

For private use, not to be posted/shared online).

DCM: Different Models

- Popular Models:
- 1. Probit Model
- 2. Binary Logit Model
- 3. Multinomial Logit Model
- 4. Nested Logit model
- 5. Ordered Logit Model
- Relevant literature:
- Train (2003): Discrete Choice Methods with Simulation
- Franses and Paap (2001): Quantitative Models in Market Research
- Hensher, Rose and Greene (2005): Applied Choice Analysis

Model - IIA: Alternative Models

• In the MNL model we assumed independent ε_{nj} with extreme value distributions. This essentially created the IIA property.

• This is the main weakness of the MNL model.

• The solution to the IIA problem is to relax the independence between the unobserved components of the latent utility, ε_{nj} .

• Solutions to IIA

- Nested Logit Model, allowing correlation between some choices.

– Models allowing correlation among the \mathcal{E}_n 's, such as MP Models.

- Mixed or random coefficients models, where the marginal utilities associated with choice characteristics vary between individuals.

Multinomial Probit Model

• Changing the distribution of the error term in the RUM equation leads to alternative models.

• A popular alternative: The ε_{nj} 's follow an independent standard normal distributions for all n, j.

$$U_{nj} = \mathbf{x}_{nj}' \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{nj}, \qquad \boldsymbol{\varepsilon}_{nj} \sim \mathcal{N}(0, \boldsymbol{\Omega})$$

• We retain independence across subjects but we allow dependence across alternatives, assuming that the vector $\varepsilon_n = (\varepsilon_{n1}, \varepsilon_{n2}, ..., \varepsilon_{nJ})$ follows a *multivariate normal* distribution, but with arbitrary covariance matrix Ω .

Multinomial Probit Model

• The vector $\varepsilon_n = (\varepsilon_{n1}, \varepsilon_{n2}, ..., \varepsilon_{nJ})$ follows a *multivariate normal* distribution, but with arbitrary covariance matrix Ω .

• The model is called the **Multinomial probit model**. It produces results similar results to the MNL model after standardization.

• Some restrictions (normalization) on Ω are needed.

• As usual with latent variable formulations, the variance of the error term cannot be separated from the regression coefficients. Setting the variances to one means that we work with a correlation matrix rather than a covariance matrix.

MP Model – Pros & Cons

• Main advantages:

- Using ML, joint estimation of all parameters is possible.

- It allows correlation between the utilities that an individual assigns to the various alternatives (relaxes IIA).

- It does not rely on grouping choices. No restrictions on which choices are close substitutes.

- It can also allow for heterogeneity in the (marginal) distributions for ε_n .

• Main difficulty: Estimation.

- ML estimation involves evaluating probabilities given by multidimensional normal integrals, a limitation that forces practical applications to a few alternatives (J = 3, 4). Quadrature methods can be used to approximate the integral, but for large J, often imprecise.

MP Model – Estimation

• Probit Problem: $P_{nj} = P[y_j = 1 | \mathbf{x}_n] =$ $\int_{\xi_{n1}}^{\infty} \dots \int_{\xi_{nj}}^{\infty} \phi(\xi_{n1}, \dots, \xi_{nj-1}, \xi_{nj+1}, \dots, \xi_{nJ}) d\xi_{n1} \dots d\xi_{nj-1} d\xi_{nj+1} \dots d\xi_{nJ}$ $(J - 1) \text{-dimensional integral involves } \xi_{jk} = \varepsilon_{nk} - \varepsilon_{nj}, \text{ which is normally distributed, N(0, <math>\mathbf{\Omega}$). We can rewrite the probability as: $P[y_j = 1 | \mathbf{x}_n] = P(\xi_j < V_j)$ where V_j is the vector with k element $V_{njk} = \mathbf{x}'_{nj}\beta - \mathbf{x}'_{nk}\beta$ Let $\theta = \{\beta, \Omega\}$. To get the MLE, we need to evaluate this integral for any β and Ω . The MLE of θ maximizes $L = \sum_n \sum_j y_{nj} \ln(P(\xi_j < V_j)) \iff \text{we need to integrate.}$ This is the main "problem" with the MP model.

MP Model – Estimation & Integration

• We need to integrate to get $\log P(\xi_j < V_j)$

If J = 3, we need to evaluate a bivariate normal –no problem.

If J > 3, we need to evaluate a 3-dimensional integral. A usual approach is to use Guassian quadrature (Recall Math Review, Lecture 12).

Most current software programs use the Butler and Moffit (1982) method, based on Hermite quadrature.

<u>Practical considerations</u>: If J > 4, numerical procedures get complicated and, often, imprecise. For these cases, we rely on simulation-based estimation -simulated maximum likelihood or SML.

Review: Gaussian Quadratures

- <u>Newton-Cotes Formulae</u>
 - Nodes: Use evenly-spaced functional values
 - Weights: Use Lagrange interpolation. Best, given the nodes.
 - It can explode for large n (Runge's phenomenon)
- Gaussian Quadratures
 - Select functional values at non-uniformly distributed points to achieve higher accuracy. The values are not predetermined, but unknowns to be determined.
 - Nodes and Weight are both "best" to get an exact answer if f(.) is a (2n 1)th-order polynomial. Legendre polynomials are used.
 - Change of variables \Rightarrow the interval of integration is [-1, 1].

Review: Gaussian Quadratures

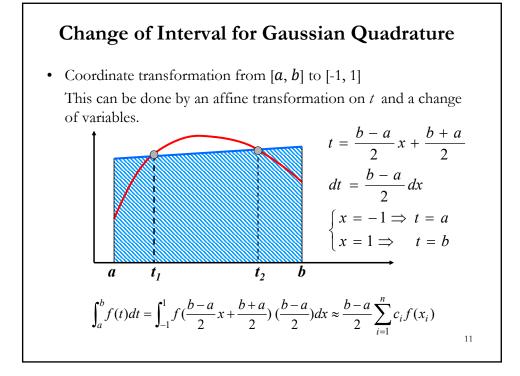
• The Gauss-Legendre quadrature formula is stated as

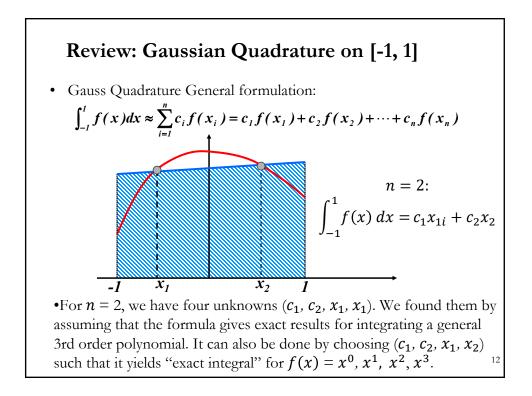
$$\int_{a=-1}^{b=1} f(x) \, dx = \sum_{i=1}^{n} c_i f(x_i),$$

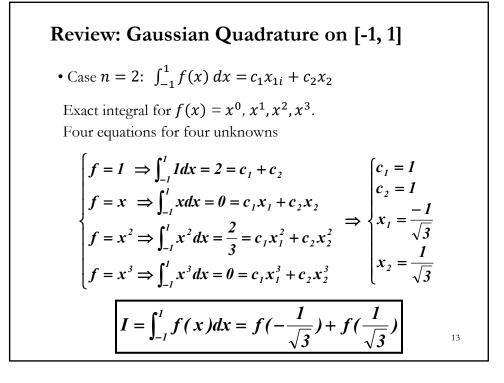
the c_i 's are called the **weights**, the x_i 's are called the **quadrature nodes**. The approximation error term, ε , is called the **truncation error** for integration.

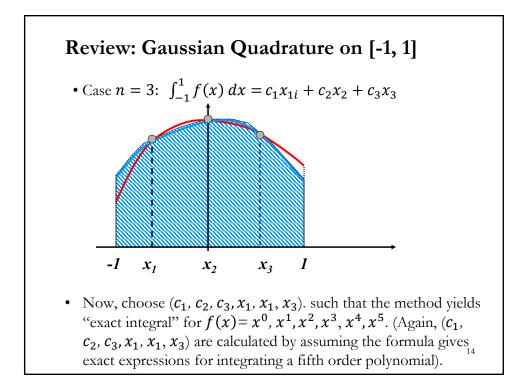
For Gauss-Legendre quadrature, the nodes are chosen to be zeros of certain Legendre (orthogonal) polynomials.

