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Lecture 7
Count Data Models

(For private use, not to be posted/shared online).

Count Data Models

• Counts are non-negative integers. They represent the number of 
occurrences of an event within a fixed period. 

Examples:

- Number of “jumps” (higher than 2*σ) in stock returns per day.

- Number of trades in a time interval.

- Number of a given disaster –i.e., default- per month.

- Number of crimes on campus per semester. 

Note: We have rare events, in general, far from normal distributed.

• The Poisson distribution is often used for these type of data.

• Goal: Model count data as a function of covariates, 𝑋. 
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AmEx Credit Card  
Holders

N = 13,777

Number of  major 
derogatory reports in 
1 year

• Issues:
- Nonrandom selection
- Excess zeros

Note: In general, far from normal distributed data.

Count Data Models – Data (Greene)

• Usual feature: Lots of zeros.

Count Data Models – Data (Greene)

• Histogram for Credit Data
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• Usual feature: Fat tails, far from normal.

Count Data Models – Data

• Histogram for Takeover Bids –from Jaggia and Thosar (1993).

• Suppose events are occurring randomly and uniformly in time.

• The events occur with a known average.

• Let 𝑋 be the number of events occurring (arrivals) in a fixed 
period of time (time-interval of given length). 

• Typical example: 𝑋 = number of crime cases coming before a 
criminal court per year (original Poisson’s application in 1838.) 

• Then, 𝑋 will have a Poisson distribution with parameter .

𝑃 𝑥 ൌ ఒೣ ௘షഊ

௫! 
𝑥 ൌ 0, 1, 2, 3, …

• The intensity parameter, λ, represents the expected number of 
occurrences in a fixed period of time –i.e., 𝜆 = E[𝑋].

• It is also the variance of the count: 𝜆 = Var[𝑋]  𝜆 > 0.

• Additive property holds.

Review: The Poisson Distribution
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Example: On average, a trade occurs every 15 seconds. Suppose trades 
are independent. We are interested in the probability of observing 10 
trades in a minute (𝑋 =10). A Poisson distribution can be used with 𝜆 = 
4 (4 trades per minute).

• Poisson probability function

Review: The Poisson Distribution

Note: As 𝜆 increases, the 
Poisson distribution 
approximates a normal 
distribution.

• We can come up with the Poisson model by thinking of events 
counts as counts of rare events.

• Specifically, a Poisson RV approximates a binomial RV when the 
binomial parameter 𝑁 (number of trials) is large and p (probability of 
a success) is small. 

• The Law of Rare Events.

Review: The Poisson Distribution
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Count Data Models & Duration Models

• From the Math Review: There is a relation between counts and 
durations (or waiting time between events). 

• If for every 𝑡 > 0 the number of arrivals in the time interval [0,𝑡] 
follows the Poisson distribution with mean 𝜆 ∗  𝑡, then the sequence 
of inter-arrival times are i.i.d. exponential RVs having mean 1/𝜆.

• We can also model duration data as a function of covariates, 𝑋. 
Many times which approach to use depends on the data available.

• Goal: Model count data as a function of covariates, 𝑋. The 
benchmark model is the Poisson model. 

Q: Why do we need special models? What is wrong with OLS?

Like in probit and logit models, the dependent variable has 
restricted support. OLS regression can/will predict values that are 
negative and will also predict non-integer values. Nonsense results.

• Given the Poisson distribution, we model the mean –i.e., λ- as a 
function of covariates. This creates the Poisson regression model:

𝑃 𝑦௜ ൌ 𝑗  𝒙௜ ൌ ఒ೔
ೕ ௘షഊ೔

௝! 
𝑗 ൌ 0, 1, 2, 3, …

𝜆௜ = E[𝑦௜|𝒙௜] = Var[𝑦௜|𝒙௜] = exp ሺ𝒙௜′𝛽ሻ  make sure 𝜆௜>0.

Remark: As 𝜆௜ increases, the variance increases  OLS inefficient! 

Poisson Regression Model
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• We usually model 𝜆௜ = exp ሺ𝒙௜′𝛽ሻ > 0, but other formulations OK.

 𝑦௜ ൌ exp 𝒙௜
ᇱ𝛽 ൅  𝜀௜ (a non-linear regression)

• We have a non-linear model, with heteroscedasticity: 

Var[𝑦௜|𝒙௜] = 𝜆௜= exp 𝒙௜
ᇱ𝛽  G-NLLS is possible.

• ML is typically done. The log likelihood is given by:

𝐿𝑜𝑔𝐿 𝛽 ൌ ∑ ሼ 𝑦௜ 𝒙௜
ᇱ𝛽 െ exp 𝒙௜

ᇱ𝛽 ൅ ln 𝑦௜! ሽ
ே
௜ୀଵ

• The f.o.c.’s are:
ఋ௅௢௚௅ ఉ

ఋఉᇱ
ൌ ∑ ሼ 𝑦௜ െ exp 𝒙௜

ᇱ𝛽 ሽே
௜ୀଵ 𝒙௜ = 0

Poisson Regression Model - Estimation

• The s.o.c.’s are: 

ఋమ௅௢௚௅ ఉ

ఋఉఋఉᇱ
ൌ ∑ ሼെ exp 𝒙௜

ᇱ𝛽 ሽே
௜ୀଵ 𝒙௜𝒙௜′

The 𝐿𝑜𝑔𝐿 is globally concave  a unique maximum. Likely, fast 
convergence.

• The usual ML theory yields βெ௅ா asymptotically normal with mean 
β and variance given by the inverse of the information matrix:

Varሾβெ௅ா|𝒙௜] = ሺ∑ ሼെ exp 𝒙௜
ᇱ𝛽 ሽே

௜ୀଵ 𝒙௜𝒙௜′ ሻିଵ |

Note: For consistency of the MLE, we only require that conditional 
mean of 𝑦௜ is correctly specified; -i.e., it need not be Poisson 
distributed. But, the ML standard errors will be incorrect.

Poisson Regression Model – Estimation
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• As usual, to interpret the coefficients, we calculate partial effects 
(delta method or bootstrapping for standard errors):

ఋሼఒ೔ = E[௬೔|𝒙೔]}
ఋ𝒙೔,ೖ

ൌ 𝜆௜ 𝛽௞

• We estimate the partial effects at the mean of the X or at average.

• While the parameters do not indicate the marginal impact, their 
relative sizes indicate the relative strength of each variable’s effect:

𝛿ሼ𝜆௜ = E[𝑦௜|𝒙௜]}
𝛿𝒙௜,௞

𝛿ሼ𝜆௜ = E[𝑦௜|𝒙௜]}
𝛿𝒙௜,௟

ൌ 𝜆௜𝛽௞/ሺ𝜆௜𝛽௟ሻ ൌ 𝛽௞/𝛽௟

Poisson Regression Model – Partial Effects

• LR test to compare restricted and unrestricted models

• AIC, BIC

• McFadden pseudo-R2 = 1 – 𝐿𝑜𝑔𝐿 𝛽 /𝐿𝑜𝑔𝐿 0

• Predicted probabilities

• G2 (Sum of model deviances): 

𝐺ଶ ൌ 2∑  𝑦௜ ln ሺ ௬೔
ఒഥ
ሻ ே

௜ୀଵ

 equal to zero for a model with perfect fit.

• One implication of the Poisson assumption:

Var[𝑦௜|𝒙௜] = E[𝑦௜|𝒙௜] (equi-dispersion)

 check this assumption, if it does not hold, Poisson model is 
inappropriate.

