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Lecture 6
Multiple Choice Models

Part II – MN Probit, Ordered Choice 

For private use, not to be posted/shared online).

DCM: Different Models 

• Popular Models:

1. Probit Model 

2. Binary Logit Model

3. Multinomial Logit Model

4. Nested Logit model

5. Ordered Logit Model

• Relevant literature:

- Train (2003): Discrete Choice Methods with Simulation

- Franses and Paap (2001): Quantitative Models in Market 
Research

- Hensher, Rose and Greene (2005): Applied Choice Analysis
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• In the MNL model we assumed independent  with extreme value 
distributions. This essentially created the IIA property. 

• This is the main weakness of the MNL model.

• The solution to the IIA problem is to relax the independence 
between the unobserved components of the latent utility, .

• Solutions to IIA

– Nested Logit Model, allowing correlation between some choices.

– Models allowing correlation among the ’s, such as MP Models. 

– Mixed or random coefficients models, where the marginal utilities 
associated with choice characteristics vary between individuals. 

Model – IIA: Alternative Models

• Changing the distribution of the error term in the RUM equation 
leads to alternative models. 

• A popular alternative: The ’s follow an independent standard 
normal distributions for all 𝑛, 𝑗.  

U = 𝒙′  + ,  ~ N(0, Ω)

• We retain independence across subjects but we allow dependence 
across alternatives, assuming that the vector  = (ଵ, ଶ, …, ) 
follows a multivariate normal distribution, but with arbitrary covariance 
matrix Ω.

Multinomial Probit Model
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• The vector  = (ଵ, ଶ, …, ) follows a multivariate normal
distribution, but with arbitrary covariance matrix Ω. 

• The model is called the Multinomial probit model. It produces 
results similar results to the MNL model after standardization.

• Some restrictions (normalization) on Ω are needed. 

• As usual with latent variable formulations, the variance of the error 
term cannot be separated from the regression coefficients. Setting the 
variances to one means that we work with a correlation matrix rather 
than a covariance matrix. 

Multinomial Probit Model

• Main advantages: 

- Using ML, joint estimation of all parameters is possible.

- It allows correlation between the utilities that an individual assigns 
to the various alternatives (relaxes IIA). 

- It does not rely on grouping choices. No restrictions on which 
choices are close substitutes.

- It can also allow for heterogeneity in the (marginal) distributions 
for .

• Main difficulty: Estimation. 

- ML estimation involves evaluating probabilities given by 
multidimensional normal integrals, a limitation that forces practical 
applications to a few alternatives (𝐽 = 3, 4). Quadrature methods can 
be used to approximate the integral, but for large 𝐽, often imprecise.

MP Model – Pros & Cons
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MP Model – Estimation

• Probit Problem:
𝑃 ൌ 𝑃ሾ𝑦 ൌ 1  𝒙 =

 … 𝜙 ξଵ, … , ξିଵ, ξାଵ, … , ξ  
ஶ
ξ

ஶ
ξభ

𝑑ξଵ…𝑑ξିଵ 𝑑ξାଵ… 𝑑ξ

ሺ𝐽 െ 1ሻ-dimensional integral involves ξ ൌ    െ   , which is 
normally distributed, N(0, Ω). We can rewrite the probability as:

𝑃ሾ𝑦 ൌ 1  𝒙 = P(ξ ൏ 𝑉)

where 𝑉 is the vector with 𝑘 element 𝑉 = 𝒙
ᇱ βെ 𝒙

ᇱ β

Let θ ={β, Ω}. To get the MLE, we need to evaluate this integral for 
any β and Ω. The MLE of θ maximizes

𝐿 = ∑ ∑ 𝑦  ln ሺP(ξ ൏ 𝑉ሻሻ  ⇐ we need to integrate.

This is the main “problem” with the MP model.

• We need to integrate to get log P(ξ ൏ 𝑉ሻ 

If 𝐽 = 3, we need to evaluate a bivariate normal –no problem. 

If 𝐽 > 3, we need to evaluate a 3-dimensional integral. A usual 
approach is to use Guassian quadrature (Recall Math Review, Lecture 
12). 

Most current software programs use the Butler and Moffit (1982) 
method, based on Hermite quadrature. 

Practical considerations: If 𝐽 > 4, numerical procedures get 
complicated and, often, imprecise. For these cases, we rely on 
simulation-based estimation -simulated maximum likelihood or SML.

MP Model – Estimation & Integration
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• Newton-Cotes Formulae

– Nodes: Use evenly-spaced functional values

– Weights: Use Lagrange interpolation. Best, given the nodes.

– It can explode for large 𝑛 (Runge’s phenomenon)

• Gaussian Quadratures

– Select functional values at non-uniformly distributed points to 
achieve higher accuracy. The values are not predetermined, but 
unknowns to be determined.

– Nodes and Weight are both “best” to get an  exact answer if 
𝑓ሺ. ሻ is a (2𝑛 െ 1)th-order polynomial. Legendre polynomials are 
used.

– Change of variables  the interval of integration is [-1, 1]. 

Review: Gaussian Quadratures

10

• The Gauss-Legendre quadrature formula is stated as

 𝑓 𝑥  𝑑𝑥
ୀ𝟏
ୀି𝟏 = ∑ 𝑐 𝑓ሺ𝑥ሻ


ୀଵ ,

the 𝑐 's are called the weights, the 𝑥 's are called the quadrature 
nodes. The approximation error term, , is called the truncation 
error for integration.

For Gauss-Legendre quadrature, the nodes are chosen to be zeros of  
certain Legendre (orthogonal) polynomials.

Review: Gaussian Quadratures
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Change of Interval for Gaussian Quadrature

• Coordinate transformation from [𝑎, 𝑏] to [-1, 1]

This can be done by an affine transformation on t and a change 
of variables.
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•For 𝑛 = 2, we have four unknowns (𝑐ଵ, 𝑐ଶ, 𝑥ଵ, 𝑥ଵ). We found them by 
assuming that the formula gives exact results for integrating a general 
3rd order polynomial. It can also be done by choosing (𝑐ଵ, 𝑐ଶ, 𝑥ଵ, 𝑥ଶ) 
such that it yields “exact integral” for 𝑓 𝑥 = 𝑥, 𝑥ଵ,  𝑥ଶ, 𝑥ଷ.
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• Gauss Quadrature General formulation:

Review: Gaussian Quadrature on [-1, 1]

𝑛 ൌ 2:

න 𝑓 𝑥  𝑑𝑥 ൌ
ଵ

ିଵ
𝑐ଵ𝑥ଵ  𝑐ଶ𝑥ଶ
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Exact integral for 𝑓 𝑥 = 𝑥, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ. 
Four equations for four unknowns
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Review: Gaussian Quadrature on [-1, 1]

• Case 𝑛 ൌ 2:  𝑓 𝑥  𝑑𝑥 ൌ
ଵ
ିଵ 𝑐ଵ𝑥ଵ  𝑐ଶ𝑥ଶ

14

Review: Gaussian Quadrature on [-1, 1]

• Now, choose (𝑐ଵ, 𝑐ଶ, 𝑐ଷ, 𝑥ଵ, 𝑥ଵ, 𝑥ଷ). such that the method yields 
“exact integral” for 𝑓 𝑥 = 𝑥, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ. (Again, (𝑐ଵ, 
𝑐ଶ, 𝑐ଷ, 𝑥ଵ, 𝑥ଵ, 𝑥ଷ) are calculated by assuming the formula gives 
exact expressions for integrating a fifth order polynomial).

x3x1-1 1x2

• Case 𝑛 ൌ 3:  𝑓 𝑥  𝑑𝑥 ൌ
ଵ
ିଵ 𝑐ଵ𝑥ଵ  𝑐ଶ𝑥ଶ  𝑐ଷ𝑥ଷ
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Review: Gaussian Quadrature on [-1, 1]
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• Approximation formula for 𝑛 ൌ 3
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Review: Gaussian Quadrature on [-1, 1]
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• Evaluate:

- Coordinate transformation

- Two-point formula (𝑛 ൌ 2)
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Review: Gaussian Quadrature – Example 1
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- Three-point formula (𝑛 = 3)

- Four-point formula (𝑛 = 4)
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Review: Gaussian Quadrature – Example 1
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• Evaluate 44949742.
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- Coordinate transformation

Review: Gaussian Quadrature – Example 2
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- Three-point formula (𝑛 = 3)
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- Two-point formula (𝑛 = 2)

Review: Gaussian Quadrature – Example 2
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Hermite Quadrature (Greene)

• Hermite (or Gauss–Hermite) quadrature is an extension of  the 
Gaussian quadrature method for approximating the value of  integrals 
of  the following kind: 

𝐼 ൌ  𝑒ି௧
మ
𝑓ሺ𝑡ሻ𝑑𝑥

ஶ
ିஶ = ∑ 𝑤  𝑓ሺ𝑥ሻ


ୀଵ ,

• It is a method well adapted to the kind of  integral we see when we 
assume normality for 𝑓ሺሻ, like in probit models. 

• Useful approximation to compute moments of  a normal 
distribution.

The 𝑥 roots are given by the Hermite polynomial, 𝐻, and the 
weights, 𝑤 are given by:

Hermite Quadrature (Greene)

H2
h hh 1
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Adapt to integrating out a normal variable
exp( (v / ) )f(x) f(x, v) dv
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Change the variable to z = (1/( 2))v,  
           v = ( 2)z and  , dv=( 2)dz
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This can be accurately approximated by Hermite quadrature
f(x) f(x, z)W

   

 

• The problem: approximating an integral, involving exp(-x2): 
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Hermite Quadrature (Greene)

Example (Butler and Moffitt’s Approach): Random Effects Log 
Likelihood Function
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Butler and Moffitt: Compute this by Hermite quadrature

 when  normal density

 = quadrature node; quadrature weight
 = is estimated with

Example (continuation): 
Nodes for 8 point Hermite Quadrature:  
-2.930637 -1.981657 -1.157194 -0.381187  0.381187  1.157194  
1.981657  2.930637

Weights for 8 point Hermite Quadrature:  
0.0001996041 0.0170779830 0.2078023258 0.6611470126 
0.6611470126 0.2078023258 0.0170779830 0.0001996041

Note: R package pracma compute all Gauss-Hermite nodes and 
weights, with function gaussHermite(j), where j=8 delivers the above 
values.

Hermite Quadrature (Greene) - Example
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Multidimensional Integrals: A Curse

• In the review, we concentrated on one-dimensional integrals. For 
integration in multiple dimensions, one approach is to phrase the 
multiple integral as repeated one-dimensional integrals. 

• But, eventually, we run into the so-called curse of  dimensionality. 
Four or more dimensions are complicated and, often, imprecise.

• There are two methods that work well:
1. Monte Carlo: Based on repeated function evaluations, not repeated 
integrations using one-dimensional methods.

Popular algorithm:  Markov chain Monte Carlo (MCMC), which include 
the Metropolis-Hastings algorithm and Gibbs sampling.

2. Sparse grids: Based on a one dimensional quadrature rule, but uses a 
recursive combination of  univariate results.

• ML Estimation is complicated due to the multidimensional 
integration problem. Simulation-based methods approximate the 
integral. Relatively easy to apply.

• Simulation provides a solution for dealing with problems involving 
an integral. For example:

𝐸ሾℎ 𝑢 ሿ ℎ = 𝑢  𝑓 𝑢  𝑑𝑢

• All GMM and many ML problems require the evaluation of an 
expectation. In many cases, an analytic solution or a precise numerical 
solution is not possible. But, we can always simulate 𝐸ሾℎ 𝑢 ሿ: 
- Steps

- Draw R pseudo RV from 𝑓 𝑢 : 𝑢ଵ, 𝑢ଶ, ..., 𝑢ோ (𝑅: repetitions)

- Compute 𝐸ሾℎ 𝑢 ሿ = (1/R) ∑ ℎሺ𝑢ሻோ
ୀଵ

MP Model – Simulation-based Estimation
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• We call 𝐸ሾℎ 𝑢 ሿ a simulator. 

• If ℎ . is continuous and differentiable, then 𝐸ሾℎ 𝑢 ሿ will be 
continuous and differentiable.

• Under general conditions, 𝐸ሾℎ 𝑢 ሿ provides an unbiased (& most 
of the times consistent) estimator for 𝐸ሾℎ 𝑢 ሿ. 

• The variance of 𝐸ሾℎ 𝑢 ሿ is equal to Var ℎ 𝑢 /𝑅.

• Last semester we introduced several simulators: Importance 
Sampling, Gibbs Sampling, Metropolis-Hastings Algorithm. In this 
lecture, we will present a very fast simulator: GHK (Geweke-
Hajivassiliou-Keane).

MP Model – Simulation-based Estimation

• This transformation allows one to convert observations that come 
from a uniform distribution from 0 to 1 to observations that come 
from an arbitrary distribution.

Let U denote an observation having a uniform distribution [0, 1].