10

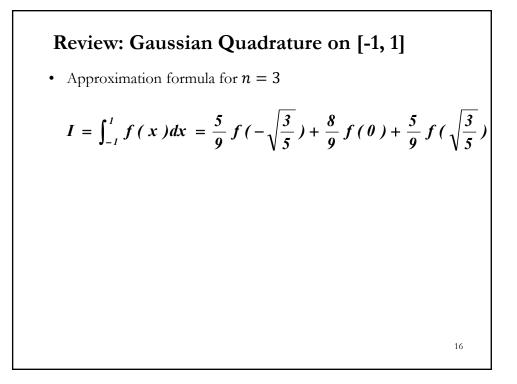


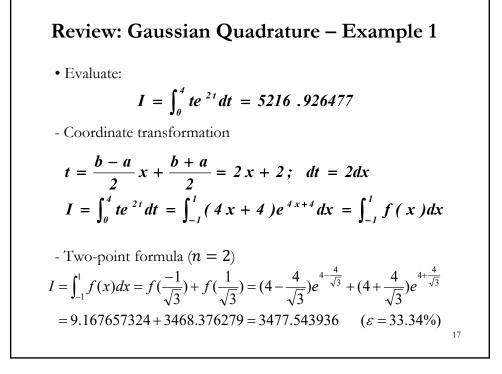


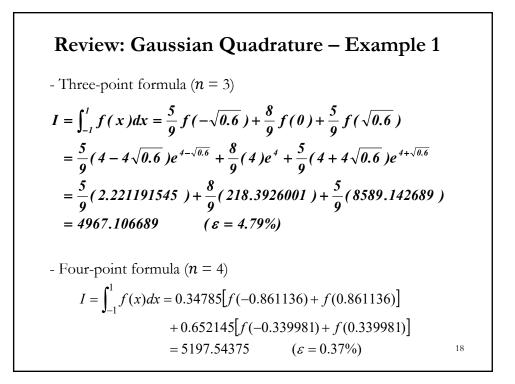


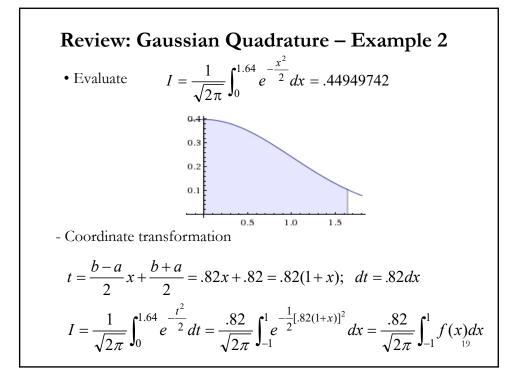


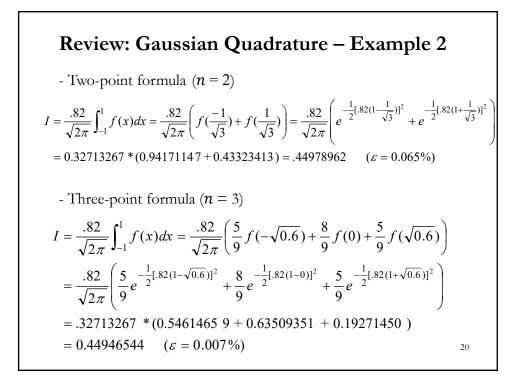
Review: Gaussian Quadrature or	n [-1, 1]
$f = 1 \Longrightarrow \int_{-1}^{1} x dx = 2 = c_1 + c_2 + c_3$	
$f = x \Longrightarrow \int_{-1}^{1} x dx = 0 = c_1 x_1 + c_2 x_2 + c_3 x_3$	$c_1 = 5/9$
$f = x^2 \Rightarrow \int_{-1}^{1} x^2 dx = \frac{2}{3} = c_1 x_1^2 + c_2 x_2^2 + c_3 x_3^2$	$c_2 = 8/9$ $c_3 = 5/9$
$f = x^3 \Longrightarrow \int_{-1}^{1} x^3 dx = 0 = c_1 x_1^3 + c_2 x_2^3 + c_3 x_3^3$	$\Rightarrow \begin{cases} c_1 = 5/9 \\ c_2 = 8/9 \\ c_3 = 5/9 \\ x_1 = -\sqrt{3/5} \\ x_2 = 0 \\ x_3 = \sqrt{3/5} \end{cases}$
$f = x^4 \Longrightarrow \int_{-1}^{1} x^4 dx = \frac{2}{5} = c_1 x_1^4 + c_2 x_2^4 + c_3 x_3^4$	$x_3 = \sqrt{3/5}$
$f = x^5 \Longrightarrow \int_{-1}^{1} x^5 dx = 0 = c_1 x_1^5 + c_2 x_2^5 + c_3 x_3^5$	15











Hermite Quadrature (Greene)

• Hermite (or Gauss–Hermite) quadrature is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind:

$$I = \int_{-\infty}^{\infty} e^{-t^2} f(t) dx = \sum_{i=1}^{n} w_i f(x_i),$$

• It is a method well adapted to the kind of integral we see when we assume normality for $f(\varepsilon)$, like in probit models.

• Useful approximation to compute moments of a normal distribution.

The x_i roots are given by the Hermite polynomial, H_n , and the weights, w_i are given by:

(2)
$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} = e^{x^2/2} \left(x - \frac{d}{dx}\right)^n e^{-x^2/2} \quad w_i = \frac{2^{n-1} n! \sqrt{\pi}}{n^2 [H_{n-1}(x_i)]^2}$$

Hermite Quadrature (Greene)

• The problem: approximating an integral, involving $exp(-x^2)$:

 $\int_{-\infty}^{\infty} f(x,v) exp(-v^2) dv \approx \sum\nolimits_{h=1}^{H} f(x,v_h) W_h$

Adapt to integrating out a normal variable

$$f(x) = \int_{-\infty}^{\infty} f(x, v) \frac{\exp(-\frac{1}{2}(v/\sigma)^2)}{\sigma\sqrt{2\pi}} dv$$

Change the variable to $z = (1/(\sigma\sqrt{2}))v$,

$$v = (\sigma\sqrt{2})z$$
 and $dv = (\sigma\sqrt{2})dz$

$$f(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x, \lambda z) \exp(-z^2) dz, \ \lambda = \sigma \sqrt{2}$$

This can be accurately approximated by Hermite quadrature

$$f(x) \approx \sum_{h=1}^{H} f(x, \lambda z) W_h$$

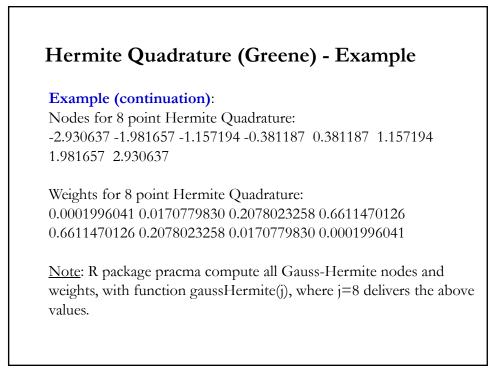
Hermite Quadrature (Greene)

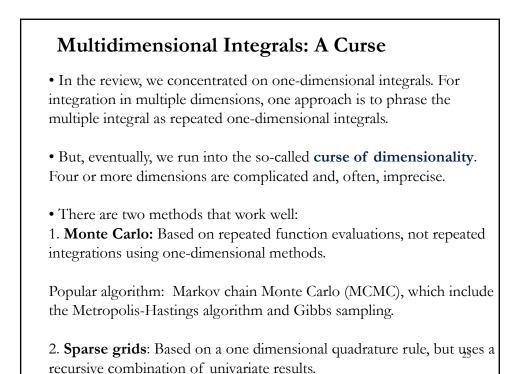
Example (Butler and Moffitt's Approach): Random Effects Log Likelihood Function

$$\log L = \sum_{i=1}^{N} \log \int_{-\infty}^{\infty} \left\{ \prod_{t=1}^{T} g \left[y_{it}, \left(\mathbf{x}'_{it} \boldsymbol{\beta}^{0} + v_{i} \right) \right] \right\} h(v_{i}) dv_{i}$$

Butler and Moffitt: Compute this by Hermite quadrature

- $\int_{-\infty}^{\infty} f(v_i)h(v_i)dv_i \approx \sum_{h=1}^{H} f(z_h)w_h \text{ when } h(v_i) = \text{ normal density}$
- z_h = quadrature node; w_h = quadrature weight
- $z_i = \sigma v_i, \sigma$ is estimated with β^0





• ML Estimation is complicated due to the multidimensional integration problem. Simulation-based methods approximate the integral. Relatively easy to apply.

• Simulation provides a solution for dealing with problems involving an integral. For example:

 $E[h(u)] = \int h(u) f(u) \, du$

• All GMM and many ML problems require the evaluation of an expectation. In many cases, an analytic solution or a precise numerical solution is not possible. But, we can always simulate E[h(u)]:

- Steps

- Draw R pseudo RV from $f(u): u^1, u^2, ..., u^R$ (*R*: repetitions)

- Compute $\hat{E}[h(u)] = (1/R) \sum_{r=1}^{R} h(u^r)$

• We call $\hat{E}[h(u)]$ a simulator.

• If h(.) is continuous and differentiable, then $\hat{E}[h(u)]$ will be continuous and differentiable.

• Under general conditions, $\hat{E}[h(u)]$ provides an unbiased (& most of the times consistent) estimator for E[h(u)].

• The variance of $\hat{E}[h(u)]$ is equal to $\operatorname{Var}[h(u)]/R$.

• Last semester we introduced several simulators: Importance Sampling, Gibbs Sampling, Metropolis-Hastings Algorithm. In this lecture, we will present a very fast simulator: **GHK** (**Geweke-Hajivassiliou-Keane**).

Review: The Probability Integral Transformation

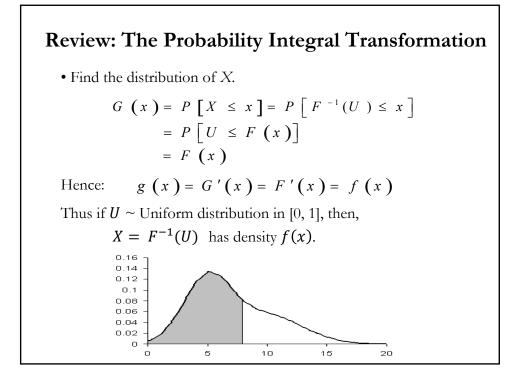
• This transformation allows one to convert observations that come from a uniform distribution from 0 to 1 to observations that come from an arbitrary distribution.

