RS — Lecture 17

Lecture 7
Count Data Models

(For private use, not to be posted/shared online).

Count Data Models

* Counts are non-negative integers. They represent the number of
occurrences of an event within a fixed period.

Examples:
- Number of “jumps” (higher than 2*o) in stock returns per day.
- Number of trades in a time interval.
- Number of a given disaster —i.e., default- per month.
- Number of crimes on campus per semester.

Note: We have rare events, in general, far from normal distributed.

* The Poisson distribution is often used for these type of data.

* Goal: Model count data as a function of covariates, X.




RS — Lecture 17

Count Data Models — Data (Greene)

AmEx Credit Card
Holders

N =13,777

Number of major
derogatory reports in
1 year

¢ Issues:

H
ERT

Major Deragatory Reports in American Expi ess Subsample

- Nonrandom selection

- Excess zeros

Note: In general, far from normal distributed data.

Count Data Models — Data (Greene)

* Histogram for Credit Data
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e Usual feature: Lots of zeros.
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Count Data Models — Data

* Histogram for Takeover Bids —from Jaggia and Thosar (1993).
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* Usual feature: Fat tails, far from normal.

Review: The Poisson Distribution

* Suppose events are occurring randomly and uniformly in time.
* The events occur with a known average.

* Let X be the number of events occurring (arrivals) in a fixed
period of time (time-interval of given length).

* Typical example: X = number of crime cases coming before a
criminal court per year (original Poisson’s application in 1838.)

* Then, X will have a Poisson distribution with parameter A.

P(x) =

x=0,1,2,3,..

¥ e~2

x!

* The intensity parameter, A, represents the expected number of
occurrences in a fixed petiod of time —i.e., A = E[X].

* Ttis also the variance of the count: 1 = Var[X] =A1>0.

¢ Additive property holds.
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Review: The Poisson Distribution

Example: On average, a trade occurs every 15 seconds. Suppose trades
are independent. We are interested in the probability of observing 10
trades in a minute (X =10). A Poisson distribution can be used with A =

4 (4 trades per minute).

* Poisson probability function
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Note: As A increases, the
Poisson distribution

approximates a normal
distribution.

Review: The Poisson Distribution

* We can come up with the Poisson model by thinking of events

counts as counts of rare events.

* Specifically, a Poisson RV approximates a binomial RV when the
binomial parameter N (number of trials) is large and p (probability of

a success) is small.

¢ The Law of Rare Events.
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Count Data Models & Duration Models

¢ From the Math Review: There is a relation between counts and
durations (or waiting time between events).

¢ If for every t > 0 the number of arrivals in the time interval [0,t]
follows the Poisson distribution with mean A * ¢, then the sequence
of inter-arrival times are Zzd. exponential RVs having mean 1/A4.

* We can also model duration data as a function of covariates, X.
Many times which approach to use depends on the data available.

Poisson Regression Model

* Goal: Model count data as a function of covariates, X. The
benchmark model is the Poisson model.

Q: Why do we need special models? What is wrong with OLS?
Like in probit and logit models, the dependent variable has
restricted support. OLS regression can/will predict values that are
negative and will also predict non-integer values. Nonsense results.

* Given the Poisson distribution, we model the mean —i.e., A- as a
function of covariates. This creates the Poisson regression model:

Ai] e—li
Jj!

Ai = E[yl |xi] = Var[yi |xl-] = exp(xi'ﬁ) = make sure /1i>0.

Ply; =jlx;]) = j=0123,..

Remark: As A; increases, the variance increases = OLS inefficient!
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Poisson Regression Model - Estimation

* We usually model 4; = exp(x;'B) > 0, but other formulations OK.
= y; = exp(x;B) + ¢ (a non-linear regression)

* We have a non-linear model, with heteroscedasticity:
Var[y; | x;] = 4;= exp(x;) = G-NLLS is possible.

* ML is typically done. The log likelihood is given by:
LogL(B) = Eila{yi xiB — exp(x;f) + In(y;)}

¢ The f.o.c.’s are:

SLogL(B) _

5B {V=1{ Yi— exp(x:ﬁ)} Xi = 0

Poisson Regression Model — Estimation

* The s.o.c.’s are:

82LogL(B) _
SBEP! -

The LogL is globally concave => a unique maximum. Likely, fast

Mo {—exp(xiB)} x;x;’
COﬁVergence.

* The usual ML theory yields By g asymptotically normal with mean
B and variance given by the inverse of the information matrix:

Var[Buyie|xi] = (TN {— exp(xf)} xix;" )" |

Note: For consistency of the MLE, we only require that conditional
mean of y; is correctly specified; -i.e., it need not be Poisson
distributed. But, the ML standard errors will be incorrect.
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Poisson Regression Model — Partial Effects
* As usual, to interpret the coefficients, we calculate partial effects
(delta method or bootstrapping for standard errors):

6{Ai = E[yi|xi]} — /11' ﬁk

Sxi,k

* We estimate the partial effects at the mean of the X or at average.

* While the parameters do not indicate the marginal impact, their
relative sizes indicate the relative strength of each variable’s effect:

6{A; = Ely; | x;]}
6xl-,k

6{A; = Ely; | x;i]}
5xi'l

= AiBr/(AiB1) = Bk /B

Poisson Regression Model - Evaluation

* LR test to compare restricted and unrestricted models
* AIC, BIC
* McFadden pseudo-R?> = 1 — LogL(B)/LogL(0)
* Predicted probabilities
* G2 (Sum of model deviances):
G*=2%l,; yiIn(F

= equal to zero for a model with perfect fit.

* One implication of the Poisson assumption:

Var[y; | x;] = E[y; | x;] (equi-dispersion)
=> check this assumption, if it does not hold, Poisson model is
inappropriate.
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Poisson Regression Model — Example (Greene)

Poisson Regression

Dependent variable DOCVIS
Log likelihood function -103727.29625
Restricted log likelihood -108662.13583

Chi squared [ 6 d.£.] 9869.67916
Significance level .00000
McFadden Pseudo R-squared .0454145
Estimation based on N = 27326, K = 7

Information Criteria: Normalization=1/N

Normalized Unnormalized
AIC 7.59235 207468.59251
Chi- squared =255127.59573 RsqP= .0818
G - squared =154416.01169 RsgD= .0601

Overdispersion tests:
Overdispersion tests:

g=mu (i) 20.974
g=mu (i) “2: 20,943

-+

Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ o o e e
Constant| LTT26T*** 02814 27.463 0000
AGE| .01763%** 00035 50.894 0000 43.5257
EDUC | -.02981*** 00175 -17.075 0000 11.3206
FEMALE | .29287*x* 00702 41.731 0000 .47877
MARRIED | .00964 00874 1.103 2702 .75862
HHNINC | -.52229%%* 02259 -23.121 0000 .35208
HHKIDS | -.16032%** 00840 -19.081 0000 .40273
________ o

Poisson Regression Model — Example (Greene)

¢ Alternative Covariance Matrices

________ A
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ A
| Standard - Negative Inverse of Second Derivatives
Constant| LTT726Tx** .02814 27.463 .0000
AGE| .01763%** .00035 50.894 .0000 43.5257
EDUC| -.02981%** .00175 -17.075 .0000 11.3206
FEMALE | .29287*** .00702 41.731 .0000 .478717
MARRIED | .00964 .00874 1.103 .2702 .75862
HHNINC| -.52229%** 02259 -23.121 .0000 .35208
HHKIDS | -.16032%** 00840 -19.081 .0000 .40273
________ A
| Robust - Sandwich
Constant| LTT726Tx** [[08529 | 9.059 0000
AGE| .01763%** 00105 16.773 0000 43.5257
EDUC| -.02981%** 00487 -6.123 0000 11.3206
FEMALE | .29287*** 02250 13.015 0000 .478717
MARRIED | .00964 02906 332 7401 .75862
HHNINC| -.52229%** 06674 -7.825 0000 .35208
HHKIDS | -.16032%** 02657 -6.034 0000 .40273
________ ooy Y
| Cluster Correction
Constant| LTT726Tx** 11628 6.645 0000
AGE| .01763%** 00142 12.440 0000 43.5257
EDUC| -.02981%** 00685 -4.355 0000 11.3206
FEMALE | .29287*** 03213 9.116 0000 .478717
MARRIED | .00964 03851 250 8023 .75862
HHNINC| -.52229%** 08295 -6.297 0000 .35208
HHKIDS | -.16032%** 455 -4.640 0000 .40273
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Poisson Regression Model — Example (Greene)

5id; =E il xi
{ Sxi[z | xi] } = 1 B

)

* Partial Effects:

Partial derivatives of expected val. with
respect to the vector of characteristics.
Effects are averaged over individuals.
Observations used for means are All Obs.

Conditional Mean at Sample Point 3.1835
Scale Factor for Marginal Effects 3.1835

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ +_____________________________________________________________
AGE | .05613*** .00131 42.991 .0000 43.5257
EDUC| -.09490*** .00596 -15.923 .0000 11.3206
FEMALE | .93237*** .02555 36.491 .0000 .47877
MARRIED | .03069 .02945 1.042 .2973 .75862
HHNINC| -1.66271%** .07803 -21.308 .0000 .35208
HHKIDS| -.51037*** .02879 -17.730 .0000 .40273
________ +_____________________________________________________________

Note: With dummies, partial effects are calculated as differences.

Poisson Model: Issues

* The Poisson model has several restrictive assumptions
- All events are independent
- Constant arrival rate, A.
- No limit on the number of occurrences

- In the Binomial formulation, N goes to infinity.

* Herding behavior violates independence. We see an IPO (or a
zebra), it is very likely we will see more. This is called positive
contagion. 1t increases the variance of the count.

