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Lecture 5
Multiple Choice Models

Part I – MNL, Nested Logit  

(for private use, not to be posted/shared online).

DCM: Different Models 

• Popular Models:

1. Probit Model 

2. Binary Logit Model

3. Multinomial Logit Model

4. Nested Logit model

5. Ordered Logit Model

• Relevant literature:

- Train (2003): Discrete Choice Methods with Simulation

- Franses and Paap (2001): Quantitative Models in Market 
Research

- Hensher, Rose and Greene (2005): Applied Choice Analysis
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Multinomial Logit (MNL) Model

• In many of the situations, discrete responses are more complex than 
the binary case:

- Single choice out of more than two alternatives: Electoral choices 
and interest in explaining the vote for a particular party. 

- Multiple choices: “Travel to work in rush hour,” and “travel to work 
out of rush hour,” as well as the choice of bus or car. 

• The distinction should not be exaggerated: we could always 
enumerate travel-time, travel-mode choice combinations and then 
treat the problem as making a single decision.

• In a few cases, the values associated with the choices will themselves 
be meaningful, for example,  number of patents: 𝑦 = 0, 1, 2,... (count 
data). In most cases, the values are meaningless.  

Multinomial Logit (MNL) Model

• In most cases, the value of the dependent variable is merely a coding 
for some qualitative outcome:

- Investment in stocks: we code “yes" as 1 and “no" as 0

(qualitative choices)

- Occupational field: 0 for economist, 1 for engineer, 2 for lawyer, 
etc. (categories)

- Opinions are usually coded with scales, where 1 stands for 
“strongly disagree", 2 for  “disagree", 3 for “neutral", etc. 

• Nothing conceptually difficult about moving from a binary to a 
multi-response framework, but numerical difficulties can be big. 

• A simple model to generalized: The Logit Model.
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Multinomial Logit (MNL) Model

• Now, we have a choice between 𝐽 (greater than 2) categories

• Dependent variable 𝑦௝ = 1, 2, 3, ...., 𝐽. 

• Explanatory variables

- 𝑧௡: different across individuals, not across choices (standard 
MNL model). The MLN specifies for choice 1, 2, 3, ...., 𝐽:

𝑃ሾ𝑦௡ = 𝑗|𝑧௡ ൌ 𝑧] = 
௘௫௣ሺ𝒛ᇱ஑ೕ) 

ଵ ା ∑ ௘௫௣ሺ𝒛ᇱ஑೗)಻
೗సభ

- 𝑥௡: different across (individuals and) choices (conditional MNL
model). The conditional logit model specifies for choice 𝑗:

𝑃ሾ𝑦௡ = 𝑗|𝑥௡] = 
௘௫௣ሺ𝒙೙ᇲ βೕ) 

∑ ௘௫௣ሺ𝒙೙
ᇲ಻

೗సభ β೗ሻ

• Both models are easy to estimate. 

Multinomial Logit (MNL) Model

• The MNL can be viewed as a special case of the conditional logit 
model. Suppose we have a vector of individual characteristics 𝑍௜ of 
dimension 𝑘, and 𝐽 vectors of coefficients α௝ , each of dimension 𝑘. 
Then define, 

• We are back in the conditional logit model. 
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MNL – Link with Utility Maximization

• The modeling approach (McFadden’s) is similar to the binary case. 

- Random Utility for individual 𝑛, associated with choice 𝑗:

𝑈௡௝ = 𝑉௡௝ + 𝜀௡௝ = α௝ + 𝒛௡′ 𝛿௝ + 𝒘௡′ 𝛾௝+ 𝜀௡௝ - utility from 𝑗

Then, if 𝑦௡ = 𝑗 if (𝑈௡௝ - 𝑈௡௜) > 0 (𝑛 selects 𝑗 over 𝑖.)

Note: The utility parameters/weights (𝛿௝ , 𝛾௝) are common across 
consumers (same for all 𝑛). This is a strong assumption. This can be 
relaxed. The constant picks heterogeneity among choices, which 
cannot be attributed to 𝒛௡ & 𝒘௡, for example “image.”

• If we have a panel, we can allow 𝜀௡௝ to be autocorrelated. We think 
of 𝜀௡௝ as picking unobserved attributes of choice 𝑗 that change over 
time. For example, time-varying tastes, that can be correlated.

MNL – Link with Utility Maximization

• Like in the binary case, we get:

𝑃௡௝ ൌ 𝑃ሾ𝑦௡ ൌ 𝑗|𝑖, 𝑗ሿ ൌ Pሾ𝑈௡௝ െ  𝑈௡௝൐ 0,∀ 𝑖 ് 𝑗ሿ

ൌ 𝑃ሾ௡௜ െ ௡௝ ൏ 𝑉௡௝ െ  𝑉௡௜ ,∀ 𝑖 ് 𝑗ሿ

ൌ ׬ 𝐼 ξ௡ ൏ 𝑉௡௝ െ  𝑉௡௜ ,∀ 𝑖 ് 𝑗  𝑓 ξ௡  𝑑ξ௡

• Specify i.i.d. Gumbel distribution for f(𝜀௡) ⇒ Logit Model.

- independence across utility functions

- identical variances (means absorbed in constants)
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• Logit Model for choice 𝑗:

𝑃௡௝ ൌ 𝑃ሾ𝑦௡ ൌ 𝑗  𝒙௡ = 
௘௫௣ሺ𝒙೙ᇱβೕ)

∑ ௘௫௣ሺ𝒙೙
ᇲ β೗ሻ಻

೗సభ  

• We call 𝑃௡௝ a conditional MNL model (𝒙௡: different across 𝑛 and 𝑗)

• Normalization. If we add a constant to a parameter (β௜+ 𝑐), given 
the Logistic distribution, exp(𝑐) will cancel out. Cannot distinguish 
between (β௜ + 𝑐) & β௜. A normalization is needed:

 pick a category, say 𝑖, and set coefficients equal to 0 –i.e., β௜ = 0. 