Let U denote an observation having a uniform distribution [0, 1].

$$g(u) = \begin{cases} 1 & 0 \le u \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

Let f(x) denote an arbitrary pdf and F(x) its corresponding CDF. Let $X = F^{-1}(U)$.

We want to find the distribution of X.



Review: The Probability Integral Transformation

• The goal of some estimation methods is to simulate an expectation, say E[h(Z)]. To do this, we need to simulate Z from its distribution. The probability integral transformation is very handy for this task.

Example: Exponential distribution

Let $U \sim \text{Uniform}(0, 1)$.

Let $F(x) = 1 - \exp(\lambda x)$ –i.e., the exponential distribution. Then,

 $-\log(1 - U)/\lambda \sim F$ (exponential distribution)

Example: If F is the standard normal, F^{-1} has no closed form solution. Most computers programs have a routine to approximate F^{-1} for the standard normal distribution.

Review: The Probability Integral Transformation

• Truncated RVs can be simulated along these lines.

Example: $U \sim N(\mu, \sigma^2)$, but it is truncated between *a* and *b*. Then,

$$F\left(u\right) = \left[\Phi\left(\frac{u-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)\right] / \left[\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)\right]$$

U can be simulated by letting F(u) = Z and solving for u as:

$$\sigma \Phi^{-1} \left\{ Z \left[\Phi \left(\frac{b - \mu}{\sigma} \right) - \Phi \left(\frac{a - \mu}{\sigma} \right) \right] + \Phi \left(\frac{a - \mu}{\sigma} \right) \right\} + \mu$$

MP Model – Simulation-based Estimation

• Probit Problem:

- We write the probability of choice *j* as: $P[y_n = j | \mathbf{x}_n] = P(\xi_j < V_j)$ where V_j is the vector with *k* element $V_{njk} = \mathbf{x}'_{nj}\beta - \mathbf{x}'_{nk}\beta$

Let $\theta = {\beta, \Omega}$. The MLE of θ maximizes $L = \sum_n \sum_j y_{nj} \ln(P(\xi_j < V_j)) \iff \text{we need to integrate}$

We need to integrate to get $\log P(\xi_j < V_j)$:

If J = 3, we need to evaluate a bivariae normal –no problem.

If J = 4, we need to evaluate a 3-dimensional integral. Possible using Guassian quadrature –see Butler and Moffit (1982).

If J > 4, numerical procedures get complicated and, often, imprecise.

- We need to integrate to get $\log P(\xi_j < V_j)$
- A simulation can work well, by approximating

 $P[y_n = j | X] = P(\xi_j < V_j) \approx \frac{1}{R} \sum_{r=1}^R I[\xi_j^r < V_j]$

where we draw ξ_j^r as an *i.i.d.* N(0, Ω), *R* times.

This simulator is called **frequency simulator**. It is unbiased and between [0, 1]. But, its derivatives (zero or undefined) complicates calculations.

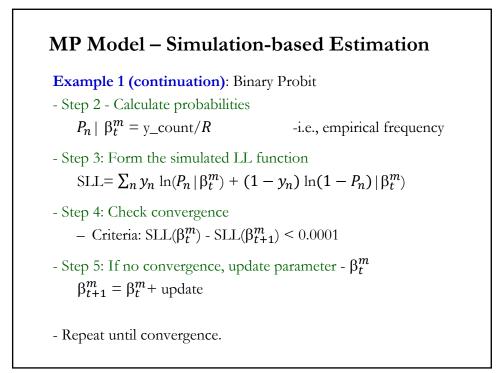
MP Model – Simulation-based Estimation

• Let's go over a detailed example of the simple frequency simulator.

Example 1: Binary (0,1) Probit

- Step 1

- For each observation n = 1, ..., N draw $\eta^{r} \sim N(0, 1), (r = 1, 2, ..., R (R: repetitions))$
- Initialize $y_count = 0$
- Set starting values: $\beta = \beta_t^m$
- Compute $y_n^{*r} = \mathbf{x}'_n \beta_t^m + L \eta^r$; L= choleski factor (LL'= $\mathbf{\Omega}$)
- Evaluate: $y_n^{*r} > 0 \Rightarrow y_count = y_count + 1$
- Repeat R times



• A simulation for the multinomial choice problem follows the same steps.

Example 2: Multivariate Probit

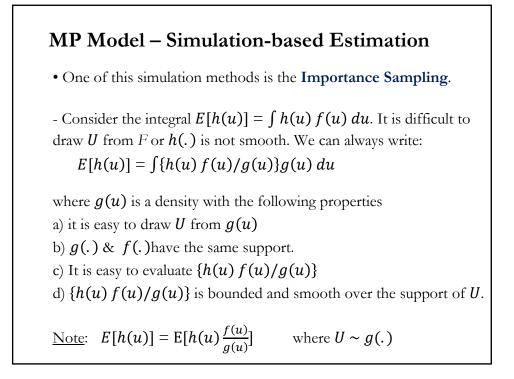
- Draw \mathcal{E}_i from a multivariate normal distribution

- Calculate the probability of choice j as the number of times choice j corresponded to the highest utility, given the model for V_{nj} .

- Calculate simulated likelihood.

(With many choices (J > 5) this method does not work well.)

• There are many other simulators, improving over the *frequency simulator*. smaller variance, smoother, more efficient computations.



• The importance sampling simulator:

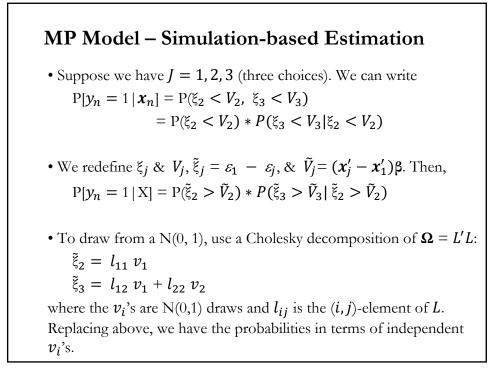
 $\widehat{E}[h(u)] = \frac{1}{R} \sum_{r=1}^{R} h(u^r) \frac{f(u^r)}{g(u^r)}$

where u^r are R *i.i.d.* draws from g(.).

• Conditions (a) and (c) is to increase computation speed. Condition (d) produces a variance bound and smoothness.

• Condition (d) is the complicated one. For example, if g(.) is a *i.i.d.* truncated normal may not be bounded if the variance, Ω , has large off-diagonal terms.

The Geweke-Hajivasilliou-Keane (GHK) simulator satisfies (a) to (d).



• Replacing above:

$$P[y_n = 1 | \boldsymbol{x}_n] = P(v_1 > \frac{\tilde{v}_2}{l_{11}}) * P(v_2 > \frac{\tilde{v}_3 - l_{12}v_1}{l_{22}} | v_1 > \frac{\tilde{v}_2}{l_{11}})$$

The pro of this is that the v_i 's are independent N(0,1), we can write the probability of choice j as the product of independent, but conditioned univariate CDFs.

• From the above expression, we draw the v_i 's from truncated normals. Then:

$$P[y_n = 1 | \mathbf{x}_n] = P(v_1 > \frac{\tilde{v}_2}{l_{11}}) * P(v_2 > \frac{\tilde{v}_3 - l_{12}v_1^*}{l_{22}})$$

where v_1^* is a realization taken from truncated normal distributions with lower truncation point \tilde{V}_2/l_{11} .

• The GHK generates draws v_j^* to compute $P[y_n = j | x_n]$ as a product of normals. Simulator steps:

a) Set initial values for parameters. Set $P^* = 1$

b) Drawing from a simulated **truncated normal** $\Rightarrow v_i^*$

c) Compute $\gamma = P[y_n = j | x_n]$ analytically. Reset $P^* = P^* \ge \gamma$

d) Compute (analytically) the likelihood conditional on the draws \Rightarrow get values for parameters.

e) Iterate.

P* is the **GHK simulator**, which is bounded (between 0 and 1), continuously differentiable, since P* is continuous and differentiable and its variance is smaller than the frequency simulator –each draw of the frequency was either zero or 1.

MP Model – Quadrature or Simulation (Greene)

- •.Computationally, comparably difficult
- Numerically, essentially the same answer. SML is consistent in R
- Advantages of simulation
 - Can integrate over any distribution, not just normal
 - Can integrate over multiple random variables. Quadrature is largely unable to do this.
 - Models based on simulation are being extended in many directions.
 - Simulation based estimator allows estimation of conditional means ⇒ essentially the same as Bayesian posterior means

MP Model – Bayesian Estimation

• Bayesian estimation.

- Drawing from the posterior distribution of β and Ω is straightforward. The key is setting up the vector of unobserved RVs as:

 $\theta = (\beta, \boldsymbol{\Omega}, U_{n1}, U_{n2}, ..., U_{nJ})$

and, then, defining the most convenient partition of this vector.

• Given the parameters drawing from the unobserved utilities can be done sequentially: for each unobserved utility given the others we would have to draw from a truncated normal distribution, which is straightforward --see McCulloch, Polson, and Rossi (2000).

MP Model – More on Estimation

• <u>Additional estimation problem</u>: We need to estimate a large number of parameters --all elements in the $(J + 1) \times (J + 1)$ dimensional covariance matrix of latent utilities, minus some that are fixed by normalizations and symmetry restrictions.

- Difficult with the sample sizes typically available.