Let 𝑓 𝑥 denote an arbitrary pdf and 𝐹 𝑥 its corresponding CDF. 
Let 𝑋 ൌ  𝐹ିଵሺ𝑈ሻ.

We want to find the distribution of 𝑋.

Review: The Probability Integral Transformation

1 0 1
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• Find the distribution of X.

Hence:

Thus if 𝑈 ~ Uniform distribution in [0, 1], then,

𝑋 ൌ  𝐹ିଵሺ𝑈ሻ has density 𝑓 𝑥 .

Review: The Probability Integral Transformation

    1 ( )G x P X x P F U x     

 P U F x   
 F x

       g x G x F x f x   

• The goal of some estimation methods is to simulate an expectation, 
say 𝐸ሾℎ 𝑍 ሿ. To do this, we need to simulate 𝑍 from its distribution. 
The probability integral transformation is very handy for this task.

Example: Exponential distribution

Let 𝑈 ~ Uniform(0, 1).

Let 𝐹 𝑥 = 1 െ  expሺλ𝑥ሻ –i.e., the exponential distribution.

Then,

-logሺ1 െ 𝑈ሻ/λ ~ 𝐹 (exponential distribution)

Example: If 𝐹 is the standard normal, 𝐹ିଵ has no closed form 
solution. Most computers programs have a routine to approximate F-1

for the standard normal distribution. 

Review: The Probability Integral Transformation
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• Truncated RVs can be simulated along these lines. 

Example: 𝑈 ~ N(μ, σ2), but it is truncated  between a and b. Then,

U  can be simulated by letting F(u) = Z and solving for u as:

Review: The Probability Integral Transformation

• Probit Problem:

- We write the probability of choice 𝑗 as: 𝑃ሾ𝑦 ൌ 𝑗  𝒙 = P(ξ ൏ 𝑉)

where 𝑉 is the vector with 𝑘 element 𝑉 = 𝒙
ᇱ βെ 𝒙

ᇱ β

Let θ = {β, Ω}. The MLE of θ maximizes

𝐿 = ∑ ∑ 𝑦  ln ሺP(ξ ൏ 𝑉ሻሻ  ⇐ we need to integrate

We need to integrate to get log P(ξ ൏ 𝑉ሻ:

If 𝐽 = 3, we need to evaluate a bivariae normal –no problem. 

If 𝐽 = 4, we need to evaluate a 3-dimensional integral. Possible using 
Guassian quadrature –see Butler and Moffit (1982).

If 𝐽 > 4, numerical procedures get complicated and, often, imprecise.

MP Model – Simulation-based Estimation
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• We need to integrate to get log P(ξ ൏ 𝑉ሻ 

• A simulation can work well, by approximating

P[𝑦 ൌ 𝑗|X] = P(ξ ൏ 𝑉ሻ ≈ 
ଵ

ோ
∑ I[ξ

 ൏ 𝑉] ோ
ୀଵ

where we draw ξ
 as an i.i.d. N(0, Ω), 𝑅 times.

This simulator is called frequency simulator. It is unbiased and 
between [0, 1]. But, its derivatives (zero or undefined) complicates 
calculations.

.

MP Model – Simulation-based Estimation

• Let’s go over a detailed example of the simple frequency simulator. 

Example 1: Binary (0,1) Probit

- Step 1

– For each observation 𝑛 =1, ..., 𝑁 draw r ~ N(0, 1), (𝑟 = 1,  2, ..., 
𝑅 (𝑅: repetitions)

– Initialize y_count = 0  

– Set starting values:  = ௧

– Compute 𝑦∗ = 𝒙ᇱ  ௧ + L 𝜂 ;  L= choleski factor (LL’= )

– Evaluate: 𝑦∗ > 0  y_count = y_count + 1

– Repeat 𝑅 times

MP Model – Simulation-based Estimation
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Example 1 (continuation): Binary Probit

- Step 2 - Calculate probabilities

𝑃| ௧ = y_count/𝑅 -i.e., empirical frequency

- Step 3: Form the simulated LL function

SLL= ∑ 𝑦 ln(𝑃|௧) + ሺ1 െ 𝑦ሻ lnሺ1 െ 𝑃ሻ|௧)

- Step 4: Check convergence

– Criteria: SLL(௧) - SLL(௧ାଵ ) < 0.0001

- Step 5: If no convergence, update parameter - ௧

௧ାଵ = ௧+ update

- Repeat until convergence.

MP Model – Simulation-based Estimation

• A simulation for the multinomial choice problem follows the same 
steps.

Example 2: Multivariate Probit

- Draw  from a multivariate normal distribution 

- Calculate the probability of choice 𝑗 as the number of times choice 𝑗
corresponded to the highest utility, given the model for 𝑉 .

- Calculate simulated likelihood.

(With many choices (𝐽 >5) this method does not work well.) 

• There are many other simulators, improving over the frequency 
simulator: smaller variance, smoother, more efficient computations.

MP Model – Simulation-based Estimation
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• One of this simulation methods is the Importance Sampling.

- Consider the integral 𝐸ሾℎ 𝑢 ሿ ℎ = 𝑢  𝑓 𝑢  𝑑𝑢. It is difficult to 
draw 𝑈 from F or ℎ . is not smooth. We can always write:

𝐸ሾℎ 𝑢 ሿ  = ℎ 𝑢  𝑓 𝑢 /𝑔 𝑢 𝑔 𝑢  𝑑𝑢

where 𝑔 𝑢 is a density with the following properties

a) it is easy to draw 𝑈 from 𝑔 𝑢
b) 𝑔 . &  𝑓 . have the same support. 

c) It is easy to evaluate ℎ 𝑢  𝑓 𝑢 /𝑔 𝑢
d) ℎ 𝑢  𝑓 𝑢 /𝑔 𝑢 is bounded and smooth over the support of 𝑈.

Note: 𝐸ሾℎ 𝑢 ሿ = Eሾℎ 𝑢  ௨

 ௨
ሿ where 𝑈 ~ 𝑔ሺ. ሻ

MP Model – Simulation-based Estimation

• The importance sampling simulator:

𝐸ሾℎ 𝑢 ሿ = 
ଵ

ோ
∑  ℎ 𝑢   ௨ೝ

 ௨ೝ
ோ
ୀଵ

where 𝑢 are 𝑅 i.i.d. draws from 𝑔 . .

• Conditions (a) and (c) is to increase computation speed. Condition 
(d) produces a variance bound and smoothness. 

• Condition (d) is the complicated one. For example, if 𝑔 . is a i.i.d. 
truncated normal may not be bounded if the variance, Ω, has large 
off-diagonal terms.