𝑃௡௜ ൌ 𝑃ሾ𝑦௡ ൌ 𝑖  𝒙௡ = 
ଵ

ଵ ା ∑ ௘௫௣ሺ𝒙೙
ᇲ β೗ሻ಻

೗సభ  
(Typically, 𝑖 = 𝐽.)

𝑃௡௝ ൌ 𝑃ሾ𝑦௡ ൌ 𝑗  𝒙௡ = 
௘௫௣ሺ𝒙೙ᇱβೕ)

ଵ ା ∑ ௘௫௣ሺ𝒙೙
ᇲ β೗ሻ಻

೗ಯ೔  

MNL Model - Identification

• The interpretation of  parameters is based on partial effects:

– Derivative (marginal effect) 
డ௉ሾ௬೙ୀ௝  𝒙೙

డ𝒙೙ೖ
ൌ 𝑃௡௝  ∗ ሺ1 െ 𝑃௡௝ሻ * β௞

– Elasticity (proportional changes)
డ௟௢௚௉ሾ௬೙ୀ௝  𝒙೙

డ௟௢௚𝒙೙ೖ
ൌ 𝒙೙ೖ

௉೙ೕ
∗ 𝑃௡௝  ∗ ሺ1 െ 𝑃௡௝ሻ * β௞

ൌ  𝒙௡௞ ∗ ሺ1 െ 𝑃௡௝ሻ * β௞

Note: The elasticity is the same for all choices “𝑗.” A change in the 
cost of air travel has the same effect on all other forms of travel. 
(This result is called independence from irrelevant alternatives 
(IIA). Not a realistic property. Many experiments reject it.)

MNL Model – Interpretation & Effects



RS – Lecture 17

6

• Interpretation of parameters

– Probability-ratio

௉ሾ௬೙ୀ௝  𝒙೙
௉ሾ௬೙ୀ௜  𝒙೙

ൌ
௘௫௣ሺ𝒙೙ೕᇱ𝜷)
௘௫௣ሺ𝒙೙೔ᇱ𝜷)

ln ௉ሾ௬೙ୀ௝  𝒙೙
௉ሾ௬೙ୀ௜  𝒙೙

ൌ ሺ𝒙௡௝  െ 𝒙௡௜ሻ′𝜷

– Does not depend on the other alternatives! Again, we have IIA.  
Implication of MNL models pointed out by Luce (1959).

Note: The log-odds ratio of each response follow a linear model. A 
regression can be used for the comparison of two choices at a time.

MNL Model – Interpretation & Effects

• Estimation

– ML estimation
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where 𝐷௡௝ = 1 if  𝑗 is selected, 0 otherwise)

MNL Model – Estimation
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• Estimation

- ML (continuation): 

A lot of f.o.c. equations, with a lot of unknowns (parameters). 

Each covariate has 𝐽 െ 1 coefficients. 

We use numerical procedures, G-N or N-R often work well. 

- Alternative estimation procedures

Simulation-assisted estimation (Train, Ch.10)

Bayesian estimation (Train, Ch.12) 

MNL Model – Estimation

• Example (from Bucklin and Gupta (1992)):

𝑃௧
௛ሺ𝑖|𝑖𝑛𝑐ሻ ൌ 

௘௫௣ሺ௎೔೟
೓)

∑ ௘௫௣ሺ௎೗೟
೓ሻ಻

೗సభ  

𝑈௜௧
௛ = 𝑢௜ ൅ 𝛽ଵ𝐵𝐿௜

௛ ൅ 𝛽ଶ𝐿𝐵𝑃௜௧
௛ ൅ 𝛽ଷ𝑆𝐿௜

௛ ൅ 𝛽ସ𝐿𝑆𝑃௜௧
௛ ൅ 𝛽ହ𝑃𝑟𝑖𝑐𝑒௜௧ ൅ 𝛽଺𝑃𝑟𝑜௜௧

• 𝑢௜= constant for brand-size 𝑖

– 𝐵𝐿௜
௛ = loyalty of household ℎ to brand of brandsize 𝑖

– 𝐿𝐵𝑃௜௧
௛ = 1 if 𝑖 was last brand purchased, 0 otherwise (at time 𝑡)

– 𝑆𝐿௜
௛= loyalty of household ℎ to size of brandsize 𝑖

– 𝐿𝑆𝑃௜௧
௛ = 1 if 𝑖 was last size purchased, 0 otherwise (at time 𝑡)

– 𝑃𝑟𝑖𝑐𝑒௜௧ = actual shelf price of brand-size 𝑖 at time 𝑡
– 𝑃𝑟𝑜௜௧ = promotional status of brand-size 𝑖 at time 𝑡

MNL Model – Application - PIM
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• Data
– A.C.Nielsen scanner panel data
– 117 weeks: 65 for initialization, 52 for estimation
– 565 households: 300 selected randomly for estimation, 

remaining hh = holdout sample for validation
– Data set for estimation: 30,966 shopping trips, 2,275 

purchases in the category (liquid laundry detergent)
– Estimation limited to the 7 top-selling brands (80% of 

category purchases), representing 28 brand-size 
combinations (= level of analysis for the choice model)

MNL Model – Application - PIM

Model # param. Log Likelihood U² (pseudo R²) BIC

Null model

Full model

27

33

-5957.3

-3786.9

-

.364

6061.6

3914.3

• Goodness-of-Fit

MNL Model – Application I – PIM

Parameter Coefficients (t-statistic)

𝐵𝐿 1

𝐿𝐵𝑃 2

𝑆𝐿 3

𝐿𝑆𝑃 4

𝑃𝑟𝑖𝑐𝑒 5

𝑃𝑟𝑜 6

3.499  (22.74)

.548  (6.50)

2.043  (13.67)

.512  (7.06)

-.696  (-13.66)

2.016  (21.33)

• Estimation Results
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MNL Model – Application II – Travel Mode

• Data: 4 Travel Modes: Air, Bus, Train, Car. N=210
-----------------------------------------------------------
Discrete choice (multinomial logit) model
Dependent variable               Choice
Log likelihood function      -256.76133
Estimation based on N =    210, K =   7
Information Criteria: Normalization=1/N