Poisson Regression Model - Evaluation
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----------------------------------------------------------------------
Poisson Regression
Dependent variable               DOCVIS
Log likelihood function   -103727.29625
Restricted log likelihood -108662.13583
Chi squared [   6 d.f.]      9869.67916
Significance level               .00000
McFadden Pseudo R-squared      .0454145
Estimation based on N =  27326, K =   7
Information Criteria: Normalization=1/N

Normalized   Unnormalized
AIC              7.59235   207468.59251
Chi- squared =255127.59573  RsqP= .0818
G  - squared =154416.01169  RsqD= .0601
Overdispersion tests: g=mu(i)  : 20.974
Overdispersion tests: g=mu(i)^2: 20.943
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------
Constant|     .77267***       .02814       27.463   .0000

AGE|     .01763***       .00035       50.894   .0000      43.5257
EDUC|    -.02981***       .00175      -17.075   .0000      11.3206

FEMALE|     .29287***       .00702       41.731   .0000       .47877
MARRIED|     .00964          .00874        1.103   .2702       .75862
HHNINC|    -.52229***       .02259      -23.121   .0000       .35208
HHKIDS|    -.16032***       .00840      -19.081   .0000       .40273

--------+-------------------------------------------------------------

Poisson Regression Model – Example (Greene)

• Alternative Covariance Matrices
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

| Standard – Negative Inverse of Second Derivatives
Constant|     .77267***       .02814       27.463   .0000

AGE|     .01763***       .00035       50.894   .0000      43.5257
EDUC|    -.02981***       .00175      -17.075   .0000      11.3206

FEMALE|     .29287***       .00702       41.731   .0000       .47877
MARRIED|     .00964          .00874        1.103   .2702       .75862
HHNINC|    -.52229***       .02259      -23.121   .0000       .35208
HHKIDS|    -.16032***       .00840      -19.081   .0000       .40273

--------+-------------------------------------------------------------
| Robust – Sandwich

Constant|     .77267***       .08529        9.059   .0000
AGE|     .01763***       .00105       16.773   .0000      43.5257

EDUC|    -.02981***       .00487       -6.123   .0000      11.3206
FEMALE|     .29287***       .02250       13.015   .0000       .47877

MARRIED|     .00964          .02906         .332   .7401       .75862
HHNINC|    -.52229***       .06674       -7.825   .0000       .35208
HHKIDS|    -.16032***       .02657       -6.034   .0000       .40273

--------+-------------------------------------------------------------
| Cluster Correction

Constant|     .77267***       .11628        6.645   .0000
AGE|     .01763***       .00142       12.440   .0000      43.5257

EDUC|    -.02981***       .00685       -4.355   .0000      11.3206
FEMALE|     .29287***       .03213        9.116   .0000       .47877

MARRIED|     .00964          .03851         .250   .8023       .75862
HHNINC|    -.52229***       .08295       -6.297   .0000       .35208
HHKIDS|    -.16032***       .03455       -4.640   .0000       .40273

Poisson Regression Model – Example (Greene)
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• Partial Effects:
ఋሼఒ೔ = E[௬೔|𝒙೔]}

ఋ𝒙೔,ೖ
ൌ 𝜆௜ 𝛽௞

----------------------------------------------------------------------
Partial derivatives of expected val. with
respect to the vector of characteristics.
Effects are averaged over individuals.
Observations used for means are All Obs.
Conditional Mean at Sample Point   3.1835
Scale Factor for Marginal Effects  3.1835
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

AGE|     .05613***       .00131       42.991   .0000      43.5257
EDUC|    -.09490***       .00596      -15.923   .0000      11.3206

FEMALE|     .93237***       .02555       36.491   .0000       .47877
MARRIED|     .03069          .02945        1.042   .2973       .75862
HHNINC|   -1.66271***       .07803      -21.308   .0000       .35208
HHKIDS|    -.51037***       .02879      -17.730   .0000       .40273

--------+-------------------------------------------------------------

Poisson Regression Model – Example (Greene)

Note: With dummies, partial effects are calculated as differences.

• The Poisson model has several restrictive assumptions

- All events are independent

- Constant arrival rate, 𝜆.

- No limit on the number of occurrences

- In the Binomial formulation, 𝑁 goes to infinity.

• Herding behavior violates independence. We see an IPO (or a 
zebra), it is very likely we will see more. This is called positive 
contagion. It increases the variance of the count.

• Uneven (arbitrary) time periods can create contagion and thus 
increase the variance.

Poisson Model: Issues
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• Heterogeneity can violate the constant arrival rate assumption. For 
example, a CEO is more likely to reject a hostile bid early in her 
tenure (the Board that elected the CEO will be more supportive) 
than later. Unobserved heterogeneity increases the count’s variance.

• In many cases, there is an upper limit to the number of possible 
events, 𝑀௜. A CEO can only reject a hostile bid, if there is a hostile 
bid. Thus, the maximum number of hostile bid rejections is 10 if 
there are 10 hostile bids.

• This maximum number is called an observation’s exposure. It can be 
incorporated as 

E[𝑦௜|𝒙௜] = 𝜆௜ = exp ሺ𝒙௜′𝛽ሻ * 𝑀௜= exp ሺ𝒙௜
ᇱ𝛽 ൅ ln 𝑀௜ ሻ

Poisson Model: Issues

• One implication of the Poisson model is equi-dispersion. That is,  
the mean and variance are equal: Var[𝑦௜|𝒙௜] = E[𝑦௜|𝒙௜]

• But, the first three cases (herding, uneven periods, heterogeneity) 
tend to cause overdisperion. That is, 

Varሾ𝑦௜|𝒙௜ሿ ൐ E[𝑦௜|𝒙௜]

• It is not rare to see overdispersion (‘extra’ heterogeneity) in the 
data: 

- A few traders will do many trades, many traders will do a few.

- A few assets will have many jumps, many assets will have few.

• Under overdispersion: Standard errors and p-values are too small.

Poisson Model: Overdispersion
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• Check for overdisperion: 

- Check overdispersion rate: 

Varሾ𝑦௜|𝒙௜ሿ/E[𝑦௜|𝒙௜] (in general, relative to df.)

Cameron and Trivedi’s (CT) rule of thumb for overdispersion: 

If Varሾ𝑦௜|𝒙௜ሿ/E[𝑦௜|𝒙௜]  > 2  overdispersion.

- CT (1990) test.  A test based on the assumption that under the 
Poisson model {(𝑦௜ െ E[𝑦ො௜])2 – Eሾ𝑦௜ሿ} has zero mean:

H0 (Poisson Model correct): Varሾ𝑦௜|𝒙௜ሿ ൌ E[𝑦௜|𝒙௜]
HA: Varሾ𝑦௜|𝒙௜ሿ = E[𝑦௜|𝒙௜] + α g(E[𝑦௜|𝒙௜]) 

Simple linear regression: {(𝑦௜ െ E[𝑦ො௜])2 – 𝑦௜}/{E[𝑦ො௜] sqrt(2)} 
against some g(E[𝑦௜|𝒙௜]), usually a linear or quadratic function of 
the mean. 

Poisson Model: Overdispersion - Testing

• When overdispersion occurs, we modify the model: 

- Keep Poisson model, but add ad-hoc models for the variance. For 
example, 

Var[𝑦௜] = 𝜙 𝜆௜, 
where

𝜙෠ ൌ ଵ

ேି௞
∑ ሺ௬೔ ି ఒ෡೔ሻమ

ఒ෡೔
ே
௜ୀଵ  (NB-1 Model)

Then, use ML estimation. If the mean and variance are correctly 
specified, βெ௅ா will have the usual good properties. 

- Specify an alternative distribution that can generate overdispersion. 

Poisson Model: Dealing with Overdispersion
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• Specify an alternative distribution that can generate overdispersion. 
Usual alternative distributions:

(1) Assume the overdispersion is gamma distributed across means—
resulting in a negative binomial model (or Poisson-gamma model)

(2) Assume the overdispersion is normally distributed (Poisson-
normal model).

Poisson Model: Dealing with Overdispersion

• Overdispersion

– Usually attributed to omitted and/or unobserved heterogeneity

– Can use Poisson ML estimates with corrected standard errors

– Alternatively, can use models without equi-dispersion

- Negative Binomial

- Mixed Poisson

• Truncation (especially, zero-truncation) –number of mergers and 
acquisitions. We only sample from M&A’s. A Poisson model would 
falsely allow Prob[𝑦௜ = 0] > 0.

• Excess zeros –data generated by two process: one for the “true 
zeros,” and one for the “excess zeros.”

• Correlated counts –i.e., i.i.d. assumption does not hold. Big count 
today is likely to be followed by a big count tomorrow.