Multinomial Choice Models: Probit or Logit? There is a trade-off between tractability and flexibility Closed-form expression of the integral for Logit, not for Probit models. Logit has the IIA property. No subsitution is allowed. Logit model easy to estimate. Probit allows for random taste variation, can capture any substitution pattern, allows for correlated error terms and unequal error variances. But, the Probit model is complicated to estimate.

Random Effects Model

• A third possibility to get around the IIA property is to allow for unobserved heterogeneity in the slope coefficients.

• Why do we think that if Houston Grand Opera's (HGO) prices go up, a person who was planning to go HGO's would go to Houston Ballet instead, rather than to Lollapalooza?

• We think individuals who have a taste for HGO's are likely to have a taste for close substitute in terms of observable characteristics, like Houston Ballet. There is individual heterogeneity in the utility functions.

• This effect can be modeled by allowing the utilities to vary with each person, say by making the parameters dependent on n –i.e., person n.

Random Effects Model

- We allow the marginal utilities to vary at the individual level: $U_{nj} = x_{nj}' \beta_n + \varepsilon_{nj}, \quad \beta_n \sim N(b, \Sigma)$ -like a random effect!
- We can also write this as:

 $U_{nj} = x_{nj}'b + v_{nj},$

where $v_{nj} = \varepsilon_{nj} + x_{nj}' (\beta_n - b)$ is no longer independent across choices.

<u>Note</u>: The key ingredient is the vector of individual specific taste parameters β_n . We have random taste variation.

• Assume the existence of a finite number (*k*) of types of individuals: $\beta_n \in \{b_1, b_2, ..., b_k\}$ with $\Pr(\beta_n = b_k | W_n)$ as a logit model \Rightarrow Finite mixture model.

Random Effects Model

• Alternatively, we can assume

 $\beta_n \mid W_n \sim N(W_n'\gamma, \Omega)$ where we use a normal (continuous) mixture of taste parameters.

• Using simulation methods or Gibbs sampling with the unobserved β_n as additional unobserved random variables may be an effective way of doing inference.

<u>Remark</u>: Models with random coefficients can generate more realistic predictions for new choices (predictions will be dependent on presence of similar choices).

Berry-Levinsohn-Pakes Model

- BLP extended the random effects logit models to allow for
- unobserved product characteristics,
- endogeneity of choice characteristics,
- estimation with only aggregate choice data
- with large numbers of choices.
- Model used in I.O. to model demand for differentiated products.
- The utility is indexed by individual, product and market:

 $U_{njt} = \mathbf{x}_{njt}' \, \mathbf{\beta}_n + \mathbf{\xi}_{jt} + \mathbf{\varepsilon}_{njt},$

- ξ_{jt} = unobserved product characteristic, allowed to vary by market, *t*, and by product, *j*.
- ε_{njt} = unobserved component, indep. Gumbel, across n, j, & t.

Berry-Levinsohn-Pakes Model

• The random coefficients β_n are related to individual observable characteristics:

 $\boldsymbol{\beta}_n = \boldsymbol{\beta} + \mathbf{Z}_n' \boldsymbol{\Gamma} + \boldsymbol{\eta}_n, \quad \boldsymbol{\eta}_n \mid \mathbf{Z}_n \sim \mathbf{N}(0, \Omega)$

• BLP estimate this model without individual level data. It uses market level data (aggregates) in combination with estimators of the distribution of \mathbf{Z}_n .

- The data consist of
- estimated shares \hat{s}_{jt} for each choice j in each market t,

– observations from the marginal distribution of individual characteristics (the \mathbf{Z}_n 's) for each market, often from representative data sets.

Berry-Levinsohn-Pakes Model

• First, write the latent utilities as $U_{nj} = \delta_{jt} + v_{njt} + \varepsilon_{njt}$ with $\delta_{jt} = \mathbf{x}_{nj}' \mathbf{\beta} + \xi_{jt},$ $v_{njt} = \mathbf{x}_{jt}' (\mathbf{Z}_n' \Gamma + \eta_n)$

• Second, for fixed Γ , Ω , δ_{jt} , calculate the implied market share for product *j* in market *t*. This can be done analytically or by simulation.

• Next, we only fix Γ and Ω , for each value of δ_{jt} find the implied market share. Using aggregate market share data, find δ_{jt} such that implied market share equals observed market shares.

• Given $\delta_{jt}(s, \Gamma, \Omega)$, calculate residuals (ξ_{jt}) : $\delta_{jt} - \mathbf{x}_{nj}' \mathbf{\beta} = w_{jt}$

Berry-Levinsohn-Pakes Model

• Then, assume ξ_{jt} and ε_{njt} are uncorrelated with observed characteristics (other than price). We can use GMM or IVE to get β .

• GMM will also give us the standard errors for this procedure.

MP Model – Example 1 Example (Kamakura and Srivastava 1984): Random utility components ε_{ni} , ε_{nj} are more (less) highly correlated when i and j are more (less) similar on important attributes. We need to define a metric for "*similar*."

 $r_{ij} = K e^{-\alpha d_{ij}} \qquad (d_{ij} = \text{weighted eucledian distance between } i \& j)$ $\Omega = \begin{pmatrix} K e^{-\alpha d_{12}} & 1 \\ K e^{-\alpha d_{13}} & K e^{-\alpha d_{23}} & 1 \\ \dots & \dots & \dots \\ K e^{-\alpha d_{1J}} & K e^{-\alpha d_{2J}} & \dots & 1 \end{pmatrix}$

MP Model – Example 1 **Example**: Choice models at brand-size level: correlation between \neq sizes of same brand (Chintagunta 1992) TABLE 4 Normalized Error Cova ce Matrix --0.159 0.305 0.045 -0.498 -0.423 -0.208 -0.315 Heinz 28 Heinz 32 Heinz 40 0.514 -0.159 0.305 1.466 -0.120 -0.449 -0.120 0.318 -0.1730.127 -0.457 0.291 0.030 0.030 0.942 -0.045MNL model Heinz 64 0.045 0.406 Hunts 32 -0.498 -0.423-0.457Del Monte 32 -0.208 -0.315-0.173-0.0450.406 gives biased Del Monte 32 Heinz 64 Hunts 32 Heinz 28 Heinz 32 Heinz 40 estimates Normalized Error Correlation Matrix of price -0.183 1.000 -0.176 -0.501 Heinz 28 Heinz 32 1.000 -0.183 0.754 0.117 -0.715 -0.176 -0.687 0.418 1.000 elasticity -0.360 -0.449 -0.836 0.058 -0.530 -0.144 Heinz 40 0.754 Heinz 64 Hunts 32 -0.687 0.117 0.418 -0.715 -0.360 -0.449 -0.836 -0.530 0.722 0.058 1.000 -0.1440.722 1.000 Del Monte 32 Heinz 64 Hunts 32 Del Monte 32 Heinz 32 Heinz 40 Heinz 28

MP Model – Example 2

Example: Firm innovation (Harris et al. 2003)

- Binary probit model for innovative status (innovation occurred or not)
- Based on panel data ⇒ correlation of innovative status over time: unobserved heterogeneity related to management ability and/or strategy

Table 2. Parameter estimates $(N = 3757, T = 3)^{a,b,*}$								
Variable	CS Probit	MLQ	SC	Gibbs				
Constant	-1.293	-1.646	-1.521	-1.646				
	(0.032)*	(0.052)*	(0.048)*	(0.052)*				
Effective full-time employees	0.055	0.075	0.067	0.075				
	(0.012)*	(0.017)*	$(0.014)^*$	(0.017)*				
Lagged profit margin	-0.039	-0.063	-0.051	-0.073				
	(0.047)	(0.056)	(0.063)	(0.056)				
Business plan × 1	0.399	0.485	0.454	0.485				
Network × 1	(0.031)* 0.329	(0.042)* 0.410	(0.035)* 0.380	(0.042)* 0.409				
Network × 1	(0.033)*	(0.044)*	(0.038)*	(0.043)*				
Export $\times 1$	0.041	0.072	0.062	0.071				
Export × 1	(0.036)*	(0.050)	(0.041)	(0.051)				
Start-up firm $\times 1$	-0.015	0.005	-0.004	0.001				
	(0.055)	(0.081)	(0.069)	(0.082)				
$R\&D \times 1$	1.313	1.613	1.502	1.613				
	(0.044)*	(0.061)*	(0.053)*	(0.063)*				
ρ	_	0.380	0.353	0.381				
		(0.020)*	(0.035)*	(0.053)*				
Max. log-likelihood	-5166	-4983	-5055	_				

Model (2)-(4) account for unobserved heterogeneity (ϱ) -> superior results

MP Model – Example 3

Example: Dynamics of individual health (Contoyannis, Jones and Nigel 2004)

- Binary probit model for health status (healthy or not)
- Survey data for several years
 - Correlation over time (state dependence)
 - Individual-specific (time-invariant) random coefficient

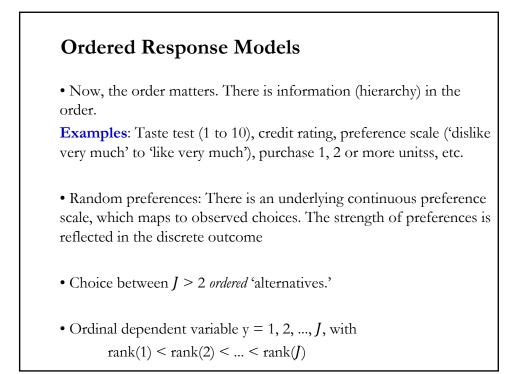
MP Model – Example 3

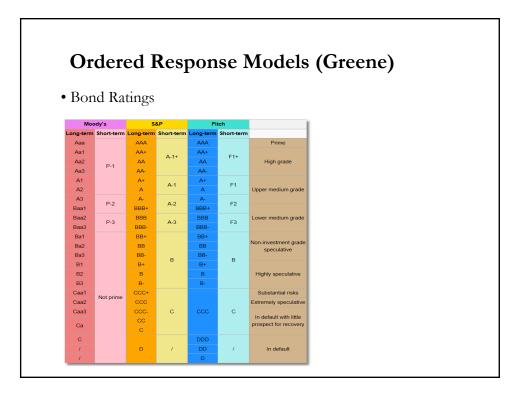
Example: Choice of transportation mode (Linardakis and Dellaportas 2003)

 \Rightarrow Non-IIA substitution patterns

Table 2. Part of the data†

Mode of	Choice	Walking	In-vehicle	Search for parking	Cost	Waiting	Inconvenience
transportation		time (min)	time (min)	time (min)	(drachmas)	time (min)	of transfer
Car	2	2	30	5	400	0	0
Metro	1	10	15	0	300	7	1
Bus	3	5	25	0	75	25	1





Ordered Response Models

• We follow McFadden's approach.