Normalized   Unnormalized
AIC              2.51201      527.52265
Fin.Smpl.AIC 2.51465      528.07711
Bayes IC         2.62358      550.95240
Hannan Quinn     2.55712      536.99443
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj
Constants only   -283.7588  .0951 .0850
Chi-squared[ 4]          =     53.99489
Prob [ chi squared > value ] =   .00000
Response data are given as ind. choices
Number of obs.=   210, skipped    0 obs
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+--------------------------------------------------

GC|     .03711**        .01484        2.500   .0124 (General Cost)
INVC|    -.05480***       .01668       -3.285   .0010 (in-vehicle cost)
INVT|    -.00896***       .00215       -4.162   .0000 (in-vehicle time)

HINCA|     .02922***       .00931        3.138   .0017 (household income annual)
A_AIR|   -1.88740***       .69281       -2.724   .0064 (air FE)

A_TRAIN|     .69364***       .25010        2.773   .0055 (train FE)
A_BUS|    -.20307          .24817        -.818   .4132 (bus FE)

--------+--------------------------------------------------

CLOGIT Fit Measure: 

• Based on the log likelihood

• Based on the model predictions
+------------------------------------------------------+
| Cross tabulation of actual vs. predicted choices.    |
| Row indicator is actual, column is predicted.        |
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i). |
| Column totals may be subject to rounding error.      |
+------------------------------------------------------+

Matrix Crosstab has  5 rows and  5 columns.
AIR           TRAIN         BUS           CAR           Total

+----------------------------------------------------------------------
AIR     |    35.0000 (16)   7.0000        4.0000       13.0000       58.0000
TRAIN   |     7.0000       41.0000 (19)   4.0000       11.0000       63.0000
BUS     |     5.0000        4.0000       16.0000 (4)    4.0000       30.0000
CAR     |    11.0000       11.0000        6.0000       31.0000 (17)  59.0000
Total   |    58.0000       63.0000       30.0000       59.0000      210.0000

Values in parentheses 
below show the number 
of  correct predictions by a 
model with only choice 
specific constants.

Log likelihood function      -256.76133
Constants only   -283.7588  .0951 .0850
Chi-squared[ 4]          =     53.99489

MNL Model – Application II – Travel Mode
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• Scale parameter

• Variance of the extreme value distribution Var[𝜀] = ²/6
- If true utility is 𝑈௡௝

∗ = 𝒙௡௝′ + 𝜀௡௝
∗ with Var(𝜀௡௝

∗ ) = ² (²/6), the 
estimated representative utility 𝑉௡௝ = 𝒙௡௝′ involves a rescaling of * 

  = * / 

•  * and  can not be estimated separately.

 Take into account that the estimated coefficients indicate the 
variable’s effect relative to the variance of unobserved factors

 Include scale parameters if subsamples in a pooled estimation 
(may) have different error variances

MNL Model – Scaling

• Scale parameter in the case of pooled estimation of subsamples with 
different error variance.

• For each subsamples, multiply utility by 𝜇௦, which is estimated 
simultaneously with .

• Normalization: set 𝜇௦ equal to 1 for 1 subs.

• Values of 𝜇௦ reflect diff’s in error variation
– 𝜇௦ > 1 : error variance is smaller in s than in the reference 

subsample
– 𝜇௦ < 1 : error variance is larger in s than in the reference 

subsample

MNL Model – Scaling



RS – Lecture 17

11

Example (from Breugelmans et al. (2005), based on Andrews and 
Currim (2002); Swait and Louvière (1993)):

• Data from online experiment, 2 product categories

• Three different assortments, assigned to different respondent 
groups

– Assortment 1: small assortment

– Assortment 2 = ass.1 extended with additional brands

– Assortment 3 = ass.1 extended with add types

• Explanatory variables are the same (hh char’s, MM), with 
exception of the constants

• A scale factor is introduced for assortment 2 and 3 (assortment 1 is 
reference with scale factor =1)

MNL Model – Application

Table 1: Descriptive stats for each assortment (margarine and cereals)

MARGARINE

Attribute Assortment 1
(limited)

Assortment 2 (add new
flavors of existing brands)

Assortment 3 (add new
brands of existing flavors)

Brand Common a Common Common

Add new brands
Flavor Common Common Common

Add new flavors

# alternatives 11 19 17

# respondents 105 116 100

# purchase occasions 275 279 278

# screens needed < 1 > 1 > 1
CEREALS

Attribute Assortment 1
(limited)

Assortment 2 (add new
flavors of existing brands)

Assortment 3 (add new
brands of existing flavors)

Brand Common Common Common

Add new brands
Flavor Common Common Common

Add new flavors

# alternatives 21 32 46

# respondents 81 97 87

# purchase occasions 271 261 281

# screens needed > 1 > 1 > 1

MNL Model – Application
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• MNL-model – Pooled estimation 

𝑃௜௧|௔
௛ = 

ఓೌሺ௨೔೟|ೌ
೓ ሻ 

∑ ఓೌሺ௨೗೟|ೌ
೓ ሻ ಻

೗ച಴೟|ೌ
೓

Notation:
- 𝑃௜௧|௔

௛ = Probability that household ℎ chooses item 𝑖 at time 𝑡, facing 
assortment 𝑎
- 𝑢௜௧|௔

௛ = Choice utility of item 𝑖 for household ℎ facing  assortment 𝑎
= 𝑓ሺhousehold variables, MM-variablesሻ

- 𝐶௧|௔
௛ = Set of category items available to household ℎ within 

assortment 𝑎
- 𝜇௔ = Gumbel scale factor

MNL Model – Application

Estimation results

• Goodness-of-Fit
– (average) LL: -0.045 (M), -0.040 (C)

– BIC: 2929 (M), 4763(C)

– CAIC: 2871 (M), 4699 (C)

• Scale factors:
– M: 1.2498 (ass2), 1.2627 (ass3)

– C:  1.0562 (ass2), 0.7573 (ass3)

MNL Model – Application
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Margarine Cereals

