interval [0,t] follows the Poisson distribution with mean $\lambda * t$, then the sequence of inter-arrival times are *i.i.d.* exponential RVs having mean $1/\lambda$.

• We can also model duration data as a function of covariates, *X*. Many times which approach to use depends on the data available.

Poisson Regression Model

• <u>Goal</u>: Model count data as a function of covariates, *X*. The benchmark model is the Poisson model.


Q: Why do we need special models? What is wrong with OLS? Like in probit and logit models, the dependent variable has restricted support. OLS regression can/will predict values that are negative and will also predict non-integer values. Nonsense results.

• Given the Poisson distribution, we model the mean -i.e., λ - as a function of covariates. This creates the Poisson regression model:

$$P(y_i = j | \mathbf{x}_i]) = \frac{\lambda_i^{j} e^{-\lambda_i}}{j!} \qquad j = 0, 1, 2, 3, \dots$$

 $\lambda_i = \operatorname{E}[y_i | \boldsymbol{x}_i] = \operatorname{Var}[y_i | \boldsymbol{x}_i] = \exp(\boldsymbol{x}_i'\beta) \implies \text{make sure } \lambda_i > 0.$

<u>**Remark</u>: As \lambda_i increases, the variance increases \Rightarrow OLS inefficient!</u>**

Poisson Regression Model – Estimation

• The s.o.c.'s are:

$$\frac{\delta^{2} LogL(\beta)}{\delta\beta\delta\beta'} = \sum_{i=1}^{N} \{-\exp(\mathbf{x}_{i}'\beta)\} \mathbf{x}_{i} \mathbf{x}_{i}'$$

The *LogL* is globally concave \Rightarrow a unique maximum. Likely, fast convergence.

• The usual ML theory yields β_{MLE} asymptotically normal with mean β and variance given by the inverse of the information matrix:

$$\operatorname{Var}[\beta_{MLE} | \mathbf{x}_i] = (\sum_{i=1}^{N} \{-\exp(\mathbf{x}_i'\beta)\} \mathbf{x}_i \mathbf{x}_i')^{-1}$$

<u>Note</u>: For consistency of the MLE, we only require that conditional mean of y_i is correctly specified; -i.e., it need not be Poisson distributed. But, the ML standard errors will be incorrect.

Poisson Regression Model – Partial Effects

• As usual, to interpret the coefficients, we calculate partial effects (delta method or bootstrapping for standard errors):

$$\frac{\delta\{\lambda_i = \mathrm{E}[y_i \mid x_i]\}}{\delta x_{i,k}} = \lambda_i \,\beta_k$$

• We estimate the partial effects at the mean of the **X** or at average.

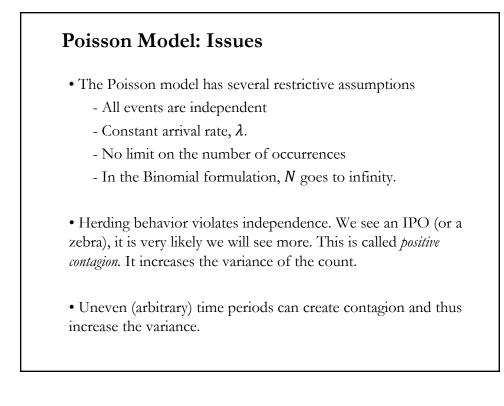
• While the parameters do not indicate the marginal impact, their relative sizes indicate the relative strength of each variable's effect:

$$\frac{\frac{\delta\{\lambda_i = \mathrm{E}[y_i \mid \boldsymbol{x}_i]\}}{\delta \boldsymbol{x}_{i,k}}}{\frac{\delta\{\lambda_i = \mathrm{E}[y_i \mid \boldsymbol{x}_i]\}}{\delta \boldsymbol{x}_{i,l}}} = \lambda_i \beta_k / (\lambda_i \beta_l) = \beta_k / \beta_l$$

Poisson Regression Model - Evaluation

- LR test to compare restricted and unrestricted models
- AIC, BIC
- McFadden pseudo- $R^2 = 1 LogL(\beta)/LogL(0)$
- Predicted probabilities
- G² (Sum of model deviances):

$$G^2 = 2\sum_{i=1}^{N} y_i \ln(\frac{y_i}{\bar{\lambda}})$$


- \Rightarrow equal to zero for a model with perfect fit.
- One implication of the Poisson assumption:

 $Var[y_i | \mathbf{x}_i] = E[y_i | \mathbf{x}_i] \qquad (equi-dispersion)$ $\Rightarrow check this assumption, if it does not hold, Poisson model is inappropriate.$

Poisson Re	-	DOGUTO			
Dependent		DOCVIS -103727.29625			
-		-103727.29023 od -108662.13583			
	-	9869.67916			
Significan		.00000			
McFadden P	seudo R-square	d .0454145			
Estimation	based on $N =$	27326, К = 7			
Informatio	on Criteria: No	ormalization=1/N			
	Normalized				
AIC		207468.59251			
-		73 RsqP= .0818			
<u> </u>		.69 RsqD= .0601 mu(i) : 20.974	1		
•	-	mu(i)^2: 20.943			
•	0 6 6 : - : +	Standard Error	b/St.Er.	P[Z >z]	Mean of X
Variable	Coefficient				
+-			27.463	.0000	
+-	.77267*** .01763***	.02814 .00035			43.5257
+- Constant	.77267*** .01763*** 02981***	.02814 .00035 .00175	27.463 50.894 -17.075	.0000	11.3206
Constant AGE EDUC FEMALE	.77267*** .01763*** 02981*** .29287***	.02814 .00035 .00175 .00702	27.463 50.894 -17.075 41.731	.0000 .0000 .0000	11.3206 .47877
EDUC FEMALE MARRIED	.77267*** .01763*** 02981*** .29287*** .00964	.02814 .00035 .00175 .00702 .00874	27.463 50.894 -17.075 41.731 1.103	.0000 .0000 .0000 .2702	11.3206 .47877 .75862
Constant AGE EDUC FEMALE	.77267*** .01763*** 02981*** .29287*** .00964	.02814 .00035 .00175 .00702 .00874	27.463 50.894 -17.075 41.731	.0000 .0000 .0000 .2702 .0000	11.3206 .47877

111011			Ces			
		riance Matri	ccs			
ariable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X	
+ I	Standard - Neg	ative <u>Inverse</u> o	f Second De	rivatives		
Constant	.77267***	.02814	27.463	.0000		
AGE	.01763***	.00035	50.894	.0000	43.5257	
EDUC	02981***	.00175	-17.075	.0000	11.3206	
FEMALE	.29287***	.00702	41.731	.0000	.47877	
MARRIED	.00964	.00874	1.103	.2702	.75862	
HHNINC	52229***	.02259	-23.121	.0000	.35208	
HHKIDS	16032***	.00840	-19.081	.0000	. 40273	
+ I	Robust - Sandw	rich				
onstant	.77267***	.08529	9.059	.0000		
AGE	.01763***	.00105	16.773	.0000	43.5257	
EDUC	02981***	.00487	-6.123	.0000	11.3206	
FEMALE	.29287***	.02250	13.015	.0000	.47877	
MARRIED	.00964	.02906	.332	.7401	.75862	
HHNINC	52229***	.06674	-7.825	.0000	.35208	
HHKIDS	16032***	.02657	-6.034	.0000	.40273	
+1 I	Cluster Correc	tion				
onstant	.77267***	.11628	6.645	.0000		
AGE	.01763***	.00142	12.440	.0000	43.5257	
EDUC	02981***	.00685	-4.355	.0000	11.3206	
FEMALE	.29287***	.03213	9.116	.0000	.47877	
MARRIED	.00964	.03851	.250	.8023	.75862	
HHNINC	52229***	.08295	-6.297	.0000	.35208	
HHKIDS	16032***	03455	-4.640	.0000	.40273	

• Partial I	Effects:	$\frac{\delta\{\lambda_i = \mathbb{E}[y_i \mid x_i]}{\delta x_{i,k}}$	$\frac{]}{]} = \lambda_i \beta$	k	
		expected val. wit			
-	o the vector of re averaged ove	characteristics			
	-	ans are All Obs.			
Condition	al Mean at Samp	le Point 3.183	35		
Scale Fact	tor for Margina	al Effects 3.183	35		
Scale Fact	tor for Margina	al Effects 3.183	35	P[Z >z]	Mean of X
Scale Fact + Variable +	tor for Margina Coefficient	al Effects 3.183	b/St.Er.		Mean of X 43.5257
Scale Fact + Variable + AGE	tor for Margina Coefficient .05613***	al Effects 3.183 Standard Error	b/st.Er. 42.991	.0000	43.5257
Scale Fact + Variable + AGE EDUC	tor for Margina 	Ll Effects 3.183 Standard Error .00131	b/St.Er. 42.991 -15.923	. 0000	43.5257 11.3206
Scale Fact + Variable + AGE EDUC FEMALE	tor for Margina 	1 Effects 3.183 Standard Error .00131 .00596	b/St.Er. 42.991 -15.923 36.491	.0000 .0000 .0000	43.5257 11.3206 .47877
Scale Fact + Variable + AGE EDUC FEMALE MARRIED	tor for Margina Coefficient .05613*** 09490*** .93237*** .03069	L Effects 3.183 Standard Error .00131 .00596 .02555	b/St.Er. 42.991 -15.923 36.491 1.042	.0000 .0000 .0000 .2973	43.5257 11.3206 .47877 .75862

Poisson Model: Issues

• Heterogeneity can violate the constant arrival rate assumption. For example, a CEO is more likely to reject a hostile bid early in her tenure (the Board that elected the CEO will be more supportive) than later. Unobserved heterogeneity increases the count's variance.

• In many cases, there is an upper limit to the number of possible events, M_i . A CEO can only reject a hostile bid, if there is a hostile bid. Thus, the maximum number of hostile bid rejections is 10 if there are 10 hostile bids.

• This maximum number is called an observation's *exposure*. It can be incorporated as

 $\mathbb{E}[y_i | \boldsymbol{x}_i] = \lambda_i = \exp(\boldsymbol{x}_i'\beta) * M_i = \exp(\boldsymbol{x}_i'\beta + \ln(M_i))$

Poisson Model: Overdispersion

• One implication of the Poisson model is equi-dispersion. That is, the mean and variance are equal: $Var[y_i | x_i] = E[y_i | x_i]$

• But, the first three cases (herding, uneven periods, heterogeneity) tend to cause *overdisperion*. That is,

 $\operatorname{Var}[y_i | \boldsymbol{x}_i] > \operatorname{E}[y_i | \boldsymbol{x}_i]$

• It is not rare to see overdispersion ('extra' heterogeneity) in the data:

- A few traders will do many trades, many traders will do a few.

- A few assets will have many jumps, many assets will have few.

• Under overdispersion: Standard errors and p-values are too small.

Poisson Model: Overdispersion - Testing • Check for overdisperion: • Check overdispersion rate: $Var[y_i|x_i]/E[y_i|x_i]$ (in general, relative to df.) Cameron and Trivedi's (CT) rule of thumb for overdispersion: If $Var[y_i|x_i]/E[y_i|x_i] > 2 \Rightarrow$ overdispersion. • CT (1990) test. A test based on the assumption that under the Poisson model $\{(y_i - E[\hat{y}_i])^2 - E[y_i]\}$ has zero mean: H_0 (Poisson Model correct): $Var[y_i|x_i] = E[y_i|x_i]$ H_A : $Var[y_i|x_i] = E[y_i|x_i] + \alpha g(E[y_i|x_i])$ Simple linear regression: $\{(y_i - E[\hat{y}_i])^2 - y_i\}/\{E[\hat{y}_i] \operatorname{sqrt}(2)\}$ against some $g(E[y_i|x_i])$, usually a linear or quadratic function of the mean.

