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Lecture 6
Multiple Choice Models
Part II — MN Probit, Ordered Choice

For private use, not to be posted/shared online).

DCM: Different Models

* Popular Models:
Probit Model
Binary Logit Model

1

2

3. Multinomial Logit Model

4 Nested Logit model

5 Ordered Logit Model

* Relevant literature:

- Train (2003): Discrete Choice Methods with Simulation

- Franses and Paap (2001): Quantitative Models in Market
Research

- Hensher, Rose and Greene (2005): Applied Choice Analysis
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Model — ITA: Alternative Models

* In the MNL model we assumed independent &,; with extreme value
distributions. This essentially created the IIA property.

* This is the main weakness of the MNIL. model.

* The solution to the ITA problem is to relax the independence
between the unobserved components of the latent utility, &,;.

* Solutions to ITA
— Nested Logit Model, allowing correlation between some choices.
— Models allowing correlation among the &,’s, such as MP Models.

— Mixed or random coefficients models, where the marginal utilities
associated with choice characteristics vary between individuals.

Multinomial Probit Model

* Changing the distribution of the error term in the RUM equation
leads to alternative models.

* A popular alternative: The &,;’s follow an independent standard
normal distributions for all n, j.

Unj = Xnj' B+ &nj, &nj ~ N, )

* We retain independence across subjects but we allow dependence
across alternatives, assuming that the vector &, = (&1, &n2, ---» &nJ)
tollows a multivariate normal distribution, but with arbitrary covariance
matrix L.
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Multinomial Probit Model

* The vector &, = (&n1, €n2; ---> &ny) follows a multivariate normal
distribution, but with arbitrary covariance matrix L.

* The model is called the Multinomial probit model. It produces
results similar results to the MNL model after standardization.

* Some restrictions (normalization) on & are needed.

* As usual with latent variable formulations, the variance of the error

term cannot be separated from the regression coefficients. Setting the
variances to one means that we work with a correlation matrix rather

than a covariance matrix.

MP Model — Pros & Cons

* Main advantages:
- Using ML, joint estimation of all parameters is possible.

- It allows correlation between the utilities that an individual assigns
to the various alternatives (relaxes I1IA).

- It does not rely on grouping choices. No restrictions on which
choices are close substitutes.

- It can also allow for heterogeneity in the (marginal) distributions
for &,.

* Main difficulty: Estimation.

- ML estimation involves evaluating probabilities given by
multidimensional normal integrals, a limitation that forces practical
applications to a few alternatives (J = 3, 4). Quadrature methods can
be used to approximate the integral, but for large J, often imprecise.
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MP Model — Estimation

* Probit Problem:
P, =Ply; = 1| x,] =
fg; fz(:](p (Enl: ---:gnj—l:gnj+1r ---:En]) dznl--'dgnj—l dgnj+1--' dzn]

(J — 1)-dimensional integral involves €jx = & — &y, which is
normally distributed, N(0, £2). We can rewrite the probability as:
Ply; = 1| x,] = PE; < V)

whete V} is the vector with k element Vy, j = X7, iB- XniB

Let 6 ={B, }. To get the MLE, we need to evaluate this integral for
any B and €. The MLE of 6 maximizes

L=3n2;ynjIn(PE; <Vj)) & we need to integrate.

This is the main “problem” with the MP model.

MP Model — Estimation & Integration

* We need to integrate to get log P(§; < V;)
If ] = 3, we need to evaluate a bivariate normal —no problem.

If ] > 3, we need to evaluate a 3-dimensional integral. A usual
approach is to use Guassian quadrature (Recall Math Review, Lecture
12).

Most current software programs use the Butler and Moffit (1982)
method, based on Hermite quadrature.

Practical considerations: If | > 4, numerical procedures get
complicated and, often, imprecise. For these cases, we rely on
simulation-based estimation -simulated maximum likelihood or SML.




RS — Lecture 17

Review: Gaussian Quadratures

Newton-Cotes Formulae

— Nodes: Use evenly-spaced functional values
— Weights: Use Lagrange interpolation. Best, given the nodes.

— It can explode for large n (Runge’s phenomenon)

Gaussian Quadratures

— Select functional values at non-uniformly distributed points to
achieve higher accuracy. The values are not predetermined, but
unknowns to be determined.

— Nodes and Weight are both “best” to get an exact answer if
f(.) is a 2n — 1)th-order polynomial. Legendre polynomials are
used.

— Change of variables = the interval of integration is [-1, 1]. ?

Review: Gaussian Quadratures

* The Gauss-Legendre quadrature formula is stated as

b=1 . on
Joe  fO) dx = Ty ¢ f(x),
the ¢;'s are called the weights, the x;'s are called the quadrature
nodes. The approximation error term, &, is called the truncation

error for integration.

For Gauss-Legendre quadrature, the nodes are chosen to be zeros of
certain Legendre (orthogonal) polynomials.

10
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Change of Interval for Gaussian Quadrature

* Coordinate transformation from [a, b] to [-1, 1]

This can be done by an affine transformation on # and a change

of variables.
b-a b+a

.’0, N

b

11

Review: Gaussian Quadrature on [-1, 1]

*  Gauss Quadrature General formulation:

[ FOoaemSe fox=c fx) v e, f(x )+ +e,f(x,)

-1 X1
*For n = 2, we have four unknowns (¢, €3, X1, X1). We found them by
assuming that the formula gives exact results for integrating a general

3rd order polynomial. It can also be done by choosing (¢q, €3, X1, X3)

such that it yields “exact integral” for f(x) = x°, x1, x2, x3. 12
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Review: Gaussian Quadrature on [-1, 1]

s Casen = 2: f_llf(x) dx =ci1xq; + C3x;

Exact integral for f(x) = x°, x1, x2, x3.
g s

Four equations for four unknowns

( 1 -
f=1=| lix=2=c¢, +c, ¢, =1
1 CZ=1
f=x :>I_dex=0=c1x1+c2x2 _7
X =X, =—
f=x2:>II xzdx=£=c,x12+czx§ V3
_1 3 1
3 L 3 3 X ==
f=x :>Lx dx=0=c,x; +c¢,x, L V3

1= fCote=f (= )+ ()

13

Review: Gaussian Quadrature on [-1, 1]

e Casen = 3: f_llf(x) dx = cyxq; + x5 + C3x3

* Now, choose (¢4, €3, €3, X1, X1, X3). such that the method yields
“exact integral” for f(x)=x9, x1,x2%,x3, x* x°. (Again, (¢4,
Cy, C3, X1, X1, X3) are calculated by assuming the formula gives1
exact expressions for integrating a fifth order polynomial).
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Review: Gaussian Quadrature on [-1, 1]

1
le:jxdx=2=cl+cz+c3
-1
1

f=x:>dex=0=clxl+czx2+c3x3 01:5/9
-1
1 5 c,=8/9
f:xzjszdngzclx12+czx22+c3x32 c;=5/9
1 =
. L . . . x, =—3/5
f=x jl[x dx =0=c,x] +¢,X; +¢3x; x,=0
A x, =+3/5

1
2
f=x'"=> Ix4dx ==X +c,x) +eyX;
4 5
1
.5 L 5 5 5
f=x :>Ix dx =0=cx; +c,x;, +c,x;

e 15

Review: Gaussian Quadrature on [-1, 1]

* Approximation formula forn = 3

1 5 3 8 5 3
I= [ f(x)dx = 3f(—\/;)+ S0+ ;f(\/;)

16
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Review: Gaussian Quadrature — Example 1

* Evaluate:

DY’
I= L te'dt = 5216 .926477
- Coordinate transformation

t=b;ax+b;a=2x+2; dt = 2dx

4 1 1
I='te?dt =[ (4x+4)e’ax = [ f(x)de

- Two-point formula (n = 2)
_ e NP NI RV I R
1= fxydx=f( ) =(-pe Ve

=9.167657324 +3468.376279 =3477.543936 (& =33.34%)

17

Review: Gaussian Quadrature — Example 1
- Three-point formula (n = 3)
1= rexgac =2 1—06)+ 5 0)+3 (V0.6

= %(4 —40.6 )e* "0 4 %(4)(;4 + %(4 +4~0.6 )e*+V0s

= %(2.221191545 )+ %(218.3926001 )+ %(8589.142689)
=4967.106689 (e=4.79%)

- Four-point formula (n = 4)
1
I= I 1f(x)a’x = 0.34785[ £ (—0.861136) + £(0.861136)]