Variable Assortment 1 Assortment 2 Assortment 3 Variable Assortment 1 Assortment 2 Assortment 3

Scale factor
Mean
Last purchase
Item preference
Brand asymmetry
Size asymmetry
Sequence
Proximity

[1.00]b

2.0675***
2.8310***
0.2805
-0.0841
- d

0.8332

1.2498***
[2.5840***]c

[3.5382***]c

0.4228**
-0.0880
0.3672**
1.0303***

1.2627***
[2.6106***]c

[3.5747***]c

0.5400*
0.0169
-0.1190
0.6235

Scale factor
Mean
Last purchase
Item preference
Brand asymmetry
Taste asymmetry
Type asymmetry
Sequence
Proximity

[1.00]b

0.6441***
5.2011***
0.0077
-0.0260
0.3119
-0.3311
2.0041***

1.0562***
[0.6803***]c

[5.4934***]c

0.6130
0.2938**
-0.0614
-0.0695
0.7214

0.7573***
[0.4888***]c

[3.9109***]c

0.0969
-0.1596
0.3816**
0.6190***
4.1140***

(Excluding brand/size constants)

MNL Model – Application

• Limitations of the MNL model:

– Independence of Irrelevant Alternatives or IIA (proportional 
substitution pattern): the relative odds between any two 
outcomes are independent of the number and nature of other 
outcomes being simultaneously considered.

– Order (where relevant) is not taken into account

– Systematic taste variation can be represented, not random taste 
variation

– No correlation between error terms (i.i.d. errors)

MNL Model – Limitations
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• This is the big weakness of the model. The choice between any two 
alternatives does not depend upon a third one -i.e., the ratio of choice 
probabilities for alternatives 𝑖 and 𝑗 does not depend on 
characteristics of other alternatives, say, 𝑥௜ଷ.

௉ሾ௬೙ୀ௝  𝒙೙
௉ሾ௬೙ୀ௜  𝒙೙

ൌ
௘௫௣ሺ𝒙೙ೕᇱ𝜷ೕ)
௘௫௣ሺ𝒙೙೔ᇱ𝜷೔)

• Implications: Proportional substitution patterns (or unrealistic 
substitution patterns!). It is possible to ignore third alternatives in 
estimation. 

• But, it clashes with data

MNL Model – IIA

Example (McFadden (1974)): Blue Bus – Red Bus:

Suppose we have three equally distributed transportation categories:

- T1: Blue bus (P=33%), Car (P=33%), Red bus (P=33%)

Now, we paint the red busses blue. Then, we have two choices. 
Assuming IIA, we have: Blue bus (P=50%), Car (P=50%).

But, a more likely distribution: Blue bus (P=66%), Car (P=33%).

Note: Debreu (1960) has a similar example with Beethoven/Debussy.

• MNL model assumes that none of the categories can serve as 
substitutes (no correlation). If they can serve as substitutes, then the 
results of MNL may not be very realistic. 

MNL Model – IIA
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• We want to test IIA. We use an adaptation of  the Hausman test: 
Hausman-McFadden specification test (Econometrica, 1983)

Idea: If  a subset of  the choice set is truly irrelevant, omitting it 
should not significantly affect the estimates. Two estimators: one 
efficient, one inefficient  Hausman test.

• Steps for Wald test:
- Estimate logit model twice:
(a) on full set of  alternatives (with 𝑘 “irrelevant” variables)  ba

(b) on subset of  alternatives (& subsamples with choices from this 
set)  bb

- Compute the Wald test

- Under H0 (IIA is true): H = (ba – bb)’[Va – Vb]-1(ba – bb) 
௔
→ χ𝒌

ଶ

MNL Model – IIA - Testing

• Steps for LR test:
- Estimate logit model twice:

a. on full set of alternatives  get LogLa

b. on subset of alternatives  get LogLb

(and subsample with choices from this set)

- Compute LR test as usual. Asymptotically, goodness of fit should 
be similar to Wald test.

MNL Model – IIA - Testing
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• In the MNL model we assumed independent 𝜀௡௝ with extreme value 
distributions. This essentially created the IIA property. 

• This is not completely correct, because other distributions for the 
unobserved, say with normal errors, we would not get IIA exactly, but 
something close to it.

• The solution to the IIA problem is to relax the independence 
between the unobserved components of the latent utility, 𝜀௜.

• There are a number of ways to go.

Model – IIA: Alternative Models

• Solutions to IIA

– Nested Logit Model, allowing correlation between some choices.

– Models that allow for correlation among the error terms, such as 
Multinomail Probit Models

– Mixed or random coefficients Logit, where the marginal 
utilities associated with choice characteristics are allowed to vary 
between individuals. 

All of these originate in some form or another in McFadden’s work 
(1981, 1982, and 1984).

Model – IIA: Alternative Models
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• Idea: We have 𝐽 choices. We call a group of similar choices 
(alternatives) a nest. We allow correlations between the choices 
through nesting them. Each choice belongs to exactly one nest.

• Details:

- Grouping: We group together or cluster sets of choices into S sets: 
𝐵ଵ, 𝐵ଶ, ..., 𝐵௦, with nest characteristics 𝒁௦. 

- Correlations: Choices are correlated inside the nest (𝐵ଵ (Bus nest) = 
red bus, blue bus). But, we force independence between the nests.

- Preferences as before: Individuals choosing the option with the 
highest utility, where the utility of choice 𝑗 in set 𝐵௦ for individual 𝑛 is

U௡௝ = 𝒙௡௝′  + 𝒁௦′𝛼 + ௡௝, ௡௝ ~ GEV

Nested Logit Model

• ௡௝ has a the joint cumulative distribution function of error terms is

• Within the sets the correlation coefficient for the ௡௝ is 
approximately equal to 1− . Between the sets choices 𝑖 & 𝑗 are 
independent.