Poisson Model: Dealing with Overdispersion

• When overdispersion occurs, we modify the model:

- Keep Poisson model, but add ad-hoc models for the variance. For example,

$$\operatorname{Var}[y_i] = \phi \ \lambda_i,$$

where

$$\hat{\phi} = \frac{1}{N-k} \sum_{i=1}^{N} \frac{(y_i - \hat{\lambda}_i)^2}{\hat{\lambda}_i}$$
(NB-1 Model)

Then, use ML estimation. If the mean and variance are correctly specified, β_{MLE} will have the usual good properties.

- Specify an alternative distribution that can generate overdispersion.

Poisson Model: Dealing with Overdispersion

• Specify an alternative distribution that can generate overdispersion. Usual alternative distributions:

(1) Assume the overdispersion is gamma distributed across means—resulting in a negative binomial model (or Poisson-gamma model)

(2) Assume the overdispersion is normally distributed (Poissonnormal model).

Poisson Model: Summary of Issues

Overdispersion

- Usually attributed to omitted and/or unobserved heterogeneity
- Can use Poisson ML estimates with corrected standard errors
- Alternatively, can use models without equi-dispersion
 - Negative Binomial
 - Mixed Poisson

• Truncation (especially, zero-truncation) –number of mergers and acquisitions. We only sample from M&A's. A Poisson model would falsely allow $Prob[y_i = 0] > 0$.

• Excess zeros –data generated by two process: one for the "true zeros," and one for the "excess zeros."

• Correlated counts –i.e., *i.i.d.* assumption does not hold. Big count today is likely to be followed by a big count tomorrow.

Poisson Model: Omitted Heterogeneity

• An elegant solution to overdispersion, is the omitted (latent) heterogeneity. We model heterogeneity, by introducing a random effect on the expected mean:

 $\lambda_i^* = exp(\mathbf{x}_i \ '\beta + u_i) = \lambda_i \ h_i,$

where $h_i = exp(u_i)$ follows a one parameter gamma distribution $\Gamma(\theta, \theta)$, with $E[h_i] = 1$ (same y_i expected value as in the Poisson model) and $Var[h_i] = 1/\theta = \alpha$. (We call α the dispersion parameter).

If we assume that $\operatorname{Prob}[y_i = j | x, u] \sim \operatorname{Poisson}$, then, after integrating out f(u), $\operatorname{Prob}[y_i = j | x] \sim \operatorname{Negative Binomial}(\operatorname{NegBin}, \operatorname{NB})$.

<u>Note</u>: The one parameter gamma assumption, with a mean equal to 1, is similar to assuming in the CLM the error term has mean equal to 0. It produces the same mean for the process (= λ_i).

Poisson Model: Omitted Heterogeneity

• Details:

Let y_i , conditioned on x, u, follow a Poisson distribution:

 $\operatorname{Prob}[y_i = j \mid x, u] = \frac{\lambda_i^{j} e^{-\lambda_i}}{j!} = \frac{exp(x_i'\beta + u_i)^{j} e^{-exp(x_i'\beta + u_i)}}{j!}$ Then,

 $Prob[y_i = j \mid x] = \int_{-\infty}^{\infty} Prob[y_i = j \mid x, u] f(u) du$

We need f(u) to integrate:

$$f(\exp(u)) = \frac{\alpha^{\alpha} e^{-\alpha u} u^{\alpha-1}}{\Gamma(\alpha)} \qquad (\alpha > 0)$$

Under this assumptions, $\operatorname{Prob}[y_i = j \mid x]$ follows an NegBin.

<u>Note</u>: when $\alpha = 0$, we are back to the Poisson model.

Negative Binomial Model

• The Negative Binomial (NegBin) Model can accommodate overdispersion. The model has an additional parameter ($\alpha = 1/\theta$):

 $\frac{\operatorname{Var}[y_i|x_i]}{\operatorname{E}[y_i|x_i]} = \{1 + \alpha \operatorname{E}[y_i|x_i]\} \quad (\alpha = 0 \Longrightarrow \operatorname{Poisson model, again})$

• There are alternative parameterizations of the negative binomial, with different variance functions. The one above is called the Negbin-2 (NB-2) model by Cameron and Trivedi (1986).

• Different models can be generated by specifying different distributions for u_i . For example, u_i follows an inverse Gaussian distribution -Dean et al. (1989). This Poisson-Inverse Gaussian model has heavier tail than the NegBin model.

NegBin Model – NB-P

• Without the heterogeneity argument, we could have introduced directly the NegBin distribution as $Prob(y_i = j | x_i)$ is the NegBin pdf.

• Along this line of thinking, Cameron and Trivedi (1998) make a generalization, the NB-P model, where $\theta = \theta_i \lambda_i^{2-P}$

• Then, we have the Negbin P (NB-P) model:

$$P(y_i = j | \mathbf{x}_i) = \frac{\Gamma(\theta_i \,\lambda_i^{2-P} + y_i)}{\Gamma(y_i + 1)\Gamma(\theta_i \,\lambda_i^{2-P})} r_i^{y_i} (1 - r_i)^{\theta_i \,\lambda_i^{2-P}} \qquad j = 0, 1, 2, \dots$$

• NB-2 is a special case, P=2. The conditional mean is still λ_i and the conditional variance is:

$$\operatorname{Var}[y_i|\boldsymbol{x}_i] = \lambda_i \left[1 + (1/\theta_i) \lambda_i^{2-P}\right] \qquad \lambda_i^{2-P}$$

where θ_i can be modeled as a function of some driving variables, \mathbf{z}_i .

NegBin Model – NB-P

• By letting $\theta_i = f(\mathbf{z}_i)$, we generalize the NegBin model. For example, $\theta_i = \exp(\mathbf{z}_i' \gamma) \implies$ we are modeling the variance.

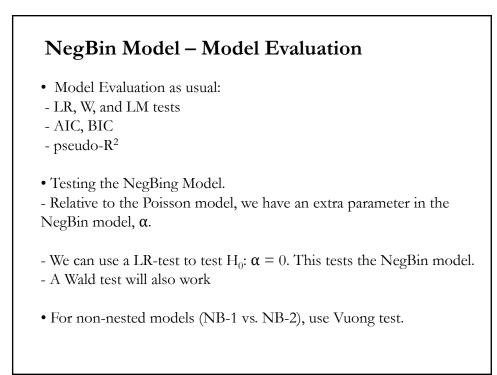
• These models are called Generalized Negative Binomial Model.

• The NB-1 and NB-2 models are non-nested. Vuong (1989) test is a possibility:

$$\mathbf{V} = [\operatorname{sqrt}(N) \operatorname{mean}(m_i)] / s_m \xrightarrow{a} \mathcal{N}(0, 1)$$

where $m_i = LogL(\{\beta, \theta\}_{NB-2}) - LogL(\{\beta, \theta\}_{NB-1})$

• Large values favor the NB-2 model. In applications, Greene (2007) finds that this statistic is rarely outside the inconclusive region (-1.96 to +1.96).


NegBin Model – Estimation

- Estimation: Maximum Likelihood
- For the NB-2, we have

$$LogL(\{\beta,\theta\}) = \sum_{i=1}^{N} \ln\left(\frac{\Gamma(\theta + y_i)}{\Gamma(y_i + 1)\Gamma(\theta)}\right) + y_i \ln(r_i) + \theta \ln(1 - r_i)$$

where $r_i = \frac{\lambda_i}{\lambda_i + \theta}$

The f.o.c.'s are straightforward and the resulting variance-covariance matrix is block diagonal.

<u>Note</u>: Poisson is consistent when NegBin is appropriate. Therefore, this is a case for the Robust covariance matrix estimator. (Neglected heterogeneity that is uncorrelated with x_i .)

Negati	ive Binon	nial Mode	l – Exa	ample	(Greene
U				-	``
Negative	 Binomial Regres	sion			
-	variable	DOCVIS			
-		-60134.50735	NegBin I	LogL	
-		d -103727.29625	-	-	
Chi squar	ed [1 d.f.]	87185.57782	Reject Po	oisson mod	lel
Significa	nce level	.00000	-		
McFadden	Pseudo R-square	ed .4202634			
Estimatio	n based on $N =$	27326, K = 8			
Informatio	on Criteria: No	ormalization=1/N			
		d Unnormalized			
AIC		5 120285.01469			
-	rm 2; Psi(i) =				
•		Standard Error	b/St.Er.	P[Z >z]	Mean of X
+ Constant	.80825***	.05955		.0000	
AGE	.01806***	.00079	22.780	.0000	43.5257
EDUC	03717***	.00386	-9.622	.0000	11.3206
FEMALE	.32596***	.01586	20.556	.0000	.47877
MARRIED	00605	.01880	322	.7477	.75862
HHNINC	46768***	.04663	-10.029	.0000	.35208
	15274***	.01729	-8.832	.0000	. 40273
HHKIDS	152/4^^^	.01/25			
		ameter for count	data model	•	

legau	ve Binon	nial Mode	l – Exa	mple	(Greene
0				T	`
Partial 1	Effects Shou	ld Be the Sam	e		
		1 Effects 3.183	S POISSC	N 	
ariable	Coefficient	Standard Error			Mean of X
	.05613***		42.991		43.5257
EDUC	09490***	.00596	-15.923	.0000	11.3206
FEMALE	. 93237***	.02555	36.491	.0000	.47877
MARRIED	.03069	.02945	1.042	.2973	.75862
HHNINC	-1.66271***	.07803	-21.308	.0000	.35208
•		.02879			.40273
cale Fact	or for Margina	l Effects 3.192			 L
•	.05767***		18.202	.0000	43.5257
EDUC	11867***	.01348	-8.804	.0000	11.3206
FEMALE	1.04058***	.06212	16.751	.0000	.47877
MARRIED	01931	.06382	302	.7623	.75862
HHNINC	-1.49301***	.16272	-9.176	.0000	.35208
HHKTDGI	48759***	.06022	-8.097	.0000	.40273

Formulations: NegBin-1 Model (Greene Negative Binomial Regression Dependent variable DOCVIS Log likelihood function -60025.78734 Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)] 	e)
Negative Binomial Regression Dependent variable DOCVIS Log likelihood function -60025.78734 Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)]	
Dependent variable DOCVIS Log likelihood function -60025.78734 Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)]	
Dependent variable DOCVIS Log likelihood function -60025.78734 Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)]	
Dependent variable DOCVIS Log likelihood function -60025.78734 Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)]	
Dependent variable DOCVIS Log likelihood function -60025.78734 Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)]	
Log likelihood function -60025.78734 Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)]	
Restricted log likelihood -103727.29625 NegBin form 1; Psi(i) = theta*exp[bx(i)] 	
NegBin form 1; Psi(i) = theta*exp[bx(i)]	
+	
	an of X
Constant .62584*** .05816 10.761 .0000	
AGE .01428*** .00073 19.462 .0000	43.5257
EDUC 01549*** .00359 -4.314 .0000	11.3206
FEMALE .33028*** .01479 22.328 .0000	.47877
MARRIED .04324** .01852 2.335 .0196	.75862
HHNINC 24543*** .04540 -5.406 .0000	.35208
HHKIDS 14877*** .01745 -8.526 .0000	.40273
	. 402/5
Dispersion parameter for count data model	.40275
Dispersion parameter for count data model Alpha 6.09246*** .06694 91.018 .0000	.40275

Negative Bi	nomial (P) Mo	del				
Dependent v		DOCVIS				
Log likelih	ood function	-59992.32903				
Restricted	log likelihoo	d -103727.29625				
Chi squared	[1 d.f.]	87469.93445				
+		 1		NB-2	NB-1	Poisso
-]				
•	.60840***					0176
AGE	.01710***			. 01806***		
EDUC				03717***		
FEMALE	.36386***			. 32596***		
MARRIED	.03670*	.02030		00605		5222
HHNINC	35093***				24543***	1603
HHKIDS	16902***				14877 ***	. 2000
	spersion para	meter for count	data		Dispersion 6.09246***	
model				T. 03013444	6.09246***	
Alpha		.14581				
	gative Binomi	al. General form	ı, NegBin			
Ne	· • • • • • • • • • • • • • • • • • • •					
Ne P	· · · · · · · · · · · · · · · · · · ·					

artial	Effects fo	r Differen	t Mod	els (C	Greene)
Scale Fact	or for Marginal	Effects 3.1835	DOTSON		
	-	Standard Error			Mean of X
+- AGE	.05613***	.00131	42.991	.0000	43.5257
EDUC	09490***	.00596	-15.923	.0000	11.3206
FEMALE	.93237***	.02555	36.491	.0000	.47877
MARRIED	.03069	.02945	1.042	.2973	.75862
HHNINC	-1.66271***	.07803	-21.308	.0000	.35208
HHKIDS	51037***	.02879	-17.730	.0000	. 40273
+-	· · · · · · · · · · · · · · · · · · ·				
	-	Effects 3.1924			
AGE	.05767***	.00317	18.202		
•	11867***			.0000	
	1.04058***			.0000	
•	01931		302		
	-1.49301*** 48759***		-9.176	.0000	. 35208 . 40273
+-	40/59***	. 06022	-8.097		. 40273
Scale Fact	or for Marginal	Effects 3.0077	NEGATIVE	BINOMIA	L - P
AGE	.05143***	.00246	20.934	.0000	43.5257
EDUC	06957***	.01241	-5.605	.0000	11.3206
FEMALE	1.09436***	.04968	22.027	.0000	.47877
MARRIED	.11038*	.06109	1.807	.0708	.75862
HHNINC	-1.05547***	.15411	-6.849	.0000	.35208
HHKIDSI	50835***	.05753	-8.836	.0000	.40273

Issues: Truncation

• Often, because of the way we collect data, we only observe $y_i \ge 1$. For example, we study M&A. We collect data on actual M&A offers.