The Geweke-Hajivasilliou-Keane (GHK) simulator satisfies (a) to (d). 

MP Model – Simulation-based Estimation
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• Suppose we have 𝐽 ൌ 1, 2, 3 (three choices). We can write

P[𝑦 ൌ 1|𝒙] = P(ξଶ ൏ 𝑉ଶ, ξଷ ൏ 𝑉ଷሻ
= P(ξଶ ൏ 𝑉ଶሻ ∗ 𝑃ሺξଷ ൏ 𝑉ଷ|ξଶ ൏ 𝑉ଶሻ

• We redefine ξ &  𝑉 , ξሚ = ଵ  െ   , &  𝑉෨= ሺ𝒙
ᇱ െ 𝒙ଵ

ᇱ ሻβ. Then,

P[𝑦 ൌ 1|X] = P(ξሚଶ  𝑉෨ଶሻ ∗ 𝑃ሺξሚଷ  𝑉෨ଷ| ξሚଶ  𝑉෨ଶሻ

• To draw from a N(0, 1), use a Cholesky decomposition of Ω = 𝐿ᇱ𝐿:

ξሚଶ ൌ  𝑙ଵଵ 𝑣ଵ
ξሚଷ ൌ  𝑙ଵଶ 𝑣ଵ + 𝑙ଶଶ 𝑣ଶ

where the 𝑣’s are N(0,1) draws and 𝑙 is the (𝑖, 𝑗)-element of 𝐿. 
Replacing above, we have the probabilities in terms of independent 
𝑣’s.

MP Model – Simulation-based Estimation

• Replacing above:

P[𝑦 ൌ 1|𝒙] = P(𝑣ଵ 
෩మ
భభ
ሻ ∗ 𝑃ሺ𝑣ଶ 

෩యି భమ௩భ
మమ

|𝑣ଵ 
෩మ
భభ
ሻ

The pro of this is that the 𝑣’s  are independent N(0,1), we can write 
the probability of choice 𝑗 as the product of independent, but 
conditioned univariate CDFs.

• From the above expression, we draw the 𝑣’s from truncated 
normals. Then:

P[𝑦 ൌ 1|𝒙] = P(𝑣ଵ 
෩మ
భభ
ሻ ∗ 𝑃ሺ𝑣ଶ 

෩యି భమ௩భ
∗

మమ
ሻ

where 𝑣ଵ
∗ is a realization taken from truncated normal distributions 

with lower truncation point 𝑉෨ଶ/𝑙ଵଵ.¸

MP Model – Simulation-based Estimation
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• The GHK generates draws 𝑣
∗ to compute P[𝑦 ൌ 𝑗 |𝒙] as a 

product of normals. Simulator steps:

a) Set initial values for parameters. Set P* = 1

b) Drawing from a simulated truncated normal  𝑣
∗

c) Compute γ = P[𝑦 ൌ 𝑗 |𝒙] analytically. Reset P* = P* x γ

d) Compute (analytically) the likelihood conditional on the draws 
get values for parameters.

e) Iterate.

P* is the GHK simulator, which is bounded (between 0 and 1), 
continuously differentiable, since P* is continuous and differentiable 
and its variance is smaller than the frequency simulator –each draw of 
the frequency was either zero or 1.

MP Model – Simulation-based Estimation

•.Computationally, comparably difficult

• Numerically, essentially the same answer. SML is consistent in R

• Advantages of simulation

– Can integrate over any distribution, not just normal

– Can integrate over multiple random variables. Quadrature is 
largely unable to do this.

– Models based on simulation are being extended in many 
directions.

– Simulation based estimator allows estimation of conditional 
means  essentially the same as Bayesian posterior means

MP Model – Quadrature or Simulation (Greene)



RS – Lecture 17

22

• Bayesian estimation. 

- Drawing from the posterior distribution of β and Ω is 
straightforward. The key is setting up the vector of unobserved RVs  
as:

θ = (β, Ω, 𝑈ଵ, 𝑈ଶ, ..., 𝑈)

and, then, defining the most convenient partition of this vector.

• Given the parameters drawing from the unobserved utilities can be 
done sequentially: for each unobserved utility given the others we 
would have to draw from a truncated normal distribution, which is 
straightforward --see McCulloch, Polson,and Rossi (2000).

MP Model – Bayesian Estimation

• Additional estimation problem: We need to estimate a large number 
of parameters --all elements in the ሺ𝐽  1ሻ × ሺ𝐽  1ሻ dimensional 
covariance matrix of latent utilities, minus some that are fixed by 
normalizations and symmetry restrictions.  

- Difficult with the sample sizes typically available.

MP Model – More on Estimation
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• There is a trade-off between tractability and flexibility

– Closed-form expression of the integral for Logit, not for Probit 
models. 

– Logit has the IIA property. No subsitution is allowed.

– Logit model easy to estimate.

– Probit allows for random taste variation, can capture any 
substitution pattern, allows for correlated error terms and unequal 
error variances. 

– But, the Probit model is complicated to estimate. 

 Dependent on the specifics of the choice situation. Is susbstitution 
important?

Multinomial Choice Models: Probit or Logit? 

• A third possibility to get around the IIA property is to allow for

unobserved heterogeneity in the slope coefficients.

• Why do we think that if Houston Grand Opera’s (HGO) prices go 
up, a person who was planning to go HGO’s would go to Houston 
Ballet instead, rather than to Lollapalooza? 

• We think individuals who have a taste for HGO’s are likely to have 
a taste for close substitute in terms of observable characteristics, like 
Houston Ballet. There is individual heterogeneity in the utility 
functions.

• This effect can be modeled by allowing the utilities to vary with each  
person, say by making the parameters dependent on 𝑛 –i.e., person 𝑛.

Random Effects Model
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Random Effects Model

• We allow the marginal utilities to vary at the individual level:
𝑈 = 𝑥′ β + 𝜀 ,  β ~ N(𝑏, Σ) -like a random effect!

• We can also write this as:
𝑈 = 𝑥′𝑏 + 𝑣,

where 𝑣 = 𝜀 + 𝑥′ ( β − 𝑏) is no longer independent across 
choices.

Note: The key ingredient is the vector of individual specific taste 
parameters  β. We have random taste variation.

• Assume the existence of a finite number (𝑘) of types of individuals: 

 β ϵ {𝑏ଵ, 𝑏ଶ, ..., 𝑏} 

with Pr( β = 𝑏| 𝑊) as a logit model  Finite mixture model.