* Uneven (arbitrary) time periods can create contagion and thus
increase the variance.
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Poisson Model: Issues

* Heterogeneity can violate the constant arrival rate assumption. For
example, a CEO is more likely to reject a hostile bid early in her
tenure (the Board that elected the CEO will be more supportive)
than later. Unobserved heterogeneity increases the count’s variance.

* In many cases, there is an upper limit to the number of possible
events, M;. A CEO can only reject a hostile bid, if there is a hostile
bid. Thus, the maximum number of hostile bid rejections is 10 if
there are 10 hostile bids.

¢ This maximum number is called an observation’s exposure. It can be
incorporated as

Ely; |x;] = A; = exp(x;'B) * M;= exp(x;f + In(M;))

Poisson Model: Overdispersion

* One implication of the Poisson model is equi-dispersion. That is,
the mean and variance are equal: Var[y; | x;] = E[y; | X;]

* But, the first three cases (herding, uneven periods, heterogeneity)
tend to cause overdisperion. That is,

Varly; [ x;] > E[y; | x;]

* It is not rare to see overdispersion (‘extra’ heterogeneity) in the
data:

- A few traders will do many trades, many traders will do a few.

- A few assets will have many jumps, many assets will have few.

* Under overdispersion: Standard errors and p-values are too small.

10
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Poisson Model: Overdispersion - Testing

* Check for overdisperion:
- Check overdispersion rate:

Var[y;|x;]1/E[yi | xi] (in general, relative to df))

Cameron and Trivedi’s (CT) rule of thumb for overdispersion:

If Var[y;|x;1/E[y; | x;] > 2 = overdispersion.

- CT (1990) test. A test based on the assumption that under the
Poisson model {(y; — E[¥;])?> — E[¥;]} has zero mean:

H, (Poisson Model correct): Var[y; | x;] = E[y;|x;]

Hy: Var[y; | x;] = Elyg [ 2] + o gB[yi [ x:])
Simple linear regression: {(y; — E[§;])? — yi} /{E[Di] sqrt(2)}
against some g(E[y; | X;]), usually a linear or quadratic function of
the mean.

Poisson Model: Dealing with Overdispersion

* When overdispersion occurs, we modify the model:

- Keep Poisson model, but add ad-hoc models for the variance. For
example,

Varlyi] = ¢ 4;,

where

n 1 (yi — A¢)?
¢ =72 T (NB-1 Model)

Then, use ML estimation. If the mean and variance are correctly
specified, By g will have the usual good properties.

- Specify an alternative distribution that can generate overdispersion.

11
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Poisson Model: Dealing with Overdispersion

* Specify an alternative distribution that can generate overdispersion.
Usual alternative distributions:

(1) Assume the overdispersion is gamma distributed across means—
resulting in a negative binomial model (or Poisson-gamma model)
(2) Assume the overdispersion is normally distributed (Poisson-
normal model).

Poisson Model: Summary of Issues

* Overdispersion
— Usually attributed to omitted and/or unobserved heterogeneity
— Can use Poisson ML estimates with corrected standard errors
— Alternatively, can use models without equi-dispersion
- Negative Binomial
- Mixed Poisson
* Truncation (especially, zero-truncation) —number of mergers and

acquisitions. We only sample from M&A’s. A Poisson model would
falsely allow Prob[y; = 0] > 0.

* Excess zeros —data generated by two process: one for the “true
zeros,” and one for the “excess zeros.”

¢ Correlated counts —i.e., #z4. assumption does not hold. Big count
today is likely to be followed by a big count tomorrow.

12
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Poisson Model: Omitted Heterogeneity

* An elegant solution to overdispersion, is the omitted (latent)
heterogeneity. We model heterogeneity, by introducing a random
effect on the expected mean:

A*=exp(x; 'B +u;) = 4; hy,

where h; = exp(u;) follows a one parameter gamma distribution
I'(0, 0), with E[h;] = 1 (same Y; expected value as in the Poisson
model) and Var[h;] =1/60 = a. (We call a the dispersion parameter).

If we assume that Prob[y; = j| x, u] ~ Poisson, then, after integrating
out f(u), Prob[y; = j| x] ~ Negative Binomial (NegBin, NB).

Note: The one parameter gamma assumption, with a mean equal to 1,
is similar to assuming in the CLLM the error term has mean equal to 0.

It produces the same mean for the process (= 4;).

Poisson Model: Omitted Heterogeneity

¢ Details:

Let y;, conditioned on X, U, follow a Poisson distribution:

. A e H  exp(xyB + upl eme @B T up
Prob[yi=]|x,u]= i ¢ — p(xi'B i)

J! J!
Then,

Probly; = j| x] = [, Probly; = jlx,ul f (u) du
We need f(u) to integrate:

—-au ull—l

( y) = &l ut >0
Under this assumptions, Prob[y; = j| x] follows an NegBin.

Note: when o = 0, we are back to the Poisson model.

13
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Negative Binomial Model

* The Negative Binomial Distribution

. re +y; . .
PO qlxi):ﬁri” 1-r)f  j=0123,..

Ai

A; = exp(x;'B) & Ly

¢ Characteristics:
- Prob(y; = j| x;) has greater mass to the right & left of mean.

- Conditional mean function is the same as the Poisson:
Ely; |x;] = A; = exp(x,, 'B) = same partial effects.
Var[y; | x;] = 4;(1 + a A;) > 4; (a squared in the Varl.])

¢ The larger conditional variance increases the relative frequency of
low and high counts.

Negative Binomial Model

* The Negative Binomial (NegBin) Model can accommodate
overdispersion. The model has an additional parameter (ot = 1/6):

Varlyilxd _ {1+aE[y;|xi]} (a =0 = Poisson model, again)
Elyi|xi]

* There are alternative parameterizations of the negative binomial,
with different variance functions. The one above is called the Negbin-
2 (NB-2) model by Cameron and Trivedi (1980).

* Different models can be generated by specifying different
distributions for u;. For example, u; follows an inverse Gaussian
distribution -Dean et al. (1989). This Poisson-Inverse Gaussian model
has heavier tail than the NegBin model.

14
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NegBin Model - NB-P

* Without the heterogeneity argument, we could have introduced
directly the NegBin distribution as Prob(y; = j | X;) is the NegBin pdf.

* Along this line of thinking, Cameron and Trivedi (1998) make a
generalization, the NB-P model, where 8 = 6; liZ_P

* Then, we have the Negbin P (NB-P) model:

. .2_P . —_
Ply; = jl %) = —LA_23D o yi (1 — ;)00 A7 ’ j=012, ..

T Ti+1)T(6; 427D

* NB-2 is a special case, P=2. The conditional mean is still 4; and the
conditional variance is:

Var[y;|x;] = 4; [1 + (1/6;) 4;*7] AP

where 8; can be modeled as a function of some driving variables, Z;.

NegBin Model - NB-P

* By letting 8; = f(Z;), we generalize the NegBin model. For example,
0; = exp(z;'y) => we are modeling the variance.

* These models are called Generalized Negative Binomial Model.

* The NB-1 and NB-2 models are non-nested. Vuong (1989) test is a
possibility:

V = [sqrt(N) mean(m;)]/Sm i’ N(O, 1)

where m; = LogL({8,0}np—2) — LogL({8,0}np-1)

e Large values favor the NB-2 model. In applications, Greene (2007)
finds that this statistic is rarely outside the inconclusive region (-1.96
to +1.96).

15
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NegBin Model — Estimation

e Estimation: Maximum Likelihood
- For the NB-2, we have

N
NG i
LogL({B,0}) = z In <%> +y;In(r;) + 6 In(1 —1y)
i=1 '
where 1; = /11'): 0

The f.o.c’s are straightforward and the resulting variance-covariance
matrix is block diagonal.

Note: Poisson is consistent when NegBin is appropriate. Therefore, this
is a case for the Robust covariance matrix estimator. (Neglected

heterogeneity that is uncorrelated with X;.)

NegBin Model — Model Evaluation

* Model Evaluation as usual:
- LR, W, and LM tests

- AIC, BIC

- pseudo-R?

* Testing the NegBing Model.
- Relative to the Poisson model, we have an extra parameter in the

NegBin model, a.

- We can use a LR-test to test H: a = 0. This tests the NegBin model.
- A Wald test will also work

* For non-nested models (NB-1 vs. NB-2), use Vuong test.

16
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Negative Binomial Model — Example (Greene)

Negative Binomial Regression

Dependent variable DOCVIS

Log likelihood function -60134.50735 NegBin LogL
Restricted log likelihood -103727.29625 Poisson LogL

Chi squared [ 1d.£.] 87185.57782 Reject Poisson model
Significance level .00000

McFadden Pseudo R-squared .4202634

Estimation based on N = 27326, K = 8

Information Criteria: Normalization=1/N
Normalized Unnormalized

AIC 4.40185 120285.01469
NegBin form 2; Psi(i) = theta
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ +_____________________________________________________________
Constant| .80825%** .05955 13.572 .0000
AGE | .01806*** .00079 22.780 .0000 43.5257
EDUC| =.03717*** .00386 -9.622 .0000 11.3206
FEMALE | .32596%** .01586 20.556 .0000 .47877
MARRIED | -.00605 .01880 -.322 .7477 .75862
HHNINC | -.46768%** .04663 -10.029 .0000 .35208
HHKIDS | —-.15274*** .01729 -8.832 .0000 .40273
| Dispersion parameter for count data model
Alphal 1.896794** 01981 95.747 0000
________ 4 —— —— e ——— ——— — ——— —

Negative Binomial Model — Example (Greene)