• Good sample to get information on the decision to go for a M&A, but we get no information on the M&A offers that do no go through.

• Our data is truncated at zero, $y_i > 0$. These models, truncated at zero, are called **Zero Truncated Models**.

• If we use a Poisson/NB model, we need to incorporate this fact. We need to use the zero-truncated Poisson/NB model. That is,

$$P[y_i = j | y_i > 0, x] = \frac{P[y_i = j \& y_i > 0 | x]}{P[y_i > 0 | x]} = \frac{P[y_i = j | x]}{1 - P[y_i > 0 | x]} \quad \forall j > 0$$

We increase each unconditional probability by factor $[1 - P[y_i > 0 | x]]$.

Issues: Truncation

• We use the zero-truncated Poisson/NB model. That is,

$$P[y_i = j | y_i > 0, x] = \frac{P[y_i = j | x]}{1 - P[y_i > 0 | x]} \qquad j = 1, 2, 3, ...$$

For the Poisson model:

$$P[y_i = j | y_i > 0, x] = \frac{exp(x_i'\beta)^j e^{-exp(x_i'\beta)}}{j! (1 - e^{-exp(x_i'\beta)}])} \qquad j = 1, 2, 3, \dots$$

• We increase each unconditional probability by the factor [1 - f(0)], thus, the probability mass of the truncated distribution adds up to 1.

- The truncated (conditional) mean count is: $E[y_i | \mathbf{x}_i] = \lambda_i / [1 - exp(-\lambda_i)] \neq \lambda_i \quad (\text{unconditional mean count})$
- ML estimation is straightforward.

Issues: Excess zeros

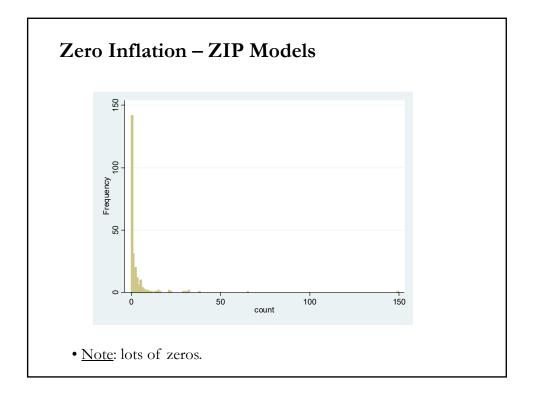
• Often the numbers of zeros in the sample cannot be accommodated properly by a Poisson or Negative Binomial model. Both models would underpredict them.

• There is said to be an **excess zeros** problem. New models are needed to deal with these type of data.

• These models, called **Two-part models**, allow for two different process: one drives whether the value is 0 or positive (**participation part**), and the other one drives the value of the strictly positive count (**amount part**).

• Proposed models:

- Zero inflated
- Hurdle models


Zero Inflation – ZIP Models

• Zero-inflated model have two kinds of zeros: "true zeros" and "excess zeros."

• Two groups of people: Always Zero & Not Always Zero **Example**: Investors (traders) who sometime just did not trade that week versus investors who never ever do.

• Two models: (1) for the count and (2) for excess zeros. The key difference is that the count model allows zeros now. It is not a truncated count model, but allows for "corner solutions."

• If we are interested in modeling trading, the zeros from investors who will never trade are not relevant. But, we only observe the zero, not the type of investor. This is the **excess zeros problem**.

Zero Inflation Poisson (ZIP) Models

We are interested in a stock trading per week model for investors. Two regimes (distributions) for the two types of investors (or zeros):
(1) Degenerate at zero (Prob[0]=1). (For investors that never trade.)
(2) Poisson (For traders, 0 is possible)

• We convert this problem into a latent variable model.

$d_i^* = \boldsymbol{w}_i' \boldsymbol{\delta} + u_i,$	$u_i \sim N(0, \sigma^2)$
$d_i = I[d_i *>0],$	<i>i</i> trades if $d_i^* > 0$.

- Participation part (Always Zero or Not Always Zero):

- Prob $[d_i = 0 | w_i] = \Pi(w_i \delta)$

 $\operatorname{Prob}[d_i = 1 \,|\, \boldsymbol{w}_i] = 1 - \Pi(\boldsymbol{w}_i \,' \boldsymbol{\delta})$

 \Rightarrow we can use a logit or a probit to model $\Pi(\mathbf{w}_i \mathbf{\delta})$.

Zero Inflation Poisson (ZIP) Models - **Amount part:** - $y_i^* | \mathbf{x}_i \sim f_P = \text{Poisson}$ (latent Poisson, NB also possible) $\lambda_i = \exp(\mathbf{x}_i'\beta)$ - $y_i = d_i y_i^*$ (y_i is observed, along with $\mathbf{w}_i, \mathbf{x}_i$) $P[y_i = j | \mathbf{x}_i, d_i = 1] = \frac{exp(x_i'\beta)^j e^{-exp(x_i'\beta)}}{j!(1 - e^{-exp(x_i'\beta)}])}$ - Mixing groups ($d_i = 0$ (Always Zero) & $d_i = 1$ (Not Always Zero)): - Conditional probability of 0 --i.e., $P[Y_i = 0 | \mathbf{w}_i, \mathbf{x}_i, d_i]$ - $P[y_i = 0 | \mathbf{w}_i, \mathbf{x}_i, d_i = 0] = 1$ (no trade, if no participation) - $P[y_i = j | \mathbf{w}_i, \mathbf{x}_i, d_i = 1] = P[y_i^* | \mathbf{x}_i] = f_P(y_i)$ (Poisson)

- Mixing groups (continuation)

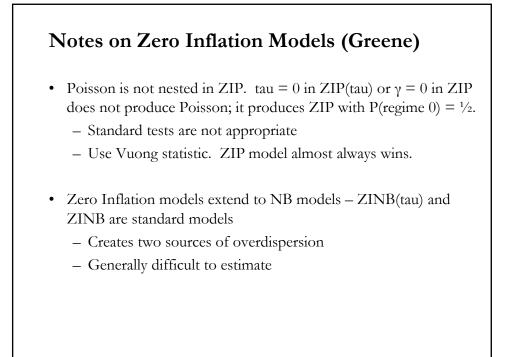
- Unconditional probabilities of 0 and j:
- P[y_i = 0 | w_i, x_i] = 1 * P[d_i = 0] + P[y_i = 0|d_i = 1] * P[d_i = 1]
= \Pi(w_i'\delta) + f_P(y_i = 0) * [1 - \Pi(w_i'\delta)]
= \Pi(w_i'\delta) + e^{-\lambda_i} * [1 - \Pi(w_i'\delta)]
- P[y_i = j | w_i, x_i] = 0 * P[d_i = 0] + P[y_i=j | d_i = 1] * P[d_i = 1]
= f_P(y_i = j) * [1 - \Pi(w_i'\delta)]
= [
$$\frac{\lambda_i^{j} e^{-\lambda_i}}{j!}$$
] * [1 - $\Pi(w_i'\delta)$]
- Expectation & Variance of counts:
- E[y_i = j | w_i, x_i] = 0 * P[d_i=0] + λ_i * P[d_i=1] = λ_i *[1 - $\Pi(w_i'\delta)$]

 $-\operatorname{Var}[y_i = j | \boldsymbol{w}_i, \boldsymbol{x}_i] = \lambda_i * [1 - \Pi(\boldsymbol{w}_i'\boldsymbol{\delta})] * [1 + \lambda_i \Pi(\boldsymbol{w}_i'\boldsymbol{\delta})]$

Zero Inflation Poisson (ZIP) Models • Overdispersion $Var[y_i = j | w_i, x_i] / E[y_i = j | w_i, x_i] = [1 + \lambda_i \Pi(w_i'\delta)]$ - The more likely the Always Zero regime, the greater the overdispersion. • Partial effects $-\frac{\delta E[y_i = j | w_i, x_i]}{\delta x_{ik}} = \lambda_i * [1 - \Pi(w_i'\delta)] * \beta_k$ $-\frac{\delta E[y_i = j | w_i, x_i]}{\delta w_{ik}} = \lambda_i * [\frac{\delta \Pi(w_i'\delta)}{\delta w_{ik}}] * \delta_k$ • Similar results are obtained for the Zero-inflation NegBin model (ZINB).

Two Forms of Zero Inflation Models

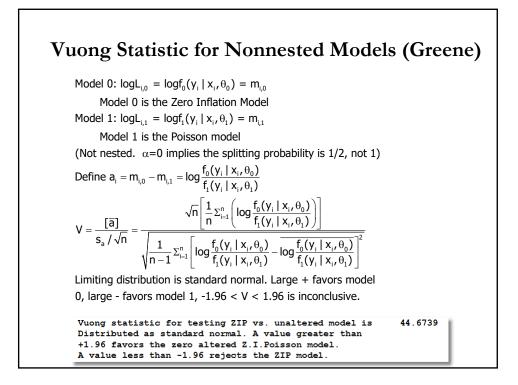
• Different ways of thinking of \boldsymbol{w}_i (determinants of Π) and \boldsymbol{x}_i (determinants of the amount *j*), generate different models. The ZIP-tau model, allows for the same determinants, but scales the β 's in the Π model.