Random Effects Model

• Alternatively, we can assume 

 β| 𝑊 ~N( 𝑊′γ, Ω)  

where we use a normal (continuous) mixture of taste parameters.

• Using simulation methods or Gibbs sampling with the unobserved 
 β as additional unobserved random variables may be an effective 
way of doing inference.

Remark: Models with random coefficients can generate more realistic 
predictions for new choices (predictions will be dependent on 
presence of similar choices).
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Berry-Levinsohn-Pakes Model

• BLP extended the random effects logit models to allow for

- unobserved product characteristics,

- endogeneity of choice characteristics,

- estimation with only aggregate choice data

- with large numbers of choices.

• Model used in I.O. to model demand for differentiated products.

• The utility is indexed by individual, product and market:

𝑈௧ = 𝒙௧′ β + ξ௧ + 𝜀௧,

- ξ௧ = unobserved product characteristic,  allowed to vary by market, 
𝑡, and by product, 𝑗.

- 𝜀௧ = unobserved component, indep. Gumbel, across 𝑛, 𝑗, & 𝑡.

Berry-Levinsohn-Pakes Model

• The random coefficients  β are related to individual observable 
characteristics:

 β = β + Z′ Γ + 𝜂, 𝜂| Z ~ N(0, Ω) 

• BLP estimate this model without individual level data. It uses 
market level data (aggregates) in combination with estimators of the 
distribution of Z. 

• The data consist of

– estimated shares �̂�௧ for each choice 𝑗 in each market 𝑡,

– observations from the marginal distribution of individual 
characteristics (the Z′s) for each market, often from representative 
data sets.
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Berry-Levinsohn-Pakes Model

• First, write the latent utilities as
𝑈 = 𝛿௧ + 𝑣௧ + 𝜀௧

with  
𝛿௧ = 𝒙′β + ξ௧,
𝑣௧ = 𝒙௧′ (Z′ Γ + 𝜂) 

• Second, for fixed Γ, Ω, 𝛿௧, calculate the implied market share for 
product 𝑗 in market 𝑡. This can be done analytically or by simulation. 

• Next, we only fix Γ and Ω, for each value of 𝛿௧ find the implied 
market share. Using aggregate market share data, find 𝛿௧ such that 
implied market share equals observed market shares.

• Given 𝛿௧(s, Γ, Ω), calculate residuals (ξ௧): 𝛿௧ - 𝒙′β = 𝑤௧

Berry-Levinsohn-Pakes Model

• Then, assume ξ௧ and 𝜀௧ are uncorrelated with observed 
characteristics (other than price). We can use GMM or IVE to get β. 

• GMM will also give us the standard errors for this procedure.
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MP Model – Example 1

Example (Kamakura and Srivastava 1984): 

Random utility components 𝜀, 𝜀 are more (less) highly 
correlated when i and j are more (less) similar on important 
attributes. We need to define a metric for “similar.”
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Example: Choice models at brand-size level: correlation 
between ≠ sizes of same brand (Chintagunta 1992) 

MNL model
gives biased
estimates
of price
elasticity

MP Model – Example 1
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Example: Firm innovation (Harris et al. 2003)

• Binary probit model for innovative status (innovation occurred or 
not)

• Based on panel data  correlation of innovative status over time: 
unobserved heterogeneity related to management ability and/or 
strategy 

MP Model – Example 2

Model (2)-(4) account for unobserved heterogeneity (ρ) -> superior results

MP Model – Example 2
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Example: Dynamics of individual health (Contoyannis, Jones and 
Nigel 2004)

• Binary probit model for health status (healthy or not)

• Survey data for several years 

- Correlation over time (state dependence) 

- Individual-specific (time-invariant) random coefficient 

MP Model – Example 3

Example: Choice of transportation mode (Linardakis and 
Dellaportas 2003) 

 Non-IIA substitution patterns

MP Model – Example 3
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Ordered Response Models

• Now, the order matters. There is information (hierarchy) in the 
order.

Examples: Taste test (1 to 10), credit rating, preference scale (‘dislike 
very much’ to ‘like very much’), purchase 1, 2 or more unitss, etc.

• Random preferences: There is an underlying continuous preference 
scale, which maps to observed choices. The strength of preferences is 
reflected in the discrete outcome

• Choice between 𝐽 > 2 ordered ‘alternatives.’

• Ordinal dependent variable y = 1, 2, ..., 𝐽, with

rank(1) < rank(2) < ... < rank(𝐽)

• Bond Ratings

Ordered Response Models (Greene)
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• We follow McFadden’s approach.

- Suppose 𝑦∗ is a continous latent variable which is a linear function 
of the explanatory variables:

𝑦∗ = 𝑉 + 𝜀 = 𝒙′ 𝛃 + 𝜀 (𝑦∗ = latent utility)

- Preferences can be ‘mapped’ on an ordered multinomial variable as 
follows:

𝑦 = 1 if  0 < 𝑦∗  1 (Region 1)

𝑦 = 𝑗 if  ିଵ < 𝑦∗   (Region 𝑗)

⋮ ⋮ ⋮

𝑦 = 𝐽 if ିଵ < 𝑦∗   (Region 𝐽)

0 <  1 < …. <  <  …  <  -the 0 ‘s are called thresholds.

Ordered Response Models

Ordered Response Models – Parallel Odds

• Let’s look back at the construction of regions: 

𝑦 = 1  if  0 < 𝑦∗ = 𝒙′ 𝛃 + 𝜀  1 (Region 1)

𝑦 = 𝑗 if  ିଵ < 𝑦∗ = 𝒙′ 𝛃 + 𝜀   (Region 𝑗)

𝑦 = 𝐽 if  ିଵ< 𝑦∗ = 𝒙′ 𝛃 + 𝜀   (Region 𝐽)

• The β’s are the same for each region (choice). That is, the 
coefficients that describe the relationship between, say, the lowest 
versus all higher categories of the response variable are the same as 
those that describe the relationship between the next lowest category 
and all higher categories, etc. 