Poisson Model: Summary of  Issues
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• An elegant solution to overdispersion, is the omitted (latent) 
heterogeneity. We model heterogeneity, by introducing a random 
effect on the expected mean: 

𝜆௜* ൌ 𝑒𝑥𝑝ሺ𝒙௜ ′𝛽 + 𝑢௜ሻ = 𝜆௜ ℎ௜ , 

where  ℎ௜ = 𝑒𝑥𝑝ሺ𝑢௜ሻ follows a one parameter gamma distribution 
Γ(𝜃, 𝜃), with E[ℎ௜] = 1 (same 𝑦௜ expected value as in the Poisson 
model) and Var[ℎ௜] = 1/𝜃 = 𝛼.  (We call 𝛼 the dispersion parameter).  

If we assume that Prob[𝑦௜ = 𝑗| 𝑥,𝑢] ~ Poisson, then, after integrating 
out 𝑓ሺ𝑢ሻ, Prob[𝑦௜ = 𝑗| 𝑥] ~ Negative Binomial (NegBin, NB).

Note: The one parameter gamma assumption, with a mean equal to 1, 
is similar to assuming in the CLM the error term has mean equal to 0. 
It produces the same mean for the process (= 𝜆௜). 

Poisson Model: Omitted Heterogeneity

• Details:

Let 𝑦௜, conditioned on 𝑥,𝑢, follow a Poisson distribution:
, c

Prob[𝑦௜ = 𝑗| 𝑥,𝑢] = 
ఒ೔
ೕ ௘షഊ೔

௝! 
=  

௘௫௣ሺ𝒙೔ᇱఉ + ௨೔ሻೕ ௘ష೐ೣ೛ሺ𝒙೔ᇲഁ + ೠ೔ሻ
௝! 

Then,

Prob[𝑦௜ = 𝑗| 𝑥] = ׬ Prob[𝑦௜ = 𝑗|𝑥,𝑢] 𝑓 𝑢  𝑑𝑢
ஶ
ିஶ

We need 𝑓ሺ𝑢ሻ to integrate:  

𝑓 exp ሺ𝑢 ሻ = 
ఈഀ ௘షഀೠ ௨ഀషభ

Γሺఈሻ (𝛼 > 0)

Under this assumptions, Prob[𝑦௜ = 𝑗| 𝑥] follows an NegBin.

Note: when α = 0, we are back to the Poisson model. 

Poisson Model: Omitted Heterogeneity
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Negative Binomial Model

• The Negative Binomial Distribution

𝑃 𝑦௜ ൌ 𝑗| 𝒙௜ ൌ ୻ሺఏ ା ௬೔ሻ 

୻ ௬೔ାଵ ୻ሺఏሻ
 𝑟௜௬೔  ሺ1 െ 𝑟௜ሻఏ 𝑗 ൌ 0, 1, 2, 3, …

𝜆௜ = exp ሺ𝒙௜′𝛽ሻ & 𝑟௜ = 
ఒ೔ 

ఒ೔ ା  ఏ

• Characteristics:
- Prob(𝑦௜ ൌ 𝑗|𝒙௜) has greater mass to the right & left of  mean.

- Conditional mean function is the same as the Poisson: 
E[𝑦௜|𝒙௜] = 𝜆௜ ൌ exp ሺ𝒙௡ ′𝛽ሻ  same partial effects.
Var[𝑦௜|𝒙௜] = 𝜆௜(1 + α 𝜆௜) > 𝜆௜ (a squared in the Var[.])

• The larger conditional variance increases the relative frequency of  
low and high counts. 

Negative Binomial Model

• The Negative Binomial (NegBin) Model can accommodate 
overdispersion. The model has an additional parameter (α = 1/𝜃):

Varሾ௬೔|𝒙೔ሿ
E[௬೔|𝒙೔]

ൌ {1 + α E[𝑦௜|𝒙௜]} (α =0  Poisson model, again)

• There are alternative parameterizations of  the negative binomial, 
with different variance functions. The one above is called the Negbin-
2 (NB-2) model by Cameron and Trivedi (1986).

• Different models can be generated by specifying different 
distributions for 𝑢௜. For example, 𝑢௜ follows an inverse Gaussian 
distribution -Dean et al. (1989). This Poisson-Inverse Gaussian model 
has heavier tail than the NegBin model. 
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NegBin Model – NB-P

• Without the heterogeneity argument, we could have introduced 
directly the NegBin distribution as Prob(𝑦௜ ൌ 𝑗|𝒙௜) is the NegBin pdf. 

• Along this line of  thinking, Cameron and Trivedi (1998) make a 
generalization, the NB-P model, where 𝜃 = 𝜃௜ 𝜆௜

ଶି௉

• Then, we have the Negbin P (NB-P) model:

𝑃 𝑦௜ ൌ 𝑗| 𝒙௜ ൌ ୻ሺఏ೔ ఒ೔మషುା ௬೔ሻ 

୻ ௬೔ାଵ ୻ሺఏ೔ ఒ೔మషುሻ
 𝑟௜௬೔  ሺ1 െ 𝑟௜ሻఏ೔ ఒ೔

మషು
𝑗 ൌ 0, 1, 2, …

• NB-2 is a special case, P=2. The conditional mean is still 𝜆௜ and the 
conditional variance is:

Varሾ𝑦௜|𝒙௜ሿ = 𝜆௜ [1 + (1/𝜃௜) 𝜆௜2-P] 𝜆௜
ଶି௉

where 𝜃௜ can be modeled as a function of  some driving variables, 𝒛௜.

NegBin Model – NB-P

• By letting 𝜃௜ = 𝑓ሺ𝒛௜ሻ, we generalize the NegBin model. For example,
𝜃௜ = exp(𝒛௜′γ)  we are modeling the variance. 

• These models are called Generalized Negative Binomial Model.

• The NB-1 and NB-2 models are non-nested. Vuong (1989) test is a 
possibility:

V = [sqrt(𝑁) mean(𝑚௜)]/𝑠𝒎
  ௗ  

N(0, 1)

where 𝑚௜ = 𝐿𝑜𝑔𝐿 ሼβ,𝜃ሽே஻ିଶ െ 𝐿𝑜𝑔𝐿 ሼβ,𝜃ሽே஻ିଵ

• Large values favor the NB-2 model. In applications, Greene (2007) 
finds that this statistic is rarely outside the inconclusive region (-1.96 
to +1.96).
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• Estimation: Maximum Likelihood 
- For the NB-2, we have

𝐿𝑜𝑔𝐿 ሼβ,𝜃ሽ ൌ෍ ln
Γሺ𝜃 ൅  𝑦௜ሻ 

Γ 𝑦௜ ൅ 1 Γሺ𝜃ሻ
൅ 𝑦௜ ln 𝑟௜ ൅ 𝜃 ln 1 െ 𝑟௜

ே

௜ୀଵ

where 𝑟௜ = 
ఒ೔ 

ఒ೔ ା  ఏ

The f.o.c.’s are straightforward and the resulting variance-covariance 
matrix is block diagonal.

Note: Poisson is consistent when NegBin is appropriate. Therefore, this 
is a case for the Robust covariance matrix estimator.  (Neglected    
heterogeneity that is uncorrelated with 𝒙௜ .)

NegBin Model – Estimation

•  Model Evaluation as usual: 
- LR, W, and LM tests
- AIC, BIC
- pseudo-R2

• Testing the NegBing Model.
- Relative to the Poisson model, we have an extra parameter in the 
NegBin model, α. 

- We can use a LR-test to test H0: α = 0. This tests the NegBin model. 
- A Wald test will also work

• For non-nested models (NB-1 vs. NB-2), use Vuong test.