+0.652145[ £(~0.339981) + £(0.339981)]
=5197.54375 (€ = 0.37%) 18




RS — Lecture 17

Review: Gaussian Quadrature — Example 2

1.64 X
j e 2 dy = 44949742

e BEvaluate
\/ 21

[

03F
ey

0.1 -

0.5 1.0 1.5

- Coordinate transformation

b;“ﬁb” — 82x+.82 = .82(1+x); dif = 82dx

=

1es 82 ol s
e 24t = j e 2 d

_ 82
e RNGEES

11 f(x)dx

Review: Gaussian Quadrature — Example 2

- Two-point formula (n = 2)

_%Ijlf(x)dx \/_(f(T) f(\/— j_ﬂ

=0.32713267 *(0.94171147 +0.43323413) = 44978962 (& =0.065%)

- Three—point formula (n = 3)

jf( Jax = J_[ FEA08)+ S+ f(«/_)J

.82 (5 ——[82(1 -Jo6)r 8 —7[82(1 01 +5 —2[.82(1+M)]2J
= —e

_ —e
N2z 9

e +—
9 9
= 32713267 *(0.5461465 9 + 0.63509351 + 0.19271450 )
= 0.44946544 (& = 0.007%)

1 1, 1 1
—[.82(1-—= —[.82(1+—=
82 [e JL820-) ‘e L8200+

20

2]

10
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Hermite Quadrature (Greene)

* Hermite (or Gauss—Hermite) quadrature is an extension of the
Gaussian quadrature method for approximating the value of integrals
of the following kind:

I=[" e fO)dx = Ty w; f(x),

¢ It is a method well adapted to the kind of integral we see when we
assume normality for f (&), like in probit models.

¢ Useful approximation to compute moments of a normal
distribution.

The x; roots are given by the Hermite polynomial, H;,, and the
weights, w; are given by: on—1pl /7

) 7 d\" 4 A
_ n T - _ 12 —1°/2 p; = S NG
(2) Hyfz)=(-1)" P (:C_d:c) € . n2(H,_,(x;)]?

Hermite Quadrature (Greene)
* The problem: approximating an integral, involving exp(-x?):

[ foxvyexp(=vi)dv = 31 f(x, v, )W,
Adapt to integrating out a normal variable

00 = [ 1) RN g

Change the variable to z = (1/(s+2))v,
v = (cv2)z and , dv=(c+2)dz

%J‘: f(x,1z) exp(-z2)dz, L=c+2

This can be accurately approximated by Hermite quadrature
fx) ~ Y f(x,AZ)W,

f(x) =

11
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Hermite Quadrature (Greene)

Example (Butler and Moffitt’s Approach): Random Effects Log
Likelthood Function

log =3 log | {ﬁg[y,-,,(X,'-,Bo o, )]}h(v,-)dv,-

Butler and Moffitt: Compute this by Hermite quadrature
@ H

I SO)R(,)dv, zz f(z,)w, whenh(v,) = normal density
o h=1

z, = quadrature node; w, = quadrature weight
z, = ov,,cis estimated with B°

i

Hermite Quadrature (Greene) - Example

Example (continuation):

Nodes for 8 point Hermite Quadrature:

-2.930637 -1.981657 -1.157194 -0.381187 0.381187 1.157194
1.981657 2.930637

Weights for 8 point Hermite Quadrature:
0.0001996041 0.0170779830 0.2078023258 0.6611470126
0.6611470126 0.2078023258 0.0170779830 0.0001996041

Note: R package pracma compute all Gauss-Hermite nodes and
weights, with function gaussHermite(j), where j=8 delivers the above
values.

12
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Multidimensional Integrals: A Curse

* In the review, we concentrated on one-dimensional integrals. For
integration in multiple dimensions, one approach is to phrase the
multiple integral as repeated one-dimensional integrals.

* But, eventually, we run into the so-called curse of dimensionality.
Four or more dimensions are complicated and, often, imprecise.

e There are two methods that work well:
1. Monte Carlo: Based on repeated function evaluations, not repeated
integrations using one-dimensional methods.

Popular algorithm: Markov chain Monte Carlo (MCMC), which include
the Metropolis-Hastings algorithm and Gibbs sampling;

2. Sparse grids: Based on a one dimensional quadrature rule, but uges a
recursive combination of univariate results.

MP Model — Simulation-based Estimation

* ML Estimation is complicated due to the multidimensional
integration problem. Simulation-based methods approximate the
integral. Relatively easy to apply.

* Simulation provides a solution for dealing with problems involving
an integral. For example:

E[hw)] = [ h(w) f() du

* All GMM and many ML problems require the evaluation of an
expectation. In many cases, an analytic solution or a precise numerical
solution is not possible. But, we can always simulate E[h(u)]:
- Steps
- Draw R pseudo RV from f(u): ul, u?, .., uR (R: repetitions)
- Compute E[h(w)] = (1/R) XE_, h(u")

13
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MP Model — Simulation-based Estimation

* We call E[h(u)] a simulator.

* If h(.) is continuous and differentiable, then E[h(u)] will be
continuous and differentiable.

* Under general conditions, E[h(w)] provides an unbiased (& most
of the times consistent) estimator for E[h(u)].

* The variance of E[h(u)] is equal to Var[h(u)]/R.

¢ Last semester we introduced several simulators: Importance
Sampling, Gibbs Sampling, Metropolis-Hastings Algorithm. In this
lecture, we will present a very fast simulator: GHK (Geweke-
Hajivassiliou-Keane).

Review: The Probability Integral Transformation
 This transformation allows one to convert observations that come

from a uniform distribution from 0 to 1 to observations that come
from an arbitrary distribution.

Let U denote an observation having a uniform distribution [0, 1].

() 1 0<uc<l
u =
& 0 elsewhere

Let f (x) denote an atbitrary pdf and F (x) its corresponding CDF.
LetX = F71(U).

We want to find the distribution of X.

14
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Review: The Probability Integral Transformation

* Find the distribution of X.
G(x)=7Pr[x
=P[U
= F (x )
Hence: g(x)=G"(x)=F'(x)= f(x)
Thus if U ~ Uniform distribution in [0, 1], then,
X = F71(U) has density f(x).

o156
o.1a
o.12
[ |
0.0
o0.0s5
0.0
0.0z

o —

IN

x]=P[F '(U)<x]

F(x)]

IA

Review: The Probability Integral Transformation

* The goal of some estimation methods is to simulate an expectation,
say E[h(Z)]. To do this, we need to simulate Z from its distribution.
The probability integral transformation is very handy for this task.

Example: Exponential distribution
Let U ~ Uniform(0, 1).
Let F(x) =1 — exp(\x) —i.e., the exponential distribution.
Then,
-log(1 — U) /X ~ F (exponential distribution)

Example: If F is the standard normal, F~1 has no closed form
solution. Most computers programs have a routine to approximate F
for the standard normal distribution.

15
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Review: The Probability Integral Transformation

* Truncated RVs can be simulated along these lines.

Example: U ~ N(u, 0?), but it is truncated between « and b. Then,

Fa— o e T r -"EI_; o—
E (u) = [|]| |I _'AJ: — b | uj P L (l ! \] — b I o [ I|:|
) ooy o S0 | . Tt L L

U can be simulated by letting F(#) = Z and solving for # as:

ala (b — )\ fa— fa— Y
od l{; '1'( = ‘.'_|I'|",T'I +~&® [ - .:1—:

MP Model — Simulation-based Estimation

* Probit Problem:
- We write the probability of choice j as: P[y, = j| x,] = P¢; <V))

whete V; is the vector with k element Vy, j = X7, iB- XnB

Let 0 = {3, &}. The MLE of 0 maximizes
L=%n2ynjIn(PE; <V))) & we need to integrate

We need to integrate to get log P(¢; < V}):
If ] = 3, we need to evaluate a bivariae normal —no problem.

If ] = 4, we need to evaluate a 3-dimensional integral. Possible using
Guassian quadrature —see Butler and Moffit (1982).

If J > 4, numerical procedures get complicated and, often, imprecise.

16
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MP Model — Simulation-based Estimation

* We need to integrate to get log P(€; < V})

* A simulation can work well, by approximating

Plyn = j1X] = P& < V) = = 2R, 1[£} < V]

where we draw E; as an zzd. N(0, ), R times.

This simulator is called frequency simulator. It is unbiased and
between [0, 1]. But, its derivatives (zero or undefined) complicates
calculations.