• This is called the proportional odds assumption or the parallel 
regression assumption. The odds ratios are the same across 
choices. It simplifies the estimation. It may not be realistic. 
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Ordered Response Models – Likelihood

• We observe outcome 𝑗 if utility is in region 𝑗
Probability of outcome = probability of cell

𝑃ሾ𝑦 ൌ 𝑗  𝒙 = 𝑃ሾିଵ < 𝑦∗  ]

= 𝑃[ିଵ < 𝒙′ 𝛃 + 𝜀  ]

= 𝑃[ିଵ െ 𝒙′ 𝛃 < 𝜀    െ 𝒙′ 𝛃]

= 𝐹[ െ 𝒙′ 𝛃] െ F[ି𝟏  െ 𝒙′ 𝛃]

• We write the likelihood, with parameters 𝜃 ൌ ሾ𝛼, ], as:

L(𝜃) = ∏ ∏  𝑃ሾ𝑦ൌ 𝑗  𝒙 I[௬ = ]
ୀଵ

ே
ୀଵ

= ∏ ∏ ሺ𝐹[  െ  𝒙′ 𝛃] െ  F[ି𝟏  െ 𝒙′ 𝛃] ሻI[௬ = ]
ୀଵ

ே
ୀଵ

Taking logs: 
Log L(𝜃) = ∑ ∑ I[𝑦 = 𝑗] 𝑙𝑜𝑔ሺ𝐹[  െ  𝑥′ β] െ  F[ିଵ  െ 𝑥′ βሿሻ


ୀଵ

ே
ୀଵ

Ordered Response Models – Logit Model

• The log likelihood is: 

Log L(𝜃) = ∑ ∑ I[𝑦 = 𝑗] 𝑙𝑜𝑔ሺ𝐹[  െ  𝑥′ β] െ  F[ିଵ  െ 𝑥′ βሿሻ

ୀଵ

ே
ୀଵ

• The β’s are the same for each choice. This is the parallel regression 
assumption. It is a restriction on the model. This restriction can be 
tested (LR or Wald tests easy to construct).

• To continue we need a probability model. For example, we use the 
logit distribution  Ordered logit model (“ologit”): 

Fሺ  െ 𝒙′𝜷ሻ  ൌ
௫ሺ ೕ ି 𝒙ᇲ  𝛃ሻ

ଵ ା ௫ሺೕ ି 𝒙ᇱ𝜷)

• In general, 0 is set equal to zero and  a large number (+∞) (also,
-1 =-∞). Different normalizations affect the estimation of constant
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Ordered Response Models – Probit Model

• We could have selected a Normal distribution for 𝜀, in this case, we 
have the Ordered probit model (“oprobit”):

𝑃ሾ𝑦 ൌ 𝑗  𝒙 = Φሺ െ 𝒙′ 𝛃) െ Φሺି𝟏  െ 𝒙ᇱ  𝛃ሻ.

• As before, we require a normalization: either no constant or 0=0.

• The likelihood for the ordered probit is:

Log L(𝜃) = ∑ ∑ I[𝑦 = 𝑗] 𝑙𝑜𝑔ሺΦ[  െ  𝑥′ β]െΦ[ିଵ  െ 𝑥′ βሿሻ

ୀଵ

ே
ୀଵ

Ordered Response Models – Example (Greene)

Example: Ordered Probit estimation of  Health Status responses 
(J=5). Usual model:

𝑦∗ = 𝒙′ 𝛃 + 𝜀
with 𝒙: Age, Education, Income, Marital Status, & number of  kids.

Estimation (ML):
𝑦∗ = 1.97882 - .01806 Age + .03556 Ed + .25869 Inc - .031 MS
+ .06065 Kids + 𝜀.

𝑦 = 0 if 𝑦∗ < 0
𝑦 = 1 if 0 < 𝑦∗< 1.14835
𝑦 = 2 if 1.14835 < 𝑦∗< 2.54781
𝑦 = 3 if 2.54781 < 𝑦∗< 3.05639
𝑦 = 4 if 𝑦∗ > 3.05639.

Note: Choices are a censored version of  preferences, since each 
alternative is chosen by an interval of  preferences.
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Example (continuation): Below we show the implied model (& 
estimated regions) for a person of  average age (43.44 years), 
education (11.418 years) & income (0.3487) married (1) with kids (1). 

Note: Changes in the characteristics will change the regions

Ordered Response Models – Example (Greene)

Example (continuation): Comparison of  Logit & Probit:

Ordered Response Models – Example (Greene)
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Ordered Response Models – Partial Effects

• As usual, there is a non-linearity. The β’s do not have the usual 
interpretation. In addition, the 𝑦 values are ad-hoc numbers 
representing non-quantitative outcomes. In general, we look at the 
effect of  a change of  𝒙 in 𝑃ሾ𝑦 ൌ 𝑗  𝒙 .

That is, we will look at partial effects: 
డሾ௬ୀ  𝒙

డ𝒙ೖ
ൌ ሾ𝑓ሺ  െ  𝒙ᇱ  𝛃ሻ െ 𝑓 ି𝟏  െ 𝒙ᇱ  𝛃 ሿ * ሺ-βሻ

• The partial effets depend on the data (𝒙) and the coefficients. The 
sign depends on the densities evaluated at two points.

Note: For a  continuous variable, the effects on the probabilities 
should be small, but all probabilities will change. (The sum of  all the 
changes will be zero!) 

Assume the β is positive.

Assume that 𝒙 increases.

𝒙′𝛃 increases.  - 𝒙′𝛃
shifts to the left for all 5 
cells.

Prob[𝑦 = 0] decreases

Prob[𝑦 = 1] decreases – the 
mass shifted out is larger 
than the mass shifted in.

Prob[𝑦 = 3] increases –
same reason in reverse.

Prob[𝑦 =4 ] must increase.

When 𝛽> 0, increase in 𝑥 decreases 
Prob[𝑦=0] and increases Prob[𝑦 = 𝐽]. 
Intermediate cells are ambiguous, but there is 
only one sign change in the marginal effects 
from 0 to 1 to … to 𝐽.

Ordered Response Models – Partial Effects
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Example: Partial Effects of 8 Years of Education (from BA to PhD)