NegBin Model – Model Evaluation
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----------------------------------------------------------------------
Negative Binomial Regression
Dependent variable               DOCVIS
Log likelihood function    -60134.50735  NegBin  LogL
Restricted log likelihood -103727.29625  Poisson LogL
Chi squared [   1 d.f.]     87185.57782  Reject Poisson model
Significance level               .00000
McFadden Pseudo R-squared      .4202634
Estimation based on N =  27326, K =   8
Information Criteria: Normalization=1/N

Normalized   Unnormalized
AIC              4.40185   120285.01469
NegBin form 2; Psi(i) = theta
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------
Constant|     .80825***       .05955       13.572   .0000

AGE|     .01806***       .00079       22.780   .0000      43.5257
EDUC|    -.03717***       .00386       -9.622   .0000      11.3206

FEMALE|     .32596***       .01586       20.556   .0000       .47877
MARRIED|    -.00605          .01880        -.322   .7477       .75862
HHNINC|    -.46768***       .04663      -10.029   .0000       .35208
HHKIDS|    -.15274***       .01729       -8.832   .0000       .40273

|Dispersion parameter for count data model
Alpha|    1.89679***       .01981       95.747   .0000

--------+-------------------------------------------------------------

Negative Binomial Model – Example (Greene)

• Partial Effects Should Be the Same

+---------------------------------------------------------------------
Scale Factor for Marginal Effects  3.1835   POISSON
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

AGE|     .05613***       .00131       42.991   .0000      43.5257
EDUC|    -.09490***       .00596      -15.923   .0000      11.3206

FEMALE|     .93237***       .02555       36.491   .0000       .47877
MARRIED|     .03069          .02945        1.042   .2973       .75862
HHNINC|   -1.66271***       .07803      -21.308   .0000       .35208
HHKIDS|    -.51037***       .02879      -17.730   .0000       .40273

--------+-------------------------------------------------------------
Scale Factor for Marginal Effects  3.1924  NEGATIVE BINOMIAL
--------+-------------------------------------------------------------

AGE|     .05767***       .00317       18.202   .0000      43.5257
EDUC|    -.11867***       .01348       -8.804   .0000      11.3206

FEMALE|    1.04058***       .06212       16.751   .0000       .47877
MARRIED|    -.01931          .06382        -.302   .7623       .75862
HHNINC|   -1.49301***       .16272       -9.176   .0000       .35208
HHKIDS|    -.48759***       .06022       -8.097   .0000       .40273

--------+-------------------------------------------------------------

Negative Binomial Model – Example (Greene)
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Formulations for Negative Binomial (Greene)

Poisson
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Formulations: NegBin-1 Model (Greene)

----------------------------------------------------------------------
Negative Binomial Regression
Dependent variable               DOCVIS
Log likelihood function    -60025.78734
Restricted log likelihood -103727.29625
NegBin form 1; Psi(i) = theta*exp[bx(i)]
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------
Constant|     .62584***       .05816       10.761   .0000

AGE|     .01428***       .00073       19.462   .0000      43.5257
EDUC|    -.01549***       .00359       -4.314   .0000      11.3206

FEMALE|     .33028***       .01479       22.328   .0000       .47877
MARRIED|     .04324**        .01852        2.335   .0196       .75862
HHNINC|    -.24543***       .04540       -5.406   .0000       .35208
HHKIDS|    -.14877***       .01745       -8.526   .0000       .40273

|Dispersion parameter for count data model
Alpha|    6.09246***       .06694       91.018   .0000

--------+-------------------------------------------------------------
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------------------------------------------------
Negative Binomial (P) Model
Dependent variable               DOCVIS
Log likelihood function    -59992.32903
Restricted log likelihood -103727.29625
Chi squared [   1 d.f.]     87469.93445
--------+----------------------------------------
-
Variable| Coefficient    Standard Error  b/St.Er. 
--------+----------------------------------------
-
Constant|     .60840***       .06452        9.429 

AGE|     .01710***       .00082       20.782 
EDUC|    -.02313***       .00414       -5.581 

FEMALE|     .36386***       .01640       22.187 
MARRIED|     .03670*         .02030        1.808 
HHNINC|    -.35093***       .05146       -6.819 
HHKIDS|    -.16902***       .01911       -8.843 

|Dispersion parameter for count data 
model

Alpha|    3.85713***       .14581       26.453 
|Negative Binomial. General form, NegBin

P
P|    1.38693***       .03142       44.140

--------+----------------------------------------

NB-2       NB-1       Poisson

Formulations: NegBin-P Model (Greene)

Partial Effects for Different Models (Greene)
Scale Factor for Marginal Effects  3.1835   POISSON
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

AGE|     .05613***       .00131       42.991   .0000      43.5257
EDUC|    -.09490***       .00596      -15.923   .0000      11.3206

FEMALE|     .93237***       .02555       36.491   .0000       .47877
MARRIED|     .03069          .02945        1.042   .2973       .75862
HHNINC|   -1.66271***       .07803      -21.308   .0000       .35208
HHKIDS|    -.51037***       .02879      -17.730   .0000       .40273

--------+-------------------------------------------------------------
Scale Factor for Marginal Effects  3.1924  NEGATIVE BINOMIAL - 2

AGE|     .05767***       .00317       18.202   .0000      43.5257
EDUC|    -.11867***       .01348       -8.804   .0000      11.3206

FEMALE|    1.04058***       .06212       16.751   .0000       .47877
MARRIED|    -.01931          .06382        -.302   .7623       .75862
HHNINC|   -1.49301***       .16272       -9.176   .0000       .35208
HHKIDS|    -.48759***       .06022       -8.097   .0000       .40273

--------+-------------------------------------------------------------
Scale Factor for Marginal Effects  3.0077  NEGATIVE BINOMIAL - P

AGE|     .05143***       .00246       20.934   .0000      43.5257
EDUC|    -.06957***       .01241       -5.605   .0000      11.3206

FEMALE|    1.09436***       .04968       22.027   .0000       .47877
MARRIED|     .11038*         .06109        1.807   .0708       .75862
HHNINC|   -1.05547***       .15411       -6.849   .0000       .35208
HHKIDS|    -.50835***       .05753       -8.836   .0000       .40273
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• Often, because of  the way we collect data,  we only observe 𝑦𝒊 ≥ 1. 
For example, we study M&A. We collect data on actual M&A offers.

• Good sample to get information on the decision to go for a M&A, 
but we get no information on the M&A offers that do no go through.

• Our data is truncated at zero, 𝑦௜ ൐ 0. These models, truncated at 
zero, are called Zero Truncated Models.

• If  we use a Poisson/NB model, we need to incorporate this fact. We 
need to use the zero-truncated Poisson/NB model. That is,

P[𝑦௜ = 𝑗|𝑦௜ > 0, 𝑥] = 
P[௬೔ = ௝ & ௬೔ > 0|௫]

P[௬೔ > 0|௫] = 
P[௬೔ = ௝|௫ሿ

ଵ ି P[௬೔ > 0| ௫] ∀𝑗 ൐ 0

We increase each unconditional probability by factor [1 െ P[𝑦௜ > 0|𝑥].

Issues: Truncation

• We use the zero-truncated Poisson/NB model. That is,

P[𝑦௜ = 𝑗|𝑦௜ > 0, 𝑥] = 
P[௬೔ = ௝|௫ሿ

ଵ ି P[௬೔ > 0| ௫] 𝑗 ൌ 1, 2, 3, …

For the Poisson model:

P[𝑦௜ = 𝑗|𝑦௜ > 0, 𝑥] = 
௘௫௣ሺ𝒙೔ᇱఉሻೕ ௘ష೐ೣ೛ሺ𝒙೔ᇲഁሻ

௝! ሺଵ ି ௘ష೐ೣ೛ሺ𝒙೔ᇲഁሻ]) 𝑗 ൌ 1, 2, 3, …

• We increase each unconditional probability by the factor [1 - f(0)], 
thus, the probability mass of  the truncated distribution adds up to 1.

• The truncated (conditional) mean count is: 
E[𝑦௜|𝒙௜] = 𝜆௜/[1 - 𝑒𝑥𝑝ሺെ𝜆௜ሻ] ് 𝜆௜ (unconditional mean count)

• ML estimation is straightforward. 

Issues: Truncation
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• Often the numbers of  zeros in the sample cannot be accommodated
properly by a Poisson or Negative Binomial model. Both models would 
underpredict them.

• There is said to be an excess zeros problem. New models are 
needed to deal with these type of  data.

• These models, called Two-part models, allow for two different 
process: one drives whether the value is 0 or positive (participation 
part), and the other one drives the value of  the strictly positive count 
(amount part).

• Proposed models:
- Zero inflated
- Hurdle models

Issues: Excess zeros

• Zero-inflated model have two kinds of zeros: “true zeros” and 
“excess zeros.” 

• Two groups of people: Always Zero & Not Always Zero

Example: Investors (traders) who sometime just did not trade that 
week versus investors who never ever do.