Example: Green investment, with 4 choices: ETF, Passive Mutual 
Fund, Active Mutual Fund & Roboinvestment. We allow correlation 
among ETF & Passive MF (ா்ி , ௉ିெி  correlated) and among 
Active MF  & Roboinvestment (஺ିெி , ோ௢௕௢). 
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Nested Logit Model
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Nested Logit Model – Probability

• In  the MNL, we assume independence of errors. In the Nested 
Logit model framework, we assume the errors ா்ி & ௉ିெி share 
common unobserved attributes.

• The key in this model is how we form the nests. Different nest 
structures will produce different result. 

• We choose the choices that are potentially close, with the data being 
used to estimate the amount of correlation.

Example: Transportation mode choice.
Choices: Bus, Train, Car (alone) & Carpool  𝐽 = 4.

• Nests: - Transit: Bus and Train
- Car: Car (alone) and Carpool

Choice of  transportation mode

Transit Car

Bus Car aloneTrain Carpool

Nested Logit Model – Example

LIMB

BRANCH

TWIG

Levels of  Choice
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Example: Transportation mode choice.
Choices: Bus, Train, Car (alone) & Carpool  𝐽 = 4.

• No Nesting

Choice of  transportation mode

Bus Car aloneTrain Carpool

Nested Logit Model – Example

Levels of  Choice

Note: We are not assuming that individuals choose sequentially. The 
diagrams simply represents nesting patterns and structure of  system
of  logit models.

Nested Logit Model – Structure

• We cluster similar choices in nests or branches.

• The RUM as usual: 𝑈௡௝ = 𝑉௡௝ + 𝜀௡௝ .

• But, it gets complicated. Now, we compound utility: 

𝑈(Choice) = 𝑈(Choice|Branch) + 𝑈(Branch)

- 𝑈(Branch) = function of some variables Z (characteristics of the 
branch, say comfort of ride, speed, price, etc).

- 𝑈(Choice|Branch) = function of some variables X (age, education, 
income). These variables vary across choices.
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Nested Logit Model – Structure

• Within a branch

– Identical variances (IIA applies)

– Covariance (all same) = variance at higher level

• Branches have different variances (scale factors)

• Nested logit probabilities: Generalized Extreme Value

• Prob[Choice, Branch]  =  Prob(Branch) * Prob(Choice|Branch)

 We need two models: 

1) Model of branch selection

2) Model of Choice, given branch selection

Nested Logit Model – Probability
• Recall that 𝑍௦ be branch/set-specific characteristics. (It may be 
empty, an indicator variable for set 𝑆, etc.). This set influences your 
choice of branch. 

• Let the conditional probability of choice 𝑗 given that your choice is 
in the set 𝐵௦, or 𝑦௡ ∈ 𝐵௦ (“twig level probability”) be equal to:

𝑃ሾ𝑦௡ ൌ 𝑗  𝒙௡,𝑦௡ ∈  𝐵௦ ൌ 
௘௫௣ሺ௏೙ೕ/ఒೞ)

∑ ௘௫௣ሺ௏೙೗/ఒೞሻ
಻
೗సభ  

for 𝑗 ∈ 𝐵௦, and 0 otherwise.

This probability describes the lower level model –describes choice within 
the nest or at twig level, given a branch.

• Unusual notation: Correlation inside the nest = 1 – 𝜆௦,   𝜆௦ ∈ [0, 1].
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Nested Logit Model – Probability

• Suppose the marginal probability of each choice in the set 𝐵௦:

This is the upper level model –describes choices between nests 
(probability of a branch).

• If 𝜆௦ = 1 for all 𝑠 –i.e., no correlation within the nest-, then 

𝑃௡௝ ൌ
௘௫௣ሺ௏೙ೕ ൅ 𝒁ೞᇲఈ)

∑ ∑ ௘௫௣ሺ௏೙ೞ ൅ 𝒁ೞ
ᇲఈሻ೗∈ಳೞ

ೄ
ೞసభ

• We are back to the conditional logit model.
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Nested Logit Model – Summary

• The nested logit probability can be decomposed into 2 logit models:
𝑃௝ = Prob[nest containing 𝑗] * Prob[𝑗, given nest containing 𝑗]

𝑃௡௝ ൌ  𝑃௡௝ ∗ 𝑃௡,஻ೞ
where

𝑃௡௝|஻ೞ ൌ
௘௫௣ሺ௏೙ೕ/ఒೞ)

∑ ௘௫௣ሺ௏೙೗/ఒೞሻ
಻
೗∈ಳೞ

 
(1) Lower level model

𝑃௡,஻ೞ ൌ
௘௫௣ሺ𝒁೙ೞᇲ ఈ ା ఒೞ ூ௏೙ೞ)

∑ ௘௫௣ሺ𝒁೙ೞ
ᇲ ఈ ା ఒೞ ூ௏೙ೞሻ

ೄ
ೞ∈ಳೞ  

(2) Upper level model

 𝐼𝑉௡௦ ൌ ln ሺ∑ ሺ𝑉௡௦/ 𝜆௦ሻ
ௌ
௦∈஻ೞ ሻ (3) Inclusive value

•  There is a link between 𝑃௡௝|஻𝒔 * 𝑃௡|஻𝒔 (upper and lower level): the 
inclusive value 𝐼𝑉௡௞ --the log of the denominator of lower level model.
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• 𝐼𝑉஻ೞ is also called the log-sum for nest 𝐵௦. It represents the expected 
utility for the choice of alternatives within nest 𝐵௦.

𝐼𝑉஻ೞ =𝐸ሾmax 
௝∈஻ೞ

ሺ𝑈௝ሻሿ ൌ 𝐸ሾmax 
௝∈஻ೞ

ሺ𝑉௝  ൅ ௝ሻሿ

• For consistency with RUM, 𝜆௞ must be in the [0, 1] interval (sufficient  
condition) –see McFadden (1981). The value of 𝜆௞ can serve as a check 
on the nested logit model.