- Suppose y_n^* is a continuous latent variable which is a linear function of the explanatory variables:

 $y_n^* = V_n + \varepsilon_n = x_n' \beta + \varepsilon_n$ ($y_n^* =$ latent utility)

- Preferences can be 'mapped' on an ordered multinomial variable as follows:

$y_n = 1$	if $\alpha_0 < y_n^* \leq \alpha_1$	(Region 1)
$y_n = j$	if $\alpha_{j-1} < y_n^* \leq \alpha_j$	(Region j)
:	:	:
$y_n = J$	if $\alpha_{J-1} < y_n^* \le \alpha_J$	(Region J)
$\alpha_0 < \alpha_1 <$	$\ldots < \alpha_i < \ldots < \alpha_I$	-the α_0 's are called <i>thresholds</i> .

Ordered Response Models – Parallel Odds

• Let's look back at the construction of regions:

$y_n = 1$	if $\alpha_0 < y_n^* = x_n' \beta + \varepsilon_n \le \alpha_1$	(Region 1)
$y_n = j$	if $\alpha_{j-1} < y_n^* = \boldsymbol{x}_n' \boldsymbol{\beta} + \varepsilon_n \le \alpha_j$	(Region j)
$y_n = J$	if $\alpha_{J-1} < y_n^* = \mathbf{x}_n' \mathbf{\beta} + \varepsilon_n \le \alpha_J$	(Region J)

• The β 's are the same for each region (choice). That is, the coefficients that describe the relationship between, say, the lowest versus all higher categories of the response variable are the same as those that describe the relationship between the next lowest category and all higher categories, etc.

• This is called the **proportional odds assumption** or the **parallel regression assumption**. The odds ratios are the same across choices. It simplifies the estimation. It may not be realistic.

Ordered Response Models – Likelihood • We observe outcome *j* if utility is in region *j* Probability of outcome = probability of cell $P[y_n = j | \mathbf{x}_n] = P[\alpha_{j-1} < y_n^* \le \alpha_j]$ $= P[\alpha_{j-1} < \mathbf{x}_n' \mathbf{\beta} + \varepsilon_n \le \alpha_j]$ $= P[\alpha_{j-1} - \mathbf{x}_n' \mathbf{\beta} < \varepsilon_n \le \alpha_j - \mathbf{x}_n' \mathbf{\beta}]$ $= F[\alpha_j - \mathbf{x}_n' \mathbf{\beta}] - F[\alpha_{j-1} - \mathbf{x}_n' \mathbf{\beta}]$ • We write the likelihood, with parameters $\theta = [\alpha, \beta]$, as: $L(\theta) = \prod_{n=1}^N \prod_{j=1}^J P[y_n = j | \mathbf{x}_n]^{I[y_n = j]}$ $= \prod_{n=1}^N \prod_{j=1}^J (F[\alpha_j - \mathbf{x}_n' \mathbf{\beta}] - F[\alpha_{j-1} - \mathbf{x}_n' \mathbf{\beta}])^{I[y_n = j]}$ Taking logs: $Log L(\theta) = \sum_{n=1}^N \sum_{j=1}^J I[y_n = j] log(F[\alpha_j - \mathbf{x}_n' \mathbf{\beta}] - F[\alpha_{j-1} - \mathbf{x}_n' \mathbf{\beta}])$

Ordered Response Models – Logit Model

• The log likelihood is:

 $\log L(\theta) = \sum_{n=1}^{N} \sum_{j=1}^{J} I[y_n = j] \log (F[\alpha_j - x_n' \beta] - F[\alpha_{j-1} - x_n' \beta])$

• The β 's are the same for each choice. This is the parallel regression assumption. It is a restriction on the model. This restriction can be tested (LR or Wald tests easy to construct).

• To continue we need a probability model. For example, we use the logit distribution ⇒ Ordered logit model ("ologit"):

$$F(\alpha_j - \mathbf{x}_{nj}'\boldsymbol{\beta}_j) = \frac{\exp(\alpha_j - \mathbf{x}'_n \boldsymbol{\beta})}{1 + \exp(\alpha_j - \mathbf{x}_{ni}'\boldsymbol{\beta}_i)}$$

• In general, α_0 is set equal to zero and α_J a large number (+ ∞) (also, $\alpha_{-1} = -\infty$). Different normalizations affect the estimation of constant

Ordered Response Models – Probit Model

• We could have selected a Normal distribution for ε_n , in this case, we have the **Ordered probit model** ("**oprobit**"):

$$P[y_n = j | \mathbf{x}_n] = \Phi(\alpha_j - \mathbf{x}_n' \mathbf{\beta}) - \Phi(\alpha_{j-1} - \mathbf{x}_n' \mathbf{\beta}).$$

• As before, we require a normalization: either no constant or $\alpha_0 = 0$.

• The likelihood for the ordered probit is:

$$\operatorname{Log} \operatorname{L}(\theta) = \sum_{n=1}^{N} \sum_{j=1}^{J} I[y_n = j] \log(\Phi[\alpha_j - x_n' \beta] - \Phi[\alpha_{j-1} - x_n' \beta])$$

Ordered Response Models – Example (Greene)

Example: Ordered Probit estimation of Health Status responses (*J*=5). Usual model:

$$y_n^* = \mathbf{x}_n' \mathbf{\beta} + \varepsilon_n$$

with x_n : Age, Education, Income, Marital Status, & number of kids.

Estimation (ML): $x^* = 1.07002$ 01000

 $y_n^* = 1.97882 - .01806 Age_n + .03556 Ed_n + .25869 Inc_n - .031 MS_n + .06065 Kids_n + \varepsilon_n.$

y = 0 if $y_n^* < 0$

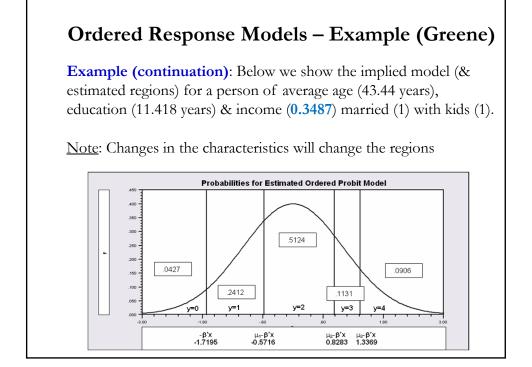
y = 1 if $0 < y_n^* < 1.14835$

y = 2 if $1.14835 < y_n^* < 2.54781$

$$y = 3$$
 if $2.54781 < y_n^* < 3.05639$

y = 4 if $y_n^* > 3.05639$.

<u>Note</u>: Choices are a censored version of preferences, since each alternative is chosen by an interval of preferences.



OIC	ierea	Kes	ponse	e Mo	dels	$-\mathbf{E}\mathbf{x}$	kampl	e (G	reene
Exa	nple (c	ontin	uation)	: Com	parison	of Lo	ogit & P	robit:	
++-	· · ·			+				+	
		Log	it	I		Prob	it	I	
I I	Log	L = -5	749.157	1	Log	L = -5	752.985	1	
I I	Log	L0 = -5	875.096	1	Log	L0 = -5	875.096	1	
I I	Chi	.sq = 2	51.8798	1	Chisq = 244.2238			1	
	PseudoR	sq = .	0214362	1	PseudoR	sq = .	0207847	1	
Variable	Coef.	S.E.	t	P	Coef.	S.E.	t	P	Mean of X
Constant	3.5179	.2038	17.260	.00001	1.9788	.1162	17.034	.00001	1.0000
AGE	0321	.0029	-11.178	.00001	0181	.0016	-11.166	.00001	43.4401
EDUC	.0645	.0125	5.174	.00001	.0356	.0071	4.986	.00001	11.4181
INCOME	.4263	.1865	2.286	.02231	.2587	.1039	2.490	.0128	.34874
MARRIED	0645	.0746	865	.3868	0310	.0420	737	.4608	.75217
KIDS	.1148	.0669	1.717	.0861	.0606	.0382	1.586	.1127	.37943
Mu(1)	2.1213	.0371	57.249	.0000	1.1484	.0212	54.274	.0000	
Mu(2)	4.4346	.0390	113.645	.0000	2.5478	.0216	117.856	.0000	
Mu (3)	5.3771	.0520	103,421	.00001	3.0564	.0267	115.500	.00001	

Ordered Response Models – Partial Effects

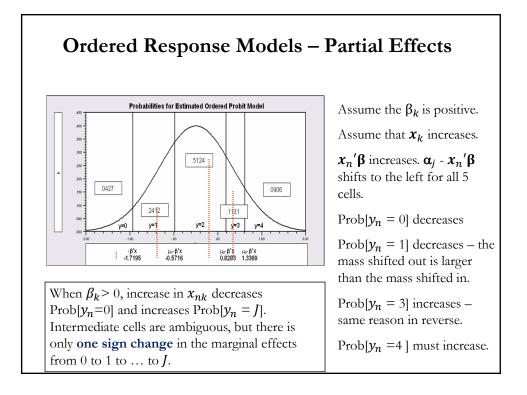
• As usual, there is a non-linearity. The β 's do not have the usual interpretation. In addition, the y_n values are ad-hoc numbers representing non-quantitative outcomes. In general, we look at the effect of a change of x_n in $P[y_n = j | x_n]$.