¢ Partial Effects Should Be the Same

+ _____________________________________________________________________
Scale Factor for Marginal Effects 3.1835 POISSON
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
AGE| .05613*** .00131 42.991 .0000 43.5257
EDUC| -.09490%** .00596 -15.923 .0000 11.3206
FEMALE | .93237%** .02555 36.491 .0000 .47877
MARRIED | .03069 .02945 1.042 .2973 .75862
HHNINC| ~1.66271%%* .07803 -21.308 .0000 .35208
HHKIDS | -.51037*** .02879 -17.730 .0000 .40273
________ +_____________________________________________________________
Scale Factor for Marginal Effects 3.1924 NEGATIVE BINOMIAL
________ +_____________________________________________________________
AGE | .05767*** .00317 18.202 .0000 43.5257
EDUC| -.11867*** .01348 -8.804 .0000 11.3206
FEMALE | 1.04058*** .06212 16.751 .0000 .47877
MARRIED | -.01931 .06382 -.302 .7623 .75862
HHNINC| ~1.49301%%* .16272 -9.176 .0000 .35208
HHKIDS | -.48759% %% .06022 -8.097 .0000 .40273
________ +_____________________________________________________________

17
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Formulations for Negative Binomial (Greene)

c Negative Binomial — 1
Poisson

exp(—l,)l;‘" Var[ylx] =24 +x k! =k [1+x],
Td+y,)
A, =exp(a+xB).y, =0.1....i=L...N

Elv[x]=Varly|x,]=2, <]

Prob[Y =y, |x,]=
Replace 0 with 07, in NB-2

) T(Bh, + v, qu’(l—q)"
x. 1= Prob[l =y, | x,]= —————————
Ely; [x; =) oblY =y,Ix] Ty, +DI(OR,)

\ »=01_.: qg=1/1(1+86)

Elnix] =2,

Negative Binonual — 2

Elvix:.&] = exp(ortx;'B + ) = hijg
Replace 6 with 87,*F in NB-1
Prob[¥ = y|x;] = . ren "+ J_‘.eﬁ"” (1-s)%
Prob[Y =y, | x,]= L S e
Ty, +DI(BA)
= 6/(6+1) i,
§ =
X on e
Elvix] =&, Varlylx] = A [1+(1/8)A] ! !
= M[1+%Ad E[vlx] =%
K = Var[h] Var[pfx] = & [1+ (U@

Formulations: NegBin-1 Model (Greene)

Negative Binomial Regression

Dependent variable DOCVIS
Log likelihood function -60025.78734
Restricted log likelihood -103727.29625
NegBin form 1; Psi(i) = theta*exp[bx(i)]

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________

Constant| .62584%** .05816 10.761 .0000
AGE| .01428%** .00073 19.462 .0000 43.5257
EDUC| —-.01549%** .00359 -4.314 .0000 11.3206
FEMALE | .33028*** .01479 22.328 .0000 .47877
MARRIED | .04324%* .01852 2.335 .0196 .75862
HHNINC| —.24543%%*% .04540 -5.406 .0000 .35208
HHKIDS | —-.14877*** .01745 -8.526 .0000 .40273

|Dispersion parameter for count data model

Alpha| 6.09246%** .06694 91.018 .0000

________ +_____________________________________________________________

18
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Formulations: NegBin-P Model (Greene)

Negative Binomial (P) Model

Dependent variable DOCVIS
Log likelihood function -59992.32903
Restricted log likelihood -103727.29625
Chi squared [ 1d.f.] 87469.93445
________ T

Variable| Coefficient Standard Error b/St.Er.

________ T
Constant| . 60840%** .06452 9.429
AGE| .01710%** .00082 20.782
EDUC | —.02313%*#* .00414 -5.581
FEMALE | .36386%** .01640 22.187
MARRIED | .03670% .02030 1.808
HHNINC | —-.35093%%* .05146 -6.819
HHKIDS | —.16902%** .01911 -8.843
|Dispersion parameter for count data
model
Alpha| 3.85713*** .14581 26.453
|Negative Binomial. General form, NegBin
P
P| 1.38693**%* .03142 44.140
________ +________________________________________

NB-2 NB-1 Poisson
_BOB25*%*  G25Bakkx - TI1ZOTFRE
_01BO6***  (1428wax - OLT63 X%
- 03TLT*%* — (1549%%x = 02981kkx
(32596%%%  33028%ax - 29287 Xk
-. 00605 .04324%% - 00964
— A6T68**k — 21543akk ~. D2220%**
- 15274%%% — 14g77%ax  ~ 1603244
Dispersion pispersion
1.896TO*** 6. 09246%kk

Partial Effects for Different Models (Greene)

Scale Factor for Marginal Effects 3.1835 POISSON

Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ o o e
AGE| .05613*** .00131 42.991 .0000 43.5257
EDUC| -.09490%** .00596 -15.923 .0000 11.3206
FEMALE | .93237*** .02555 36.491 .0000 .47877
MARRIED | .03069 .02945 1.042 .2973 .75862
HHNINC| -1.66271*** .07803 -21.308 .0000 .35208
HHKIDS | -.51037*** .02879 -17.730 .0000 .40273
________ o o e
Scale Factor for Marginal Effects 3.1924 NEGATIVE BINOMIAL - 2
AGE| .05767*** .00317 18.202 .0000 43.5257
EDUC| -.11867%** .01348 -8.804 .0000 11.3206
FEMALE | 1.04058*** .06212 16.751 .0000 .47877
MARRIED | -.01931 .06382 -.302 .7623 .75862
HHNINC| -1.49301*** .16272 -9.176 .0000 .35208
HHKIDS | —-.48759%%%* .06022 -8.097 .0000 .40273
________ o o e
Scale Factor for Marginal Effects 3.0077 NEGATIVE BINOMIAL - P
AGE| .05143*%** .00246 20.934 .0000 43.5257
EDUC| -.06957*** .01241 -5.605 .0000 11.3206
FEMALE | 1.09436%** .04968 22.027 .0000 .47877
MARRIED | .11038* .06109 1.807 .0708 .75862
HHNINC| -1.05547**% .15411 -6.849 .0000 .35208
HHKIDS| -.50835%%*%* .05753 -8.836 .0000 .40273
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Issues: Truncation

* Often, because of the way we collect data, we only observe y; = 1.
For example, we study M&A. We collect data on actual M&A offers.

* Good sample to get information on the decision to go for a M&A,
but we get no information on the M&A offers that do no go through.

* Our data is truncated at zero, y; > 0. These models, truncated at
zero, are called Zero Truncated Models.

* If we use a Poisson/NB model, we need to incorporate this fact. We
need to use the zero-truncated Poisson/NB model. That is,

. _Plyi=j&yi>0|x] _ Ply;=j|x]
Pi =Jlyi> 0. = =50 =0 ~1-Ppi> 0] A

Vj >0

We increase each unconditional probability by factor [1 — P[y; > 0] x].

Issues: Truncation

* We use the zero-truncated Poisson/NB model. That is,

. Ply; = j|x] ,
PD’i:]b’i>O,x]:#>l)|x] j=123,..
For the Poisson model:

. _ exp(xi!B)) e~ exPXi'B) .
P[yi _]lyi > Oa x] - j! (11_ e—exp(xilﬂ)]) ] = 1; 2; 3;

* We increase each unconditional probability by the factor [1 - f(0)],
thus, the probability mass of the truncated distribution adds up to 1.

* The truncated (conditional) mean count is:
Ely;|xi] = Ai/[1 - exp(—=4;)] # A; (unconditional mean count)

* ML estimation is straightforward.
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Issues: Excess zeros

* Often the numbers of zeros in the sample cannot be accommodated

propetly by a Poisson or Negative Binomial model. Both models would
underpredict them.

* There is said to be an excess zeros problem. New models are

needed to deal with these type of data.

* These models, called Two-part models, allow for two different

process: one drives whether the value is 0 or positive (participation
part), and the other one drives the value of the strictly positive count

(amount part).

* Proposed models:
- ZLero inflated
- Hurdle models

Zero Inflation — ZIP Models

e Zero-inflated model have two kinds of zeros: “true zeros” and
“excess zeros.”

* Two groups of people: Always Zero & Not Always Zero

Example: Investors (traders) who sometime just did not trade that
week versus investors who never ever do.

* Two models: (1) for the count and (2) for excess zeros. The key
difference is that the count model allows zeros now. It is not a
truncated count model, but allows for “corner solutions.”

* If we are interested in modeling trading, the zeros from investors
who will never trade are not relevant. But, we only observe the zero,
not the type of investor. This is the excess zeros problem.
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Zero Inflation — ZIP Models

Frequency
100
1

50
1

count

* Note: lots of zeros.

Zero Inflation Poisson (ZIP) Models

* We are interested in a stock trading per week model for investors.
Two regimes (distributions) for the two types of investors (or zeros):
(1) Degenerate at zero (Prob|0]=1). (For investors that never trade.)
(2) Poisson (For traders, 0 is possible)

* We convert this problem into a latent variable model.
di* = Wilﬁ + u;, u; ~ N(O, 02)
di = I[di*>0], [ trades if di* >(.

- Participation part (Always Zero or Not Always Zero):
- Prob[d; = 0|w;] = II(w;'8)
Prob[d; = 1|w;] =1 —TI(w;'8)
= we can use a logit or a probit to model [1(w;'8).
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Zero Inflation Poisson (ZIP) Models

- Amount part:

- yi*|x; ~ fp = Poisson (latent Poisson, NB also possible)
Ai = exp(x;'B)
-y =d; yi* (y; is obsetrved, along with w;, x;)

=i _aq _ exp(xyB)) em*PEE)
Pl = Jlxp i =11 = j! (1 - e~ e*PEIA))

- Mixing groups (d; = 0 (Always Zero) & d; = 1 (Not Always Zero)):
- Conditional probability of 0 --i.e., P[Y; = 0wy, x;, d;]
-Ply; =0|wi, x;,d; =0] =1 (no trade, if no participation)
-Plyi =j|wi, xi,d; = 1] =Ply*[x;] = fp(yi)  (Poisson)

Zero Inflation Poisson (ZIP) Models

- Mixing groups (continuation)
- Unconditional probabilities of 0 and j:
- Plyi = 0|wy, x;] = 1% P[d; = 0] + Ply;= 0[d; = 1] * P[d; = 1]
= 0(w;'8) + fp(y; = 0) * [1 = [I(w;'8)]
= (w;'8) + e i *[1— MI(w;'8)]

- Plyi =jwi, x;] = 0% P[d; = 0] + Ply;=j |d; = 1] * P[d; = 1]
=fei=p)* [1— I(w;'8)]

J =2 ,
= EEE2 1= (wy'5)

- Expectation & Variance of counts:
-Ely; = j|wi, x;] = 0% P[d;=0] + 4; * P[d;=1] = 4;*[1 — TI(w;'8)]
- Varly; = j|wi, x;] = 4% [1 = TI(w;'8)] * [1 + 4; I(w;'8)]
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Zero Inflation Poisson (ZIP) Models

* Overdispersion

Varly; = j|wi, xi] / E[y; = j|wi, x;] = [1 + A; I(w;'6)]

- The more likely the Always Zero regime, the greater the
overdispersion.