MP Model — Simulation-based Estimation

* Let’s go over a detailed example of the simple frequency simulator.

Example 1: Binary (0,1) Probit
- Step 1
— For each observation n =1, ..., N draw n* ~ N(0, 1), r = 1, 2, ...,
R (R: repetitions)
— Initialize y_count = 0
— Set starting values: § = B
— Compute y,," = x, Bf* + Ln"; L= choleski factor (LL'= Q)
— Evaluate: y,” > 0 = y_count = y_count + 1
— Repeat R times

17
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MP Model — Simulation-based Estimation

Example 1 (continuation): Binary Probit
- Step 2 - Calculate probabilities

P, | Bf* = y_count/R -L.e., empirical frequency
- Step 3: Form the simulated LL function

SLL= Y Yn In(Fr [B") + (1 = yn) In(1 = P) [ Bt")
- Step 4: Check convergence

— Criteria: SLL(B™) - SLL(BF:,) < 0.0001

- Step 5: If no convergence, update parameter - B

t+1 = Bt + update

- Repeat until convergence.

MP Model — Simulation-based Estimation

* A simulation for the multinomial choice problem follows the same
steps.

Example 2: Multivariate Probit
- Draw ¢; from a multivariate normal distribution

- Calculate the probability of choice j as the number of times choice j
corresponded to the highest utility, given the model for Vy,;.

- Calculate simulated likelihood.
(With many choices (J >5) this method does not work well.)

¢ There are many other simulators, improving over the frequency
simulator: smaller variance, smoother, more efficient computations.

18
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MP Model — Simulation-based Estimation

* One of this simulation methods is the Importance Sampling.

- Consider the integral E[h(u)] = [ h(uw) f(u) du. It is difficult to

draw U from F or h(.) is not smooth. We can always write:

E[hw)] = [{h(W) f(W)/gw)}g(w) du

where g(u) is a density with the following properties
a) it is easy to draw U from g(u)
b) g(.) & f(.)have the same support.

c) It is easy to evaluate {h(u) f(u)/g(w)}
d) {h(w) f(u)/g(w)} is bounded and smooth over the support of U.

Note: E[h(w)] = E[h(w) %] where U ~ g(.)

MP Model — Simulation-based Estimation

* The importance sampling simulator:

Elh@)] = 2Ry ) 225

where u” are R i.id. draws from g(.).

* Conditions (a) and (c) is to increase computation speed. Condition
(d) produces a variance bound and smoothness.

* Condition (d) is the complicated one. For example, if g(.) is a 7.z.d.
truncated normal may not be bounded if the variance, £, has large
off-diagonal terms.

The Geweke-Hajivasilliou-Keane (GHK) simulator satisties (a) to (d).

19
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MP Model — Simulation-based Estimation

* Suppose we have /] = 1, 2, 3 (three choices). We can write
P[yn =1 |xn] = P(gz < Vz, 23 < V3)
=PE <V3) *P(3 < V3|6 <V3)

* We redefine £; & V}, éj =& — §,& 17]: (x]’ — x7)B. Then,
Ply, =1|X]=PE > V)« P(& > V3| &, > ;)

* To draw from a N(0, 1), use a Cholesky decomposition of = L'L:

&=l

&=l v +lpnv,
where the v;’s are N(0,1) draws and l;; is the (i, j)-element of L.
Replacing above, we have the probabilities in terms of independent

17i’S.

MP Model — Simulation-based Estimation

* Replacing above:
7

V3—liovg |
l11

Plyn = 1|%n] = Pwy > 72) % P(v, > v, >
11

The pro of this is that the v;’s are independent N(0,1), we can write
the probability of choice j as the product of independent, but
conditioned univariate CDFs.

* From the above expression, we draw the v;’s from truncated
normals. Then:

Plyn = 1]xy] = Py > 72)  P(v, > =22
11 22

where V7 is a realization taken from truncated normal distributions
with lower truncation point V5 /l44.,

20
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MP Model — Simulation-based Estimation

* The GHK generates draws v; to compute Py, =j |x,] asa
product of normals. Simulator steps:

a) Set initial values for parameters. Set P* = 1

b) Drawing from a simulated truncated normal = v

¢) Compute y = P[y,, =j | x,] analytically. Reset P* = P*x y

d) Compute (analytically) the likelihood conditional on the draws =
get values for parameters.

e) Iterate.

P* is the GHK simulator, which is bounded (between 0 and 1),
continuously differentiable, since P* is continuous and differentiable
and its variance is smaller than the frequency simulator —each draw of
the frequency was either zero or 1.

MP Model — Quadrature or Simulation (Greene)

+.Computationally, comparably difficult
* Numerically, essentially the same answer. SML is consistent in R
* Advantages of simulation

— Can integrate over any distribution, not just normal

— Can integrate over multiple random variables. Quadrature is
largely unable to do this.

— Models based on simulation are being extended in many
directions.

— Simulation based estimator allows estimation of conditional
means = essentially the same as Bayesian posterior means

21
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MP Model — Bayesian Estimation

* Bayesian estimation.

- Drawing from the posterior distribution of §and €2 is
straightforward. The key is setting up the vector of unobserved RVs
as:

6 = (ﬂ’ g, Unl) UnZJ ceey Un])

and, then, defining the most convenient partition of this vector.

* Given the parameters drawing from the unobserved utilities can be
done sequentially: for each unobserved utility given the others we
would have to draw from a truncated normal distribution, which is
straightforward --see McCulloch, Polson,and Rossi (2000).

MP Model — More on Estimation

* Additional estimation problem: We need to estimate a large number
of parameters --all elements in the (J + 1) X (J + 1) dimensional
covariance matrix of latent utilities, minus some that are fixed by
normalizations and symmetry restrictions.

- Difficult with the sample sizes typically available.

22
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Multinomial Choice Models: Probit or Logit?

* There is a trade-off between tractability and flexibility

— Closed-form expression of the integral for Logit, not for Probit
models.

— Logit has the IIA property. No subsitution is allowed.

— Logit model easy to estimate.

— Probit allows for random taste variation, can capture any
substitution pattern, allows for correlated error terms and unequal
error variances.

— But, the Probit model is complicated to estimate.

= Dependent on the specifics of the choice situation. Is susbstitution
important?

Random Effects Model

* A third possibility to get around the IIA property is to allow for

unobserved heterogeneity in the slope coefficients.

* Why do we think that if Houston Grand Opera’s (HGO) prices go
up, a person who was planning to go HGO’s would go to Houston
Ballet instead, rather than to Lollapalooza?

* We think individuals who have a taste for HGO’s are likely to have
a taste for close substitute in terms of observable characteristics, like
Houston Ballet. There is individual heterogeneity in the utility
functions.

¢ This effect can be modeled by allowing the utilities to vary with each
person, say by making the parameters dependent on n —i.e., person n.

23
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Random Effects Model

* We allow the marginal utilities to vary at the individual level:
Unj = xnj, Bn + €nj, Bn ~N(b,X) -likea random effect!

¢ We can also write this as:
— A
Unj = Xnj' b + vy,

where Vp; = &y + Xp j' (Bn — b) is no longer independent across
choices.

Note: The key ingredient is the vector of individual specific taste
parameters (3. We have random taste variation.

* Assume the existence of a finite number (k) of types of individuals:

ﬁn € {le b2: ) bk}
with Pr( B, = by | Wp) as a logit model = Finite mixtutre model.

Random Effects Model

* Alternatively, we can assume
Bn| Wa ~N(W'y, Q)

where we use a normal (continuous) mixture of taste parameters.

* Using simulation methods or Gibbs sampling with the unobserved
B, as additional unobserved random variables may be an effective
way of doing inference.

Remark: Models with random coefficients can generate more realistic
8

predictions for new choices (predictions will be dependent on

presence of similar choices).

24
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Berry-Levinsohn-Pakes Model

* BLP extended the random effects logit models to allow for
- unobserved product characteristics,

- endogeneity of choice characteristics,

- estimation with only aggregate choice data

- with large numbers of choices.
* Model used in I1.O. to model demand for differentiated products.

* The utility is indexed by individual, product and market:

Unjt = xnjt, ﬁn + gjt + Enjt>
- €j¢ = unobserved product characteristic, allowed to vary by market,
t, and by product, j.

- &pjt = unobserved component, indep. Gumbel, across 1, j, & t.