• ZIP-tau =
$$ZIP(\tau)$$

$$P[y_i = j | \mathbf{x}_i] = \left[\frac{\lambda_i^{j} e^{-\lambda_i}}{j!}\right] \qquad \lambda_i = exp(\mathbf{x}_i'\beta)$$

$$P(0 \text{ regime}) = F(\tau \mathbf{x}_i'\beta)$$

• ZIP


$$P[y_i = j | \mathbf{x}_i] = \left[\frac{\lambda_i^{j} e^{-\lambda_i}}{j!}\right] \qquad \lambda_i = exp(\mathbf{x}_i'\beta)$$
$$P(0 \text{ regime}) = F(\mathbf{z}_i'\gamma)$$

	t) Mode	-				
		Regression Mod				
		ed for splitting				
		is F[tau x ln LA	AMBDA]			
Comparison	of estimated					
		Number of				
		Act.= 10135 Pr				
		Act.= 10135 Pr			12.30960	
	-	hood is not dire				
	with nonzero Q					
		ing ZIP vs. unal	Ltered mode	lis 4	44.5723	
Distribute	d as standard	ing ZIP vs. unal normal. A value	Ltered mode greater that	lis 4	44.5723	
Distribute +1.96 favo	ed as standard ors the zero al	ing ZIP vs. unal normal. A value tered Z.I.Poisso	ltered mode greater tha on model.	lis 4	44.5723	
Distribute +1.96 favo A value le	ed as standard ors the zero al ass than -1.96	ing ZIP vs. unal normal. A value tered Z.I.Poisso rejects the ZIP	tered mode greater that on model. model.	lis 4	44.5723	
Distribute +1.96 favo A value le + Variable	ed as standard ors the zero al ess than -1.96 Coefficient	ing ZIP vs. una normal. A value tered Z.I.Poisso rejects the ZIP Standard Error	greater that on model. model. b/St.Er. 1	l is 4 an P[Z >z]	1	
Distribute +1.96 favo A value le Variable +	ed as standard ors the zero al ess than -1.96 Coefficient	ing ZIP vs. una normal. A value tered Z.I.Poisso rejects the ZIP	greater that on model. model. b/St.Er. 1	l is 4 an P[Z >z]	1	
Distribute +1.96 favo A value le +- Variable +-	ed as standard ors the zero al sss than -1.96 Coefficient Poisson/NB/Gamm	ing ZIP vs. una normal. A value tered Z.I.Poissc rejects the ZIP Standard Error	greater that on model. model. b/St.Er. 1	l is 4 an P[Z >z]	1	
Distribute +1.96 favo A value le + Variable + E	ed as standard prs the zero al ess than -1.96 Coefficient Poisson/NB/Gamm 1.45145***	ing ZIP vs. una normal. A value tered Z.I.Poisso rejects the ZIP Standard Error a regression moo .01121	greater that on model. model. b/St.Er. 1	l is 4 an P[Z >z] .0000	1	
Distribute +1.96 favo A value le + Variable + F Constant AGE	ed as standard prs the zero al ess than -1.96 Coefficient Poisson/NB/Gamm 1.45145***	ing ZIP vs. una normal. A value tered Z.I.Poisso rejects the ZIP Standard Error a regression mod .01121 .00013	del 129.498 86.245	l is 4 an P[[Z]>z] .0000 .0000	Mean of X 43.5257	
Distribute +1.96 favo A value le + Variable + F Constant AGE	ed as standard prs the zero al ss than -1.96 	ing ZIP vs. una normal. A value tered Z.I.Poisso rejects the ZIP Standard Error a regression mod .01121 .00013 .00075	del 129.498 86.245	l is / an P[Z >z] .0000 .0000 .0000	Mean of X 43.5257	
Distribute +1.96 favc A value le 	ed as standard prs the zero al ss than -1.96 	ing ZIP vs. unal normal. A value tered Z.I.Poisso rejects the ZIP 	del definition model. model. b/St.Er. 1 del 129.498 86.245 -30.829 51.357	l is /	Mean of X 43.5257 11.3206 .47877	
Distribute +1.96 favc A value le + Variable + [F Constant AGE EDUC FEMALE MARRIED	ad as standard prs the zero al less than -1.96 	ing ZIP vs. una normal. A value tered Z.I.Poisso rejects the ZIP Standard Error .01121 .00013 .00075 .00256 .00317	tered model greater thi n model. b/st.Er. 1 129.498 86.245 -30.829 51.357 -7.151	l is / an P[[Z]>z] .0000 .0000 .0000 .0000 .0000	Mean of X 43.5257 11.3206 .47877 .75862	
Distribute +1.96 favc A value le + Variable + [F Constant AGE EDUC FEMALE MARRIED	ed as standard prs the zero al less than -1.96 Coefficient 	ing ZIP vs. una normal. A value tered Z.I.Poisso rejects the ZIP Standard Error 	tered model greater thion model. model. b/st.Er.1 129.498 86.245 -30.629 51.357 -7.151 -46.527	l is //	Mean of X 43.5257 11.3206 .47877 .75862 .35208	
Distribute +1.96 favc A value 1e + Variable 	ed as standard prs the zero al less than -1.96 Coefficient 	ing ZIP vs. unal normal. A value tered Z.I.Poisso rejects the ZIP 	tered model greater thion model. model. b/st.Er.1 129.498 86.245 -30.629 51.357 -7.151 -46.527	l is //	Mean of X 43.5257 11.3206 .47877 .75862 .35208	

P Model					
Zoro Altor	ed Poisson	Regression Mod			
		sed for splitting			
-		is F[tau x Z(i)			
	of estimated				
-		Number of	zeros	Log-lil	kelihood
Poisson	.04933	Act.= 10135 Pr	d.= 1347.	9 -10372	27.29625
Z.I.Poisso	n .36565	Act.= 10135 Pr	d.= 9991.	8 -8384	43.36088
Vuong stat	istic for test	ing ZIP vs. unal	tered mode	lis 4	44.6739
		normal. A value	-	an	
		tered Z.I.Poisso			
		rejects the ZIP			
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	
•		na regression mod			
		.01123		.0000	
AGE	.01100***	.00013	83.038	.0000	43.5257
EDUC	02164***	.00075	-28.864	.0000	11.3206
FEMALE	.10943***	.00256	42.728	.0000	.47877
MADDITED		.00318			.75862
	10010+++	.00902	-46.838	.0000	.35208
HHNINC					
HHNINC HHKIDS	08182***	.00323	-25.370	.0000	.40273
HHNINC HHKIDS Z	08182*** ero inflation	.00323 model			.40273
HHNINC HHKIDS Z Constant	08182*** ero inflation 75828***	.00323 model	-11.146	.0000	. 40273

tial Ef	fects for	Differer	it Moc	dels	
				#010	
Scale Fac	tor for Margina	1 Effects 3 18	35 POTSSO	N	
	Coefficient				Mean of X
+					
AGE			42.991		
EDUC			-15.923		
FEMALE			36.491		
MARRIED		.02945			
	-1.66271***		-21.308		
HHKIDS	51037***	. 02879	-17.730	.0000	.40273
Scale Fac	tor for Marginal	l Effects 3.19	24 NEGATIV	E BINOMIA	L - 2
AGE	.05767***	.00317	18.202	.0000	43.5257
EDUC	11867***				11.3206
FEMALE	1.04058***		16.751	.0000	.47877
MARRIED	01931	.06382		.7623	
HHNINC	-1.49301***		-9.176		.35208
HHKIDS	48759***	.06022	-8.097	.0000	.40273
+ Scale Fac	tor for Margina	1 Effects 3.11	49 ZERO IN	FLATED PO	ISSON
AGE	-				43.5257
EDUC		.00662	-16.901	.0000	11.3206
FEMALE	.97958***	.02917	33.577	.0000	.47877
MARRIED				.0000	
	-1.31573***		-42.278		.35208
HHKIDS			-23.958	.0000	.40273
HHVIDSI	25400^^^	.01064	-23.958	.0000	.402/3

Hurdle Models A hurdle model is also a modified count model with two parts: one generating the zeros one generating the positive values. The models are not constrained to be the same. A binomial probability model governs the binary outcome of whether a count variable has a zero or a positive value. If *y_i* > 0, the "hurdle is crossed," the conditional distribution of the positive values is governed by a zero-truncated count model. ⇒ Difference with ZI models: The amount part does not allow zeros. Popular models in health economics (use of health care facilities, counselling, drugs, alcohol, etc.).

A Hurdle Model

• Two part model:

- **Participation part**: Probability model for more than zero occurrences. For example, a logit model:

$$P[y_i = 0 | \mathbf{w}_i] = \frac{exp(w_i \gamma)}{1 + exp(w_i \gamma)} = \pi_i$$

- **Amount part**: Model for number of occurrences given that the number is greater than zero.

For example, a (zero-truncated) Poisson model:

Dr

$$P[y_{i} = j | y_{i} > 0, x] = \frac{P[y_{i} = j | x]}{1 - P[y_{i} > 0 | x]} \qquad j = 1, 2, 3, ...$$
$$= \frac{exp(x_{i}'\beta)^{j} e^{-exp(x_{i}'\beta)}}{j! (1 - e^{-exp(x_{i}'\beta)}])} \qquad [1 - f_{P}(0)]$$

A Hurdle Model

• Now, we can calculate the expected value of y_i . Then,

$$E[y_i | \mathbf{x}_i] = \pi_i * 0 + (1 - \pi_i) * E[y_i | y_i > 0, \mathbf{x}_i] = (1 - \pi_i) * \{\lambda_i / [1 - \exp(-\lambda_i)]\}$$

-The last terms comes from the mean of a zero-truncated Poisson.

• Partial effects will involve both parts of the model.

<u>Note</u>: The estimates of the parameters and choice probabilities from a truncated Poisson model will be biased and inconsistent in the presence of overdispersion. (Correct specification of the conditional mean of the truncated dependent variable requires the correct specification of all the moments of the underlying CDF.)

 \Rightarrow NegBin can help. Then, $E[y_i | \mathbf{x}_i] = (1 - \pi_i) * \{\lambda_i / [1 - f_{NB}(\mathbf{0})]\}$

A Hurc	lle Mode	el – Applic	ation	(Greei	ne)		
		11		`	/		
• Doctor V	isits						
	dle model for						
-	Dependent variable DOCVIS Log likelihood function -84211.96961						
-							
	2	d -103727.29625					
		39030.65329					
Significanc							
	-	d .1881407 27326, K = 10					
	lle equation	27320, K = 10					
Variable C	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X		
+							
Pa	rameters of c	count model equat	ion				
Constant	1.53350***	.01053	145.596	.0000			
AGE	.01088***	.00013	85.292	.0000	43.5257		
EDUC	02387***	.00072	-32.957	.0000	11.3206		
FEMALE	.10244***	.00243	42.128	.0000	.47877		
MARRIED	03463***	.00294	-11.787	.0000	.75862		
HHNINC	46142***	.00873	-52.842	.0000	. 35208		
HHKIDS	07842***	.00301	-26.022	.0000	.40273		
Pa	rameters of h	oinary hurdle equ	ation				
Constant	.77475***	.06634	11.678	.0000			
FEMALE	.59389***	.02597	22.865	.0000	.47877		
EDUC	04562***	.00546	-8.357	.0000	11.3206		

A Hurc	lle Mode	el – Appli	cation	(Gre	ene)
		11		`	/
Partial E	fforts				
Fatual E	lieus				
Partial de	rivatives of e	xpected val. wit	:h		
-		characteristics	s.		
	2	r individuals.			
		ans are All Obs.			
	l Mean at Samp		-		
	-	1 Effects 3.011			
•		Standard Error			Mean of X
				• • • •	
E	ffects in Coun	t Model Equation	1		
Constant	4.61864	2.84230	1.625	.1042	
AGE	.03278	.02018	1.625	.1042	43.5257
EDUC	07189	.04429	-1.623	.1045	11.3206
FEMALE	.30854	.19000	1.624	.1044	.47877
MARRIED	10431	.06479	-1.610	.1074	.75862
HHNINC	-1.38971	.85557	-1.624	.1043	.35208
HHKIDS	23620	.14563	-1.622	.1048	.40273
		ry Hurdle Equati	on		
Constant		.07379	11.678		
FEMALE	.66060***	.02889	22.865	.0000	.47877
	05074***		-8.357		11.3206
10	ombined effect	is the sum of t	he two part	s	
Constant		2.85728	1.918		
EDUC	12264***	.04479	-2.738	.0062	11.3206

Panel Data Models

• We have repeated measures on individuals, i, over time, t: { $(y_{i,t}, x_{i,t})$ for i = 1, ..., N and t = 1, ..., T }.

• For count data models (and DCM), $y_{i,t}$ are nonnegative integervalued outcomes.

• Typical issues for count data panels:

- Conditional on $x_{i,t}$, the $y_{i,t}$'s are likely to be serially correlated for a given *i*, partly because of state dependence and partly because of serial correlation in shocks.

 \Rightarrow Each additional year of data is not independent of previous years.

- Cross-sectional dependence between observations is also to be expected given emphasis on stratified clustered sampling designs.