¢ Partial effects

BE[yi = jlwi, %] = A; * [1 — I(w;'8)] * By

Bxik
OE[y: = jlwi,xi] _ , . S0(wid)
T e 1

* Similar results are obtained for the Zero-inflation NegBin model
(ZINB).

Two Forms of Zero Inflation Models

* Different ways of thinking of w; (determinants of II) and

X; (determinants of the amount j), generate different models. The
ZIP-tau model, allows for the same determinants, but scales the 3’s
in the II model.

« ZIP-tau = ZIP(T)

J o=

Py = |xi] = [F=—] %= exp(xi'B)
P(0 regime) = F(t x;'B)

* ZIP

Jehi

Ply; = j|xi] = [
P(0 regime) = F(z;'y)

] A= exp(x;'B)
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Notes on Zero Inflation Models (Greene)

¢ Poisson is not nested in ZIP. tau = 0 in ZIP(tau) or y = 0 in ZIP

does not produce Poisson; it produces ZIP with P(regime 0) = V.

— Standard tests are not appropriate

— Use Vuong statistic. ZIP model almost always wins.

¢ Zero Inflation models extend to NB models — ZINB(tau) and
ZINB are standard models

— Creates two sources of overdispersion

— Generally difficult to estimate

ZIP(1) Model

Zero Altered Poisson Regression Model
Logistic distribution used for splitting model.
ZAP term in probability is F[tau x 1ln LAMBDA]

Comparison of estimated models

Pr [0 |means] Number of zeros Log-likelihood
Poisson .04933 Act.= 10135 Prd.= 1347.9 -103727.29625
Z.I.Poisson .35944 Act.= 10135 Prd.= 9822.1 -84012.30960

Note, the ZIP log-likelihood is not directly comparable.

ZIP model with nonzero Q does not encompass the others.

Vuong statistic for testing ZIP vs. unaltered model is 44.5723
Distributed as standard normal. A value greater than

+1.96 favors the zero altered Z.I.Poisson model.

A value less than -1.96 rejects the ZIP model.

________ o e
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ o o e
| Poisson/NB/Gamma regression model
Constant| 1.45145%%* .01121 129.498 .0000
AGE| .01140%** .00013 86.245 .0000 43.5257
EDUC| -.02306%*** .00075 -30.829 .0000 11.3206
FEMALE | .13129%** .00256 51.357 .0000 .47877
MARRIED | -.02270%** .00317 -7.151 .0000 .75862
HHNINC| —.41799%** .00898 -46.527 .0000 .35208
HHKIDS | ~.08750%** .00322 -27.189 .0000 .40273
| Zero inflation model
Tau| —.38910%*** .00836 -46.550 .0000
________ o e
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ZIP Model

Zero Altered Poisson

Regression Model
Logistic distribution used for splitting model.
ZAP term in probability is F[tau x Z (i) 1
Comparison of estimated models
Pr[0|means]

Number of zeros Log-likelihood

Poisson .04933 Act.= 10135 Prd.= 1347.9 -103727.29625
Z.I.Poisson .36565 Act.= 10135 Prd.= 9991.8 -83843.36088
Vuong statistic for testing ZIP vs. unaltered model is 44.6739

Distributed as standard normal. A value greater than
+1.96 favors the zero altered Z.I.Poisson model.
A value less than -1.96 rejects the ZIP model.

________ A
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ m——— - -

| Poisson/NB/Gamma regression model
Constant| 1.47301%** .01123 131.119 .0000
AGE| .01100%** .00013 83.038 .0000 43.5257
EDUC| -.02164%** .00075 -28.864 .0000 11.3206
FEMALE | .10943%*x .00256 42.728 .0000 .47877
MARRIED | =.02774%** .00318 -8.723 .0000 .75862
HHNINC| —-.42240%** .00902 -46.838 .0000 .35208
HHKIDS| -.08182%** .00323 -25.370 .0000 .40273
| Zero inflation model
Constant| -.75828%** 06803 -11.146 .0000
FEMALE | =.59011%** 02652 -22.250 .0000 .47877
EDUC| .04114%** 00561 7.336 0000 11.3206
________ A
. .
Partial Effects for Different Models
Scale Factor for Marginal Effects 3.1835 POISSON
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ o e
AGE| .05613%** 00131 42.991 0000 43.5257
EDUC| —-.09490%** 00596 -15.923 0000 11.3206
FEMALE | .93237%%*% 02555 36.491 0000 .478717
MARRIED | .03069 02945 1.042 2973 .75862
HHNINC| -1.66271%** 07803 -21.308 0000 .35208
HHKIDS | —-.51037*** 02879 -17.730 0000 .40273
________ o e
Scale Factor for Marginal Effects 3.1924 NEGATIVE BINOMIAL - 2
AGE| .05767*** .00317 18.202 .0000 43.5257
EDUC| —-.11867*** .01348 -8.804 .0000 11.3206
FEMALE | 1.04058%** .06212 16.751 .0000 .478717
MARRIED | -.01931 .06382 -.302 .7623 .75862
HHNINC| —~1.49301%** .16272 -9.176 .0000 .35208
HHKIDS | —.48759% %% .06022 -8.097 .0000 .40273

———

Scale Factor for Marginal Effects 3.1149

AGE|
EDUC|
FEMALE |
MARRIED |
HHNINC|
HHKIDS |

.03427%%*
=.11192%**
.97958% %%
-.08639***
-1.31573***
—-.25486%**

.00052
.00662
.02917
.01031
.03112
.01064

ZERO INFLATED POISSON

66

-16.
.577
.379

33
-8

.157

901

.0000
.0000
.0000
.0000
.0000
.0000

43.5257
11.3206
.47877
.75862
.35208
.40273

________ A
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Vuong Statistic for Nonnested Models (Greene)

Model 0: logL,, = logf,(y, | x;,68,) = m,,
Model 0 is the Zero Inflation Model
Model 1: logL,, = logf,(y,|x,,6,) =m,,
Model 1 is the Poisson model
(Not nested. o=0 implies the splitting probability is 1/2, not 1)

- INCARAN)
Define a, =m,, -m,, =log---—* 0
o f.(y, 1%,6,)
1.n fo(yi 1%, 6,)
NS (|09M
_ @ n" TR, [x,6,)
—_———2
Sa/\/H 1 an Iogfo(Yi|Xi190)_|ogf[)(yilxileo)
n_l - fl(yi | Xilel) f1(yi I Xilel)

Limiting distribution is standard normal. Large + favors model
0, large - favors model 1, -1.96 < V < 1.96 is inconclusive.

Vuong statistic for testing ZIP vs. unaltered model is 44 6739
Distributed as standard normal. A value greater than

+1.96 favors the zero altered Z.I.Poisson model.

A value less than -1.96 rejects the ZIP model.

Hurdle Models

* A hurdle model is also a modified count model with two parts:
- one generating the zeros
- one generating the positive values.

- The models are not constrained to be the same.

* A binomial probability model governs the binary outcome of
whether a count variable has a zero or a positive value.

- If y; > 0, the "hurdle is crossed," the conditional distribution of the
positive values is governed by a zero-truncated count model.

=> Difference with ZI models: The amount part does not allow zeros.

* Popular models in health economics (use of health care facilities,
counselling, drugs, alcohol, etc.).
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A Hurdle Model

* Two part model:
- Participation part: Probability model for more than zero
occurrences. For example, a logit model:

exp(wiry)

Plyi=0lwil = iy =

TT;

- Amount part: Model for number of occurrences given that the
number is greater than zero.

For example, a (zero-truncated) Poisson model:

. Ply; = j|«] .
P[yi:]|Yi>O>x]:% j=123,..

_ exp(yp)) e PR
)

T 1 = £p(0)]

A Hurdle Model

* Now, we can calculate the expected value of ;. Then,
Elyi[x] =m; * 0+ (1 —m) * E[y; | y; > 0, x;]
= (L-my) * {4/ [1 - exp(-A))]}

-The last terms comes from the mean of a zero-truncated Poisson.

* Partial effects will involve both parts of the model.

Note: The estimates of the parameters and choice probabilities from a
truncated Poisson model will be biased and inconsistent in the
presence of overdispersion. (Correct specification of the conditional
mean of the truncated dependent variable requires the correct
specification of all the moments of the underlying CDF.)