• Two models: (1) for the count and (2) for excess zeros. The key 
difference is that the count model allows zeros now. It is not a 
truncated count model, but allows for “corner solutions.”

• If we are interested in modeling trading, the zeros from investors 
who will never trade are not relevant. But, we only observe the zero, 
not the type of investor. This is the excess zeros problem.

Zero Inflation – ZIP Models
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Zero Inflation – ZIP Models
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• Note: lots of  zeros.

• We are interested in a stock trading per week model for investors. 

Two regimes (distributions) for the two types of investors (or zeros):

(1) Degenerate at zero (Prob[0]=1). (For investors that never trade.)

(2) Poisson (For traders, 0 is possible) 

• We convert this problem into a latent variable model.

𝑑௜* = 𝒘௜′δ + 𝑢௜, 𝑢௜ ~ N(0, σ2) 

𝑑௜ = I[𝑑௜*>0], 𝑖 trades if 𝑑௜* >0. 

- Participation part (Always Zero or Not Always Zero):

- Prob[𝑑௜ = 0|𝒘௜] = Πሺ𝒘௜′δ)  

Prob[𝑑௜ = 1|𝒘௜] = 1 – Πሺ𝒘௜′δ)  

 we can use a logit or a probit to model Πሺ𝒘௜′δ). 

Zero Inflation Poisson (ZIP) Models
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- Amount part:

- 𝑦௜*|𝒙௜ ~ 𝑓௉ = Poisson (latent Poisson, NB also possible) 

𝜆௜ = exp(𝒙௜′β) 

- 𝑦௜ = 𝑑௜ 𝑦௜* (𝑦௜ is observed, along with 𝒘௜, 𝒙௜) 

P[𝑦௜ = 𝑗|𝒙௜ ,𝑑௜ ൌ 1] =  
௘௫௣ሺ𝒙೔ᇱఉሻೕ ௘ష೐ೣ೛ሺ𝒙೔ᇲഁሻ

௝! ሺଵ ି ௘ష೐ೣ೛ሺ𝒙೔ᇲഁሻ])

- Mixing groups (𝑑௜ = 0 (Always Zero) & 𝑑௜ = 1 (Not Always Zero)):

- Conditional probability of 0  --i.e., P[Yi = 0|𝒘௜, 𝒙௜ , 𝑑௜] 
- P[𝑦௜ = 0|𝒘௜, 𝒙௜ , 𝑑௜ = 0] = 1 (no trade, if no participation)

- P[𝑦௜ = 𝑗|𝒘௜, 𝒙௜ , 𝑑௜ = 1] = P[𝑦௜*|𝒙௜ ] = 𝑓௉ሺ𝑦௜)  (Poisson)

Zero Inflation Poisson (ZIP) Models

- Mixing groups (continuation)

- Unconditional probabilities of 0 and 𝑗:
- P[𝑦௜ = 0|𝒘௜, 𝒙௜] = 1 * P[𝑑௜ = 0] + P[𝑦௜= 0|𝑑௜ ൌ 1] * P[𝑑௜ = 1] 

= Πሺ𝒘௜′δ) + 𝑓௉(𝑦௜ = 0) * [1 െ Πሺ𝒘௜′δ)] 

= Πሺ𝒘௜′δ)  +  𝑒ିఒ೔ * [1 െ  Πሺ𝒘௜′δ)] 

- P[𝑦௜ = 𝑗|𝒘௜, 𝒙௜] = 0 * P[𝑑௜ = 0] + P[𝑦௜=𝑗 |𝑑௜ ൌ 1] * P[𝑑௜ = 1]

= 𝑓௉(𝑦௜ = 𝑗) * [1 െ  Πሺ𝒘௜′δ)] 

= [
ఒ೔
ೕ ௘షഊ೔

௝! 
ሿ * [1 െ  Πሺ𝒘௜′δ)] 

- Expectation & Variance of counts:
- E[𝑦௜ = 𝑗|𝒘௜, 𝒙௜] = 0 * P[𝑑௜=0] + 𝜆௜ * P[𝑑௜=1] = 𝜆௜*[1 െ   Πሺ𝒘௜′δ)]

- Var[𝑦௜ = 𝑗|𝒘௜, 𝒙௜] =  𝜆௜ * [1 െ Πሺ𝒘௜′δ)] * [1 ൅ 𝜆௜  Πሺ𝒘௜′δ)] 

Zero Inflation Poisson (ZIP) Models
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• Overdispersion

Var[𝑦௜ = 𝑗|𝒘௜, 𝒙௜] / E[𝑦௜ = 𝑗|𝒘௜, 𝒙௜ ] = [1 ൅ 𝜆௜ Πሺ𝒘௜′δ)] 

- The more likely the Always Zero regime, the  greater the 
overdispersion.

• Partial effects

-
δாሾ௬೔ = ௝|𝒘೔, 𝒙೔ ሿ 

δ𝒙೔ೖ
ൌ 𝜆௜ * [1 െ  Πሺ𝒘௜′δ)] ∗ 𝛽௞

-
δாሾ௬೔ = ௝|𝒘೔, 𝒙೔ ሿ 

δ𝒘೔ೖ
ൌ 𝜆௜ * [

δஈሺ𝒘೔ᇱδ)
δ𝒘೔ೖ

ሿ  ∗ δ௞

• Similar results are obtained for the Zero-inflation NegBin model 
(ZINB). 

Zero Inflation Poisson (ZIP) Models

Two Forms of Zero Inflation Models

• Different ways of  thinking of  𝒘௜ (determinants of  Π) and 
𝒙௜  (determinants of  the amount 𝑗), generate different models. The 
ZIP-tau model, allows for the same determinants, but scales the β’s 
in the Π model.

• ZIP-tau = ZIP(𝜏)

P[𝑦௜ = 𝑗|𝒙௜] = [
ఒ೔
ೕ ௘షഊ೔

௝! 
ሿ 𝜆௜= 𝑒𝑥𝑝ሺ𝒙௜′𝛽ሻ

P(0 regime) = F(𝜏 𝒙௜′𝛽ሻ

• ZIP

P[𝑦௜ = 𝑗|𝒙௜] = [
ఒ೔
ೕ ௘షഊ೔

௝! 
ሿ 𝜆௜= 𝑒𝑥𝑝ሺ𝒙௜′𝛽ሻ

P(0 regime) = F(𝒛௜′𝛾ሻ
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Notes on Zero Inflation Models (Greene)

• Poisson is not nested in ZIP.  tau = 0 in ZIP(tau) or γ = 0 in ZIP 
does not produce Poisson; it produces ZIP with P(regime 0) = ½.

– Standard tests are not appropriate

– Use Vuong statistic.  ZIP model almost always wins.

• Zero Inflation models extend to NB models – ZINB(tau) and 
ZINB are standard models

– Creates two sources of overdispersion

– Generally difficult to estimate

ZIP(τ) Model

----------------------------------------------------------------------
Zero Altered Poisson      Regression Model
Logistic distribution used for splitting model.
ZAP term in probability is F[tau x ln LAMBDA]
Comparison of estimated models

Pr[0|means]       Number of zeros        Log-likelihood
Poisson          .04933   Act.= 10135 Prd.=  1347.9   -103727.29625
Z.I.Poisson .35944   Act.= 10135 Prd.=  9822.1    -84012.30960
Note, the ZIP log-likelihood is not directly comparable.
ZIP model with nonzero Q does not encompass the others.
Vuong statistic for testing ZIP vs. unaltered model is     44.5723
Distributed as standard normal. A value greater than
+1.96 favors the zero altered Z.I.Poisson model.
A value less than -1.96 rejects the ZIP model.
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Poisson/NB/Gamma regression model
Constant|    1.45145***       .01121      129.498   .0000

AGE|     .01140***       .00013       86.245   .0000      43.5257
EDUC|    -.02306***       .00075      -30.829   .0000      11.3206

FEMALE|     .13129***       .00256       51.357   .0000       .47877
MARRIED|    -.02270***       .00317       -7.151   .0000       .75862
HHNINC|    -.41799***       .00898      -46.527   .0000       .35208
HHKIDS|    -.08750***       .00322      -27.189   .0000       .40273

|Zero inflation model
Tau|    -.38910***       .00836      -46.550   .0000

--------+-------------------------------------------------------------
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----------------------------------------------------------------------
Zero Altered Poisson      Regression Model
Logistic distribution used for splitting model.
ZAP term in probability is F[tau x Z(i)     ]
Comparison of estimated models