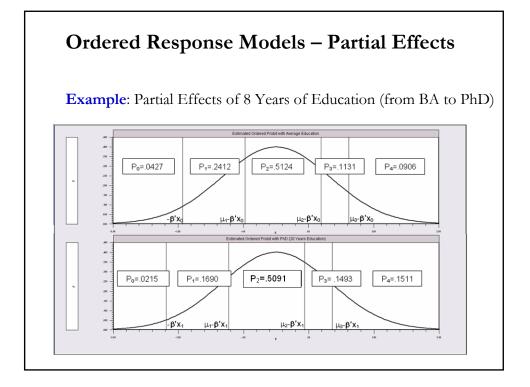
That is, we will look at partial effects:

$$\frac{\partial P[y_n=j|x_n]}{\partial x_{nk}} = [f(\alpha_j - x'_n \boldsymbol{\beta}) - f(\alpha_{j-1} - x'_n \boldsymbol{\beta})] * (-\beta_k)$$

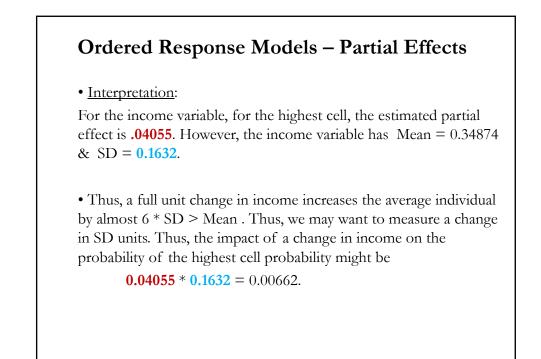
• The partial effets depend on the data (x_n) and the coefficients. The sign depends on the densities evaluated at two points.

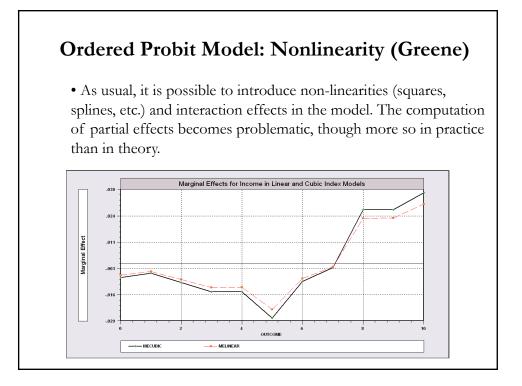
<u>Note</u>: For a continuous variable, the effects on the probabilities should be small, but all probabilities will change. (The sum of all the changes will be zero!)





Effects	computed	nal Effects at means. erences of p	Effects for	binary v	ariables are	
+	d as diffe +	erences or p		s, other	variables at	
L		Probit			Logit	1
Outcome		dPy<=nn/dX		Effect	dPy<=nn/dX	dPy>=nn/dX
+	+ 		us Variable	AGE		
Y = 00	.00173	.00173	.00000	.00145	.00145	.00000
Y = 01	.00450	.00623	00173	.00521	.00666	00145
Y = 02	00124	.00499	00623	00166	.00500	00666
Y = 03	00216	.00283	00499	00250	.00250	
Y = 04	00283	.00000	00283	00250	.00000	00250
+	+ 	Continuo	us Variable	EDUC		
Y = 00	00340	00340	.00000	00291	00291	.00000
Y = 01	00885	01225	.00340	01046	01337	.00291
Y = 02	.00244	00982	.01225	.00333	01004	.01337
Y = 03	.00424	00557	.00982	.00502	00502	.01004
Y = 04	.00557	.00000	.00557	.00502	.00000	.00502
+	+ 	Continuo	us Variable	INCOME		
Y = 00	02476	02476	.00000	01922	01922	.00000
Y = 01	06438	08914	.02476	06908	08830	.01922
Y = 02	.01774	07141	.08914	.02197	06632	.08830
Y = 03	.03085	04055	.07141	.03315	03318	.06632
Y = 04	. 04055	.00000	.04055	.03318	.00000	.03318
+	+ 	Binary(0	4 /1) Variabl	e MARRIED		
Y = 00	.00293	.00293	.00000	.00287	.00287	.00000
Y = 01	.00771	.01064	00293	.01041	.01327	00287
Y = 02	00202	.00861	01064	00313	.01014	01327
Y = 03	00370	.00491	00861	00505	.00509	01014
Y = 04	00491	.00000	00491	00509	.00000	00509





Ordered Probit Model: Model Evaluation

- Different ways to judge a model:
- Partial Effects (do they make sense?)
- Fit Measures (Log Likelihood based measures, such as pseudo-R²)
 Always careful, since there is no "dependent variable," the is
 "label," with no real meaning, besides the ordering. (Keep in mind too that there is no "variation" around the mean!)
- Predicted Probabilities
 - Averaged: They match sample proportions.
 - By observation
 - Segments of the sample
 - Related to particular variables

Ordered Probit Model: Model Evaluation

• Log Likelihood Based Fit Measures

 $R_{Pseudo}^2 = 1 - \log L_{Model} / \log L_{No Model}.$

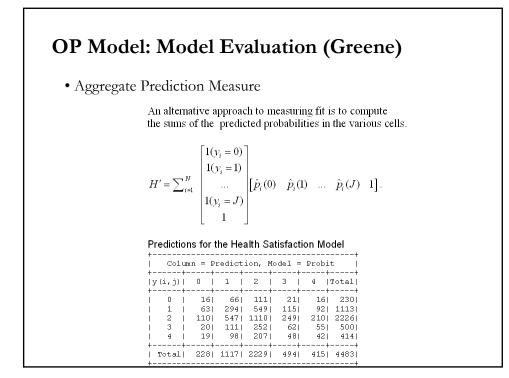
A degrees of freedom adjusted version is sometimes reported,

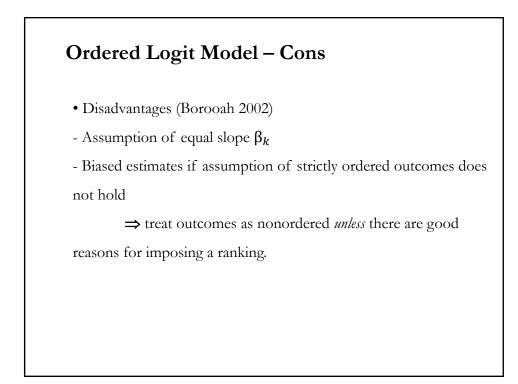
Adjusted $R_{Pseudo}^2 = 1 - [\log L_{No Model} - M] / \log L_{Model}$

Log Akaike Information Criterior	i = AIC	$= (-2\log L + 2M)/n,$
Finite Sample AIC	$= AIC_{FS}$	= AIC + 2M(M+1)/(n - M - 1),
Bayes Information Criterion	= BIC	$= (-2\log L + M/\log n)/n$
Hannan-Quinn IC	= HQIC	$= (-2\log L + 2 M \log \log n)/n.$

OP Model: Mo	del Evalu	ation	
Predictions of the N	Indel· Kids		
realeability of the h			
+			
	Mean Std.Dev.		Maximum
Stratum is	KIDS = 0.000. No	bs.= 278	
	.059586 .028182		
	.268398 .063415		
	.489603 .024370		
	.101163 .030157		
	.081250 .041250		
Stratum is	KIDS = 1.000. No	bs.= 170	1.000
	.036392 .013926		
	.217619 .039662		
P2	.509830 .009048	.443130	.515906
	.125049 .019454		
P4	.111111 .030413	.035368	.222307
All 4483 o	bservations in cur	rent samp	le
	.050786 .026325		
P1	.249130 .060821	.106526	.374712
	.497278 .022269		
₽3	.110226 .029021	.052589	.181065
₽4	.092580 .040207	.028152	.237842
+			