= NegBin can help. Then, E[y; | x;] = 1 —m;) * {4;/[1 — fys(0)]}
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A Hurdle Model — Application (Greene)

* Doctor Visits

Poisson hurdle model for counts

Dependent variable DOCVIS
Log likelihood function -84211.96961
Restricted log likelihood -103727.29625
Chi squared [ 1d.f.] 39030.65329
Significance level .00000
McFadden Pseudo R-squared .1881407

Estimation based on N = 27326, K = 10
LOGIT hurdle equation

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
| Parameters of count model equation
Constant| 1.53350%** .01053 145.596 .0000
AGE| .01088*** .00013 85.292 .0000 43.5257
EDUC| -.02387*** .00072 -32.957 .0000 11.3206
FEMALE | .10244%x* .00243 42.128 .0000 .47877
MARRIED | -.03463%*% .00294 -11.787 .0000 .75862
HHNINC| —.46142%%% .00873 -52.842 .0000 .35208
HHKIDS | -.07842% %% .00301 -26.022 .0000 .40273
| Parameters of binary hurdle equation
Constant| L T7475% %% .06634 11.678 .0000
FEMALE | .59389%** .02597 22.865 .0000 .47877
EDUC| -.04562%** .00546 -8.357 .0000 11.3206

A Hurdle Model — Application (Greene)

e Partial Effects

Partial derivatives of expected val. with
respect to the vector of characteristics.
Effects are averaged over individuals.
Observations used for means are All Obs.

Conditional Mean at Sample Point .0109
Scale Factor for Marginal Effects 3.0118
________ A
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ A
|Effects in Count Model Equation
Constant| 4.61864 2.84230 1.625 .1042
AGE| .03278 .02018 1.625 .1042 43.5257
EDUC| -.07189 .04429 -1.623 .1045 11.3206
FEMALE | .30854 .19000 1.624 .1044 .478717
MARRIED | -.10431 .06479 -1.610 .1074 .75862
HHNINC| -1.38971 .85557 -1.624 .1043 .35208
HHKIDS| -.23620 .14563 -1.622 .1048 .40273
|Effects in Binary Hurdle Equation
Constant| .86178*** .07379 11.678 .0000
FEMALE | .66060*** .02889 22.865 .0000 .478717
EDUC| -.05074%%* .00607 -8.357 .0000 11.3206
|Combined effect is the sum of the two parts
Constant| 5.48042%* 2.85728 1.918 .0551
EDUC| -.12264%** .04479 -2.738 .0062 11.3206
FEMALE | .96915%** .19441 4.985 .0000 .478717
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Panel Data Models

* We have repeated measures on individuals, i, over time, t: {(V; ¢, X;¢)
fori=1,..,Nandt=1,.. T}.

* For count data models (and DCM), y; ; are nonnegative integer-
valued outcomes.

* Typical issues for count data panels:
- Conditional on X; ¢, the y; ;’s are likely to be serially correlated for a

given i, partly because of state dependence and partly because of serial
correlation in shocks.

=> Bach additional year of data is not independent of previous years.

- Cross-sectional dependence between observations is also to be
expected given emphasis on stratified clustered sampling designs.

Panel Data Models: Basic Models

* Pooled model (or population-averaged)

_ !
YVie=a+ X B++ &

* Individual-specific effects model

Vie=a;+x/B+e a;: FE or random effect

* Two-way effects (T'WFE) model allows intercept to vary over i and ¢t
Yie = @i+ ve+ Xie'B+ ey

* Mixed model or random coefficients model allows B to vary over i

— !
YVie =i +x;: Bi + &
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Panel Data Models: Basic Models

* Individual-specific effects model

Vie =@ +xi/B+ee=x:B+ (a;+ &)

* Fixed effects (FE):

- a; is a random variable possibly correlated with X;; (endogenous), but
not &; ;. For example, education is correlated with time-invariant ability.

=> pooled OLS, pooled GLS, RE are inconsistent for 3

= within (FE) and FD estimators are consistent.

* Random effects (RE) or population-averaged (PA):
- @; is purely random (usually, zz.d. (0, 6%) unrelated to x;;

=> appropriate FE and RE estimators are consistent for {3.

Panel Data Models: Non-linear Models

* In contrast to linear models, solutions for nonlinear models tend to

lack generality and are model-specific. Standard count models include:
Poisson and negative binomial.

 Count models involve discreteness, nonlinearity and intrinsic
heteroskedasticity. Endogeneity may be an issue.

* General approaches are similar to those for the linear case: Pooled
(PA), RE and FE

* Pooled or population-averaged (PA) model: Apply as usual.

- This is the same model as in cross-section case, with adjustment
for correlation over time for a given individual.
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Panel Data Models: Non-linear Models

* RE and FE have some complications:
- RE often not tractable. Numerical integration needed.

- FE models complicated for short panels (small T} large N).

* A tully parametric model may be specified, with separable
heterogeneity and conditional density

fitlanxi) = fQielai +xBy) t=1,2,.,T; i=12.,N

or nonseparable heterogeneity

fOiclai, xie) = fQie |l +x'Biy) t=1,2,.,T;i=12., N
where y denotes additional model parameters such as variance
parameters and @; represents individual effects.

Panel Data Models: Non-linear Models

* Random Parameters: Mixed models, latent class models, hiererchical —
all extended to Poisson and NB.

e Standard errors: clustered-robust, bootstrapping are OK.
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Panel Data Models: Pooled (Trivedi)

* Pooled estimation:

Yiel Xie ~Aai Ait] = flexp(xis'B)]
° WC can assume a Correlated error structure.

* Specify an f. For example, Poisson:

Vit |Xi¢ ~ Poisson[exp(x; :’B)]

* Pooled Poisson of y; ; on intercept and X; ; gives consistent {.
- Use cluster-robust SE where cluster on the individual.

- These control for both overdispersion and correlation over t for a
given .

Panel Data Models: Pooled (Trivedi)

. * Pooled Poisson estimator with cluster-robust standard errors
. poisson mdu Tcoins ndisease Temale age 1fam child, vce(cluster id)

Iteration 0: log pseudolikelihood = -62580.248

Iteration 1: log pseudolikelihood = -62579.401

Iteration 2: log pseudolikelihood = -62579.401

Poisson regression Number of obs = 20186
wald chiz(&) = 476.93
Frob > chiz = 0.0000

Log pseudolikelihood = -£2579.401 Pseudo R2 = 0.0609

(std. Err. adjusted for 5908 clusters in 1id)

Robust
mdu Coef. std. Err. z P=|z| [95% Conf. Interwval]
lcoins -. 0808023 L0080013 -10.10  0.000 -. 0964846 -.0651199
ndisease .0339334 .0026024 13.04  0.000 .0288328 .039034
female L1717862 .0342551 5.01 0.000 . 1046473 .2389251
age . 0040385 L0016E91 z.40 0.01& .000748 L0073691
Tfam -.1481981 .0323434 -4,58  0.000 -.21159 -.0848062
child .1030453 L0506901 2.03  0.042 L0026944 L 2023961
_cons . 748789 .0785738 9.53  0.000 .5947872 .9027907

By comparison, the default (non cluster-robust) SE’s are 1/4 as large.
=> The default (non cluster-robust) t-statistics are 4 times as large.
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Panel Data Models: PA (Trivedi)

@ Assume that for the it" observation moments are like for GLM Poisson

Elvie|xie] = exp(x}B)
V[}’:rlx;r] = 4’ X exp(x;tﬁ)'
o Stack the conditional means for the i*" individual:
EXP(leﬁ)
Elyi|Xi] = mi(B) = :
exp(x1B)
where y; = [yi1, ..., yir]" and X; = [xj1, ..., xi7]".
@ Stack the conditional variances for the /*" individual.

» With no correlation

VIyi|X;] = ¢H;(B) = ¢ x Diag[exp(x;,B)].

Panel Data Models: PA (Trivedi)

@ Assume a pattern R(p) for autocorrelation over t for given / so

2

Vyi|Xi] = ¢H;(B)*/*R(p)H;(B)"/?

@ This is called a working matrix.
» Example: R(p) = I if there is no correlation
» Example: R(p) = R(p) has diagonal entries 1 and off diagonal entries

p if there is equicorrelation.
» Example: R(p) = R where diagonal entries 1 and off-diagonals

unrestricted (< 1).
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Panel Data Models: PA (Trivedi)
@ The GLM estimator solves: ¥~ ; B 1, (B)1(yi —mi(8))

—_—= (}P
@ Generalized estimating equations (GEE) estimator or
population-averaged estimator (PA) of Liang and Zeger (1986) solves

Z:\;l dn;pﬁ)ﬂ Yy, —mi(B)) =0,

where Q); equals Q); in with R(a) replaced by R(&) where plim& = &
@ Cluster-robust estimate of the variance matrix of the GEE estimator is

_ e g oay =1 B Ay

V(Berel = (D 0 1D) (X,_, D07 6,000, ) (D'0'D)

where D, /c)ﬁ D = [Dy,.,D¢). Gy =y, —m,(B),
and now Qg = Hg(ﬁ )1/ 2R )Hg(,B)l"Q.
» The asymptotic theory requires that G — o0,

Panel Data Models: PA (Trivedi)

GEE peopulation-averaged model Number of obs = 20186
Group and tTime vars: id year Number of groups = 5908
Link: Tog 0bs per group: min = 1
Family: Poisson avg = 3.4
Correlation: unstructured max = 5

wald chiz(g) = 508.61
Scale parameter: 1 Prob = chiz = 0, 0000

{std. Err. adjusted for clustering on id)

Semi-robust
mdu Coef. 5td. Err. z P=|z| [95% Conf. Interval]
Tcoins -. 0804454 0077782 -10.34 0.000 -.0956904 -.0652004
ndisease 0346067 .00z24238 14,28 0.000 .0298561 .0393573
female .A1585075 0334407 4.74 0.000 0929649 .2240502
age L Q030201 0015356 2.01 0.044 L Q000E03 0009399
Tfam -.1406549 0293672 -4.79 0.000 -.1982135 -.0830%962
child LA01367T . 04301 2.36 0.018 0170696 L1E56658
—cons . TTG4626 0717221 10.83 0.000 .6358E897 .9170354

* In general, SE’s are within 10% of pooled Poisson cluster-robust SE’s.