Berry-Levinsohn-Pakes Model

* The random coefficients B, are related to individual observable
characteristics:

anﬁ"_znlr'i_nna nn|ZnNN(0,Q)

* BLP estimate this model without individual level data. It uses
market level data (aggregates) in combination with estimators of the
distribution of Z,,.

* The data consist of
— estimated shares $j; for each choice j in each market t,

— observations from the marginal distribution of individual
characteristics (the Zy,'s) for each market, often from representative
data sets.

25
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Berry-Levinsohn-Pakes Model

* First, write the latent utilities as
Unj = 8jt + Unje + &njit
with
— !
6] - xn] B + gjt)
_ I !
vnjt - xjt (Zn I+ nn)

* Second, for fixed I', €2, 8¢, calculate the implied market share for
product j in market . This can be done analytically or by simulation.

* Next, we only fix I and €, for each value of Sjt find the implied
market share. Using aggregate market share data, find §;; such that

implied market share equals observed market shares.

* Given j¢(s, I', Q), calculate residuals (£j¢): 8¢ - Xpj'B = Wje

Berry-Levinsohn-Pakes Model

* Then, assume &j; and &y ¢ are uncotrelated with observed
characteristics (other than price). We can use GMM or IVE to get {3.

* GMM will also give us the standard errors for this procedure.
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MP Model — Example 1

Example (Kamakura and Srivastava 1984):

Random utility components &;, &, are more (less) highly
correlated when i and j are more (less) similar on important
attributes. We need to define a metric for “similar.”

—K e % (d; = weighted eucledian distance between i & j)
Ke ™ 1
Ke Ke» |

o cee cee

Ke® Ke® .1

MP Model — Example 1

Example: Choice models at brand-size level: correlation
between # sizes of same brand (Chintagunta 1992)

TABLE 4
Normalized Error Covariance Matrix
Heinz 28 0514 ~0.159 0.308 0.045 ~0.498 -0.208
Heinz 32 -0.159 1.466 0.120 -0.449 —0423 ~0.315
Heinz 40 0.305 —0.120 0.318 0.1'2)7 g‘;;‘; 73 (l):z
Heinz 64 0.045 —0.449 0.127 0.291 —0.
Hunis 32 ~0.498 ~0.423 -0.457 0030 0942 0.406 MNL model
Del Monte 32 -0.208 0315 -0.173 0,045 0.406 0.335 gives biased
Heinz 28 Heinz 32 Heinz 40 Heinz 64 Hunts 32 Del Monte 32 .
estimates
Normalized Error Correlation Matnix A
) of price
Heinz 28 1000 0.183 0.754 0.117 0.715 -0.501 .
Heinz 32 -0.183 1.000 -0.176 —0.687 ~0.360 —0.449 elast1c1ty
Heinz 40 0754 —0.176 1.000 0.418 -0.836 —0.530
Heinz 64 0.117 —0.687 0.418 1,000 0,058 —0.144
Hunts 32 -0.715 0.360 -0.836 0,058 1,000 0722
Del Monte 32 —0.501 —0.449 -0.530 0.144 0.722 1.000

Heinz 28 Heinz 32 Heinz 40 Heinz 64 Hunts 32 Del Monte 32
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MP Model — Example 2

Example: Firm innovation (Harris et al. 2003)

* Binary probit model for innovative status (innovation occurred or
not)

* Based on panel data = correlation of innovative status over time:
unobserved heterogeneity related to management ability and/or
strategy

MP Model — Example 2

Table 2. Parameter estimates (N=3757,T = 3)**"

Varuble CS Probit MLQ SC
Constant -1293 -1.646 -1.521
(0.032)* (0.052)* (0.048)*
Effective full-tme employees 0055 0.075 0.067
(0.012)* (0.017)* (0.014)*
Lagged profit margin 0039 —0.063 =0.051
©.047) (0.056) (0.063)
Business plan = 1 03% 0.485 0.454
©.031)* (0.042)* (0.035)* (0.042)*
Network x | 032 0.410 0.380 0.409
(0.033)* (0.044)* (0.038)* (0.043)*
Export x 1 0041 0.072 0.062 0.071
(0.036)* {0.050) (0.041) (0.051)
Start-up firm x 1 0015 0.005 —0.004 0.001
(0.055) {0.081) (0.069) (0.082)
R&D x 1 1313 1.613 1.502 1.613
(0.044)* (0.061)* (0.053)* (0.063)*
P - 0.380 0.353 0.381
(0.020)* (0.035)* (0.053)*
Max. log-likelihood —=5166 —4983 —5055 -

* Robust standard errors in parentheses.
" Standard deviation of the posterior distribution.
*Significant at 5%.

Model (2)-(4) account for unobserved heterogeneity (o) -> superior results
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MP Model — Example 3

Example: Dynamics of individual health (Contoyannis, Jones and
Nigel 2004)

* Binary probit model for health status (healthy or not)
* Survey data for several years
- Correlation over time (state dependence)

- Individual-specific (time-invariant) random coefficient

MP Model — Example 3

Example: Choice of transportation mode (Linardakis and
Dellaportas 2003)

= Non-IIA substitution patterns

Table 2. Part of the datat

Mode of Choice  Walking  In-wehicle Search for parking  Cost Watting  Inconvenience

Iransportation time (min)  lime (min) lime (min) (drachmas) time (min)  of iransfer
Car 2 2 30 § 0 0 0
Metro | 10 15 0 X0 7 |
Bus 3 5 25 0 75 2 |
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Ordered Response Models

* Now, the order matters. There is information (hierarchy) in the
order.

Examples: Taste test (1 to 10), credit rating, preference scale (‘dislike
very much’ to ‘like very much’), purchase 1, 2 or more unitss, etc.

* Random preferences: There is an underlying continuous preference
scale, which maps to observed choices. The strength of preferences is
reflected in the discrete outcome

* Choice between | > 2 ordered ‘alternatives.’

* Ordinal dependent variable y = 1, 2, ..., J, with
rank(1) < rank(2) < ... < rank(/)

Ordered Response Models (Greene)

* Bond Ratings
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Ordered Response Models
* We follow McFadden’s approach.

- Suppose Yy, is a continous latent variable which is a linear function
of the explanatory variables:

Y=V, +te,=x," B+e&, (Yp = latent utility)

- Preferences can be ‘mapped’ on an ordered multinomial variable as
follows:

Y =1 if oy <yp, <q (Region 1)
Ya=J if g <yp<a;  (Regionj)

=] ifayg<yp<a;  (Region))

0y <oy<..<aoj<..<o -the o, ‘s are called #hresholds.

Ordered Response Models — Parallel Odds

* Let’s look back at the construction of regions:

Vo =1 if o, <yn=x,"B+e, <oy (Region 1)
=) o <y =x,"B+e, <oy (Region j)
V=] if oy_1< yi=x, B+ e, < oy (Region J)

* The B’s are the same for each region (choice). That is, the
coefficients that describe the relationship between, say, the lowest
versus all higher categories of the response variable are the same as
those that describe the relationship between the next lowest category
and all higher categories, etc.

* This is called the proportional odds assumption or the parallel
regression assumption. The odds ratios are the same across
choices. It simplifies the estimation. It may not be realistic.
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Ordered Response Models — Likelihood

* We observe outcome j if utility is in region j
Probability of outcome = probability of cell
Ply, = jl xp] = Ploj—1 <yn < ay]
= Ploj_1<x,' B+ e, <0y
=Ploj_1 — X' B<en <oy —xp B]
= Floj — %, B] = Floj_1 — X, B]

* We write the likelihood, with parameters 8 = [a, B3], as:
L(0) = TTN=1 Ty Plyn=jl 2] 12n =]
= [Ih=1 H§=1(F[aj — X' B] — Flaj_q —x," B] )I[J/n =]

Taking logs:
Log L(8) = =1 X}y lyn =1 log (Floy — xu' Bl = Flay_y — xn' B])

Ordered Response Models — Logit Model

* The log likelihood is:
Log L(6) = Yn=1 X))y lyn = j1 log (Flay — xu Bl = Floj_1 — xy' B])

* The @’s are the same for each choice. This is the parallel regression
assumption. It is a restriction on the model. This restriction can be
tested (LR or Wald tests easy to construct).