Ordered Response Models – Partial Effects

+--------+--------------------------------------------------------------+
| Summary of Marginal Effects for Ordered Probability Model             |
| Effects computed at means.  Effects for binary variables are          |
| computed as differences of probabilities, other variables at means.   |
+--------+------------------------------+-------------------------------+
|                       Probit |               Logit           |
|Outcome | Effect  dPy<=nn/dX dPy>=nn/dX|  Effect  dPy<=nn/dX dPy>=nn/dX|
+--------+------------------------------+-------------------------------+
|        |            Continuous Variable AGE                           |
|Y = 00  |  .00173     .00173    .00000 |  .00145     .00145     .00000 |
|Y = 01  |  .00450     .00623   -.00173 |  .00521     .00666    -.00145 |
|Y = 02  | -.00124     .00499   -.00623 | -.00166     .00500    -.00666 |
|Y = 03  | -.00216     .00283   -.00499 | -.00250     .00250    -.00500 |
|Y = 04  | -.00283     .00000   -.00283 | -.00250     .00000    -.00250 |
+--------+------------------------------+-------------------------------+
|        |            Continuous Variable EDUC                          |
|Y = 00  | -.00340    -.00340    .00000 | -.00291    -.00291     .00000 |
|Y = 01  | -.00885    -.01225    .00340 | -.01046    -.01337     .00291 |
|Y = 02  |  .00244    -.00982    .01225 |  .00333    -.01004     .01337 |
|Y = 03  |  .00424    -.00557    .00982 |  .00502    -.00502     .01004 |
|Y = 04  |  .00557     .00000    .00557 |  .00502     .00000     .00502 |
+--------+------------------------------+-------------------------------+
|        |            Continuous Variable INCOME                        |
|Y = 00  | -.02476    -.02476    .00000 | -.01922    -.01922     .00000 |
|Y = 01  | -.06438    -.08914    .02476 | -.06908    -.08830     .01922 |
|Y = 02  |  .01774    -.07141    .08914 |  .02197    -.06632     .08830 |
|Y = 03  |  .03085    -.04055    .07141 |  .03315    -.03318     .06632 |
|Y = 04  |  .04055     .00000    .04055 |  .03318     .00000     .03318 |
+--------+------------------------------+-------------------------------+
|        |            Binary(0/1) Variable MARRIED                      |
|Y = 00  |  .00293     .00293    .00000 |  .00287     .00287     .00000 |
|Y = 01  |  .00771     .01064   -.00293 |  .01041     .01327    -.00287 |
|Y = 02  | -.00202     .00861   -.01064 | -.00313     .01014    -.01327 |
|Y = 03  | -.00370     .00491   -.00861 | -.00505     .00509    -.01014 |
|Y = 04  | -.00491     .00000   -.00491 | -.00509     .00000    -.00509 |
+--------+------------------------------+-------------------------------+
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• Interpretation: 

For the income variable, for the highest cell, the estimated partial 
effect is .04055. However, the income variable has Mean = 0.34874 
&  SD = 0.1632. 

• Thus, a full unit change in income increases the average individual 
by almost 6 * SD > Mean . Thus, we may want to measure a change 
in SD units. Thus, the impact of  a change in income on the 
probability of  the highest cell probability might be

0.04055 * 0.1632 = 0.00662. 

Ordered Response Models – Partial Effects

Ordered Probit Model: Nonlinearity (Greene)

• As usual, it is possible to introduce non-linearities (squares, 
splines, etc.) and interaction effects in the model. The computation 
of  partial effects becomes problematic, though more so in practice
than in theory.
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Ordered Probit Model: Model Evaluation

• Different ways to judge a model:

- Partial Effects (do they make sense?)

- Fit Measures (Log Likelihood based measures, such as pseudo-R2)

Always careful, since there is no “dependent variable,” the is 
“label,” with no real meaning, besides the ordering. (Keep in mind 
too that there is no “variation” around the mean!)

- Predicted Probabilities

– Averaged: They match sample proportions.

– By observation

– Segments of  the sample

– Related to particular variables

• Log Likelihood Based Fit Measures

Ordered Probit Model: Model Evaluation
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• Predictions of the Model: Kids

+----------------------------------------------+
|Variable     Mean  Std.Dev.  Minimum  Maximum |
+----------------------------------------------+
|Stratum is KIDS = 0.000.  Nobs.=  2782.000    |
+--------+-------------------------------------+
|P0      |  .059586  .028182  .009561  .125545 |
|P1      |  .268398  .063415  .106526  .374712 |
|P2      |  .489603  .024370  .419003  .515906 |
|P3      |  .101163  .030157  .052589  .181065 |
|P4      |  .081250  .041250  .028152  .237842 |
+----------------------------------------------+
|Stratum is KIDS = 1.000.  Nobs.=  1701.000    |
+--------+-------------------------------------+
|P0      |  .036392  .013926  .010954  .105794 |
|P1      |  .217619  .039662  .115439  .354036 |
|P2      |  .509830  .009048  .443130  .515906 |
|P3      |  .125049  .019454  .061673  .176725 |
|P4      |  .111111  .030413  .035368  .222307 |
+----------------------------------------------+
|All 4483 observations in current sample       |
+--------+-------------------------------------+
|P0      |  .050786  .026325  .009561  .125545 |
|P1      |  .249130  .060821  .106526  .374712 |
|P2      |  .497278  .022269  .419003  .515906 |
|P3      |  .110226  .029021  .052589  .181065 |
|P4      |  .092580  .040207  .028152  .237842 |
+----------------------------------------------+

OP Model: Model Evaluation
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• Aggregate Prediction Measure

OP Model: Model Evaluation (Greene)

Ordered Logit Model – Cons

• Disadvantages (Borooah 2002)

- Assumption of  equal slope β

- Biased estimates if  assumption of  strictly ordered outcomes does 

not hold

 treat outcomes as nonordered unless there are good 

reasons for imposing a ranking.
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Ordered Logit Model – Application

Example (from Kim and Kim (2004): Effectiveness of better public 
transit as a way to reduce automobile congestion and air polution in 
urban areas

- Research objective: develop and estimate models to measure how 
public transit affects automobile ownership and miles driven.

- Data: Nationwide Personal Transportation Survey (42.033 hh): 
socio-demo’s, automobile ownership and use, public transportation 
avail.

- Dependent variable ownership model = number of cars (𝑘 = 0, 
1, 2,  3)  ordinal variable

- 𝐶∗ = latent variable: automobile ownership propensity of hh 𝑛
- Relation to observed automobile ownership:

𝐶 = 𝑘 if  𝛼ିଵ < 𝒙′𝛃 +  < 𝛼
- P(𝐶= 𝑘) = F(𝛼 െ 𝒙′𝛃ሻ  െ F(𝛼ିଵ െ 𝒙′𝛃) 

Ordered Logit Model – Application
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Ordered Logit Model – Application

Ordered Logit Model – Application
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Ordered Logit Model - Application

Examples:
• Occupational outcome as a function of socio-demographic 

characteristics --Borooah (2002)
– Unskilled/semiskilled
– Skilled manual/non-manual
– Professional/managerial/technical

• School performance  --Sawkins (2002)
– Grade 1 to 5
– Function of school, teacher and student characteristics

• Level of insurance coverage

Ordered Logit Model – More Applications
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Generalized Ordered Response Model

• We can generalize the model:  

𝑦 = 1  if  0 < 𝑦∗ = 𝒙′ 𝛃ଵ + 𝜀  1 (Region 1)

𝑦 = 𝑗 if  ିଵ < 𝑦∗ = 𝒙′ 𝛃 + 𝜀   (Region 𝑗)

𝑦 = 𝐽 if  ିଵ< 𝑦∗ = 𝒙′ 𝛃 + 𝜀   (Region 𝐽)

• Then:

𝑃ሾ𝑦 ൌ 𝑗  𝒙 = 𝐹[ െ 𝒙′𝛃] െ F[ିଵ െ 𝒙′𝛃ିଵ]

• The β’s are different for each region (choice). This model is called
Generalized Ordered Choice Model. To make it a generalized
ordered logit (“gologit”) model, assume 𝜀 ~ Gumbel distribution.