Pr[0|means]       Number of zeros        Log-likelihood
Poisson          .04933   Act.= 10135 Prd.=  1347.9   -103727.29625
Z.I.Poisson      .36565   Act.= 10135 Prd.=  9991.8    -83843.36088
Vuong statistic for testing ZIP vs. unaltered model is     44.6739
Distributed as standard normal. A value greater than
+1.96 favors the zero altered Z.I.Poisson model.
A value less than -1.96 rejects the ZIP model.
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Poisson/NB/Gamma regression model
Constant|    1.47301***       .01123      131.119   .0000

AGE|     .01100***       .00013       83.038   .0000      43.5257
EDUC|    -.02164***       .00075      -28.864   .0000      11.3206

FEMALE|     .10943***       .00256       42.728   .0000       .47877
MARRIED|    -.02774***       .00318       -8.723   .0000       .75862
HHNINC|    -.42240***       .00902      -46.838   .0000       .35208
HHKIDS|    -.08182***       .00323      -25.370   .0000       .40273

|Zero inflation model
Constant|    -.75828***       .06803      -11.146   .0000
FEMALE|    -.59011***       .02652      -22.250   .0000       .47877

EDUC|     .04114***       .00561        7.336   .0000      11.3206
--------+-------------------------------------------------------------

ZIP Model

Partial Effects for Different Models

Scale Factor for Marginal Effects  3.1835   POISSON
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

AGE|     .05613***       .00131       42.991   .0000      43.5257
EDUC|    -.09490***       .00596      -15.923   .0000      11.3206

FEMALE|     .93237***       .02555       36.491   .0000       .47877
MARRIED|     .03069          .02945        1.042   .2973       .75862
HHNINC|   -1.66271***       .07803      -21.308   .0000       .35208
HHKIDS|    -.51037***       .02879      -17.730   .0000       .40273

--------+-------------------------------------------------------------
Scale Factor for Marginal Effects  3.1924  NEGATIVE BINOMIAL - 2

AGE|     .05767***       .00317       18.202   .0000      43.5257
EDUC|    -.11867***       .01348       -8.804   .0000      11.3206

FEMALE|    1.04058***       .06212       16.751   .0000       .47877
MARRIED|    -.01931          .06382        -.302   .7623       .75862
HHNINC|   -1.49301***       .16272       -9.176   .0000       .35208
HHKIDS|    -.48759***       .06022       -8.097   .0000       .40273

--------+-------------------------------------------------------------
Scale Factor for Marginal Effects  3.1149  ZERO INFLATED POISSON

AGE|     .03427***       .00052       66.157   .0000      43.5257
EDUC|    -.11192***       .00662      -16.901   .0000      11.3206

FEMALE|     .97958***       .02917       33.577   .0000       .47877
MARRIED|    -.08639***       .01031       -8.379   .0000       .75862
HHNINC|   -1.31573***       .03112      -42.278   .0000       .35208
HHKIDS|    -.25486***       .01064      -23.958   .0000       .40273

--------+-------------------------------------------------------------
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Vuong Statistic for Nonnested Models (Greene)

i,0 0 i i 0 i,0

i,1 1 i i 1 i,1

Model 0: logL  = logf (y | x , ) = m
       Model 0 is the Zero Inflation Model
Model 1: logL  = logf (y | x , ) = m
       Model 1 is the Poisson model
(Not nested.  =0 implies the splitting p







0 i i 0
i i,0 i,1

1 i i 1

n 0 i i 0
i 1

1 i i 1

2
a n 0 i i 0 0 i i 0
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robability is 1/2, not 1)
f (y | x , )Define a m m log
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




  



  
     

  
     

Limiting distribution is standard normal. Large + favors model
0, large - favors model 1, -1.96 < V < 1.96 is inconclusive.

• A hurdle model is also a modified count model with two parts:
- one generating the zeros
- one generating the positive values. 

- The models are not constrained to be the same. 

• A binomial probability model governs the binary outcome of 
whether a count variable has a zero or a positive value. 
- If 𝑦௜ > 0, the "hurdle is crossed," the conditional distribution of the 
positive values is governed by a zero-truncated count model.

 Difference with ZI models: The amount part does not allow zeros.

• Popular models in health economics (use of health care facilities, 
counselling, drugs, alcohol, etc.).

Hurdle Models



RS – Lecture 17

28

A Hurdle Model

• Two part model:

- Participation part: Probability model for more than zero 
occurrences. For example, a logit model:

𝑃ሾ𝑦௜ ൌ 0  𝒘௜  = 
௘௫௣ሺ௪೔ᇱఊ)

ଵ ା ௘௫௣ሺ௪೔ᇱఊ ) = 𝜋௜

- Amount part:  Model for number of occurrences given that the 
number is greater than zero.

For example, a (zero-truncated) Poisson model:

P[𝑦௜ = 𝑗|𝑦௜ > 0, 𝑥] =  
P[௬೔ = ௝|௫ሿ

ଵ ି P[௬೔ > 0| ௫] 𝑗 ൌ 1, 2, 3, …

=  
௘௫௣ሺ𝒙೔ᇱఉሻೕ ௘ష೐ೣ೛ሺ𝒙೔ᇲഁሻ

௝! ሺଵ ି ௘ష೐ೣ೛ሺ𝒙೔ᇲഁሻ])
[1 െ 𝑓௉ሺ0ሻሿ

A Hurdle Model

• Now, we  can calculate the expected value of 𝑦௜. Then,

E[𝑦௜|𝒙௜] = 𝜋௜ * 0 + (1 െ 𝜋௜) * E[𝑦௜|𝑦௜ ൐ 0,𝒙௜] 
=  (1 - 𝜋௜) * {𝜆௜/[1 - exp(-𝜆௜)]}

-The last terms comes from the mean of a zero-truncated Poisson.

• Partial effects will involve both parts of the model.

Note: The estimates of the parameters and choice probabilities from a 
truncated Poisson model will be biased and inconsistent in the 
presence of overdispersion. (Correct specification of the conditional 
mean of the truncated dependent variable requires the correct 
specification of all the moments of the underlying CDF.) 

 NegBin can help. Then, E[𝑦௜|𝒙௜] = (1 െ 𝜋௜) * {𝜆௜/[1 െ 𝑓ே஻ሺ0ሻ]}
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• Doctor Visits
----------------------------------------------------------------------
Poisson hurdle model for counts
Dependent variable               DOCVIS
Log likelihood function    -84211.96961
Restricted log likelihood -103727.29625
Chi squared [   1 d.f.]     39030.65329
Significance level               .00000
McFadden Pseudo R-squared      .1881407
Estimation based on N =  27326, K =  10
LOGIT  hurdle equation
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Parameters of count model equation
Constant|    1.53350***       .01053      145.596   .0000

AGE|     .01088***       .00013       85.292   .0000      43.5257
EDUC|    -.02387***       .00072      -32.957   .0000      11.3206

FEMALE|     .10244***       .00243       42.128   .0000       .47877
MARRIED|    -.03463***       .00294      -11.787   .0000       .75862
HHNINC|    -.46142***       .00873      -52.842   .0000       .35208
HHKIDS|    -.07842***       .00301      -26.022   .0000       .40273

|Parameters of binary hurdle equation
Constant|     .77475***       .06634       11.678   .0000
FEMALE|     .59389***       .02597       22.865   .0000       .47877
EDUC|    -.04562***       .00546       -8.357   .0000      11.3206

A Hurdle Model – Application (Greene)

• Partial Effects
----------------------------------------------------------------------
Partial derivatives of expected val. with
respect to the vector of characteristics.
Effects are averaged over individuals.
Observations used for means are All Obs.
Conditional Mean at Sample Point    .0109
Scale Factor for Marginal Effects  3.0118
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Effects in Count Model Equation
Constant|    4.61864         2.84230        1.625   .1042

AGE|     .03278          .02018        1.625   .1042      43.5257
EDUC|    -.07189          .04429       -1.623   .1045      11.3206

FEMALE|     .30854          .19000        1.624   .1044       .47877
MARRIED|    -.10431          .06479       -1.610   .1074       .75862
HHNINC|   -1.38971          .85557       -1.624   .1043       .35208
HHKIDS|    -.23620          .14563       -1.622   .1048       .40273

|Effects in Binary Hurdle Equation
Constant|     .86178***       .07379       11.678   .0000

FEMALE|     .66060***       .02889       22.865   .0000       .47877
EDUC|    -.05074***       .00607       -8.357   .0000      11.3206

|Combined effect is the sum of the two parts
Constant|    5.48042*        2.85728        1.918   .0551

EDUC|    -.12264***       .04479       -2.738   .0062      11.3206
FEMALE|     .96915***       .19441        4.985   .0000       .47877

A Hurdle Model – Application (Greene)
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Panel Data Models

• We have repeated measures on individuals, 𝑖, over time, 𝑡: {(𝑦௜,௧, 𝒙௜,௧) 
for 𝑖 = 1, ..., 𝑁 and 𝑡 = 1, ..., 𝑇}. 