• IIA within, not across nests:

 
  1

1

)/exp()/exp(

)/exp()/exp(












l

l

k

k

Bm lnmlnj

Bm knmkni

nj

ni

VV

VV

P

P








• When 𝜆௞= 1  no correlation within nests: 
௉೙೔
௉೙ೕ

ൌ ௘௫௣ሺ௏೙೔ሻ

௘௫௣ሺ௏೙ೕሻ

Nested Logit Model – Summary

Example: Transportation mode with 4 choices( Bus, Train, Car 
(alone) & Carpool) and 2 nests (Transit: Bus and Train; Car: Car 
(alone) and Carpool).

- Lower level model. It gives conditional probability of transit choices –
conditional on choosing transit mode. For exampe, conditional 
probability of choosing Bus, conditional on choosing the Transit nest:

Similarly, conditional probability of choosing Carpool, conditional on 
choosing the Car nest:

)/'exp()/'exp(

)/'exp(
],|[

TransitnTrainTransitnBus

TransitnBus
Transitnnn xx

x
BYXBusYP






)/'exp()/'exp(

)/'exp(
],|[

CaralonenCarCarnCarpool

CarnCarpool
Carnnn xx

x
BYXCarpoolYP








Nested Logit Model – Summary
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Example (continuation). 
Note: β enters into both equations  simultaneous estimation

- IIA holds within nests: 

it depends on 𝒙௕௨௦ and 𝒙்௥௔௜௡ only. 

- Inclusive value: Expected utility from choice given branch choice

)/'exp(

)/'exp(

],|[

],|[

TransitnTrain

TransitnBus

Transitnnn

Transitnnn

x

x

BYXTrainYP

BYXBusYP








 
 )/'exp()/'exp(ln

)/'exp()/'exp(ln

CaralonenCarCarnCarpoolCar

TransitnTrainTransitnBusTransit

xxIV

xxIV






Nested Logit Model – Summary

Example (continuation). 
- Upper level model. It gives the probability of choosing a nest/branch. 
For example, the probability of choosing Transit:







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BusTransitl
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Nested Logit Model – Summary
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Nested Logit Model – Estimation

• Estimation

- ML joint estimation.

Complicated, especially since the log likelihood function is not 
concave, but it is not impossible. Convergence is not guaranteed.

- Sequential estimation using nesting structure:

(1) Estimate lower model: Within the nest we have a conditional 
MNL with coefficients β/𝜆௦. (Easy to estimate, log likelihood is 
concave.)

(2) Compute inclusive value, lnሺ∑ 𝑒𝑥𝑝ሺ𝑉௡௟/𝜆௦ሻ
௃
௟∈஻ೞ

ሻ, using the 
estimates of β/𝜆௦. 
(3) Estimate upper model with inclusive value as explanatory variable: 
Plug the estimates of β/𝜆௦ in 𝑃௡௜. Another conditional MNL model.

Nested Logit Model – Estimation

• Disadvantages sequential estimation

- The sequential (two-step) estimators are not efficient. 

- The covariance has to be computed separately –McFadden (1981).

- Parameters that enter both levels are not constrained to be equal.

- It does not insure consistency with utility maximization.

Note: We can use the parameter estimates from the sequential 
estimation as starting values for joint ML estimation.

• Different nests can produce very different results. Partition choice 
set into mutually exclusive subsets within which 

(a) unobserved factors are correlated, and 

(b) relative odds are independent of other alternatives.
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Nested Logit Model – Example 1

Example (from Disdier and Mayer (2004)): Location choices by 
French firms in Eastern and Western Europe

• We want to model the factors involving the selection of location 𝑗: 
𝑃௝ = P(𝜋௝ > 𝜋௞ 𝑘 ≠ 𝑗 )

• Location choices are likely to have a nested structure (non-IIA)

- First, select region (East or Western Europe)

- Next, select country within region

• Data

- 1843 location decisions in Europe from 1980 to 1999

- 19 host countries (13 West Europe, 6 East Europe)

Nested Logit Model – Example 1

• Location choices: Data
– NF French firms already located in the country
– GDP GDP
– GPP/CAP GDP per capita
– DIST Distance France – host country
– W Average wage per capita (manufacturing)
– UNEMPL unemployment rate
– EXCHR Exchange rate volatility
– FREE Free country
– PNFREE Partly free and not free country
– PR1 Country with political rights rated 1
– PR2 Country with political rights rated 2
– PR345 Country with political rights rated 3,4,5
– PR67 Country with political rights rated 6,7
– LI Annual liberalization index
– CLI Cumulative liberalization index
– ASSOC =1 if an association agreement is signed 
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• Location choices by French firms in Eastern and Western Europe

Location choice

E.Eur

C1 CJ+1CJ
CN

W.Eur

……… ………

Nested Logit Model – Example 1

Nested Logit Model – Example 1
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Nested Logit Model – Example 1

Nested Logit Model – Example 1
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Example: Transportation mode (Air, train, bus, caaaaa)

STATA comands: NLOGIT

; Lhs=mode

; Rhs=gc,ttme,invt,invc

; Rh2=one,hinc

; Choices=air,train,bus,car

; Tree=Travel[Private(Air,Car), Public(Train,Bus)]

; Show tree

; Effects: invc(*) 

; Describe 

; RU1  $  (RU1: Random utility Model 1 – the one presented). This 
option selects branch normalization

Nested Logit Model – Example 2 (Greene)

Nested Logit Model – Example 2 (Greene)
• Tree Structure Specified for the Nested Logit Model
Sample proportions are marginal, not conditional.       
Choices marked with * are excluded for the IIA test.      