¢ To continue we need a probability model. For example, we use the
logit distribution => Ordered logit model (“ologit”):

Hoy —xn5'Bj) =

exp(OLj — xp, B)
1+exp(Qj— xm-lﬂi)

* In general, o is set equal to zero and o a large number (+) (also,
o, =-0). Different normalizations affect the estimation of constant
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Ordered Response Models — Probit Model

* We could have selected a Normal distribution for &, in this case, we
have the Ordered probit model (“oprobit”):

Plyn :]| xn] = q)((xj - xn, B) — CD(OL]-_l — Xp B).
* As before, we require a normalization: either no constant or o,=0.

¢ The likelihood for the ordered probit is:

Log L(8) = XN_y X_ Iy =1 log(®loy — x," B — Ploy_q — x5 B

Ordered Response Models — Example (Greene)

Example: Ordered Probit estimation of Health Status responses
(J=5). Usual model:
Yn=%p' B+e,
with x,: Age, Education, Income, Marital Status, & number of kids.
Estimation (ML):
Yn = 1.97882 - .01806 Age,, + .03556 Edy, + 25869 Inc, - .031 MS,
+ .06065 Kids, + &y.
y=0 if yp <0
if 0 < yp<1.14835
if 1.14835 < yy< 2.54781
if 2.54781 < yp< 3.05639
if yp > 3.05639.

R
I
I NS

Note: Choices are a censored version of preferences, since each
alternative is chosen by an interval of preferences.
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Ordered Response Models — Example (Greene)
Example (continuation): Below we show the implied model (&

estimated regions) for a person of average age (43.44 years),
education (11.418 years) & income (0.3487) married (1) with kids (1).

Note: Changes in the characteristics will change the regions

Probabilities for Estimated Ordered Probit Model
— as0
400 ]
o]
]
5124
]
w ]
w0 0427 0906
T 2412 1121
000 ]
y=0 y=1 y=2 y=3 y=4
L —t 7
300 150 -5 © 150 am
-p'x X Po-B'X pa-P'X
-1.7195 05716 0.8283 1.3369

Ordered Response Models — Example (Greene)

Example (continuation): Comparison of Logit & Probit:

+

|

|

|

|

|

t

|

+
|Constant|
AG |
|

|

|

|

|

|

|

+
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Ordered Response Models — Partial Effects

* As usual, there is a non-linearity. The 3’ do not have the usual
interpretation. In addition, the ¥, values are ad-hoc numbers
representing non-quantitative outcomes. In general, we look at the
effect of a change of x,, in Py, = j| x,].

That is, we will look at partial effects:

LIl — (o — 2 B) — f(ay-1 — 20 B)]* (B

axnk

* The partial effets depend on the data (x;,) and the coefficients. The
sign depends on the densities evaluated at two points.

Note: For a continuous variable, the effects on the probabilities
should be small, but all probabilities will change. (The sum of all the
changes will be zerol)

Ordered Response Models — Partial Effects

_ - Probabilities for Estimated Ordered Probit Model Assume the Bk iS pOSitiVC.
ok
] Assume that X}, increases.
]
N [ stz 5] X' increases. o - X,
o shifts to the left for all 5
3 cells.
7 248 1831
= S . - Lr=3 - Prob[y, = 0] decreases

— ) T T T

il b e e Problyn = 1] decreascs —the

mass shifted out is larger

than the mass shifted in.

When S>> 0, increase in Xy, decreases
Prob[y,,=0] and incteases Prob[y, = J].
Intermediate cells are ambiguous, but there is
only one sign change in the marginal effects Prob[y,, =4 | must increase.
from0Oto1to...to].

Prob[y,, = 3] increases —
same reason in reverse.
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Ordered Response Models — Partial Effects

Example: Partial Effects of 8 Years of Education (from BA to PhD)

Estimated Ordered Probit wih Average Education

[l = ||

D5 Po=.0427 | I Py=2412 P2=5124 I P3=1131 | | P4=.0906

-B'xq Wi-B'%o Ha-BXo a-P'Xo
T T T J T

e
Estirnated Ordered Probid with PhO (20 Years Edutabon)

) A rem0215 | | P90 P,=.5091 (a: 1493 | | P51

Cp'Xy 1L4-B'Xs He-B'X4 Ya-B'X
T L T T

+-- +——— -—- e e e +
| Summary of Marginal Effects for Ordered Probability Model |
| Effects computed at means. Effects for binary variables are |
| computed as differences of probabilities, other variables at means. |

+-- +-—- -- -——- B e +
| Probit | Logit |
|Outcome | Effect dPy<=nn/dX dPy>=nn/dX| Effect dPy<=nn/dX dPy>=nn/dX|
+-- +-—- -——- -——- B e +
| | Continuous Variable |
|y =00 | .00173 .00173 .00000 | 00145 .00000 |
|y = 01 | .00450 .00623 -.00173 | 00666 -.00145 |
|y = 02 | -.00124 .00499 -.00623 | 00500 -.00666 |
Y = 03 | -.00216 .00283 -.00499 | 00250 -.00500 |
|Y = 04 | -.00283 .00000 -.00283 | 00000 -.00250 |
+-- +-—- -——- -——- B e +
| | Continuous Variable EDUC |
|Y = 00 | -.00340 -.00340 .00000 | -.00291 -.00291 00000 |
|y = 01 | -.00885 -.01225 .00340 | -.01046 -.01337 00291 |
Y = 02 | .00244 -.00982 .01225 | 00333 -.01004 01337 |
Y = 03 | .00424 -.00557 .00982 | 00502 -.00502 01004 |
|y = 04 | .00557 .00000 .00557 | .00502 .00000 .00502 |
+-- +-—- -——- -——- B e +
| | Continuous Variable INCOME |
1Y = 00 | -.02476 -.02476 .00000 | -.01922 -.01922 00000 |
|lY = 01 | -.06438 -.08914 .02476 | -.06908 -.08830 01922 |
|y =02 | .01774 -.07141 .08914 | .02197 -.06632 .08830 |
|y =03 | .03085 -.04055 .07141 | 03315 -.03318 06632 |
|Y = 04 | .04055 .00000 .04055 | 03318 00000 03318 |
+-- +-—- -——- -——- B e +
| | Binary(0/1) Variable MARRIED |
Y =00 | .00293 .00293 .00000 | .00287 .00287 .00000 |
|y =01 | .00771 .01064 -.00293 | .01041 .01327 -.00287 |
Y = 02 | -.00202 .00861 -.01064 | -.00313 .01014 -.01327 |
|y = 03 | -.00370 .00491 -.00861 | |
|Y = 04 | -.00491 .00000 -.00491 | |
+-- +-—- -——- -——- --+
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Ordered Response Models — Partial Effects

* Interpretation:

For the income variable, for the highest cell, the estimated partial
effect is .04055. However, the income variable has Mean = 0.34874
& SD = 0.1632.

e Thus, a full unit change in income increases the average individual
by almost 6 * SD > Mean . Thus, we may want to measure a change
in SD units. Thus, the impact of a change in income on the
probability of the highest cell probability might be

0.04055 * 0.1632 = 0.00662.

Ordered Probit Model: Nonlinearity (Greene)

* As usual, it is possible to introduce non-linearities (squares,
splines, etc.) and interaction effects in the model. The computation
of partial effects becomes problematic, though more so in practice
than in theory.

Marginal Effects for Income in Linear and Cubic Index Models

Marginal Effect
\

ooooooo
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Ordered Probit Model: Model Evaluation

 Different ways to judge a model:
- Partial Effects (do they make sense?)

- Fit Measures (Log Likelihood based measures, such as pseudo-R?)

Always careful, since there is no “dependent variable,” the is
“label,” with no real meaning, besides the ordering. (Keep in mind
too that there is no “variation” around the mean!)

- Predicted Probabilities
— Averaged: They match sample proportions.
— By observation

— Segments of the sample

— Related to particular variables

Ordered Probit Model: Model Evaluation

* Log Likelihood Based Fit Measures

Resouao® = 1 - 102Lagoq / 10213 hgoser-
A degrees of freedom adjusted version is sometimes reported,

Adjusted Rpgyas® = 1 - [102Lp pogsr =M] / 102 Lasoger.