* The default (non cluster-robust) t-statistics are 3.5 to 4 times larger.

* No control for overdispersion.
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Panel Data Models: PA (Trivedi)

* The correlations Cot[y; ¢, ¥ s | Xi | for PA (unstructured) are not
equal. But they are not declining as fast as AR(1).

. matrix Tist e(R)

symmetric e(R)[5,5]

cl c2 c3 c4 c5
ri 1
r2 .53143297 1
r3 .40817495 .58547795 1
r4 .32357326 .35321716 .54321752 1
r3 .34152288 .29803555 .43767583 .61948751 1

Panel Data Models: FE

 Fixed Effects:
Viel Xie ~ A Aie] = fla; exp(xie )]

- In general, estimation is not possible in short panels.

- Incidental parameters problem:
- N fixed effects a; plus k regressors means (N + k) parameters
-But (N+K) - © as N —

- Need to eliminate @; by some sort of differencing, or concentrated
likelihood argument.

* Fixed effects extensions to hurdle, finite mixture, zero-inflated models
are currently not available.
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Panel Data Models: FE Poisson (Trivedi)

* Derivation of fixed effects estimator for the Poisson panel

- Poisson MLE simultaneously estimates B and a4, ... , ay. The log-
likelihood is

InL(B, &)

In U_L [ L{exp(—airie) (aidie)"" /y,-f!}}

= L[ het L Kot o
where A; ¢ = exp(x;'B).
-fo.c’s for a; yields @; = X y; ¢/ X, ;¢ (a sufficient statistic for a;).
- Substituting @; into InL yields the concentrated likelihood function.

- Dropping terms not involving B :

In Leone(B) Z;‘ Zt {_v,-t InAj; — yie In (Zs A is)}

Panel Data Models: FE Poisson (Trivedi)

- There is no incidental parameters problem

- Consistent estimates of B for fixed T and N — can be obtained
by maximization of In L__ (B)

- f.o.c. with respect to B yields first-order conditions:

Z.‘Zr [_VirXit — Vit [Zs/\igxis] / [Zs,\h}} =0

that can be re-expressed as

/\,‘
E Xt (,Vllf - ‘_tVJ) =0

1t=1

9=

i

Note: 4; 1/ (Xt=1 Ai¢) = Time-invariant x;’s disappear!
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Panel Data Models: FE Poisson — Pros & Cons

* Time-invariant regressors will be eliminated also by the differencing
transformation. Some marginal effects not identified.

* May substitute individual specific dummy variables, though this raises
some computational issues.

* Poisson and linear panel model special in that simultaneous

estimation of § and « provides consistent estimates of  in short panels,
so there is no incidental parameters problem.

* The above assumes strict exogeneity of regressors.

* We can handle endogenous regressors under weak exogeneity
assumption. A moment condition estimator can be defined using the

previous f.o.c.’s.

¢ This FE approach does not extend to several empirically important
models: hurdle, finite mixture models, and zip.

PDM: FE-Poisson with panel bootsrapped SE’s
(Trivedi)

. xtpoisson mdu lcoins ndisease Temale age 1fam child, fe vce(boot, reps(100) seed(10
(running xtpoisson on estimation sample)

Bootstrap replications (100)

t 1 } 2 } 3 } - { 5
.................................................. 50
.................................................. 100
Conditional fixed-effects Poisson regression Number of obs = 17791
Group variable: id Number of groups = 77

Obs per group: min = 2

avg = 3.6

max = 5

wald chi2(3) = 4.64

Log likelihood = -24173.211 Prob > chi2 = 0.2002

(Replications based on 4977 clusters in id)

Observed Bootstrap Normal-based
mdu Coef. Std. Err. z P>|z| [95% Conf. Interval]
age -.0112009 .0095077 -1.18 0.239 -.0298356 .0074339
1fam .0877134 .1125783 0.78 0.436 -.132936 .3083627
child .1059867 .0738452 1.44 0.151 -.0387472 .2507206

* The default (non cluster-robust) t-statistics are 2 times larger.

38



RS — Lecture 17

Panel Data Models: RE (Trivedi)

* Random Effects:
Vie| Xie ~flat; exp(xie'B)] = flexp(n a;+ x;¢" B)]

@; is unobserved but is not correlated with X; ;.

- Poisson: Two treatments:
- (1) a; is gamma distributed.
- It becomes a NegBin model (analytical solution!).

-Eyie | Xie, Bl = A= CXP(xi,t,B)-

- (2) Contemporaty treatments are assuming In @; ~N(0,0?)

= analytical (closed form) solution does not exist (one-
dimensional integral, done with simulation or quadrature based
estimators).

Panel Data Models: RE (Trivedi)

- Contemporary treatments are assuming In a;~N(0,0%)

=> analytical (closed form) solution does not exist (one-
dimensional integral, done with simulation or quadrature based
estimators.

- It can extend to slope coefficients (higher-dimensional integral)

-Eie| Xie, Bl = Air = exp(x;¢'B).

- NB with random effects is equivalent to two “effects” one time
varying, one time invariant. The model is probably overspecified.

Note: It is common to find similar results for RE models (1) and (2).
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PDM: RE-gamma with panel bootsrapped SE’s
(Trivedi)

Random-effects Poisson regression Number of obs = 20186
Group variable: id Number of groups = 5908
Random effects u_i ~ Gamma Obs per group: min = 1
avg = 3.4
max = 5
wald chiz(s) = 529.10
Log likelihood = -43240.556 Prob > chi2 = 0.0000
(Replications based on 5908 clusters in id)

Observed Bootstrap Normal-based
mdu Ccoef. std. Err. z P>|z| [95% conf. Interval]
Tcoins -.0878258 .0086097 -10.20 0.000 -.1047004 -.0709511
ndisease .0387629 .0026904 14.41 0.000 .0334899 .0440359
female .1667192 0379216 4.40 0.000 .0923942 2410442
age .0019159 .0016242 1.18 0.238 -.0012675 .0050994
1fam -.1351786 .0308529 -4.38 0.000 -.1956492 -.0747079
child .1082678 .0495487 2.19 0.029 .0111541 .2053816
_cons .7574177 .0754536 10.04 0.000 .6095314 .905304
/Inalpha .0251256 0270297 -.0278516 .0781029
alpha 1.025444 .0277175 .9725326 1.081234
Likelihood-ratio test of alpha=0: chibar2(01) = 3.9e+04 Prob>=chibar2 = 0.000

Panel Poisson: Estimator comparison (Trivedi)

¢ Compare following estimators
- Pooled Poisson with cluster-robust SE.’s

- Pooled population averaged Poisson with unstructured correlations
and cluster-robust SE’s

- RE Poisson with gamma random effect and cluster-robust SE’.s.
- RE Poisson with normal random effect and default SE.’s

- FE Poisson and cluster-robust SE’s

* Find that
- Similar results for all RE models
- Note that these data are not good to illustrate FE as regressors have

little within variation.
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Panel Poisson: Estimator comparison (Trivedi)

variable POOLED POPAVE RE_GAMMA RE_NOR~L FIXED
#1
1coins -0.0808 -0.0804 -0.0878 -0.1145
0.0080 0.0078 0.0086 0.0073
ndisease 0.0339 0.0346 0.0388 0.0409
0.0026 0.0024 0.0027 0.0023
female 0.1718 0.1585 0.1667 0.2084
0.0343 0.0334 0.0379 0.0305
age 0.0041 0.0031 0.0019 0.0027 -0.0112
0.0017 0.0015 0.0016 0.0012 0.0095
1fam -0.1482 -0.1407 -0.1352 -0.1443 0.0877
0.0323 0.0294 0.0309 0.0265 0.1126
child 0.1030 0.1014 0.1083 0.0737 0.1060
0.0507 0.0430 0.0495 0.0345 0.0738
—cons 0.7488 0.7765 0.7574 0.2873
0.0786 0.0717 0.0755 0.0642
Tnalpha
_cons 0.0251
0.0270
Insig2u
_cons 0.0550
0.0255

Panel Poisson: FE vs RE (Trivedi)

Strength of fixed effects versus random effects

» Allows «; to be correlated with Xx;;.

» So consistent estimates if regressors are correlated with the error
provided regressors are correlated only with the time-invariant
component of the error

» An alternative to IV to get causal estimates.

e Limitations:

» Coefhicients of time-invariant regressors are not identified
» For identified regressors standard errors can be much larger
» Marginal effect in a nonlinear model depend on a;

ME; = 9E[y;]/dx;r j = a; exp(x; B);

and a; is unknown.
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A Peculiarity of the FE-NB Model (Greene)

* ‘True’ FE model has 4; = exp(c; + x;'B). Cannot be fit if there are
time invariant variables.

* Hausman, Hall and Griliches (Econometrica, 1984) has c;
appearing in 6 (variance).
— Produces different results

— Implies that the FEM can contain time invariant variables.

. .
Panel Data Models - Application (Greene)
o +
| Panel Model with Group Effects |
| Log likelihood function -33576.74 | Hausman et al. version.
| Unbalanced panel has 7293 individuals. | FENB turns into a logit
| Neg.Binomial Regression -- Fixed Effects | model.
B T e LR PR +
tomm—m - Fommmmm e Fommmmm o - tmmm - B +
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
tomm—m - Fommmmm e Fommmmm e - o tommmm +
HHNINC | .23681421 .05317660 4.453 .0000 .35208362
EDUC | .08097026 .00267695 30.247 .0000 11.3206310
HSAT | -.13764986 .00336492 -40.907 .0000 6.78542607
o +
| FIXED EFFECTS NegBin Model
| Log likelihood function -51020.09 | ‘True’ FE model. Estimated
| Bypassed 1153 groups with inestimable a(i). | by ‘brute force.’
| Negative binomial regression model |
B et e P +
tomm—m - Fommmmm - Fommmmm o o - tommmm +
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
tomm—m - Fommmmm e Fommmmm o o tmmm - tommmm +
————————— +Index function for probability
HHNINC | .14058502 .04799217 2.929 .0034 .35040228
EDUC | -.01688381 .02135354 -.791 L4291 11.2596731
HSAT | -.15775644 .00304539 -51.802 .0000 6.66405976
————————— +Overdispersion parameter
Alpha | 7.58363763 .01432940 529.236 .0000
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PDM - Moment based Estimation (Trivedi)

@ Predetrmined means regressor correlated with current and past
shoocks but not future shocks: E[ujx;s] = 0 for s > t, but 7% 0 for
S <t

@ Two specifications are considered:

Yit
Yie = eXP(x:'t.B)l-’r’ -+ Wi

exp (x:'r,s JViwie

@ A quasi-differencing transformation is used to eliminate the fixed
effect.