and							
and			Manh	or of	Corre	act Dradi	tions n *
Adjusted	Count	$R^2 = -$	Ivuno	eroj	Corre	ar Freun	$\frac{tions - n_j^*}{n_j}$,
					n	$-n_j *$	
where n_j^*	is the	count	of the n	nost fr	equen	t outcome	
$\hat{y}_i = j^* s$	uch the	ut estin	ated				
Prob(y) =				Pr(v =	$= i \mathbf{x} $	$\forall i \neq i$	*
V1							
				~ 1	51-3		
That is, p	ut the j	oredict					st probability.
•			ed y in	the cel	ll with	the highe	
That is, p			ed y in	the cel	ll with	the highe	
Predicted	vs. Ac	tual Ou	ed y in utcome	the cel	ll with Ordere	the highe	
Predicted + Cross t Row is Model=F	vs. Ac abulat actual	ion of , colu	ed y in utcome predimn is ction=	the cel s for C ctions predic most 1	ll with Ordere	cell.	lodel
Predicted 	vs. Ac abulat actual robit. +	ion of , colu Predi 1	ed y in utcome predi mn is ction= 2	the cel s for C ctions predic most 1 + 3	ll with Drdere	cell.	lodel
Predicted Cross t Row is Model=E Actual	vs. Ac abulat actual robit. + 0 +	tual Ou ion of , colu Predi 1 1	ed y in utcome predi mn is ction= 2 + 230	the cel s for C ctions predic most 1 + 3 +	ll with Ordere ted. ikely 4	cell.	lodel
Predicted 	vs. Ac abulat actual robit. + 0 +	tual Ou ion of , colu Predi + 1 +	ed y in utcome predi- mn is ction== 2 ++ 230 1113	the cel s for C ctions predic most 1 + 3 +	Drdere	cell. Row Sum 220 1113	lodel
Predicted Cross t Row is Model=E Actual	vs. Ac abulat actual robit. + 0 + 0 0 0 0 0	tual Ou	ed y in utcome predi mn is ction= 2 + 230	the cel s for C ctions predic most 1 + 3 0 0 0	Drdere	cell. Row Sum 220 1113	lodel
Predicted 	vs. Ac 	tual Ou	ed y in utcome predi- mn is ction=+ 2 ++ 230 1113 2226 500	the cel s for C ctions predic most 1 3 + 0 0 0 0	Drdere	cell. Row Sum 220 1113 2226 500	lodel





Ordered Logit Model – Application

Example (from Kim and Kim (2004): Effectiveness of better public transit as a way to reduce automobile congestion and air polution in urban areas

- Research objective: develop and estimate models to measure how public transit affects automobile ownership and miles driven.

- Data: Nationwide Personal Transportation Survey (42.033 hh): socio-demo's, automobile ownership and use, public transportation avail.

Ordered Logit Model – Application

- Dependent variable ownership model = number of cars (k = 0, 1, 2, ≥ 3) → ordinal variable
- C_n^* = latent variable: automobile ownership propensity of hh n
- Relation to observed automobile ownership:

 $C_n = k$ if $\alpha_{k-1} < x_n' \beta + \varepsilon < \alpha_k$

- $P(C_n = k) = F(\alpha_k - x_n'\beta) - F(\alpha_{k-1} - x_n'\beta)$

					App				
Table 2. Autom	obile ownership m	odels estimation	1: ARA, NMSA	, and OTHA					
Variable	Ν	fodel 1 (ARA)		М	odel 2 (NMSA)		M	odel 3 (OTHA)	
	Coefficient	z-value	P > z	Coefficient	z-value	P > z	Coefficient	z-value	P > z
Bus distance	-0.3058	-30.00	0	-0.4213	-25.06	0	-0.2292	-17.73	0
No. drivers	2.3805	92.07	0	2.4259	57.60	0	2.3376	70.60	0
Income (log)	0.7006	42.11	0	0.7118	25.13	0	0.6910	33.38	0
HHsize (log)	0.6214	12.01	0	0.6742	7.74	0	0.6416	9.85	0
No. workers	0.1901	9.77	0	0.0832	2.58	0.01	0.2592	10.55	0
Lif_cyc1	-0.2876	-6.17	0	-0.3024	-3.76	0	-0.2757	-4.76	0
Lif_cyc2	-0.3176	-5.33	0	-0.2562	-2.57	0.01	-0.4016	-5.33	0
Lif_cyc3	0.1570	3.86	0	0.0255	0.37	0.71	0.2005	3.98	0
Lif_cyc4	0.1019	1.92	0.06	0.0995	1.13	0.26	0.0399	0.60	0.55
Chicago	-0.4737	-5.93	0	0.1629	1.99	0.05			
Dallas	-0.1559	-1.23	0.22	0.4008	3.12	0			
Houston	-0.3709	-2.78	0.01	0.1969	1.45	0.15			
Los Angeles	-0.0710	-0.94	0.35	0.5712	7.31	0			
New York	-1.1403	-28.11	0	-0.4728	-10.53	0			
Philadelphia	-0.7188	-7.75	0	-0.1098	-1.16	0.25			
Washington	-0.4085	-5.01	0	0.2194	2.62	0.01			
Atlanta	-0.2842	-2.17	0.03	0.2841	2.15	0.03			
Boston	-0.5901	-15.11	0						
OLMSA	-0.0576	-1.76	0.08				-0.1321	-3.95	0
OSMSA	-0.2118	-6.14	0				-0.3071	-8.62	0
Threshold param									
(1)	6.59			7.28			6.38		
(2)	10.36			10.76			10.38		
(3)	13.96			14.48			13.92		

Table 2. Continue Variable	Model 1 (ARA)			Model 2 (NMSA)			Model 3 (OTHA)		
	Coefficient	z-value	P > z	Coefficient	z-value	P > z	Coefficient	z-value	P > z
Goodness of fit									
No. of Obs.	40014			13769			26245		
Restrict Lla	-48314.8			-17202.9			-30697.4		
Predict LL ^b	-31516.5			-10823.6			-20681.9		
χ ² values (d.f.) ^c	33597 (20)			12779 (17)			20051 (11)		
Pseudo-R ²	0.35			0.37			0.33		
Predicted pattern c									
Vehicle Level	Actual	Predict		Actual	Predict		Actual	Predict	
0 Vehicle	8.35	8.32		13.69	13.56		5.56	5.55	
1 Vehicle	31.68	32.02		32.06	32.11		31.48	31.99	
2 Vehicle	45.68	45.32		42.71	42.66		47.23	46.73	
3 Vehicle	14.29	14.34		11.53	11.67		15.73	15.73	
vehicle otes: 1. ARA, al etropolitan statist	14.29 l area households; NN tical areas; OTHA, hou	14.34 ISA, non-attainm seholds in other	areas.	11.53 litan statistical areas	11.67 ; OLMSA, othe	r large metro	15.73	15.73	her small

and Kim, Effects of Publ	ic Transit on Auto			
and Kim, Effects of Publ	ic Transit on Auto			
and Kim, Effects of Publ	ic transit on Auto		in and I had in Lla	unahalda afth
		inobile Ownersin	p and Ose in 110	usenoids of an
Table 3. Marginal e	ffects on autom	nobile ownershi	p level (model	1)
		Automobile ov	wnership level	
	P(C = 0)	P(C = 1)	P(C = 2)	P(C=3)
Bus distance (sqrt)	0.0045	0.0766	-0.0659	-0.0152
No. drivers	-0.0308	-0.5213	0.4485	0.1037
Income (log)	-0.0090	-0.1522	0.1309	0.0303
HHsize (log)	-0.0080	-0.1346	0.1158	0.0268
No. workers	0.0025	0.0414	0.0356	0.0082
Lif_cyc1	0.0042	0.0651	-0.0578	-0.0116
Lif_cyc2	0.0048	0.0716	-0.0641	-0.0123
Lif_cyc3	-0.0019	-0.0337	0.0286	0.0070
Lif_cvc4	-0.0013	-0.0218	0.0187	0.0044
Chicago	0.0083	0.1132	-0.1038	-0.0176
Dallas	0.0024	0.0377	-0.0332	-0.0068
Houston	0.0063	0.0902	-0.0819	-0.0146
Los Angeles	0.0017	0.0276	-0.0242	-0.0051
New York	0.0245	0.2614	-0.2499	-0.0360
Philadelphia	0.0143	0.1715	-0.1619	-0.0240
Washington	0.0071	0.1005	-0.0916	-0.0160
Atlanta	0.0047	0.0702	0.0631	0.0119
Boston	0.0101	0.1387	-0.1270	-0.0218
OLMSA	0.0014	0.0224	-0.0194	-0.0043
OSMSA	0.0035	0.0554	0.0487	-0.0101

Ordered Logit Model – More Applications

Examples:

- Occupational outcome as a function of socio-demographic characteristics --Borooah (2002)
 - Unskilled/semiskilled
 - Skilled manual/non-manual
 - Professional/managerial/technical
- School performance --Sawkins (2002)
 - Grade 1 to 5
 - Function of school, teacher and student characteristics
- Level of insurance coverage

Generalized Ordered Response Model

• We can generalize the model:

$y_n = 1$	if $\boldsymbol{\alpha}_0 < \boldsymbol{y}_n^* = \boldsymbol{x}_n' \boldsymbol{\beta}_1 + \boldsymbol{\varepsilon}_n \leq \boldsymbol{\alpha}_1$	(Region 1)
$y_n = j$	if $\alpha_{j-1} < y_n^* = \boldsymbol{x_n}' \boldsymbol{\beta}_j + \varepsilon_n \leq \alpha_j$	(Region <i>j</i>)
$y_n = J$	if $\alpha_{J-1} < y_n^* = \boldsymbol{x}_n' \boldsymbol{\beta}_J + \varepsilon_n \leq \alpha_J$	(Region J)

• Then:

$$P[y_n = j \mid \boldsymbol{x}_n] = F[\alpha_j - \boldsymbol{x}_n'\boldsymbol{\beta}_j] - F[\alpha_{j-1} - \boldsymbol{x}_n'\boldsymbol{\beta}_{j-1}]$$

• The β 's are different for each region (choice). This model is called **Generalized Ordered Choice Model**. To make it a generalized ordered logit ("**gologit**") model, assume $\varepsilon_n \sim$ Gumbel distribution.

• Quednau (1988) and Clogg and Shihadeh (1994) proposed different versions. Williams (2006) provides Stata code to implement model.