Log Akaike Information Criterion = AIC = (-2logl + 2M)/n,

Finite Samnple AIC = AlCws = AIC' + 2MA1) (1 — M- 1),
Baves Information Criterion = BIC = (-2logl + Mlogn)in
Hannan-Ouinn IC = HQIC = (-2logl + 2 M loglog n)/n.
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OP Model: Model Evaluation

¢ Predictions of the Model: Kids

B e e e e +
|Variable Mean Std.Dev. Minimum Maximum |
B e e e e +
|Stratum is KIDS = 0.000. Nobs.= 2782.000 |
- - e +
| PO .059586 .028182 .009561 .125545

| |
| .268398 .063415 .106526 .374712 |
| P2 | .489603 .024370 .419003 .515906 |
| .101163 .030157 .052589 .181065 |
| .081250 .041250 .028152 .237842 |

|Stratum is KIDS = 1.000. Nobs.= 1701.000 |

e B e +
| PO | .036392 .013926 .010954 .105794 |
|P1 | .217619 .039662 .115439 .354036 |
| P2 | .509830 .009048 .443130 .515906 |
|P3 | .125049 .019454 .061673 .176725 |
| P4 | .111111 .030413 .035368 .222307 |

B +
120 | .050786 .026325 .009561 .125545 |
|P1 | .249130 .060821 .106526 .374712 |
|p2 | .497278 .022269 .419003 .515906 |
|3 | .110226 .029021 .052589 .181065 |
| P4 | .092580 .040207 .028152 .237842 |
e +
. , _ Number of Correct Predictions
Comnt R* =
i
and
) . Number of Correct Predictions -1, ™
Adjusted Count R* = .

- ES
n J.’J

where »,* is the count of the most frequent outcome.

¥, =j* suchthat estimated
*

Prob(v, = j*|x,) > estimated P1(y, = j

X"

That is, put the predicted v in the cell with the highest probability.

Predicted vs. Actual Qutcomes for Ordered Probit Model

| Cress tabulation of predictions. |
| Row 1s actual, column 1s predicted. |
| Model=Probit. Prediction=most likely cell. |

e +-
| Actuall

e oo o 4o to— o o pommmm - +
| aj ol o] 230] o] ol 220 |
| 1| ol o] 1113] ol ol 1113 |
| 2| 0l 0] zz22a| o ol 2226 |
| 3| ol o] 500 o] ol 500 |
| 4| ol o]  414] o] ol 414 |
e o o o o oo o +
|Col Sum| 0] 0| 4433| o 0] 4483 |
o i o R o o o +
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OP Model: Model Evaluation (Greene)

* Aggregate Prediction Measure

An alternative approach to measuring fit is to compute
the sums of the predicted probabilities in the various cells.

1 =0)
(v, =1
. b - - .

=" . [0 0 .. p) 1]

1y, =J)

1

Predictions for the Health Satisfaction Model
e e e L e e +
| Column = Prediction, Model = Probit
Fo—m - oo +o—m R o - oo +
l¥i{l,3)0 0 | 1 | 2 | 3 | 4 |Totall
o o o o o o o +
|0 | 161 68 111 21| 18| 230]
| L 3| 294 549] 115] 82| 1113
| 2 | 1l0] 547| 1110] 243 210| 2226
| 3 | 2ol 111| =252| €2| 55| 500)
|4 | 19| 98| 207 48] 42| 414]
o o o Fommm - o +-—— o +
| Total| 228| 1117| 2229| 494| 415| 4483]
ittt teteeies et ettefostefos il testlestefortetostetdostefosteten +

Ordered Logit Model — Cons

* Disadvantages (Borooah 2002)
- Assumption of equal slope B

- Biased estimates if assumption of strictly ordered outcomes does

not hold

=> treat outcomes as nonordered #zless there are good

reasons for imposing a ranking,
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Ordered Logit Model — Application

Example (from Kim and Kim (2004): Effectiveness of better public
transit as a way to reduce automobile congestion and air polution in
urban areas

- Research objective: develop and estimate models to measure how
public transit affects automobile ownership and miles driven.

- Data: Nationwide Personal Transportation Survey (42.033 hh):
socio-demo’s, automobile ownership and use, public transportation
avail.

Ordered Logit Model — Application

Dependent variable ownership model = number of cars (k = 0,
1, 2, 2 3) = ordinal variable

- (5 = latent variable: automobile ownership propensity of hh n

Relation to observed automobile ownership:
Cp=kif ajp_1 <x,'B+e<ag
- P(Ch=k) =F(ay — x,'B) — F(ax-1 — x,,'B)
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Ordered Logit Model — Application

(414

metropolitan statistical areas; OTHA, households in other areas.
a. Restricted LL (log likelihood) is the log likelihood value with threshold parameters alone.
. The Predictive LL is the log fikelihood function value in the validation sample computed at the parameter estimates obtained from maximizing the estimation likelihood

fanction.

¢. Likelihood ratio test.

Table 2. models ARA,NMSA, and OTHA g
Variable Model | (ARA) Model 2 (NMSA) Model 3 (OTHA) 8
® Coefficient z-value P> Coefficient z-value P>l Cocfficient z-value P> gt
Ey Bus distance —0.3058 ~30.00 0 —0.4213 ~25.06 0 ~0.2292 ~17.73 0 )
2 No. drivers 23805 92.07 0 24259 57.60 0 23376 70.60 0 %
® Income (log) 0.7006 42.11 0 07118 25.13 0 06910 3338 0 “
> HHsize (log) 0.6214 12.01 0 0.6742 7.74 0 0.6416 9.85 0 3
2 No. workers 0.1901 9.77 0 0.0832 2.58 0.01 02592 1055 0 &
g Lif_oycl -0.2876 -6.17 0 ~0.3024 -3.76 0 —0.2757 ~4.76 0 5
g Lif_cyc2 ~03176 -5.33 0 —0.2562 -2.57 0.01 —0.4016 -5.33 0 g
2 Lif_cyc3 0.1570 3.86 0 0.0255 0.37 071 0.2005 3.98 0 &
9 Lif_cycd 0.1019 192 0.06 0.0995 113 0.26 0.0399 0.60 0.55 N
: Chicago —0.4737 —5.93 0 0.1629 1.99 0.05 5
g Dallas ~0.1559 -123 022 0.4008 312 0 §r
8 Houston —0.3709 278 0.01 0.1969 145 0.15 g
3 Los Angeles —0.0710 —0.94 035 05712 7.31 0 g
8 New York —1.1403 -28.11 0 ~0.4728 -10.53 0 3
> Philadelphia ~0.7188 -7.75 0 ~0.1098 -1.16 0.25 4
g Washington ~0.4085 -5.01 0 02194 262 0.01 N
H Atlanta —0.2842 217 0.03 0.2841 215 0.03 a
5 Bosten —0.5901 —15.11 0 g
& OLMSA —0.0576 ~1.76 0.08 —0.1321 -3.95 0 s
g OSMSA —0.2118 —6.14 0 —0.3071 -8.62 0 z
= Threshold parameters g
& W 6.59 728 638 g
g @ 10.36 10.76 1038 &
@) 13.96 1448 13.92 2
3
<
-4
Ordered Logit Model — Application
z
5
H
2
o
© Table 2. Continued §
3 3
° Variable Mode! I (ARA) Model 2 (NMSA) Model 3 (OTHA) %{;
% Coefficient z-value P>l Coefficient z-value P> Coefficient z-value P> 4
F4 Goodness of fit hd
K No. of Obs. 40014 13769 26245 g
Y Restrict LI® —48314.8 —17202.9 -30697.4 3
£ Predict LL® -31516.5 ~10823.6 —206819 S
H x2 values (d.£)° 33597 (20) 12779 (17) 20051 (1) 3
o] Pseudo-R? 0.35 0.37 033 >
i Predicted pattern of ownership §
% Vehicle Level Actual Predict Actual Predict Actual Predict 3
2 0 Vehicle 8.35 8.32 13.69 13.56 5.56 5.55 &
] 1 Vehicle 31.68 32.02 32.06 32.11 31.48 31.99 g
.§ 2 Vehicle 45.68 4532 .71 4266 41.23 46.73 ]
2 3 Vehicle 14.29 1434 11.53 1167 15.73 15.73 £
H
g Notes: 1. ARA, all area holds; NMSA, ng statistical areas; OLMSA, other large metropolitan statistical areas; OSMSA, other small E
= &
z g
7 :
g I
& g
[ g
E 3
3 &
g S
5
<
g2

£5C
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Ordered Logit Model - Application

Kim and Kim, Effects of Public Transit on Automobile Ownership and Use in Househoids of the USA

Table 3. Marginal effects on automobile ownership level (model 1)

Automobile ownership level

PC=0) PC=1) PC=2 PC=3)