• Quednau (1988) and Clogg and Shihadeh (1994) proposed different
versions. Williams (2006) provides Stata code to implement model.

Generalized Ordered Response Model

• There is evidence that thresholds are not the same for each 
individual, see Terza (1985), Pudney and Shields (2000), Boes and 
Winkelmann(2006), and Greene and Hensher (2009). 

• Terza (1985) suggests making thresholds a function of observables: :
 = θ + 𝑍′ δ -linear function.

This can create identification problems, if 𝑍 is also in 𝒙 (same 
variable). Difficult to disentagle effects: 

F( െ 𝒙′ 𝛃 = θ + 𝑍′ δ െ 𝒙′ 𝛃)

•



RS – Lecture 17

45

Generalized Ordered Response Model

• We can also use non-linear functions to model thresholds 
heterogeneity:

 = exp(θ + 𝑍′ δ)

It will be easier to identify effects in the Generalized Ordered Choice 
Model.

• An internally consistent restricted modification of the model is:
 = exp(θ + 𝑍′ δ)

where 
θ = θିଵ + exp(φ) (a natural ordering of thresholds)

Assuming a normal for the errors, this model is called Hierarchical 
Order Probit (HOPit). See Harris and Zhao (2000), and Eluru, Bhat 
and Hensher (2008).

Brant Test for Parallel Regressions (Greene)

• Recall the parallel odds result. Start with a reformulation of  
Prob[𝑦  𝑗]. Define:

𝛾 ൌ Prob[𝑦  𝑗] ൌ  𝐹[  െ  𝒙′𝜷]

- Using a logit formulation, we get the proportional odds or parallel 
regression restriction:

𝑙𝑜𝑔
𝛾 

1 െ 𝛾 
ൌ   െ 𝒙′𝜷

• We test all β’s are the same across regions. The alternative 
hypothesis is the Generalized Ordered Logit Model (with 𝒙′𝜷)

• Many ways to set a test for parameter constancy (across regions) in 
this context. The standard specification test is called the Brant Test.
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• We estimate 𝐽 െ 1 (binary) logit models:
Prob[𝑦  𝑗] ൌ  𝐹[  െ  𝒙′𝜷]

Then, we estimate Brant Test estimates 𝐽 െ 1 generalized logit 
models:

Prob[𝑦  𝑗] ൌ  𝐹[  െ 𝒙′𝜷]

Now, we can test H0:  𝛽 ൌ 𝛽ଵ ൌ …  ൌ 𝛽ିଵ ൌ 𝛽. (or R𝜷 = 𝒒) 

• A Wald test is usually done, with the potential problem of  the 
computation of  the Var[R Var[𝜷ሿ R']. (If  Var[𝜷ሿ is computed based 
on the individual binary logit estimates, the ordering is not preserved. 
Brant suggests using the restricted (basic ordered choice) estimates.

Brant Test for Parallel Regressions (Greene)

Q: What failure of  the model specification is indicated by rejection: 
Misspecification of  latent regression/distribution, heterogeneity? 

Brant Test for Parallel Regressions (Greene)
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Heterogeneity in Ordered Choice Models

• Observed heterogeneity

- Easy case, heteroscedasticity, which produces scale heterogeneity.

• Unobserved heterogeneity

– Over decision makers

- Random coefficients Models

- E.g. Mixed Logit Model (see Train)

– Over segments

- Latent class Models

Heteroscedasticity in OC Models (Greene)

1Prob( | , )
exp( ) exp( )

j i j i
i i i

i i

y j F F        
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h h
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y j F F             
         

z x z x
x h

h h

   

 

• Not difficult to introduce heteroscedasticity in the OC Models. It 
produces scale changes: a GLS-type correction.

• As usual, we need a model for heteroscedasticity. For example, 
exponential form: exp(γ ℎ௦). Then, for the Probit and Logit Models:

• As usual, partial effects will also be affected.
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Heteroscedasticity in OC Models (Greene)

Heteroscedasticity in OC Models (Greene)
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Heterogeneity: Latent Class Models

• Assumption: Consumers can be placed into a small number of 
(homogeneous) segments, which differ in choice behavior (different 
response parameters –i.e., the ’s).

• Relative size of the segment, 𝑠 (𝑠 = 1, 2, ..., M), is given by

 𝑓௦ = exp(௦) / ∑ exp(௦ᇱ)ௌ
௦ᇱୀଵ

• Probability of choosing brand j, conditional on consumer n being a 
member of segment s is given by a logit:

Ps(𝑦 ൌ 𝑗|𝑥) = exp(𝑥′s)/l exp(𝑥′s)

• Unconditional probability that consumer n will choose brand j

P(𝑦 ൌ 𝑗|𝑥) = ∑  𝑓௦Ps(𝑦 ൌ 𝑗|𝑥)ௌ
௦ୀଵ = 

= s [exp(௦) / ∑ exp(௦ᇱ)ௌ
௦ᇱୀଵ ] [exp(𝑥′s)/l exp(𝑥′s)]

• Estimation: Maximum Likelihood

• Likelihood of a household’s choice history Hn

L(Hn) = s [ exp(s)L(Hn|s) / s’ exp(s’) ]

with

L(Hn|s) = t Ps(ynt = c(t) | Xnt)

c(t) = index of the chosen option at time t.

• Maximize likelihood over all household’s: n L(Hn) 

• We need to decide on how to form the segments (classes).

Heterogeneity: Latent Class Models
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Segment analysis
• Based on parameter estimates, say, difference in price sensitivity.
• Based on segment profiles

– Post-hoc: based on assignment of consumers to segments; 
Probability that consumer n belongs to segment s =
P(ns | Hn) = L(Hn|s)fs / s’ [L(Hn|s’)fs’]
Analyze characteristics of different segments

– A priori: make fs a function of variables that may explain 
segment membership. For example, income for segments 
which differ in price sensitivity.

Heterogeneity: Latent Class Models

Heterogeneity: Latent Class Models (Greene)