Panel Data Models: Basic Models

• Pooled model (or population-averaged)

$$y_{i,t} = \alpha + x_{i,t}' \beta + \varepsilon_{i,t}$$

• Individual-specific effects model

 $y_{i,t} = \alpha_i + x_{i,t}' \beta + \varepsilon_{i,t}$ α_i : FE or random effect

• Two-way effects (TWFE) model allows intercept to vary over *i* and *t* $y_{i,t} = \alpha_i + \gamma_t + x_{i,t}'\beta + \varepsilon_{i,t}$

• Mixed model or random coefficients model allows β to vary over i $y_{i,t} = \alpha_i + x_{i,t}'\beta_i + \varepsilon_{i,t}$

Panel Data Models: Basic Models

• Individual-specific effects model

$$y_{i,t} = \alpha_i + \mathbf{x}_{i,t}' \mathbf{\beta} + \varepsilon_{i,t} = \mathbf{x}_{i,t}' \mathbf{\beta} + (\alpha_i + \varepsilon_{i,t})$$

• Fixed effects (FE):

- α_i is a random variable possibly correlated with \mathbf{x}_{it} (endogenous), but not $\varepsilon_{i,t}$. For example, education is correlated with time-invariant ability.

- \Rightarrow pooled OLS, pooled GLS, RE are inconsistent for β
- \Rightarrow within (FE) and FD estimators are consistent.

• Random effects (RE) or population-averaged (PA):

- α_i is purely random (usually, *i.i.d.* (0, σ^2) unrelated to \mathbf{x}_{it}

 \Rightarrow appropriate FE and RE estimators are consistent for β .

Panel Data Models: Non-linear Models

• In contrast to linear models, solutions for nonlinear models tend to lack generality and are model-specific. Standard count models include: Poisson and negative binomial.

• Count models involve discreteness, nonlinearity and intrinsic heteroskedasticity. Endogeneity may be an issue.

• General approaches are similar to those for the linear case: Pooled (PA), RE and FE

• Pooled or population-averaged (PA) model: Apply as usual.

- This is the same model as in cross-section case, with adjustment for correlation over time for a given individual.

Panel Data Models: Non-linear Models

• RE and FE have some complications:

- RE often not tractable. Numerical integration needed.

- FE models complicated for short panels (small *T*, large *N*).

• A fully parametric model may be specified, with **separable heterogeneity** and conditional density

 $f(y_{i,t} | \alpha_i, \mathbf{x}_{i,t}) = f(y_{i,t} | \alpha_i + \mathbf{x}_{i,t}' \boldsymbol{\beta}, \gamma) \quad t = 1, 2, ..., T; \ i=1,2..., N$

or nonseparable heterogeneity

 $f(y_{i,t} | \alpha_i, \mathbf{x}_{i,t}) = f(y_{i,t} | \alpha_i + \mathbf{x}_{i,t}' \boldsymbol{\beta}_i, \gamma)$ t = 1, 2, ..., T; i=1,2..., Nwhere γ denotes additional model parameters such as variance parameters and α_i represents individual effects.

Panel Data Models: Non-linear Models

• Random Parameters: Mixed models, latent class models, hiererchical – all extended to Poisson and NB.

• Standard errors: clustered-robust, bootstrapping are OK.

Panel Data Models: Pooled (Trivedi)

• Pooled estimation:

 $y_{i,t} | \mathbf{x}_{i,t} \sim f[\alpha_i \lambda_{i,t}] = f[\exp(\mathbf{x}_{i,t}; \boldsymbol{\beta})]$

- We can assume a correlated error structure.
- Specify an *f*. For example, Poisson: $y_{i,t} | \mathbf{x}_{i,t} \sim \text{Poisson}[\exp(\mathbf{x}_{i,t}; \mathbf{\beta})]$
- Pooled Poisson of $y_{i,t}$ on intercept and $x_{i,t}$ gives consistent β .

- Use cluster-robust SE where cluster on the individual.

- These control for both overdispersion and correlation over t for a given i.

. * Pooled Poi . poisson mdu						d)
Iteration 0: Iteration 1: Iteration 2:	log pseudol log pseudol log pseudol	ikelihood =	-62579.4	01		
Poisson regres	ssion					= 20186 = 476.93
						= 4/6.93
Log pseudolike	elihood = -62	579.401		Pseud		= 0.0609
		(Sto	i. Err. a	djusted f	or 5908 clu	sters in id)
mdu	Coef.	Robust Std. Err.	z	P> z	[95% Cont	f. Interval]
lcoins	0808023	.0080013	-10.10	0.000	0964846	0651199
ndisease	.0339334	.0026024	13.04	0.000	.0288328	.039034
female	.1717862	.0342551	5.01	0.000	.1046473	.2389251
age	.0040585	.0016891	2.40	0.016	.000748	.0073691
lfam child	1481981	.0323434	-4.58	0.000	21159	0848062
	.1030453	.0506901 .0785738	2.03	0.042	.0036944	.2023961
_cons	./48/89	.0785738	9.53	0.000	.594/8/2	.9027907

Panel Data Models: PA (Trivedi)

• Assume that for the *i*th observation moments are like for GLM Poisson

• Stack the conditional means for the *i*th individual:

$$\mathsf{E}[\mathbf{y}_i|\mathbf{X}_i] = \mathbf{m}_i(\boldsymbol{\beta}) = \begin{bmatrix} \exp(\mathbf{x}_{i1}'\boldsymbol{\beta}) \\ \vdots \\ \exp(\mathbf{x}_{iT}'\boldsymbol{\beta}) \end{bmatrix}.$$

where $\mathbf{y}_i = [\mathbf{y}_{i1}, ..., \mathbf{y}_{iT}]'$ and $\mathbf{X}_i = [\mathbf{x}_{i1}, ..., \mathbf{x}_{iT}]'$.

Stack the conditional variances for the *ith* individual.

With no correlation

$$V[y_i | \mathbf{X}_i] = \phi \mathbf{H}_i(\beta) = \phi \times \text{Diag}[\exp(\mathbf{x}'_{it}\beta)].$$

Panel Data Models: PA (Trivedi)

• Assume a pattern $\mathsf{R}(
ho)$ for autocorrelation over t for given i so

$$\mathsf{V}[y_i|\mathbf{X}_i] = \phi \mathsf{H}_i(\boldsymbol{\beta})^{1/2} \mathsf{R}(\boldsymbol{\rho}) \mathsf{H}_i(\boldsymbol{\beta})^{1/2}$$

- This is called a working matrix.
 - Example: R(p) = I if there is no correlation
 - Example: R(ρ) = R(ρ) has diagonal entries 1 and off diagonal entries ρ if there is equicorrelation.
 - Example: R(ρ) = R where diagonal entries 1 and off-diagonals unrestricted (< 1).</p>

Panel Data Models: PA (Trivedi)

• The GLM estimator solves: $\sum_{i=1}^{N} \frac{\partial \mathbf{m}'_i(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \mathbf{H}_i(\boldsymbol{\beta})^{-1}(\mathbf{y}_i - \mathbf{m}_i(\boldsymbol{\theta})) = \mathbf{0}.$

 Generalized estimating equations (GEE) estimator or population-averaged estimator (PA) of Liang and Zeger (1986) solves

$$\sum_{i=1}^{N} \frac{\partial \mathbf{m}_{i}^{\prime}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \widehat{\Omega}_{i}^{-1}(\mathbf{y}_{i} - \mathbf{m}_{i}(\boldsymbol{\beta})) = \mathbf{0},$$

where $\widehat{\Omega}_i$ equals Ω_i in with $\mathbf{R}(\boldsymbol{\alpha})$ replaced by $\mathbf{R}(\widehat{\boldsymbol{\alpha}})$ where $\operatorname{plim} \widehat{\boldsymbol{\alpha}} = \boldsymbol{\alpha}$.

• Cluster-robust estimate of the variance matrix of the GEE estimator is

$$\widehat{\mathsf{V}}[\widehat{\boldsymbol{\beta}}_{\mathsf{GEE}}] = \left(\widehat{\mathsf{D}}'\widehat{\Omega}^{-1}\widehat{\mathsf{D}}\right)^{-1} \left(\sum_{g=1}^{G}\mathsf{D}'_{g}\widehat{\Omega}_{g}^{-1}\widehat{\mathsf{u}}_{g}\widehat{\mathsf{u}}'_{g}\widehat{\Omega}_{g}^{-1}\mathsf{D}_{g}\right) \left(\mathsf{D}'\widehat{\Omega}^{-1}\mathsf{D}\right)^{-1}$$

where
$$\widehat{D}_{g} = \partial \mathbf{m}'_{g}(\beta) / \partial \beta |_{\widehat{\beta}}$$
, $\widehat{D} = [\widehat{D}_{1}, ..., \widehat{D}_{G}]'$, $\widehat{\mathbf{u}}_{g} = \mathbf{y}_{g} - \mathbf{m}_{g}(\widehat{\beta})$,
and now $\widehat{\Omega}_{g} = \mathbf{H}_{g}(\widehat{\beta})^{1/2} \mathbf{R}(\widehat{\rho}) \mathbf{H}_{g}(\widehat{\beta})^{1/2}$.

The asymptotic theory requires that G → ∞.

GEE population-averaged model				Number	of obs :	= 20186
Group and time	vars:	id	year		or groups	= 5908
_ink:			log	Obs per	group: min :	
Family:			sson		avg	
Correlation:		unstruct	ured		max :	-
				Wald ch Prob >		= 508.61
Scale paramete	ir:		1	Prob >	ch12 :	= 0.0000
		(Std. Err.	adjuste	d for cluste	ring on id)
		Semi-robust				
mdu	Coef.	Std. Err.	z	P> Z	[95% Conf	. Interval]
lcoins	0804454	.0077782	-10.34	0.000	0956904	0652004
ndisease	.0346067	.0024238	14.28	0.000	.0298561	.0393573
female	.1585075	.0334407	4.74	0.000	.0929649	.2240502
age	.0030901	.0015356	2.01	0.044	.0000803	.0060999
lfam	1406549	.0293672	-4.79	0.000	1982135	0830962
chi1d	.1013677	.04301	2.36	0.018	.0170696	.1856658
_cons	.7764626	.0717221	10.83	0.000	.6358897	.9170354

- The default (non cluster-robust) t-statistics are 3.5 to 4 times larger.
- No control for overdispersion.

Panel Data Models: PA (Trivedi)

• The correlations $\operatorname{Cor}[y_{i,t}, y_{i,s} | \boldsymbol{x}_{i,t}]$ for PA (unstructured) are not equal. But they are not declining as fast as AR(1).

```
. matrix list e(R)
symmetric e(R)[5,5]
                                     c3
                                                              c5
                         c2
                                                 c4
           c1
r1
             1
   .53143297
r2
   .40817495 .58547795
.32357326 .35321716
r3
                                      1
                             .54321752
r4
                                                   1
                                          .61948751
                                                               1
                             .43767583
r5
    .34152288
                .29803555
```

Panel Data Models: FE

• Fixed Effects:

 $y_{i,t} | \mathbf{x}_{i,t} \sim f[\alpha_i \ \lambda_{i,t}] = f[\alpha_i \ \exp(\mathbf{x}_{i,t}' \boldsymbol{\beta})]$

- In general, estimation is not possible in short panels.

- Incidental parameters problem:

- *N* fixed effects α_i plus *k* regressors means (N + k) parameters

- But $(N+K) \to \infty$ as $N \to \infty$

- Need to eliminate α_i by some sort of differencing, or concentrated likelihood argument.

• Fixed effects extensions to hurdle, finite mixture, zero-inflated models are currently not available.