Bus distance (sqrt) 0.0045 0.0766 —0.0659 —0.0152
No. drivers —0.0308 —0.5213 0.4485 0.1037
Income (log) —0.0090 —0.1522 0.1309 0.0303
HHsize (log) ~0.0080 —0.1346 0.1158 0.0268
No. workers —0.0025 -0.0414 0.0356 0.0082
Lif_cycl 0.0042 0.0651 —0.0578 —0.0116
Lif_cyc2 0.0048 0.0716 —0.0641 —0.0123
Lif_cyc3 —0.0019 —0.0337 0.0286 0.0070
Lif_cyc4 ~0.0013 —0.0218 0.0187 0.0044
Chicago 0.0083 0.1132 —0.1038 —0.0176
Dallas 0.0024 0.0377 —0.0332 —0.0068
Houston 0.0063 0.0902 —0.0819 —0.0146
Los Angeles 0.0017 0.0276 —0.0242 —-0.0051
New York 0.0245 0.2614 —0.2499 —0.0360
Philadelphia 0.0143 0.1715 —0.1619 —0.0240
‘Washington 0.0071 0.1005 —0.0916 —0.0160
Atlanta 0.0047 0.0702 —0.0631 —0.0119
Boston 0.0101 0.1387 —-0.1270 —0.0218
OLMSA 0.0014 0.0224 —0.0194 —0.0043
OSMSA 0.0035 0.0554 —0.0487 —0.0101

Note: OLMSA, other Jarge metropolitan statistical areas; OSMSA, other small

Ordered Logit Model — More Applications

Examples:

*  Occupational outcome as a function of socio-demographic
characteristics --Borooah (2002)

— Unskilled/semiskilled
— Skilled manual/non-manual

— Professional/managerial / technical

* School performance --Sawkins (2002)
— Grade 1 to 5

— Function of school, teacher and student characteristics

* Level of insurance coverage

43



RS — Lecture 17

Generalized Ordered Response Model

* We can generalize the model:
Vo, =1 if o, <yn=x,"B1+en<q (Region 1)
Yn=J o1 <yp=x"Bj+eny <oy (Region))
Yn=] if oj_1<yn =%, By te,<oy (Region J)
* Then:
Plyn = jl x,] = Floy — x,/Bj] — Floyj—q — x5'Bj-1]
* The B’s are different for each region (choice). This model is called

Generalized Ordered Choice Model. To make it a generalized
ordered logit (“gologit”) model, assume &, ~ Gumbel distribution.

* Quednau (1988) and Clogg and Shihadeh (1994) proposed different
versions. Williams (2006) provides Stata code to implement model.

Generalized Ordered Response Model

* There is evidence that thresholds are not the same for each
individual, see Terza (1985), Pudney and Shields (2000), Boes and
Winkelmann(2006), and Greene and Hensher (2009).

* Terza (1985) suggests making thresholds a function of observables: :
Onj =0; +2Zp j' 8; -linear function.

This can create identification problems, if Zy,; is also in X, (same
variable). Difficult to disentagle effects:
Flonj — xn' Bj = 65 + Zn;" & — xn B)
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Generalized Ordered Response Model

* We can also use non-linear functions to model thresholds
heterogeneity:
O(,nj = CXp(GJ + an’ 8])

It will be easier to identify effects in the Generalized Ordered Choice
Model.

¢ An internally consistent restricted modification of the model is:
Opj = CXp(ej + an, 8])

where
0; =0j_1 T exp(p;) (a natural ordering of thresholds)

Assuming a normal for the errors, this model is called Hierarchical
Order Probit (HOPit). See Harris and Zhao (2000), and Eluru, Bhat
and Hensher (2008).

Brant Test for Parallel Regressions (Greene)

* Recall the parallel odds result. Start with a reformulation of
Prob[y, < j]. Define:

y; = Probly, <j] = Fla; — x,'B

- Using a logit formulation, we get the proportional odds or parallel
regression restriction:

Yj )
log(1 —)/-):aj —x, B

J

* We test all 8% are the same across regions. The alternative
hypothesis is the Generalized Ordered Logit Model (with x,,;' )

* Many ways to set a test for parameter constancy (across regions) in
this context. The standard specification test is called the Brant Test.
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Brant Test for Parallel Regressions (Greene)

* We estimate /| — 1 (binary) logit models:
Probly, = j] = Flo; — x,'B]

Then, we estimate Brant Test estimates | — 1 generalized logit
models:
Probly, = j] = Floy — Xp;'Bj]

Now, we can test Hy: o = 1 = ... =Bj_1=p. (or RB =

* A Wald test is usually done, with the potential problem of the
computation of the Var[R Var[B] R']. (If Var[f]is computed b

q)

ased

on the individual binary logit estimates, the ordering is not preserved.
Brant suggests using the restricted (basic ordered choice) estimates.

Brant Test for Parallel Regressions (Greene)

Brant Test for Parameter Homogeneity

| Brant specification test for equal coefficient |
| wvectors in the ordered logit model. The model |
| implies that logit[Prob (v>jlxn)]=beta(jl*x — mj |
| for all j = 0,..., 3. The chi squared test is |
| HO:betail) = beta(l) = ... beta( 3} |
| |
| |
| |

Chi squared test statistic = 71.76435 (78.76%988 based on the
Degrees of freedom = 15 normal distributien)
P valus = nooon
e +
e +

| 8pecification Tests for Individual Coefficients in Ordered Logit Model
| Degrees of freedom for each of these testz iz 3

fomm e S —— FE—— I —— e ——
| | Brant Test Coefficients in implied model Prob(y > j). |
|Wariable| Chi-sq P value 0 | 1 | % | 3 | |
F———— Bl | — — —— ——'— A R r e A e e e H
| AGE | .28 09864 -.0398| -.02%2| -.0328| -.0248]| |
| EDUC | 1%.89 .oools .1212| .0786| .0630| -.0044]| |
| INCOME | 13. 32 003986 1.9576| . 4959] .1790| -.0206] |
| MARRIED | 1.87 L 59982 .0674| -.0228| -.1486| -.0896| |
| EIDS | 7.24 06476 .3218]| .2158| .0189| -.1231]| |
b b " " " "

Q: What failure of the model specification is indicated by rejection:
Misspecification of latent regression/distribution, heterogeneity?
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Heterogeneity in Ordered Choice Models

* Observed heterogeneity

- Easy case, heteroscedasticity, which produces scale heterogeneity.

¢ Unobserved heterogeneity
— Over decision makers

- Random coefficients Models

- E.g. Mixed Logit Model (see Train)
— Over segments

- Latent class Models

Heteroscedasticity in OC Models (Greene)

* Not difficult to introduce heteroscedasticity in the OC Models. It
produces scale changes: a GLS-type correction.

* As usual, we need a model for heteroscedasticity. For example,
exponential form: exp(y hy). Then, for the Probit and Logit Models:

—PB'x.  _B'x.
PI’Ob(yl_:j|xi,hl_):F[Hj B, ’]_F[MFI—FIJ
exp(v'h,) exp(y'h,)

exp(0, +8'z,) -PB'x, ] F( exp(0, ,+98 z,) - B, J

PrOb(yi=j|Xi’hi)=F( ; ;
exp(th,) exp(t'h,)

* As usual, partial effects will also be affected.