• For count data models (and DCM), 𝑦௜,௧ are nonnegative integer-
valued outcomes.

• Typical issues for count data panels:

- Conditional on 𝒙௜,௧, the 𝑦௜,௧’s are likely to be serially correlated for a

given 𝑖, partly because of state dependence and partly because of serial 
correlation in shocks.

 Each additional year of data is not independent of previous years.

- Cross-sectional dependence between observations is also to be 
expected given emphasis on stratified clustered sampling designs.

Panel Data Models: Basic Models

• Pooled model (or population-averaged)

𝑦௜,௧ = 𝛼 ൅ 𝒙௜,௧′ + +  𝜀௜,௧

• Individual-specific effects model

𝑦௜,௧ = 𝛼௜ ൅ 𝒙௜,௧′ ൅ 𝜀௜,௧ 𝛼௜: FE or random effect

• Two-way effects (TWFE) model allows intercept to vary over 𝑖 and 𝑡
𝑦௜,௧ = 𝛼௜ ൅ 𝛾௧ ൅ 𝒙௜,௧′ ൅ 𝜀௜,௧

• Mixed model or random coefficients model allows  to vary over 𝑖

𝑦௜,௧ = 𝛼௜ ൅ 𝒙௜,௧′௜ ൅ 𝜀௜,௧



RS – Lecture 17

31

Panel Data Models: Basic Models

• Individual-specific effects model

𝑦௜,௧ = 𝛼௜ ൅ 𝒙௜,௧′ ൅ 𝜀௜,௧ = 𝒙௜,௧′ ൅ ሺ𝛼௜ ൅ 𝜀௜,௧ሻ

• Fixed effects (FE):

- 𝛼௜ is a random variable possibly correlated with 𝒙௜௧  (endogenous), but 
not 𝜀௜,௧. For example, education is correlated with time-invariant ability.

 pooled OLS, pooled GLS, RE are inconsistent for β

 within (FE) and FD estimators are consistent.

• Random effects (RE) or population-averaged (PA):

- 𝛼௜ is purely random (usually, i.i.d. (0, σ2) unrelated to 𝒙௜௧
 appropriate FE and RE estimators are consistent for β.

Panel Data Models: Non-linear Models

• In contrast to linear models, solutions for nonlinear models tend to

lack generality and are model-specific. Standard count models include: 
Poisson and negative binomial.

• Count models involve discreteness, nonlinearity and intrinsic 
heteroskedasticity. Endogeneity may be an issue.

• General approaches are similar to those for the linear case: Pooled 
(PA), RE and FE

• Pooled or population-averaged (PA) model: Apply as usual.

- This is the same model as in cross-section case, with adjustment 
for correlation over time for a given individual.
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• RE and FE have some complications:

- RE often not tractable. Numerical integration needed.

- FE models complicated for short panels (small T, large 𝑁).

• A fully parametric model may be specified, with separable 
heterogeneity and conditional density

𝑓ሺ𝑦௜,௧|𝛼௜, 𝒙௜,௧) = 𝑓ሺ𝑦௜,௧|𝛼௜ ൅ 𝒙௜,௧′ , 𝛾) 𝑡 = 1, 2, .., 𝑇;  𝑖=1,2..., 𝑁

or nonseparable heterogeneity

𝑓ሺ𝑦௜,௧|𝛼௜, 𝒙௜,௧) = 𝑓ሺ𝑦௜,௧|𝛼௜ ൅ 𝒙௜,௧′௜, 𝛾) 𝑡 = 1, 2, .., 𝑇; 𝑖=1,2..., 𝑁
where γ denotes additional model parameters such as variance 
parameters and 𝛼௜ represents individual effects.

Panel Data Models: Non-linear Models

• Random Parameters: Mixed models, latent class models, hiererchical –
all extended to Poisson and NB.

• Standard errors: clustered-robust, bootstrapping are OK.

Panel Data Models: Non-linear Models
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Panel Data Models: Pooled (Trivedi)

• Pooled estimation:  

𝑦௜,௧|𝒙௜,௧ ~ f[𝛼௜ 𝜆௜,௧] = 𝑓[exp(𝒙௜,௧’β)] 

• We can assume a correlated error structure.

• Specify an 𝑓. For example, Poisson:

𝑦௜,௧|𝒙௜,௧ ~ Poisson[exp(𝒙௜,௧’β)] 

• Pooled Poisson of 𝑦௜,௧ on intercept and 𝒙௜,௧ gives consistent β.

- Use cluster-robust SE where cluster on the individual.

- These control for both overdispersion and correlation over 𝑡 for a 
given 𝑖.

Panel Data Models: Pooled (Trivedi)

By comparison, the default (non cluster-robust) SE’s are 1/4 as large.
 The default (non cluster-robust) t-statistics are 4 times as large.
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Panel Data Models: PA (Trivedi)

Panel Data Models: PA (Trivedi)
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Panel Data Models: PA (Trivedi)

Panel Data Models: PA (Trivedi)

• In general, SE’s are within 10% of  pooled Poisson cluster-robust SE’s.

• The default (non cluster-robust) t-statistics are 3.5 to 4 times larger.

• No control for overdispersion.
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Panel Data Models: PA (Trivedi)

• The correlations Cor[𝑦௜,௧, 𝑦௜,𝒔|𝒙௜,௧] for PA (unstructured) are not 
equal. But they are not declining as fast as AR(1).

Panel Data Models: FE

• Fixed Effects: 

𝑦௜,௧|𝒙௜,௧ ~ f[𝛼௜ 𝜆௜,௧] = f[𝛼௜ exp(𝒙௜,௧′β)] 

- In general, estimation is not possible in short panels.

- Incidental parameters problem:

- 𝑁 fixed effects 𝛼௜ plus 𝑘 regressors means (𝑁 + 𝑘) parameters

- But (𝑁+K) → ∞  as  𝑁→ ∞

- Need to eliminate 𝛼௜ by some sort of differencing, or concentrated 
likelihood argument.

• Fixed effects extensions to hurdle, finite mixture, zero-inflated models 
are currently not available.
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Panel Data Models: FE Poisson (Trivedi)

• Derivation of fixed effects estimator for the Poisson panel

- Poisson MLE simultaneously estimates  and 𝛼ଵ, ... , 𝛼ே. The log-
likelihood is

where 𝜆௜,௧ = exp(𝒙௜,௧′).

- f.o.c.’s for 𝛼௜ yields 𝛼ො௜ = Σt𝑦௜,௧/ Σt 𝜆௜,௧ (a sufficient statistic for 𝛼௜).

- Substituting 𝛼ො௜ into lnL yields the concentrated likelihood function.

- Dropping terms not involving  :

- There is no incidental parameters problem

- Consistent estimates of  for fixed 𝑇 and 𝑁→∞ can be obtained 
by maximization of ln Lconc()

- f.o.c. with respect to  yields first-order conditions:

that can be re-expressed as

Note: 𝜆௜,௧/(∑ 𝜆௜,௧்
௧ୀଵ ) = Time-invariant 𝑥௜ ’s disappear! 

Panel Data Models: FE Poisson (Trivedi)
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• Time-invariant regressors will be eliminated also by the differencing 
transformation. Some marginal effects not identified.