Panel Data Models: FE Poisson (Trivedi)

• Derivation of fixed effects estimator for the Poisson panel

- Poisson MLE simultaneously estimates β and $\alpha_1, ..., \alpha_N$. The loglikelihood is

$$\ln L(\boldsymbol{\beta}, \boldsymbol{\alpha}) = \ln \left[\prod_{i} \prod_{t} \{ \exp(-\alpha_{i}\lambda_{it}) (\alpha_{i}\lambda_{it})^{y_{it}} / y_{it}! \} \right]$$
$$= \sum_{i} \left[-\alpha_{i} \sum_{t} \lambda_{it} + \ln \alpha_{i} \sum_{t} y_{it} + \sum_{t} y_{it} \ln \lambda_{it} - \sum_{t} \ln y_{it} \right]$$
$$\operatorname{here} \lambda_{i,t} = \exp(\boldsymbol{x}_{i,t} \boldsymbol{\beta}).$$

where $\lambda_{i,t} = \exp(\mathbf{x}_{i,t}'\mathbf{\beta})$

- f.o.c.'s for α_i yields $\hat{\alpha}_i = \sum_t y_{i,t} / \sum_t \lambda_{i,t}$ (a sufficient statistic for α_i).

- Substituting $\hat{\alpha}_i$ into lnL yields the concentrated likelihood function.
- Dropping terms not involving β :

$$\ln L_{\text{conc}}(\boldsymbol{\beta}) \propto \sum_{i} \sum_{t} \left[y_{it} \ln \lambda_{it} - y_{it} \ln \left(\sum_{s} \lambda_{is} \right) \right]$$

Panel Data Models: FE Poisson (Trivedi)

- There is no incidental parameters problem

- Consistent estimates of β for fixed *T* and $N \rightarrow \infty$ can be obtained by maximization of $\ln L_{conc}(\boldsymbol{\beta})$

- f.o.c. with respect to β yields first-order conditions:

$$\sum_{i} \sum_{t} \left[y_{it} \mathbf{x}_{it} - y_{it} \left[\sum_{s} \lambda_{is} \mathbf{x}_{is} \right] / \left[\sum_{s} \lambda_{is} \right] \right] = \mathbf{0}$$

that can be re-expressed as

$$\sum_{i=1}^{N}\sum_{t=1}^{T}\mathbf{x}_{it}\left(y_{it}-\frac{\lambda_{it}}{\bar{\lambda}_{i}}\bar{y}_{i}\right)=\mathbf{0}$$

<u>Note</u>: $\lambda_{i,t}/(\sum_{t=1}^{T} \lambda_{i,t})$ = Time-invariant x_i 's disappear!

Panel Data Models: FE Poisson – Pros & Cons

• Time-invariant regressors will be eliminated also by the differencing transformation. Some marginal effects not identified.

• May substitute individual specific dummy variables, though this raises some computational issues.

· Poisson and linear panel model special in that simultaneous

estimation of β and α provides consistent estimates of β in short panels, so there is no incidental parameters problem.

• The above assumes strict exogeneity of regressors.

• We can handle endogenous regressors under weak exogeneity assumption. A moment condition estimator can be defined using the previous f.o.c.'s.

• This FE approach does not extend to several empirically important models: hurdle, finite mixture models, and zip.

PDM: FE-Poisson with panel bootsrapped SE's (Trivedi)

· · · · [:] · · · · · · · · ·	lications (100			5 5 10	-			
Conditional fi Group variable	ixed-effects F			Number	of obs of grou	= ps =	= 177 = 49	
				Obs per	group:	min =		2
						avg =	- 3	.6
						may -	-	E
						max =		5
				Wald ch		max =		-
Log likelihood	1 = -24173.21	11		Wald ch Prob >			4.	64
Log likelihood	1 = -24173.21		plicatior		chỉ2	=	4. 0.20	64 02
Log likelihood	d = -24173.21	(Rep	plicatior	Prob >	chỉ2 on 4977	clust	4. 0.20	64 02
Log likelihood mdu	I		plicatior z	Prob >	chi2 on 4977	clust	= 4. = 0.20 :ers in i	64 02 d)
mdu age	Observed	(Rep Bootstrap		Prob > ns based	chi2 on 4977	clust Conf.	= 4. = 0.20 :ers in i	64 02 d)
mdu	Observed Coef.	(Rep Bootstrap Std. Err.	z	Prob > ns based P> z	chi2 on 4977 [95%	clust clust Normal Conf. 8356 2936	= 4. = 0.20 ters in i -based Interva	64 02 d) 1] 39 27

Panel Data Models: RE (Trivedi)

• Random Effects:

 $y_{i,t} | \mathbf{x}_{i,t} \sim f[\alpha_i \exp(\mathbf{x}_{i,t} \mathbf{\beta})] = f[\exp(\ln \alpha_i + \mathbf{x}_{i,t} \mathbf{\beta})]$ α_i is unobserved but is not correlated with $\mathbf{x}_{i,t}$.

- Poisson: Two treatments:

- (1) α_i is gamma distributed.

- It becomes a NegBin model (analytical solution!).

 $- \operatorname{E}[y_{i,t} | \boldsymbol{x}_{i,t}, \boldsymbol{\beta}] = \lambda_{i,t} = \exp(\boldsymbol{x}_{i,t}' \boldsymbol{\beta}).$

- (2) Contemporary treatments are assuming $\ln \alpha_i \sim N(0,\sigma^2)$

 \Rightarrow analytical (closed form) solution does not exist (onedimensional integral, done with simulation or quadrature based estimators).

Panel Data Models: RE (Trivedi)

- Contemporary treatments are assuming $\ln \alpha_i \sim N(0,\sigma^2)$

 \Rightarrow analytical (closed form) solution does not exist (onedimensional integral, done with simulation or quadrature based estimators.

- It can extend to slope coefficients (higher-dimensional integral)

 $-\operatorname{E}[y_{i,t} | \boldsymbol{x}_{i,t}, \boldsymbol{\beta}] = \lambda_{i,t} = \exp(\boldsymbol{x}_{i,t} \boldsymbol{\beta}).$

- NB with random effects is equivalent to two "effects" one time varying, one time invariant. The model is probably overspecified.

Note: It is common to find similar results for RE models (1) and (2).

(Trivedi	RE-gam i)	illa wit	n pai		otsra	hł	bed Sr
Random-effects Group variable		ression		Number (Number (of obs of groups	=	
Random effects	; u_i ∼ Gamma			Obs per		in = /g = ax =	3.4
				Wald chi	12(6)	=	529.10
Log likelihood	d = -43240.5		plicatio	Prob > 0	chi2	=	0.0000 ers in id)
Log likelihood mdu	0bserved Coef.		plication z	Prob > 0	chi2 on 5908 cl Nor	= lust rmal	
	Observed	(Re Bootstrap	-	Prob > o	chi2 on 5908 cl Nor	= rmal onf. 04	ers in id) -based
mdu lcoins ndisease female age lfam child	Observed Coef. 0878258 .0387629 .1667192 .0019159 1351786 .1082678	(Re Bootstrap Std. Err. .0086097 .0026904 .0379216 .0016242 .0308529 .0495487	z -10.20 14.41 4.40 1.18 -4.38 2.19	Prob > 0 ns based 0 P> z 0.000 0.000 0.238 0.000 0.029	chi2 n 5908 cl [95% cc 104700 .033489 .092394 001263 195645 .011154	= rmal onf. 04 99 42 75 92 41	ers in id) -based Interval] 0709511 .0440359 .2410442 .0050994 0747079 .2053816
mdu lcoins ndisease female age lfam	Observed Coef. 0878258 .0387629 .1667192 .0019159 1351786	(Re Bootstrap Std. Err. .0086097 .0026904 .0379216 .0016242 .0308529	z -10.20 14.41 4.40 1.18 -4.38	Prob > 0 ns based 0 P> z 0.000 0.000 0.000 0.238 0.000	chi2 on 5908 cl [95% Cc 104700 .033485 .09239 001267 195645	= rmal onf. 04 99 42 75 92 41 L4	ers in id) -based Interval] 0709511 .0440359 .2410442 .0050994 0747079

Panel Poisson: Estimator comparison (Trivedi)

• Compare following estimators

- Pooled Poisson with cluster-robust SE.'s

- Pooled population averaged Poisson with unstructured correlations and cluster-robust SE's

- RE Poisson with gamma random effect and cluster-robust SE'.s.

- RE Poisson with normal random effect and default SE.'s

- FE Poisson and cluster-robust SE's

• Find that

- Similar results for all RE models

- Note that these data are not good to illustrate FE as regressors have little within variation.

Variable	POOLED	POPAVE	RE_GAMMA	RE_NOR~L	FIXED
lcoins	-0.0808	-0.0804	-0.0878	-0.1145	
	0.0080	0.0078	0.0086	0.0073	
ndisease	0.0339	0.0346	0.0388	0.0409	
	0.0026	0.0024	0.0027	0.0023	
female	0.1718	0.1585	0.1667	0.2084	
	0.0343	0.0334	0.0379	0.0305	
age	0.0041	0.0031	0.0019	0.0027	-0.0112
	0.0017	0.0015	0.0016	0.0012	0.0095
lfam	-0.1482	-0.1407	-0.1352	-0.1443	0.0877
ام 2 ما م	0.0323	0.0294	0.0309	0.0265	0.1126
child	0.1030	0.1014	0.1083	0.0737 0.0345	0.1060 0.0738
cons	0.7488	0.7765	0.7574	0.2873	0.0738
_cons	0.0786	0.0717	0.0755	0.0642	
	0.0788	0.0/1/	0.0735	0.0642	
alpha					
_cons			0.0251		
			0.0270		
nsig2u					
cons				0.0550	
				0.0255	

Panel Poisson: FE vs RE (Trivedi)

- Strength of fixed effects versus random effects
 - Allows a_i to be correlated with x_{it}.
 - So consistent estimates if regressors are correlated with the error provided regressors are correlated only with the time-invariant component of the error
 - An alternative to IV to get causal estimates.

Limitations:

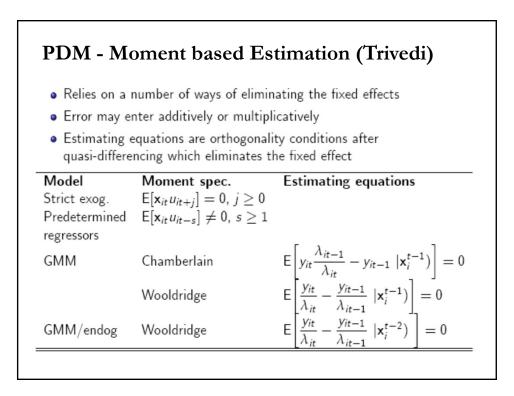
- Coefficients of time-invariant regressors are not identified
- For identified regressors standard errors can be much larger
- Marginal effect in a nonlinear model depend on α_i

$$\mathsf{ME}_{i} = \partial \mathsf{E}[y_{it}] / \partial \mathsf{x}_{it,i} = \alpha_{i} \exp(\mathsf{x}_{it}' \beta) \beta_{i}$$

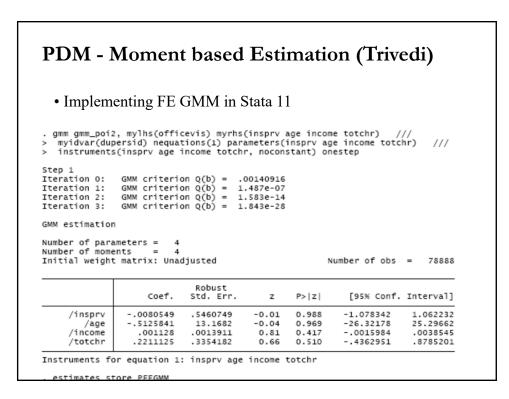
and α_i is unknown.