47



RS — Lecture 17

Heteroscedasticity in OC Models (Greene)

Estimated Heteroscedastic Ordered Probit Model

o +
| Ordered Probability Model |
| Dependent wariable HEALTH |
| Log likelihood functicn: Hetero. Homosk. |
| -5741.624 -575Z2.985 |
| Info. Criterion: AIC: 2.56686 2.57053 |
+—- -+
Bt B e EE T R ————- - +
| | Heteroscedastic Ordered Probit| ordered Probit | |
| | LogL = -5741.624 | LogL = -575Z.985 | |
| | LogLR = -5752.985 | LogLd = -5875.096 | |
| | Chisgq = zz.7z22 | Chisq = 244.2238 | |
| | Degress of Freeedom 3 | Degress of Fresdem 5 | |
| | PzeudeRqqg = . 0227183 | PseudoRsg= . 0217845 | |
o e e + Mean |
| variable| Coef. g.E. t r | Coef g.E t p | of ¥ |
e o o pom +
| Constant| 2.1835 .1778 12.337 .0000] 1.9788 .1la62 17.034 .0000] 1.0000 |
| AGE | -.018% .0021 -9.398 .0000] -.0181 .001e -11.166 .0000(| 43.4401 |
| EDUC | .03%0 .0080 4,868 .00001 .0358 .0071 4,986 .0000| 11.4181 |
| INCOME | L2489 0863 2.895 .0038] .2587  .1039 2.490 .0128] .34874 |
|MARRIED | -.0306 .0444 -. 688 .4914| -.0310 .04z2Z0 -.737 .4608] 75217 |
ETD | =] 047 1 274 (942] . 0606 .0382 1.586 .1127] L378943 |
77777777 + Variance Function | ot
INCOME | -.2359 .0607 -3.883 .0001]| | 34874 |
FEMALE | .01eg .0249 .673 .5009] | .48404 |
AGE |  .0037 .0011 3.337 .0008| | 43.4401 |
———————— + Threshold Parameters | tommm et
Mu(l) | 1.2817 .0811 15.795 .0000|f 1.1484 .0z212 54.274 .0000] |
Mu(z) | 2.8019 .1592 17.605 .0000|f 2.5478 .0216 117.856 .0000] |
Mu(3) | 3.3507 .1874 17.881 .0000|| 3.0564 .0267 115.500 .0000] |
-------- == mmmmmmmmm o m e mmmmmm e o — o —m—m—o———————————————j————————— 4
« . .
Heteroscedasticity in OC Models (Greene)
Partial Effects in Heteroscedastic Ordered Probit Model
A e e +
| Marginal Effects for Ordered Probit |
Hommm oo e oo e B e +
| variable | HEALTH=0 | HEALTH=1 | HEALTH=Z | HEALTH=3 | HEALTH=4 |
oo B oo oo R oo +
| AGE | 00169 | 00463 | -.00128 | -.00216 | -.00288 | Mean
| AGE | oosls | 00103 | -.01647 | nooae | 00839 | Variance
| BGE | 00787 | 00566 | -.01775 | ~-.00130 | 00551 | Total
| (AGE) | ¢ .0017) | ( .0045) | (-.0012) | (-.0022) | (-.D0028) | Restricted
e I
| EDUC | -.00332 | -.00906 | .00251 | .00423 | .00S564 | Total
| (EDUC) | (-.0034) | (-.0089) | ( .0024) | ( .004Z) | { .0056) | restricted
t
| INCOME | -.02122 | -.05800 | 01607 | 02704 | 03611 | Mean
| INCOME | 34732 | 05785 | -.92501 | 04858 | 47126 | variance
| ICOME | .32610 | -.00015 | -.90894 | .07562 | .50737 | Total
| (INCOME) | (-.0248) | (-.0644) | ( .0177) | ( .0309 )| ( .0406) | Restricted
LR e T
| MARRTED |  .00260 |  .00709 | -.00197 | -.00331 | -.00442 | Total
| (MARRIED) |  .002%) | ( .0077) | (-.0020) | (-.0037) | (-.0049) | Restricted
o e e |
| EID® | -.005%83 | -.01620 | .0044% | . 00755 | L 010068 | Total
| (EID&) | ¢=.0057) | (-.0151) )  .0040) | ¢ .0072) | ( .008@) | Restricted
o e e |
| Pure Variance Effect |
| FEMALE | -.00316 | -.00053 | .o0g40 | -.00044 | -.00428 | Total
D e O o e T O +
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Heterogeneity: Latent Class Models

¢ Assumption: Consumers can be placed into a small number of
(homogeneous) segments, which differ in choice behavior (different
response parameters —i.e., the B’s).

* Relative size of the segment, s (s = 1, 2, ..., M), is given by
fs = exp(hs) /Z§/=1CXPOVSI)

* Probability of choosing brand /, conditional on consumer 7 being a
member of segment s is given by a logit:

P =Jj|xn) = exp(xnj’BS)/zl exp(Xn B
* Unconditional probability that consumer 7 will choose brand j
Py = j|%n) = Xz P = j|%n) =
= 2, [exp(hs) / Tgi=1 exp(hsn)] [exp(en;'B?)/Z, exp(n'B)]

Heterogeneity: Latent Class Models

¢ Hstimation: Maximum Likelihood

¢ Likelihood of a household’s choice history H,
L(H,) = X, [expQILH,|s) / Lo exp(r,) ]
with
L(H,|s) =TT P(y, = c(®) | X,,)

c(t) = index of the chosen option at time t.
* Maximize likelihood over all household’s: [T, I.(H,)

* We need to decide on how to form the segments (classes).
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Heterogeneity: Latent Class Models

Segment analysis
* Based on parameter estimates, say, difference in price sensitivity.
* Based on segment profiles
— Post-hoc: based on assignhment of consumers to segments;
Probability that consumer 7 belongs to segment s =
P(res | H,) = L(H,|s)f, / 2o [L(H, |s)f.]
Analyze characteristics of different segments

— A priori: make f_ a function of variables that may explain
segment membership. For example, income for segments
which differ in price sensitivity.

Heterogeneity: Latent Class Models (Greene)

Estimated Two Clags Latent Class Ordered Probit Maodel

Lacent Class / Ovdered Probit Model
Mumber of obssrvacions

Log likelihood fumction -5716.627 -5683.202
Info. Criterion: AIC = z.55883 z.54526

|

4483 |

Two Classes  Extendsd |
I

I

| Varisble|Escimate |5.E. |b/s.e. | Prob |Escimate|S.E. |bfs.e. | Prob |OrdPrbe.

| Parameters for Latent Class 1

|

I I

|Constant| 2.9502 .<¢l31  7.142 .0000 | 2 6740 .9877 2.707 _O068 | 1.5788 |
| BEE | -.0llz .003¢ -3.302 .0010 | -.0l§& .0031 -5.451 _0000 | -.018l |
| EDUC | .oo0s6 L0200 .330 7415 | .0S65  .0l41  4.0l8 .00OL | 0356 |
|INCOME | -.8932 .3211 -2.782 .0054 | - 0722 2054 -.352 _725L | .Z587 |
IMARRIED | ~-.0038 .0841 -.046 .35 | -_1250 .071¢ -1.7El _0800 | -.0310 |
| FIDS | -.0801 _0O8E% -.£99 4844 | _0SBE 065K S84l 4001 | 0808 |
|Mrily | 1.0534 2083 5072 0000 | 1.2427 7287 1,705 0881 | 1.1483 |
|Mrizy | 2.9914 .2411 12.406 .0000 | 3.1004 .3753  3.173 _00L5 | 2.5478 |
M3y | 2.2899 (1974 16.535 L0000 | 3.8124 1.045  3.648 0003 | 3.05884 |
| Parameters for Labent Class 2 | |
|

|Constant| 1.3384 3151 4.747 0000 | 1.7882 3886  4.987 _0000 | I
| BGE | -.03l4 0049 -6.403 .0000 | -_0EZ2 0050 -4.428 0000 | |
| EDUC | .0760 .0214  3.8E1  .0004 | 0083 0298 .zlo .g335 | |
|THCOME | 1.8767 4844  3.874 0001 | _4473 3481 1.285 1938 | I
|MARRTED | ~-.1106 0962 -1.150 2503 | - 0611 1147 - 535 _5324 | I
| EIDS | .2182z 1014 2151 0315 | _1243 1110 1.120 _2627 | I
|Mrily | Ll.5400 .1661  9.273 .0000 | 1.452% .3011  4.826 _0000 | I
Mgy | 2.4763 .1642 15.085 0000 | 2.3938 .3921  6.105 0000 | I
IMri3y | 3.7181 .34EF 10.865 L0000 | 2 3938 L3077 7.78L 0000 | |
I

+ | Multinomial Logit Model for Class Drobshilities | |
|

JONE_L | | .7aE3 7eEL _363 3327 I
| FEHALE 1| | -.04BL 1278 -.337 .736Z| |
| HAMDDUT_1| | -lzza 2389 -5 1zo _0000| I
| WORETH_1| | .40%6 1512 z.7l0 _0067| I
|OHE 2~ | | .0000 .. (Fixed Pavametsr) | |
| FEMALE_2| | .0000 .. (Fixed Pavametsxr) | I
| HANDDU_ 2| | .0000 .. (Fixed Parsmeter) | |
| WORKIH_2| | .0000 .. (Fixed Parsmeter) | |
+ | Irior probahilivies for class membership | |
|Class 1 | 57532 | 87182 | 1.00000]
|Class 2 | . 4z468 | 29818 | 0.00000]
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