@ Then a moment condition is constructed for estimation.

@ Depending upon which specification i1s used different moment
conditions obtain.

@ Chamberlain and Wooldridge derive quasi-differencing transformations
that are shown in the table below.

PDM - Moment based Estimation (Trivedi)

@ Relies on a number of ways of eliminating the fixed effects
@ Error may enter additively or multiplicatively

e Estimating equations are orthogonality conditions after
quasi-differencing which eliminates the fixed effect

Model Moment spec. Estimating equations
Strict exog. E[xituiz+j] =0, >0
Predetermined E[xjpup—s] #0,5s > 1

regressors
[ Aj—

GMM Chamberlain E|ye5— = Yie1 Ixf“)} =0
T A

Wooldridge | _ Yl |X,r_1)] =0

_f\;'r Ait—1 _

GMM/endog ~ Wooldridge E ? - % Ixt=2) | =0
Aie A
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PDM - Moment based Estimation (Trivedi)

Example: Fixed Effects GMM in Stata 11

. program gmm_poi2

1. version 11

2. syntax varlist if, at(name) myrhs(varlist) ///
> myThs(varlist) myidvar(varlist)

3. quietly {

4. tempvar mu mubar ybar

5. gen double ‘mu' =0 "if"'

6. local j =

7. foreach var of varlist “myrhs' {

8. replace ‘mu' = ‘mu' 4+ “var'=’at'[1,'3'] "if’

9. local j i+ 1

10. }

11. replace mu' = exp({ mu')

12. egen double ‘mubar' = mean('mu') “if', by( myidvar')
13. egen double “ybar' = mean( ' mylhs') “if', by( 'myidvar')
14. replace “varlist' = ‘mylhs' - “mu'*’ybar'/ mubar' “if"
15, }

16, end

PDM - Moment based Estimation (Trivedi)

* Implementing FE GMM in Stata 11

. gmm gmm_poi2z, mylhs{officevis) myrhs(insprv age income totchr) Yrzi
> myidvar(dupersid) nequations(l) parameters(insprv age income totchr) iz
> instruments(insprv age income totchr, noconstant) onestep
Step 1
Iteration O: GMM criterion Q(b) = .00140916
Iteration 1: GMM criterion Q(b) = 1.487e-07
Iteration 2: GMM criterion Q(b) = 1.583e-14
Iteration 3: GMM criterion Q(b) = 1.843e-28
GMM estimation
Number of parameters = 4
Number of moments = +
Initial weight matrix: Unadjusted Number of obs = 78888
Robust
Coef. std. Err. z P>|z [95% Conf. Interval]
/insprv -.0080549 .5460749 -0.01 0.988 -1.078342 1.062232
/age -.5125841 13.1682 -0.04 0.969 -26.32178 25.29662
/income .001128 .0013911 0.81 0.417 -.0015984 0038545
/totchr .2211125 .3354182 0.66 0.510 -.4362951 .8785201

Instruments for equation 1:

. estimares sTore PEEGMM

insprv age income totchr
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PDM - Moment based Estimation (Trivedi)

¢ Standard FE with robust SE (with xtpqml add-on) in Stata 11

. * Add-on xtpgml gives panel robust se's _
. xtpgal officevis insprv age income totchr, fe i(dupersid)
note: 1900 groups (15200 obs) dropped because of all zero outcomes

Iteration 0 log Tikelihood = -84468.435
Iteration 1: log Tikelihood = -84154.68
Iteration 2 log Tikelihood = -84154.647
Iteration 3: log Tikelihood = -84154.647
Conditional fixed-effects Poisson regression Number of obs = 63688
Group variable: dupersid Number of groups = 7961
Obs per group: min = 8
avg = 8.0
max = 8
. wald chiz(4) = 618.20
Log likelihood = -84154.647 Prob > chi2 = 0.0000
officevis Coef. std. Err. z P>z [95% Conf. Interval
insprv -.0080549 .027985 -0.29 0.773 -.0629046 0467947
age -.5125841 «062914E -8.185 0.000 -.5358943 -.3892739
income .001128 .000258 4.37 0.000 .0006224 .0016336
totchr «221112%5 «0091051 24.28 0.000 +2032669 .2389582
Calculating Robust Standard Errors...
officevis Coef. std. Err. z P>z [95% Conf. Interval]
officevis
insprv -.0080549 .0715881 -0.11 0.910 -.1483651 .1322882
age -.5125841 + 1804831 -2.84 0.005 -.8663245 -.1588438
income .001128 «0007661 1.47 0.141 -.0003734 .002629¢5
totchr »2211125 +0250814 8.82 0.000 +1719539 2702712

PDM - Dynamics (Trivedi)

* Individual effects model allows for time series persistence via
unobserved heterogeneity, @;. For example, high ;. means high IPOs
each period.

* Alternative time series persistence is via true state dependence,
Vi ¢—1.- For example, a lot of IPOs last period lead to a lot of IPOs
this period.

e Linear model:

— !
Vie =« +pYVit—1+ X B+ &t

* Poisson model with exponetial feedback: One possibility (designed
to confront the zero problem) is

Hie=a; Adie = @ exp(p Yie + Xie'B), Yie = min(Cq, Yir—1)-
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PDM - Dynamics (Trivedi)

* In fixed effects case, the Poisson FE estimator is now inconsistent.
Instead assume weak exogeneity

ElVit|Yit—1>Yit—2r > Xijts Xit—1 -] = U My

¢ Use an alternative quasi-difference
Elyie — Aie/Aig-1) Yit-11Yit-1, Yit—2, - Xit, Xijt—1, -] = 0

* Then, MM or GMM based on:
B[z {yie — Qie/Aig-1) Vig-1}]1 =0

where Z; ; is a vector of instruments. For example, in the just-
identified case: (V; -1, X; ¢)-

* Windmeijer (2008) has a discussion of this topic.

PDM - Dynamics — GMM Example (Trivedi)

¢ Just Identified (JI) GMM: Ignoring individual specific effects

. gmm (officevis - exp(f{xb:L.officeviz insprv educ age income totchri+{b0})), i
> instrumentsil.officevis insprv educ age income totchr) onestep wcelcluster dupersid)

Step 1

Itaration 0O: GMM criterion Q(b) = 4.9539327
Iteration 1: GMM criterion Q(b) = 4.7296297
Iteration 2: GMM criterion Q(b) = 1.4B32673
Iteration 3: GMM criterion Q(b) = .0LO45573
Iteration 4: GMM criterion Q(b) = &.508=-06
Itaration 5: GMM criterion Q(b) = 3.032e-12
Iteration &: GMM criterion Q(b) = 7.264e-25
GMM estimation

Number of parametersz = 7

Number of momants = 7

Initial weight matrix: Unadjusted Mumber of obs = 69027

(5td. Err. adjusted for 9861 clusters in dupersid)

Robust
Coef. Std. Err. z P=lz [95% Conf. Interwvall
fxb_L_offi~s . 064072 0041069 15.60 0.000 0560228 0721213
‘xb_insprv .2152153 0331676 G.49 0.000 L1502079 .2B02227
Sab_sduc 0404143 0065808 G6.14 0.000 .0275162 L0533124
/xb_age LA1221278 .0134547 9.08 0.000 .0957581 . 1484976
/xb_income -. 0003585 00049581 -0.72 0.472 -.0013347 LO00617E
/xb_totchr L 3027348 0141805 21.35 0.000 2749415 .330528
/b0 -1.447292 0952543 -15.1% 0.000 -15'633987 -1, 260597
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PDM - Dynamics — GMM Example (Trivedi)

* Over Identified (OI) GMM

. gmm (officevis - exp{{xb:L.officevis insprv educ age income totchr}+{b0})), /17
> instruments(L.officevis educ age income totchr female white hispanic married employed) /
> onestep vce(cluster dupersid)

Step 1
Iteration 0: GMM criterion Q(b) = 4.9696148
Iteration 1: GMM criterion Q(b) = 3.7545442
Iteration 2: GMM criterion Q(b) = .86353039
Iteration 3: GMM criterion Q(b) = .25844389
Iteration 4: GMM criterion Q(b) = ,07248002
Iteration 5: GMM criterion Q(b) .07235453
Iteration 6: GMM criterion Q(b) = .07235443
GMM estimation
Number of parameters = 7
Number of moments = 11
Initial weight matrix: Unadjusted Number of obs = 69027
(5td. Err. adjusted for 9861 clusters in dupersid)
Robust
Coef. Std. Err. z P>z [95% Conf. Intervall
/xb_L_offi~s .0631186 .0042901 14.71 0.000 .0547101 071527
/xb_insprv .0468067 .1154105 0.41 0.685 =-.1793937 273007
/xb_educ .0422612 .0074362 5.68 0.000 .0276866 .0568359
/xb_age .1208516 .0136986 8.82 0.000 .0940028 .1477003
/xb_income 0004412 . 0007107 0.62 0.535 -.0009518 0018341
/xb_totchr .2988192 .0144326 20.70 0.000 2705318 «3271066
/b0 -1.361726 .0972536 -14.00 0.000 -1.55234 -1.171113

PDM - Dynamics — Poisson Extension (Trivedi)

@ A different ML approach to dynamic specification

Yit ™~ P(:’Hr). i=1,.. N, t=1,.., T

— Ay Vie
e A
Flyielh) = S it
(vie|Aie) Viel
A = Vieliye = E[)"."rl}’.l',r—lq Xit, I‘!:;‘] = g(}’i.r—lrxfr,“f')

@ Initial conditions problem in dynamic model. In a short panel bias
induced by neglect of dependence on initial condition.