A Peculiarity of the FE-NB Model (Greene)

- 'True' FE model has $\lambda_i = \exp(c_i + \mathbf{x}_{i,t}' \mathbf{\beta})$. Cannot be fit if there are time invariant variables.
- Hausman, Hall and Griliches (Econometrica, 1984) has c_i appearing in θ (variance).
 - Produces different results
 - Implies that the FEM can contain time invariant variables.


	del with Group		I		
Log like	lihood function	-33576.74	Haus	sman et al	. version.
		7293 individual			ito a logit
-	-	Fixed Effect		1.	
•			•	+-	+
		Standard Error			
• •	•	.05317660		•	
EDUC	.08097026	.00267695	30.247	.0000	11.3206310
HSAT	13764986	.00336492	-40.907	.0000	6.78542607
+			+		
	FECTS NegBin Mo		I		
		-51020.09	•		
	1153 groups wi	th inestimable a	(i). by	brute for	ce.'
Negative	binomial regre		I		
Negative	binomial regre		•		
Negative +	binomial regre +		++-		
Negative ++ ++ Variable	binomial regre + Coefficient	Standard Error	.++- b/St.Er. 1	?[Z >z]	Mean of X
Negative + Variable +	binomial regre + Coefficient +	Standard Error	b/St.Er.	?[Z >z]	Mean of X
Negative + Variable +	binomial regre Coefficient Index function	Standard Error for probability	.++- b/St.Er. 1	?[Z >z]	Mean of X
Negative ++ Variable ++ ++ HHNINC	binomial regre Coefficient Index function .14058502	Standard Error	.++- b/St.Er. 1 .++- 2.929	.0034	Mean of X .35040228
Negative + Variable + HHNINC EDUC	binomial regre Coefficient Index function .14058502 01688381	Standard Error for probability .04799217	.++- b/st.Er. 1 .++- 2.929 791	.0034 .4291	Mean of X .35040228
Negative ++ Variable ++ HHNINC EDUC HSAT	binomial regre Coefficient Index function .14058502 01688381	Standard Error for probability .04799217 .02135354 .00304539	.++- b/st.Er. 1 .++- 2.929 791	.0034 .4291	Mean of X + .35040228 11.2596731

PDM - Moment based Estimation (Trivedi)


- Predetrmined means regressor correlated with current and past shoocks but not future shocks: E[u_{it}x_{is}] = 0 for s ≥ t, but ≠ 0 for S < t.
- Two specifications are considered:

 $y_{it} = \exp(\mathbf{x}'_{it}\beta)\nu_i w_{it}$ $y_{it} = \exp(\mathbf{x}'_{it}\beta)\nu_i + w_{it}$

- A quasi-differencing transformation is used to eliminate the fixed effect.
- Then a moment condition is constructed for estimation.
- Depending upon which specification is used different moment conditions obtain.
- Chamberlain and Wooldridge derive quasi-differencing transformations that are shown in the table below.

PDM - Moment based Estimation (Trivedi) **Example:** Fixed Effects GMM in Stata 11 . program gmm_poi2 version 11 2. syntax varlist if, at(name) myrhs(varlist) /// mylhs(varlist) myidvar(varlist) > quietly { з. tempvar mu mubar ybar 4. gen double `mu' = 0 `if' 5. local j = 1 6. foreach var of varlist `myrhs' { 7. replace `mu' = `mu' + `var'*`at'[1,`j'] `if' 8. local j = `j' + 1 9. 10. } 11. replace `mu' = exp(`mu') egen double `mubar' = mean(`mu') `if', by(`myidvar') 12. egen double `ybar' = mean(`mylhs') `if', by(`myidvar') 13. 14. replace `varlist' = `mylhs' - `mu'*`ybar'/`mubar' `if' 15. 3 16. end

PDM - Mo	oment	based	Est	tima	tion (Trive	di)
• Standard FI	E with ro	bust SE	(with	xtpqr	nl add-or	n) in Sta	ta 11
. xtpqml offi note: 1900 gr	pqml gives pa cevis insprv oups (15200 o	age income t bs) dropped	otchr, fe because o	e i(duper of all ze	rsid) ero outcomes		
Iteration 0: Iteration 1: Iteration 2: Iteration 3:	log likelih log likelih	ood = -84468 ood = -8415 ood = -84154 ood = -84154	4.68				
Conditional f Group variabl	ixed-effects e: dupersid	Poisson regr	ession	Number Number		= 63688 = 7961	
				Obs per	group: min avg max	= 8.0	
Log likelihoo	d = -84154.6	47		Wald ch Prob >		= 618.20 = 0.0000	
officevis	Coef.	Std. Err.	z	P> Z	[95% Conf	. Interval]	
insprv age income totchr	0080549 5125841 .001128 .2211125	.027985 .0629145 .000258 .0091051	-0.29 -8.15 4.37 24.28	0.773 0.000 0.000 0.000	0629046 6358943 .0006224 .2032669	.0467947 3892739 .0016336 .2389582	
Calculating R	obust Standar	d Errors					
officevis	Coef.	Std. Err.	z	P> z	[95% Conf	Interval]	
officevis insprv age income totchr	0080549 5125841 .001128 .2211125	.0715881 .1804831 .0007661 .0250814	-0.11 -2.84 1.47 8.82	0.910 0.005 0.141 0.000	1483651 8663245 0003734 .1719539	.1322552 1588438 .0026295 .2702712	

PDM – Dynamics (Trivedi)

• Individual effects model allows for time series persistence via unobserved heterogeneity, α_i . For example, high α_i . means high IPOs each period.

• Alternative time series persistence is via true state dependence, $y_{i,t-1}$. For example, a lot of IPOs last period lead to a lot of IPOs this period.

• Linear model:

 $y_{i,t} = \alpha_i + \rho y_{i,t-1} + x_{i,t}' \beta + \varepsilon_{i,t}$

• Poisson model with exponetial feedback: One possibility (designed to confront the zero problem) is

 $\mu_{i,t} = \alpha_i \lambda_{i,t} = \alpha_i \exp(\rho y_{i,t}^* + \boldsymbol{x}_{i,t}'\boldsymbol{\beta}), \qquad y_{i,t}^* = \min(c_i, y_{i,t-1}).$

PDM – Dynamics (Trivedi)

• In fixed effects case, the Poisson FE estimator is now inconsistent. Instead assume weak exogeneity

 $E[y_{i,t} | y_{i,t-1}, y_{i,t-2}, ..., x_{i,t}, x_{i,t-1}, ...] = \alpha_i \lambda_{i_{t-1}}$

• Use an alternative quasi-difference $E[y_{i,t} - (\lambda_{i,t}/\lambda_{i,t-1}) y_{i,t-1} | y_{i,t-1}, y_{i,t-2}, \dots, x_{i,t}, x_{i,t-1}, \dots] = 0$

• Then, MM or GMM based on: $E[\mathbf{z}_{i,t} \{ y_{i,t} - (\lambda_{i,t}/\lambda_{i,t-1}) \ y_{i,t-1} \}] = 0$

where $\mathbf{z}_{i,t}$ is a vector of instruments. For example, in the justidentified case: $(y_{i,t-1}, \mathbf{x}_{i,t})$.

• Windmeijer (2008) has a discussion of this topic.

PDM – Dynamics – GMM Example (Trivedi) • Just Identified (JI) GMM: Ignoring individual specific effects . gmm (officevis - exp({xb:L.officevis insprv educ age income totchr}+{b0})), /// > instruments(L.officevis insprv educ age income totchr) onestep vce(cluster dupersid) Step 1 GMM criterion Q(b) = GMM criterion Q(b) = 4.9539327 4.7296297 Iteration 0: Iteration 1: Iteration 2: GMM criterion Q(b) = 1.4832673 Iteration 3: GMM criterion Q(b) = .01045573 GMM criterion Q(b) = 6.508e-06 Iteration 4: GMM criterion Q(b) = 3.032e-12 Iteration 5: Iteration 6: GMM criterion Q(b) 7.264e-25 GMM estimation Number of parameters = 7 Number of moments = 7 Initial weight matrix: Unadjusted Number of obs = 69027 (Std. Err. adjusted for 9861 clusters in dupersid) Robust Coef. Std. Err. z P>|z| [95% Conf. Interval] /xb_L_offi~s /xb_insprv .064072 .0041069 15.60 0.000 .0560228 .0721213 2152153 .0331676 .1502079 6.49 0.000 .2802227 /xb_educ /xb_age /xb_income .0404143 .0065808 6.14 0.000 .0275162 .0533124 .1221278 .0134542 9.08 0.000 .0957581 .1484976 -0.72 21.35 -.0003585 .0004981 0.472 -.0013347 .0006178 /xb_totchr .3027348 .0141805 2749415 .330528 0.000 ÷ Ð -1.447292 -1-633987 /b0 .0952543 -15.19 0.000

PDM – 1	Dynam	ics – (GMM	Exa	mple (Trived	li)
• Over Ider	ntified (OI) GMM					
. gmm (office) > instruments > onestep vce	(L.officevis	educ age in	s insprv e ncome totc	duc age hr female	income totchr] e white hispan	}+{b0})), nic married	/// employed) /
Step 1 Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Iteration 6:	GMM criteri GMM criteri GMM criteri GMM criteri GMM criteri GMM criteri GMM criteri	on Q(b) = on Q(b) = on Q(b) = on Q(b) = on Q(b) =	3.7545442 .86353039 .25844389 .07248002 .07235453				
GMM estimation Number of para Number of mome Initial weight	ameters = 7 ents = 11	djusted		N	umber of obs	= 69027	
		(Std. Err	. adjusted	for 986	1 clusters in	dupersid)	
	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]	
/xb_L_offi~s /xb_insprv /xb_educ /xb_age /xb_income /xb_totchr /b0	.0631186 .0468067 .0422612 .1208516 .0004412 .2988192 -1.361726	.0042901 .1154105 .0074362 .0136986 .0007107 .0144326 .0972536	14.71 0.41 5.68 8.82 0.62 20.70 -14.00	0.000 0.685 0.000 0.000 0.535 0.000 0.000	.0547101 1793937 .0276866 .0940028 0009518 .2705318 -1.55234	.071527 .273007 .0568359 .1477003 .0018341 .3271066 -1.171113	

PDM - Dynamics – Poisson Extension (Trivedi)

• A different ML approach to dynamic specification

$$\begin{array}{rcl} y_{i,t} & \sim & P(\lambda_{it}), \ i = 1, ..., N; \ t = 1, ..., T \\ f(y_{i,t}|\lambda_{it}) & = & \frac{e^{-\lambda_{it}}\lambda_{it}^{y_{it}}}{y_{it}!} \\ \lambda_{it} & = & \nu_{it}\mu_{it} = \mathsf{E}[y_{it}|y_{i,t-1}, \mathsf{x}_{it}, \alpha_i] = g(y_{i,t-1}, \mathsf{x}_{it}, \alpha_i) \end{array}$$

- Initial conditions problem in dynamic model. In a short panel bias induced by neglect of dependence on initial condition.
- The lagged dependent variable on the right hand side a source of bias because the lagged dependent variable and individual-specific effect are correlated.
- Wooldridge's method (2005) integrates out the individual-specific random effect after conditioning on the initial value and covariates.
 Random effect model used to accommodate the initial conditions.

PDM - Dynamics – Poisson Extension (Trivedi)

 $\mathsf{E}[y_{it}|\mathbf{x}_{it}, y_{it-1}, \alpha_i] = h(y_{it}, \mathbf{x}_{it}, \alpha_i)$

where α_i is the individual-specific effect.

 1st alternative: Autoregressive dependence through the exponential mean.

 $\mathsf{E}[y_{it}|\mathbf{x}_{it}, y_{it-1}, \alpha_i] = \exp(\rho y_{it-1} + \mathbf{x}'_{it}\boldsymbol{\beta} + \boldsymbol{\alpha}_i)$

- If the α_i are uncorrelated with the regressors, and further if parametric assumptions are to be avoided, then this model can be estimated using either the nonlinear least squares or pooled Poisson MLE. In either case it is desirable to use the robust variance formula.
- Limitation: Potentially explosive if large values of y_{it} are realized.