----------------+----------------+----------------+----------------+------+---
Trunk    (prop.)|Limb     (prop.)|Branch   (prop.)|Choice   (prop.)|Weight|IIA
----------------+----------------+----------------+----------------+------+---
Trunk{1} 1.00000|TRAVEL   1.00000|PRIVATE   .55714|AIR       .27619| 1.000|

|                |                |CAR       .28095| 1.000|
|                |PUBLIC    .44286|TRAIN     .30000| 1.000|
|                |                |BUS       .14286| 1.000|

----------------+----------------+----------------+----------------+------+---
+---------------------------------------------------------------+
| Model Specification:  Table entry is the attribute that       |
| multiplies the indicated parameter.                           |
+--------+------+-----------------------------------------------+
| Choice |******| Parameter                                     |
|        |Row  1| GC       TTME     INVT     INVC     A_AIR     |
|        |Row  2| AIR_HIN1 A_TRAIN  TRA_HIN3 A_BUS    BUS_HIN4  |
+--------+------+-----------------------------------------------+
|AIR     |     1| GC       TTME     INVT     INVC     Constant  |
|        |     2| HINC     none     none     none     none      |
|CAR     |     1| GC       TTME     INVT     INVC     none      |
|        |     2| none     none     none     none     none      |
|TRAIN   |     1| GC       TTME     INVT     INVC     none      |
|        |     2| none     Constant HINC     none     none      |
|BUS     |     1| GC       TTME     INVT     INVC     none      |
|        |     2| none     none     none     Constant HINC      |
+---------------------------------------------------------------+
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Nested Logit Model – Example 2 (Greene)

• STARTING VALUES
-----------------------------------------------------------
Discrete choice (multinomial logit) model
Dependent variable               Choice
Log likelihood function      -172.94366
Estimation based on N =    210, K =  10
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj
Constants only   -283.7588  .3905 .3787
Chi-squared[ 7]          =    221.63022
Prob [ chi squared > value ] =   .00000
Response data are given as ind. choices
Number of obs.=   210, skipped    0 obs
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+--------------------------------------------------

GC|     .07578***       .01833        4.134   .0000
TTME|    -.10289***       .01109       -9.280   .0000
INVT|    -.01399***       .00267       -5.240   .0000
INVC|    -.08044***       .01995       -4.032   .0001
A_AIR|    4.37035***      1.05734        4.133   .0000

AIR_HIN1|     .00428          .01306         .327   .7434
A_TRAIN|    5.91407***       .68993        8.572   .0000
TRA_HIN3|    -.05907***       .01471       -4.016   .0001

A_BUS|    4.46269***       .72333        6.170   .0000
BUS_HIN4|    -.02295          .01592       -1.442   .1493
--------+--------------------------------------------------

Nested Logit Model – Example 2 (Greene)
• FIML Nested Multinomial Logit Model
Dependent variable                 MODE
Log likelihood function      -166.64835
The model has 2 levels.
Random Utility Form 1: IVparms = LMDAb|l
Number of obs.=   210, skipped    0 obs
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+--------------------------------------------------

|Attributes in the Utility Functions (beta)
GC|     .06579***       .01878        3.504   .0005

TTME|    -.07738***       .01217       -6.358   .0000
INVT|    -.01335***       .00270       -4.948   .0000
INVC|    -.07046***       .02052       -3.433   .0006
A_AIR|    2.49364**       1.01084        2.467   .0136

AIR_HIN1|     .00357          .01057         .337   .7358
A_TRAIN|    3.49867***       .80634        4.339   .0000
TRA_HIN3|    -.03581***       .01379       -2.597   .0094

A_BUS|    2.30142***       .81284        2.831   .0046
BUS_HIN4|    -.01128          .01459        -.773   .4395

|IV parameters, lambda(b|l),gamma(l)
PRIVATE|    2.16095***       .47193        4.579   .0000
PUBLIC|    1.56295***       .34500        4.530   .0000

|Underlying standard deviation = pi/(IVparm*sqr(6)
PRIVATE|     .59351***       .12962        4.579   .0000
PUBLIC|     .82060***       .18114        4.530   .0000
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Nested Logit Model – Example 2 (Greene)
+-----------------------------------------------------------------------+
| Elasticity             averaged over observations.                    |
| Attribute is INVC     in choice AIR                                   |
|                        Decomposition of Effect if Nest    Total Effect|
|                        Trunk   Limb   Branch   Choice     Mean  St.Dev|
|    Branch=PRIVATE                                                     |
| *     Choice=AIR        .000   .000  -2.456  -3.091     -5.547  3.525 |
|       Choice=CAR        .000   .000  -2.456   2.916       .460  3.178 |
|    Branch=PUBLIC                                                      |
|       Choice=TRAIN      .000   .000   3.846    .000      3.846  4.865 |
|       Choice=BUS        .000   .000   3.846    .000      3.846  4.865 |
+-----------------------------------------------------------------------+
| Attribute is INVC     in choice CAR                                   |
|    Branch=PRIVATE                                                     |
|       Choice=AIR        .000   .000   -.757    .650      -.107   .589 |
| *     Choice=CAR        .000   .000   -.757   -.830     -1.587  1.292 |
|    Branch=PUBLIC                                                      |
|       Choice=TRAIN      .000   .000    .647    .000       .647   .605 |
|       Choice=BUS        .000   .000    .647    .000       .647   .605 |
+-----------------------------------------------------------------------+
| Attribute is INVC     in choice TRAIN                                 |
|    Branch=PRIVATE                                                     |
|       Choice=AIR        .000   .000   1.340    .000      1.340  1.475 |
|       Choice=CAR        .000   .000   1.340    .000      1.340  1.475 |
|    Branch=PUBLIC                                                      |
| *     Choice=TRAIN      .000   .000  -1.986  -1.490     -3.475  2.539 |
|       Choice=BUS        .000   .000  -1.986   2.128       .142  1.321 |
+-----------------------------------------------------------------------+
| Attribute is INVC     in choice BUS                                   |
|    Branch=PRIVATE                                                     |
|       Choice=AIR        .000   .000    .547    .000       .547   .871 |
|       Choice=CAR        .000   .000    .547    .000       .547   .871 |
|    Branch=PUBLIC                                                      |
|       Choice=TRAIN      .000   .000   -.841    .888       .047   .678 |
| *     Choice=BUS        .000   .000   -.841  -1.469     -2.310  1.119 |
+-----------------------------------------------------------------------+
| Effects on probabilities of all choices in the model:                 |
| * indicates direct Elasticity effect of the attribute.                |
+-----------------------------------------------------------------------+

NL Model: Higher Level Trees (Greene)

• We can do higher order nesting. For example, housing choices  
can be divided by Location (Neighborhood); Housing Type (Rent, 
Buy, House, Apt); and Housing (# Bedrooms).
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NL Model: Degenerate Branches (Greene)

Travel

Fly Ground

Air CarTrain Bus

BRANCH

TWIG

LIMB

• The branches do not have to have twigs. We can degenerate trees.