@ The lagged dependent variable on the right hand side a source of bias
because the lagged dependent variable and individual-specitic effect
are correlated.

e Wooldridge's method (2005) integrates out the individual-specific
random effect after conditioning on the initial value and covariates.
Random effect model used to accommodate the initial conditions.
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PDM - Dynamics — Poisson Extension (Trivedi)

E[vie|xit, Yie—1, &i] = h(yie, Xiz, ;)
where a; 1s the individual-specific effect.

@ st alternative: Autoregressive dependence through the exponential
mean.

E[y,-zlx,-t. Yit—1, “i] = exp(pyie-1 + x;rﬁ £5 ai)
o If the a; are uncorrelated with the regressors, and further if

parametric assumptions are to be avoided, then this model can be
estimated using either the nonlinear least squares or pooled Poisson

MLE. In either case it is desirable to use the robust variance formula.

o Limitation: Potentially explosive if large values of y;; are realized.

PDM - Dynamics — Initial Conditions (Trivedi)

@ Dynamic panel model requires additional assumptions about the
relationship between the initial observations ("initial conditions") yo
and the a;.

e Effect of initial value on the future events is important in a short
panel. The initial-value effect might be a part of individual-specific
effect

e Wooldridge's method requires a specification of the conditional
distribution of «; given yg and z;, with the latter entering separably.

@ Under the assumption that the initial conditions are nonrandom, the
standard random effects conditional maximum likelihood approach
identifies the parameters of interest.

e For a class of nonlinear dynamic panel models, including the Poisson
model, Wooldridge (2005) analyzes this model which conditions the
Joint distribution on the initial conditions.
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PDM - Conditionally correlated RE (Trivedi)

@ Where parametric FE models are not feasible, the conditionally
correlated random (CCR) effects model (Mundlak (1978) and
Chamberlain (1984)) provides a compromise between FE and RE
models.

@ Standard RE panel model assumes that a; and x;; are uncorrelated.
Making «; a function of x;, ..., x;7 allows for possible correlation:

& =2zA+¢

e Mundlak’s (more parsimonious) method allows the individual-specific
effect to be determined by time averages of covariates, denoted z;;
Chamberlain’s method suggests a richer model with a weighted sum
of the covariates for the random effect.

PDM - Conditionally correlated RE (Trivedi)

@ We can further allow for initial condition effect by including yg thus:
a; = yoll +Z;A + &

where yg Is a vector of initial conditions, z;=X; denotes the
time-average of the exogenous variables and ¢; may be interpreted as
unobserved heterogeneity.

@ The formulation essentially introduces no additional problems though
the averages change when new data are added. Estimation and
inference in the pooled Poisson or NLS model can proceed as before.

@ Formulation can also be used when no dynamics are present in the

model. In this case g can be integrated out using a distributional
assumption about f(¢).
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Dynamic GMM without initial condition (Trivedi)

* Here individual specific effect is captured by the initial condition

gmm {officevis - exp{{xb:L.officevis insprv educ age income totchr}+{b0})]}, i
> instruments{lL.officevis insprv educ age income totchr) onestep wce(cluster dupersid)

Step 1
Iteration O: GMM criterion Q(b) = 4.,9539327
Iteration 1: GMM criterion QCh) = 4.7296297
Iteration 2: GMM criterion QCh) = 1.4B32673
Iteration 3: GMM criterion QCh) = LOL045573
Iteration 4: GMM criterion QCb) = €.5082-06
Iteration 5: GMM criterion Q(b) = 3.032e-12
Iteration &: GMM criterion Q(b) = 7.264e-2%
GMM estimation
Number of parameters = 7
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 69027
(5td. Err. adjusted for 9861 clusters in dupersid)
Robust
Coef. Std. Err. z P=lz [95% Conf. Intervall
fxb_L_offi~s 064072 0041069 15.60 0.000 0560228 0721213
‘xb_tnsprv .2152153 0331676 6.49 0.000 . 1502079 .2B02227
Aub_sduc 0404143 0065808 6,14 0.000 .0275162 L0533124
fxb age 21221278 0134542 9.08 0.000 .0957581 . 14345976
/xb_income -.0003585 0004981 -0.72 0.472 -. 0013347 0008178
.xb_totchr L 3027348 0141805 21.35 0.000 J27494108 . 330528

Overidentified dynamic GMM with initial condition

gmm (officevis - exp({xb:L.officevis insprv educ age income totchr}+{bo}1l, i
> instruments{L.officevis educ age income totchr female white hispanic marriad emnT
» onestep vce(cluster dupersid)

step 1
Iteration 0O: oMM criterion Q(b) = 4.9695145
Iteration 1: GMM criterion Q(b) = 3.7545442
Iteration 2: GMM criterion Q(b) = .86353039
Iteration 3: MM criterion Q(b) = .25844389
Iteration 4: GMM criterion Q(b) = .07248002
Iteration 5: MM criterion Q(b) = .072354532
Iteration &: GMM criterion Q(b) = .07235443
aMM estimation
Number of parameters = 7
Humber of moments = 11
Initial weight matrix: Unadjusted Number of obs = 69027
(5td. Err. adjusted for 9861 clusters 1in dupersid)
Robust
Coef. std. Err. z P=|z| [95% Conf. Interval]
Jab_L_offi~s .0631186 .0042901 14.71 0.000 .0547101 071527
Jxb_insprv . 0468067 . 1154105 0.41 0.685 -.1793937 . 273007
Jxb_educ 0422612 0074362 5.68 0. 000 L0276E6E6E .0568359
/xb_age 1208516 0136986 §.82 0.000 . 0940028 1477003
Jxb_income 0004412 0007107 0.62 0.535 -. 3005518 - 0018341
ot TOES oY 014437 20 T0 [ s Tu Tt 2TNACILE 23TIOEL
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. . .o . o, .
Dynamic JI GMM with Initial Conditions
gmm (officevis - exp({xb:L.officevis insprv educ age income totchr}+{bo}1l, s
> instruments{L.officevis educ age income totchr female white hispanic married empl
» onestep vce(cluster dupersid)
step 1
Iteration 0O: oMM criterion Q(b) = 4.9695145
Iteration 1: GMM criterion Q(b) = 3.7545442
Iteration 2: GMM criterion Q(b) = .86353039
Iteration 3: MM criterion Q(b) = .25844389
Iteration 4: GMM criterion Q(b) = .07248002
Iteration 5: MM criterion Q(b) = .072354532
Iteration &: GMM criterion Q(b) = .07235443
aMM estimation
Number of parameters = 7
Humber of moments = 11
Initial weight matrix: Unadjusted Number of obs = 69027
(5td. Err. adjusted for 9861 clusters 1in dupersid)
Robust
Coef. std. Err. z P=|z| [95% Conf. Interval]
Jab_L_offi~s .0631186 .0042901 14.71 0.000 .0547101 071527
Jxb_insprv . 0468067 . 1154105 0.41 0.685 -.1793937 . 273007
Jxb_educ 0422612 0074362 5.68 0. 000 L0276E6E6E .0568359
/xb_age 1208516 0136986 §.82 0.000 . 0940028 1477003
Jxb_income 0004412 0007107 0.62 0.535 -. 3005518 - 0018341
ot TOES oY 014437 20 T0 [ s Tu Tt 2TNACILE 23TIOEL

Dynamic OI GMM with Initial Conditions

gmm (officevis - exp{{xb:L.officevis TOofficevis insprv educ age income tetchri+{
> instruments{L.officevis Toofficevis educ age income totchr female white hispanic
= onestep vce{cluster dupersid) nolog
Final GMM criterion Q{b) = .0G8EB5762

GMM estimation

Number of parameters = 8

Number of moments = 1z
Initial weight matrix: Unadjusted Number of obs = 69027
(std. Err. adjusted for 9861 clusters in dupersid)

Robust

Coef. s5td. Err. z P=|z [95% Conf. Interwal]
Jrb_L_offi~s .0490201 . 0045062 10.64 0.000 .039992 .0580481
Jxb_Tooffi~s .0305356 .0044538 6.86 0.000 .021B063 .0392648
Jxb_insprv .O0565968 .1135886 0.50 0.618 -.1660328 .2792264
Jxb_educ 0402952 L0059253 G.80 0.000 0286819 L.0519085
/xb_age .12997391 L0038075 13.25 0.000 LA1107567 1432014
Jxb_income .0004368 .000703 0.62 0.534 -.0009411 .0D1B148
Jxb_totchr .2B05608 .0101571 27.62 0.000 . 2606532 . 3004684
/bo -1.408679 . 0607941 -23.17 0.000 -1.527833 -1.289525

Instruments for equation 1: L.officevis Toofficevis educ age income totchr female w
married employed _cons




RS — Lecture 17

PDM: Remarks (Trivedi)

* Much progress in estimating panel count models, especially in
dealing with endogeneity and non-separable heterogeneity.

* Great progress in variance estimation.

* RE models pose fewer problems.

¢ For FE models moment-based/IV methods seem more tractable for
handling endogeneity and dynamics. Stata’s new suite of GMM
commands are very helpful in this regard.

* Because FE models do not currently handle important cases, and

have other limitations, CCR panel model with initial conditions, is an
attractive alternative, at least for balanced panels.
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