PDM - Dynamics – Initial Conditions (Trivedi)

- Dynamic panel model requires additional assumptions about the relationship between the initial observations ("initial conditions") y₀ and the α_i.
- Effect of initial value on the future events is important in a short panel. The initial-value effect might be a part of individual-specific effect
- Wooldridge's method requires a specification of the conditional distribution of α_i given y₀ and z_i, with the latter entering separably.
- Under the assumption that the initial conditions are nonrandom, the standard random effects conditional maximum likelihood approach identifies the parameters of interest.
- For a class of nonlinear dynamic panel models, including the Poisson model, Wooldridge (2005) analyzes this model which conditions the joint distribution on the initial conditions.

PDM - Conditionally correlated RE (Trivedi)

- Where parametric FE models are not feasible, the conditionally correlated random (CCR) effects model (Mundlak (1978) and Chamberlain (1984)) provides a compromise between FE and RE models.
- Standard RE panel model assumes that α_i and x_{it} are uncorrelated. Making α_i a function of x_{i1}, ..., x_{iT} allows for possible correlation:

$$\alpha_i = \mathbf{z}'_i \boldsymbol{\lambda} + \varepsilon_i$$

 Mundlak's (more parsimonious) method allows the individual-specific effect to be determined by time averages of covariates, denoted z_i; Chamberlain's method suggests a richer model with a weighted sum of the covariates for the random effect.

PDM – Conditionally correlated RE (Trivedi)

• We can further allow for initial condition effect by including y0 thus:

$$\alpha_i = \mathbf{y}_0' \boldsymbol{\eta} + \mathbf{z}_i' \boldsymbol{\lambda} + \varepsilon_i$$

where \mathbf{y}_0 is a vector of initial conditions, $\mathbf{z}_i = \overline{\mathbf{x}}_i$ denotes the time-average of the exogenous variables and ε_i may be interpreted as unobserved heterogeneity.

- The formulation essentially introduces no additional problems though the averages change when new data are added. Estimation and inference in the pooled Poisson or NLS model can proceed as before.
- Formulation can also be used when no dynamics are present in the model. In this case ε_i can be integrated out using a distributional assumption about f(ε).

GMM w	ithout	initia	l con	dition	(Trive	di)
vidual speci	fic effect	is captu	ired by	the initial	condition	n
GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio m ameters = 7 eents = 7	n Q(b) = 4 n Q(b) = 1 n Q(b) = . n Q(b) = . n Q(b) = 6 n Q(b) = 3 n Q(b) = 7	.7296297 .4832673 01045573 .508e-06 .032e-12	Nu	mber of obs	= 69027	
	(Std. Err.	adjusted	for 9861	clusters in	dupersid)	
Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]	
.064072 .2152153 .0404143 .1221278 0003585 .3027348	.0041069 .0331676 .0065808 .0134542 .0004981 .0141805	9.08	0.000	.0560228 .1502079 .0275162 .0957581 0013347 4.2749415	.0721213 .2802227 .0533124 .1484976 .0006178	들 - 위의
	widual speci wis - exp({xb: s(L.officevis GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio m m meters = 7 tents = 7 tents = 7 to matrix: Unad Coef. .064072 .2152153 .0404143 .1221278 0003585	widual specific effect wis - exp({xb:L.officevis (L.officevis insprv educ GMM criterion Q(b) = 4 GMM criterion Q(b) = 1 GMM criterion Q(b) = 1 GMM criterion Q(b) = 1 GMM criterion Q(b) = 3 GMM criterion Q(b) = 3 GMM criterion Q(b) = 3 GMM criterion Q(b) = 3 GMM criterion Q(b) = 7 where the term of the term of the term commeters = 7 the matrix: Unadjusted (Std. Err. 064072 .0041069 .2152153 .0331676 .0404143 .0065808 .1221278 .0134542 -0003585 .0004981	widual specific effect is capture wis - exp({xb:L.officevis insprv educage incomposition GMM criterion Q(b) = 4.9539327 GMM criterion Q(b) = 4.7296297 GMM criterion Q(b) = 1.4832673 GMM criterion Q(b) = .01045573 GMM criterion Q(b) = .02045573 GMM criterion Q(b) = .02045573	widual specific effect is captured by wis - exp({xb:L.officevis insprv educ age i (L.officevis insprv educ age income totchr GMM criterion Q(b) = 4.7296297 GMM criterion Q(b) = 4.7296297 GMM criterion Q(b) = 0.1045573 GMM criterion Q(b) = 0.045573 GMM criterion Q(b) = 0.045573 GMM criterion Q(b) = $3.032e-12$ GMM criterion Q(b) = $7.264e-25$ on rameters = 7 tents = 7 tents = 7 tents = 7 totatrix: Unadjusted Nu (Std. Err. adjusted for 9861 Coef. Std. Err. $z P > z $.064072 .0041069 15.60 0.000 .2152153 .0331676 6.49 0.000 .4204143 .0065808 6.14 0.000 .1221278 .0134542 9.08 0.000 0003585 .0004981 -0.72 0.472	widual specific effect is captured by the initial wis - exp({xb:L.officevis insprv educ age income totchr is(L.officevis insprv educ age income totchr) onestep volume GMM criterion Q(b) = 4.9539327 GMM criterion Q(b) = 4.7296297 GMM criterion Q(b) = 1.4832673 GMM criterion Q(b) = .01045573 GMM criterion Q(b) = .01045573 GMM criterion Q(b) = 3.032e-12 GMM criterion Q(b) = 3.032e-12 GMM criterion Q(b) = 7.264e-25 on vameters = 7 tents = 7 t matrix: Unadjusted Number of obs (Std. Err. adjusted for 9861 clusters in Robust Coef. Std. Err. z P> z [95% Conf. .064072 .0041069 15.60 0.000 .0560228 .2152153 .0331676 6.49 0.000 .1502079 .0404143 .0065808 6.14 0.000 .0275162 .1221278 .0134542 9.08 0.000 .0957881 0003885 .0004981 -0.72 0.4720013347	$\begin{array}{c} \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = 4.7296297 \\ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = 1.4832673 \\ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = .01045573 \\ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = 6.508e-06 \\ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = 3.032e-12 \\ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = 3.032e-12 \\ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = 7.264e-25 \\ \mbox{matters} = 7 \\ \mbox{restrict} \ \mbox{restrict} \ \mbox{matters} \ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} = 7.264e-25 \\ \mbox{matters} \ \mbox{GMM} \ \mbox{criterion} \ \mbox{Q(b)} \ \mbox{matters} \ matt$

Overident	tified dy	namic	GMN	1 with	n initial	condi	tion
	vis - exp({xb: s(L.officevis s(cluster dupe	educ age in					/// empl
Step 1 Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Iteration 6:	GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio GMM criterio	on $Q(b) = 3$ on $Q(b) = .$ on $Q(b) = .$ on $Q(b) = .$ on $Q(b) = .$					
GMM estimation Number of para Number of mome Initial weight	umeters = 7 ents = 11	5	adiusted		mber of obs clusters in		
	Coef.	Robust Std. Err.	z	P> z	[95% Conf.		
/xb_L_offi~s /xb_insprv /xb_educ /xb_age /xb_income	.0631186 .0468067 .0422612 .1208516 .0004412	.0042901 .1154105 .0074362 .0136986 .0007107	14.71 0.41 5.68 8.82 0.62	0.000 0.685 0.000 0.000 0.535	.0547101 1793937 .0276866 .0940028 0009518	.071527 .273007 .0568359 .1477003	୨୯୯

Dynam	ic JI GN	AM wit	h Ini	tial C	onditio	ns	
.gmm (office > instrument > onestep vo		educ age in					/// empl
Step 1 Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Iteration 6: GMM estimation	GMM criteri GMM criteri GMM criteri GMM criteri GMM criteri GMM criteri	on Q(b) = 3 on Q(b) = . on Q(b) = . on Q(b) = . on Q(b) = .	.7545442 86353039 25844389 07248002 07235453				
Number of para Number of mom Initial weigh	ents = 11	-	adiuster		umber of obs L clusters in		
	Coef.	Robust Std. Err.	z	P> z		Interval]	
/xb_L_offi~s /xb_insprv /xb_educ /xb_age /xb_income	.0631186 .0468067 .0422612 .1208516 .0004412	.0042901 .1154105 .0074362 .0136986 .0007107	14.71 0.41 5.68 8.82 0.62	0.000 0.685 0.000 0.000 0.535	.0547101 1793937 .0276866 .0940028 0009518	.071527 .273007 .0568359 .1477003 .2271066) ९ (२

Dynam	ic OI Gl	MM wit	th Ini	tial Co	ondition	IS
. gmm (office)						
<pre>> instruments > onestep vce</pre>				income t	otchr female	white hispan
Final GMM crit	terion Q(b) =	.0685762				
GMM estimatior	ı					
Number of para Number of mome	ents = 12					
Initial weight	t matrix: Unad	ljusted		Nu	mber of obs	= 69027
		(Std. Err.	adjusted	for 9861	clusters in	dupersid)
		Robust				
		Std. Err.	z	P> Z	[95% Conf.	Totom/sll
	Coef.	Sta. Err.	2	12141	Lazw court.	Intervalj
/xb_L_offi~s	Coef.	.0046062	10.64	0.000	.039992	.0580481
/xb_TOoffi~s			10.64 6.86	0.000	-	
/xb_TOoffi~s /xb_insprv	.0490201 .0305356 .0565968	.0046062	10.64 6.86 0.50	0.000 0.000 0.618	.039992 .0218063 1660328	.0580481 .0392648 .2792264
/xb_TOoffi~s /xb_insprv /xb_educ	.0490201 .0305356 .0565968 .0402952	.0046062 .0044538 .1135886 .0059253	10.64 6.86 0.50 6.80	0.000 0.000 0.618 0.000	.039992 .0218063 1660328 .0286819	.0580481 .0392648 .2792264 .0519085
/xb_TOoffi~s /xb_insprv /xb_educ /xb_age	.0490201 .0305356 .0565968 .0402952 .1299791	.0046062 .0044538 .1135886 .0059253 .0098075	10.64 6.86 0.50 6.80 13.25	0.000 0.000 0.618 0.000 0.000	.039992 .0218063 1660328 .0286819 .1107567	.0580481 .0392648 .2792264 .0519085 .1492014
/xb_T0offi~s /xb_insprv /xb_educ /xb_age /xb_income	.0490201 .0305356 .0565968 .0402952 .1299791 .0004368	.0046062 .0044538 .1135886 .0059253 .0098075 .000703	10.64 6.86 0.50 6.80 13.25 0.62	0.000 0.000 0.618 0.000 0.000 0.534	.039992 .0218063 1660328 .0286819 .1107567 0009411	.0580481 .0392648 .2792264 .0519085 .1492014 .0018148
/xb_TOoffi~s /xb_insprv /xb_educ /xb_age /xb_income /xb_totchr	.0490201 .0305356 .0565968 .0402952 .1299791 .0004368 .2805608	.0046062 .0044538 .1135886 .0059253 .0098075 .000703 .0101571	10.64 6.86 0.50 6.80 13.25 0.62 27.62	0.000 0.000 0.618 0.000 0.000 0.534 0.000	.039992 .0218063 1660328 .0286819 .1107567 0009411 .2606532	.0580481 .0392648 .2792264 .0519085 .1492014 .0018148 .3004684
/xb_T0offi~s /xb_insprv /xb_educ /xb_age /xb_income	.0490201 .0305356 .0565968 .0402952 .1299791 .0004368	.0046062 .0044538 .1135886 .0059253 .0098075 .000703	10.64 6.86 0.50 6.80 13.25 0.62	0.000 0.000 0.618 0.000 0.000 0.534	.039992 .0218063 1660328 .0286819 .1107567 0009411	.0580481 .0392648 .2792264 .0519085 .1492014 .0018148

PDM: Remarks (Trivedi)

• Much progress in estimating panel count models, especially in dealing with endogeneity and non-separable heterogeneity.

- Great progress in variance estimation.
- RE models pose fewer problems.

• For FE models moment-based/IV methods seem more tractable for handling endogeneity and dynamics. Stata's new suite of GMM commands are very helpful in this regard.

• Because FE models do not currently handle important cases, and have other limitations, CCR panel model with initial conditions, is an attractive alternative, at least for balanced panels.