Generalized Ordered Response Model

• There is evidence that thresholds are not the same for each individual, see Terza (1985), Pudney and Shields (2000), Boes and Winkelmann(2006), and Greene and Hensher (2009).

• Terza (1985) suggests making thresholds a function of observables: : $\alpha_{nj} = \theta_j + Z_{nj}' \delta_j$ -linear function.

This can create identification problems, if Z_{nj} is also in x_n (same variable). Difficult to disentagle effects:

$$F(\alpha_{nj} - \boldsymbol{x_n}' \boldsymbol{\beta}_j = \theta_j + Z_{nj}' \delta_j - \boldsymbol{x_n}' \boldsymbol{\beta}_j)$$

Generalized Ordered Response Model

• We can also use non-linear functions to model thresholds heterogeneity:

 $\alpha_{nj} = \exp(\theta_j + Z_{nj}' \delta_j)$

It will be easier to identify effects in the Generalized Ordered Choice Model.

• An internally consistent restricted modification of the model is: $\alpha_{nj} = \exp(\theta_j + Z_{nj}' \delta_j)$

where

 $\theta_j = \theta_{j-1} + \exp(\varphi_j)$ (a natural ordering of thresholds)

Assuming a normal for the errors, this model is called **Hierarchical Order Probit** (HOPit). See Harris and Zhao (2000), and Eluru, Bhat and Hensher (2008).

Brant Test for Parallel Regressions (Greene)

• Recall the parallel odds result. Start with a reformulation of $\operatorname{Prob}[y_n \leq j]$. Define:

 $\gamma_j = \operatorname{Prob}[y_n \leq j] = F[\alpha_j - x_n' \beta]$

Ì

- Using a logit formulation, we get the proportional odds or parallel regression restriction:

$$log\left(\frac{\gamma_j}{1-\gamma_j}\right) = \alpha_j - x_n' \beta$$

• We test all β 's are the same across regions. The alternative hypothesis is the Generalized Ordered Logit Model (with $\mathbf{x}_{nj}' \mathbf{\beta}_j$)

• Many ways to set a test for parameter constancy (across regions) in this context. The standard specification test is called the Brant Test.

Brant Test for Parallel Regressions (Greene)

• We estimate J - 1 (binary) logit models: $Prob[y_n \ge j] = F[\alpha_j - x_n' \beta]$

Then, we estimate Brant Test estimates J - 1 generalized logit models:

 $\operatorname{Prob}[y_n \ge j] = F[\alpha_j - x_{nj}'\boldsymbol{\beta}_j]$

Now, we can test H₀: $\beta_0 = \beta_1 = \dots = \beta_{l-1} = \beta$. (or **R** $\beta = q$)

A Wald test is usually done, with the potential problem of the computation of the Var[**R** Var[**β**] **R**']. (If Var[**β**] is computed based on the individual binary logit estimates, the ordering is not preserved. Brant suggests using the restricted (basic ordered choice) estimates.

	for Para	meter Hom	nogeneity	/				
vectors implies for all H0:beta Chi squa Degrees P value Specifica	in the o that log j = 0, (0) = bet ared test of freed ation Tes		git mode >j x)]=b chi squ beta(= = = dividual	1. The m eta(j)*x ared tes 3) 71.76435 15 .00000 .00000 .00000 .00000	odel - mj t is + ients in	normal d:	3 based on istributio Logit Mod	n)
Variable	+ Brant	Test	Coeffic O	cients in 1	n implied 2	d model 1 3	Prob(y > j	
AGE EDUC INCOME MARRIED KIDS	19.89 13.32	.09864 .00018 .00398	0398 .1212 1.9576 .0674	0292 .0786 .4959 0228	+ 0328 .0630 .1790 1486 .0189	0248 0044 0206 0896		

Heterogeneity in Ordered Choice Models

- Observed heterogeneity
- Easy case, heteroscedasticity, which produces scale heterogeneity.
- Unobserved heterogeneity
- Over decision makers
 - Random coefficients Models
 - E.g. Mixed Logit Model (see Train)
- Over segments
 - Latent class Models

Heteroscedasticity in OC Models (Greene)

• Not difficult to introduce heteroscedasticity in the OC Models. It produces scale changes: a GLS-type correction.

• As usual, we need a model for heteroscedasticity. For example, exponential form: $\exp(\gamma h_s)$. Then, for the Probit and Logit Models:

$$\operatorname{Prob}(y_{i} = j \mid \mathbf{x}_{i}, \mathbf{h}_{i}) = F\left(\frac{\mu_{j} - \boldsymbol{\beta}' \mathbf{x}_{i}}{\exp(\boldsymbol{\gamma}' \mathbf{h}_{i})}\right) - F\left(\frac{\mu_{j-1} - \boldsymbol{\beta}' \mathbf{x}_{i}}{\exp(\boldsymbol{\gamma}' \mathbf{h}_{i})}\right)$$
$$\operatorname{Prob}(y_{i} = j \mid \mathbf{x}_{i}, \mathbf{h}_{i}) = F\left(\frac{\exp(\theta_{j} + \boldsymbol{\delta}'_{j} \mathbf{z}_{i}) - \boldsymbol{\beta}' \mathbf{x}_{i}}{\exp(\boldsymbol{\gamma}' \mathbf{h}_{i})}\right) - F\left(\frac{\exp(\theta_{j-1} + \boldsymbol{\delta}'_{j-1} \mathbf{z}_{i}) - \boldsymbol{\beta}' \mathbf{x}_{i}}{\exp(\boldsymbol{\gamma}' \mathbf{h}_{i})}\right)$$

• As usual, partial effects will also be affected.

Estimated	Heterosce	dastic C	ordered Pr	obit M	odel				
Depender Log like 	Probabili nt variable elihood fu riterion: .	e nction: -5	Hetero. 5741.624	-5752.					
+	Heteroscedastic Ordered Probit Ordered Probit LogL = -5741.624 LogL = -5752.985 LogLR = -5752.985 LogL0 = -5875.096 Chisq = 22.722 Chisq = 244.2238 Degrees of Freedom 3 Degrees of Freedom 5 FseudoRqq = .0227183 PseudoRsq= .0217845						+ + Mean		
Variable		S.E.	t	P	Coef.	S.E.	t	P	of X
Constant AGE EDUC INCOME MARRIED	2.1935 0199 .0390 .2499 0306	.0021 .0080 .0863 .0444 .0417	2.895 688 1.674	.00000 .00000 .00380 .49160	0181 .0356 .2587 0310	.0016 .0071 .1039 .0420	-11.166 4.986 2.490 737	.0000 .0000 .0128 .4608	43.4401 11.4181 .34874 .75217
INCOME FEMALE AGE		.0607 .0249 .0011	-3.883 .673 3.337	.5009				+	.34874 .48404 43.4401
Mu(1) Mu(2) Mu(3)	1.2817	.0811 .1592	15.795 17.605	. 00001		.0216	117.856		

		J	OC M		(=====)
+	ts in Heteros Effects for			t Model		F
+	++ HEALTH=0	HEALTH=1		+ HEALTH=3	HEALTH=4	- -
+ AGE AGE AGE (AGE)	+ .00169 .00618 .00787 (.0017)	.00103	01647	+ 00216 .00086 00130 (0022)		+ Mean Variance Total Restrict
+ EDUC (EDUC)	00332 (0034)		.00251 (.0024)	.00423 (.0042)	.00564 (.0056)	 Total restrict
INCOME INCOME INCOME (INCOME)	02122 .34732 . 32610 (0248)	.05785	92501	.04858	. 47126	Mean Variance Total Restrict
MARRIED (MARRIED)	.00260 (.0029)	.00709 (.0077)	00197 (0020)	00331 (0037)	00442 (0049)	Total Restrict
+ KIDS (KIDS)	00593 (0057)			.00755 (.0072)		 Total Restrict
+ Pure Vari FEMALE	ance Effect 00316	00053	.00840			 Total

Heterogeneity: Latent Class Models

• <u>Assumption</u>: Consumers can be placed into a small number of (homogeneous) segments, which differ in choice behavior (different response parameters –i.e., the β 's).

• Relative size of the segment, s (s = 1, 2, ..., M), is given by

$$f_s = \exp(\lambda_s) / \sum_{s'=1}^{s} \exp(\lambda_{s'})$$

• Probability of choosing brand *j*, conditional on consumer *n* being a member of segment s is given by a logit:

 $P^{s}(y_{n} = j | x_{n}) = \exp(x_{nj}'\beta^{s}) / \sum_{l} \exp(x_{nl}'\beta^{s})$

• Unconditional probability that consumer *n* will choose brand j

$$P(y_n = j | x_n) = \sum_{s=1}^{S} f_s P^s(y_n = j | x_n) =$$

= $\sum_s [\exp(\lambda_s) / \sum_{s'=1}^{S} \exp(\lambda_{s'})] [\exp(x_{nj}'\beta^s) / \sum_l \exp(x_{nl}'\beta^s)]$

Heterogeneity: Latent Class Models

- Estimation: Maximum Likelihood
- Likelihood of a household's choice history H_n $L(H_n) = \sum_s [exp(\lambda_s)L(H_n | s) / \sum_{s'} exp(\lambda_{s'})]$ with $L(H_n | s) = \prod_t P^s(y_{nt} = c(t) | X_{nt})$

c(t) = index of the chosen option at time t.

- Maximize likelihood over all household's: $\prod_n L(H_n)$
- We need to decide on how to form the segments (classes).