NL Model: Degenerate Branch (Greene)

• FIML Nested Multinomial Logit Model
Dependent variable                 MODE
Log likelihood function      -148.63860
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+--------------------------------------------------

|Attributes in the Utility Functions (beta)
GC|     .44230***       .11318        3.908   .0001

TTME|    -.10199***       .01598       -6.382   .0000
INVT|    -.07469***       .01666       -4.483   .0000
INVC|    -.44283***       .11437       -3.872   .0001
A_AIR|    3.97654***      1.13637        3.499   .0005

AIR_HIN1|     .02163          .01326        1.631   .1028
A_TRAIN|    6.50129***      1.01147        6.428   .0000
TRA_HIN2|    -.06427***       .01768       -3.635   .0003

A_BUS|    4.52963***       .99877        4.535   .0000
BUS_HIN3|    -.01596          .02000        -.798   .4248

|IV parameters, lambda(b|l),gamma(l)
FLY|     .86489***       .18345        4.715   .0000

GROUND|     .24364***       .05338        4.564   .0000
|Underlying standard deviation = pi/(IVparm*sqr(6)

FLY|    1.48291***       .31454        4.715   .0000
GROUND|    5.26413***      1.15331        4.564   .0000

--------+--------------------------------------------------
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• STATA commands:
NLOGIT  ; lhs=mode

; rhs=gc,ttme,invt,invc 
; rh2=one,hinc
; choices=air,train,bus,car
; tree=Travel[Fly(Air),

Ground(Train,Car,Bus)]
; show tree
; effects:gc(*) 
; Describe 
; ru2  $  

(This is RANDOM UTILITY FORM 2. The different 
normalization shows the effect of  the degenerate branch.)

NL Model: Degenerate Branch (Greene)

• Estimation of RU2 Form of Nested Logit Model

FIML Nested Multinomial Logit Model
Dependent variable                 MODE
Log likelihood function      -168.81283  (-148.63860 with RU1)
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+--------------------------------------------------

|Attributes in the Utility Functions (beta)
GC|     .06527***       .01787        3.652   .0003

TTME|    -.06114***       .01119       -5.466   .0000
INVT|    -.01231***       .00283       -4.354   .0000
INVC|    -.07018***       .01951       -3.597   .0003
A_AIR|    1.22545          .87245        1.405   .1601

AIR_HIN1|     .01501          .01226        1.225   .2206
A_TRAIN|    3.44408***       .68388        5.036   .0000
TRA_HIN2|    -.02823***       .00852       -3.311   .0009

A_BUS|    2.58400***       .63247        4.086   .0000
BUS_HIN3|    -.00726          .01075        -.676   .4993

|IV parameters, RU2 form = mu(b|l),gamma(l)
FLY|    1.00000        ......(Fixed Parameter)......

GROUND|     .47778***       .10508        4.547   .0000
|Underlying standard deviation = pi/(IVparm*sqr(6)

FLY|    1.28255        ......(Fixed Parameter)......
GROUND|    2.68438***       .59041        4.547   .0000

NL Model: Degenerate Branch (Greene)
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NL Model: An Error Components Model (Greene)

AIR 1 i,AIR i,AIR i,1

TRAIN 1 i,TRAIN i,TRAIN i,1

BUS 1 i,BUS

Random terms in utility functions share random components

U(Air,i)     = α    +β INVC    +...+ε     +   w

U(Train,i) = α +β INVC +...+ ε +   w

U(Bus,i)   = α    +β INVC  

  
  
  
  
  
    

i,BUS i,2

1 i,CAR i,CAR i,2

2 2 2
ε 1 1

2 2 2
1 ε 1

2 2 2
ε 2 2

2 2 2
2 ε 2

 +...+ ε   +    w

U(Car,i)    =            β INVC   +...+ε   +    w

Air σ +θ θ 0 0

Train θ σ +θ 0 0
Cov =

Bus 0 0 σ +θ θ

Car 0 0 θ σ +θ

This model is estimated by maximum simulated likelihood.

• We can allow for some heterogeneity in the utility within the 
branches. 

-----------------------------------------------------------

Error Components (Random Effects) model
Dependent variable                 MODE
Log likelihood function      -182.27368
Response data are given as ind. choices
Replications for simulated probs. =  25
Halton sequences used for simulations
ECM model with panel has      70 groups
Fixed number of obsrvs./group=        3
Hessian is not PD. Using BHHH estimator
Number of obs.=   210, skipped    0 obs
--------+--------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]
--------+--------------------------------------------------

|Nonrandom parameters in utility functions
GC|     .07293***       .01978        3.687   .0002

TTME|    -.10597***       .01116       -9.499   .0000
INVT|    -.01402***       .00293       -4.787   .0000
INVC|    -.08825***       .02206       -4.000   .0001
A_AIR|    5.31987***       .90145        5.901   .0000

A_TRAIN|    4.46048***       .59820        7.457   .0000
A_BUS|    3.86918***       .67674        5.717   .0000

|Standard deviations of latent random effects
SigmaE01|    -.27336         3.25167        -.084   .9330
SigmaE02|    1.21988          .94292        1.294   .1958
--------+--------------------------------------------------

NL Model: An Error Components Model (Greene)
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Testing the NL Model vs. the MNL (Greene)

• Log likelihood for the NL model

• Constrain IV parameters to equal 1 with 
; IVSET(list of branches)=[1]

• Use LR test

• For the example:

- LogL = -166.68435

- LogL (MNL) = -172.94366

Chi-squared with 2 d.f. = 2 * (-166.68435 - (-172.94366)) 
= 12.51862

The critical value is 5.99 (95%)   MNL model is rejected

• Check IV coefficients: A sufficient condition for consistency with 
RUM: they should be between (0, 1).