• May substitute individual specific dummy variables, though this raises 
some computational issues.

• Poisson and linear panel model special in that simultaneous

estimation of β and α provides consistent estimates of β in short panels, 
so there is no incidental parameters problem.

• The above assumes strict exogeneity of regressors.

• We can handle endogenous regressors under weak exogeneity 
assumption. A moment condition estimator can be defined using the

previous f.o.c.’s. 

• This FE approach does not extend to several empirically important 
models: hurdle, finite mixture models, and zip.

Panel Data Models: FE Poisson – Pros & Cons

PDM: FE-Poisson with panel bootsrapped SE’s 
(Trivedi)

• The default (non cluster-robust) t-statistics are 2 times larger.
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• Random Effects:

𝑦௜,௧|𝒙௜,௧ t ~𝑓ሾ𝛼௜ exp(𝒙௜,௧′)] = 𝑓ሾexp(ln 𝛼௜+ 𝒙௜,௧′ )] 

𝛼௜ is unobserved but is not correlated with 𝒙௜,௧.

- Poisson: Two treatments:

- (1) 𝛼௜ is gamma distributed. 

- It becomes a NegBin model (analytical solution!).

- E[𝑦௜,௧|𝒙௜,௧, β] = 𝜆௜,௧= exp(𝒙௜,௧′).

- (2) Contemporary treatments are assuming ln 𝛼௜ ~N(0,σ2)

 analytical (closed form) solution does not exist (one-
dimensional integral, done with simulation or quadrature based 
estimators). 

Panel Data Models: RE (Trivedi)

Panel Data Models: RE (Trivedi)

- Contemporary treatments are assuming ln 𝛼௜~N(0,σ2)

 analytical (closed form) solution does not exist (one-
dimensional integral, done with simulation or quadrature based 
estimators. 

- It can extend to slope coefficients (higher-dimensional integral)

- E[𝑦௜,௧|𝒙௜,௧, β] = 𝜆௜,௧ = exp(𝒙௜,௧′β).

- NB with random effects is equivalent to two “effects” one time 
varying, one time invariant. The model is probably overspecified.

Note: It is common to find similar results for RE models (1) and (2).
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PDM: RE-gamma with panel bootsrapped SE’s 
(Trivedi)

Panel Poisson: Estimator comparison (Trivedi)

• Compare following estimators

- Pooled Poisson with cluster-robust SE.’s

- Pooled population averaged Poisson with unstructured correlations 
and cluster-robust SE’s

- RE Poisson with gamma random effect and cluster-robust SE’.s.

- RE Poisson with normal random effect and default SE.’s

- FE Poisson and cluster-robust SE’s

• Find that

- Similar results for all RE models

- Note that these data are not good to illustrate FE as regressors have

little within variation.
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Panel Poisson: Estimator comparison (Trivedi)

Panel Poisson: FE vs RE (Trivedi)
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A Peculiarity of the FE-NB Model (Greene)

• ‘True’ FE model has 𝜆௜ = exp(𝑐௜ + 𝒙௜,௧′). Cannot be fit if there are 
time invariant variables.

• Hausman, Hall and Griliches (Econometrica, 1984) has 𝑐௜
appearing in θ (variance). 

– Produces different results

– Implies that the FEM can contain time invariant variables. 

+---------------------------------------------+
| Panel Model with Group Effects              |
| Log likelihood function       -33576.74 | Hausman et al. version.    
| Unbalanced panel has    7293 individuals.   | FENB turns into a logit
| Neg.Binomial Regression -- Fixed Effects    | model.
+---------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
HHNINC  |     .23681421       .05317660     4.453   .0000    .35208362
EDUC    |     .08097026       .00267695    30.247   .0000   11.3206310
HSAT    |    -.13764986       .00336492   -40.907   .0000   6.78542607
+---------------------------------------------+
| FIXED EFFECTS NegBin Model                  |
| Log likelihood function       -51020.09 | ‘True’ FE model. Estimated
| Bypassed 1153 groups with inestimable a(i). | by ‘brute force.’
| Negative binomial regression model          |
+---------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
---------+Index function for probability
HHNINC  |     .14058502       .04799217     2.929   .0034    .35040228
EDUC    |    -.01688381       .02135354     -.791   .4291   11.2596731
HSAT    |    -.15775644       .00304539   -51.802   .0000   6.66405976
---------+Overdispersion parameter
Alpha   |    7.58363763       .01432940   529.236   .0000

Panel Data Models - Application (Greene)
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PDM - Moment based Estimation (Trivedi)

PDM - Moment based Estimation (Trivedi)
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Example: Fixed Effects GMM in Stata 11

PDM - Moment based Estimation (Trivedi)

PDM - Moment based Estimation (Trivedi)

• Implementing FE GMM in Stata 11
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• Standard FE with robust SE (with xtpqml add-on) in Stata 11

PDM - Moment based Estimation (Trivedi)

PDM – Dynamics (Trivedi)

• Individual effects model allows for time series persistence via
unobserved heterogeneity, 𝛼௜. For example, high 𝛼௜. means high IPOs 
each period.

• Alternative time series persistence is via true state dependence, 
𝑦௜,௧ିଵ. For example, a lot of  IPOs last period lead to a lot of  IPOs 
this period.

• Linear model:

𝑦௜,௧ = 𝛼௜ + ρ 𝑦௜,௧ିଵ ൅ 𝒙௜,௧′ +  𝜀௜,௧

• Poisson model with exponetial feedback: One possibility (designed 
to confront the zero problem) is

𝜇௜,௧= 𝛼௜ 𝜆௜,௧ = 𝛼௜ exp(ρ 𝑦௜,௧
∗ + 𝒙௜,௧′ ), 𝑦௜,௧

∗ = min(𝑐௜, 𝑦௜,௧ିଵ).
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• In fixed effects case, the Poisson FE estimator is now inconsistent.
Instead assume weak exogeneity

E[𝑦௜,௧|𝑦௜,௧ିଵ, 𝑦௜,௧ି𝟐, ... , 𝒙௜,௧, 𝒙௜,௧ିଵ, ...] = 𝛼௜ λit-1

• Use an alternative quasi-difference
E[𝑦௜,௧  െ (𝜆௜,௧/𝜆௜,௧ିଵ) 𝑦௜,௧ିଵ|𝑦௜,௧ିଵ, 𝑦௜,௧ିଶ, ... ,𝒙௜,௧, 𝒙௜,௧ିଵ, ...] = 0 

• Then, MM or GMM based on:
E[𝒛௜,௧ {𝑦௜,௧ െ (𝜆௜,௧/𝜆௜,௧ିଵ) 𝑦௜,௧ିଵ}] = 0 

where 𝒛௜,௧ is a vector of  instruments. For example, in the just-
identified case: (𝑦௜,௧ିଵ, 𝒙௜,௧).

• Windmeijer (2008) has a discussion of  this topic.

PDM – Dynamics (Trivedi)

• Just Identified (JI) GMM: Ignoring individual specific effects

PDM – Dynamics – GMM Example (Trivedi)



RS – Lecture 17

47

• Over Identified (OI) GMM

PDM – Dynamics – GMM Example (Trivedi)

PDM - Dynamics – Poisson Extension (Trivedi)
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PDM - Dynamics – Poisson Extension (Trivedi)

PDM - Dynamics – Initial Conditions (Trivedi)
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PDM – Conditionally correlated RE (Trivedi)

PDM – Conditionally correlated RE (Trivedi)
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Dynamic GMM without initial condition (Trivedi)

• Here individual specific effect is captured by the initial condition

Overidentified dynamic GMM with initial condition
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Dynamic JI GMM with Initial Conditions

Dynamic OI GMM with Initial Conditions
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PDM: Remarks (Trivedi)

• Much progress in estimating panel count models, especially in 
dealing with endogeneity and non-separable heterogeneity.

• Great progress in variance estimation.

• RE models pose fewer problems.

• For FE models moment-based/IV methods seem more tractable for
handling endogeneity and dynamics. Stata’s new suite of  GMM
commands are very helpful in this regard.

• Because FE models do not currently handle important cases, and
have other limitations, CCR panel model with initial conditions, is an 
attractive alternative, at least for balanced panels.


