

DCM: Different Models

- Popular Models:
- 1. Probit Model
- 2. Binary Logit Model
- 3. Multinomial Logit Model
- 4. Nested Logit model
- 5. Ordered Logit Model
- Relevant literature:
- Train (2003): Discrete Choice Methods with Simulation
- Franses and Paap (2001): Quantitative Models in Market Research
- Hensher, Rose and Greene (2005): Applied Choice Analysis

Multinomial Logit (MNL) Model

• In many of the situations, discrete responses are more complex than the binary case:

- Single choice out of more than two alternatives: Electoral choices and interest in explaining the vote for a particular party.

- Multiple choices: "Travel to work in rush hour," and "travel to work out of rush hour," as well as the choice of bus or car.

• The distinction should not be exaggerated: we could always enumerate travel-time, travel-mode choice combinations and then treat the problem as making a single decision.

• In a few cases, the values associated with the choices will themselves be meaningful, for example, number of patents: y = 0, 1, 2,... (count data). In most cases, the values are meaningless.

Multinomial Logit (MNL) Model

• In most cases, the value of the dependent variable is merely a coding for some qualitative outcome:

- Investment in stocks: we code "yes" as 1 and "no" as 0 (qualitative choices)

- Occupational field: 0 for economist, 1 for engineer, 2 for lawyer, etc. (categories)

- Opinions are usually coded with scales, where 1 stands for "strongly disagree", 2 for "disagree", 3 for "neutral", etc.

• Nothing conceptually difficult about moving from a binary to a multi-response framework, but numerical difficulties can be big.

• A simple model to generalized: The Logit Model.

Multinomial Logit (MNL) Model

- Now, we have a choice between J (greater than 2) categories
- Dependent variable $y_j = 1, 2, 3, ..., J$.
- Explanatory variables

- z_n : different across individuals, not across choices (*standard MNL* model). The MLN specifies for choice 1, 2, 3, ..., J:

$$P[y_n = j \mid z_n = z] = \frac{exp(z'\alpha_j)}{1 + \sum_{l=1}^{J} exp(z'\alpha_l)}$$

- x_n : different across (individuals and) choices (*conditional MNL* model). The conditional logit model specifies for choice *j*:

$$P[y_n = j \mid x_n] = \frac{exp(x'_n \beta_j)}{\sum_{l=1}^J exp(x'_n \beta_l)}$$

• Both models are easy to estimate.

Multinomial Logit (MNL) Model

• The MNL can be viewed as a special case of the conditional logit model. Suppose we have a vector of individual characteristics Z_i of dimension k, and J vectors of coefficients α_j , each of dimension k. Then define,

$$X_{i1} = \begin{pmatrix} Z_i \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}, \quad \dots \quad X_{iJ} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ Z_i \end{pmatrix}, \text{ and } X_{i0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

and define the common parameter vector β as $\beta' = (\gamma'_1, \dots, \gamma'_J)$.

• We are back in the conditional logit model.

MNL - Link with Utility Maximization

- The modeling approach (McFadden's) is similar to the binary case.
- Random Utility for individual *n*, associated with choice *j*:

$$U_{nj} = V_{nj} + \varepsilon_{nj} = \alpha_j + \mathbf{z}_n' \,\delta_j + \mathbf{w}_n' \,\gamma_j + \varepsilon_{nj} \qquad \text{- utility from } j$$

Then, if $y_n = j$ if $(U_{nj} - U_{ni}) > 0$ (*n* selects *j* over *i*.)

<u>Note</u>: The utility parameters/weights (δ_j, γ_j) are common across consumers (same for all *n*). This is a strong assumption. This can be relaxed. The constant picks heterogeneity among choices, which cannot be attributed to $\mathbf{z}_n \& \mathbf{w}_n$, for example "image."

• If we have a panel, we can allow ε_{nj} to be autocorrelated. We think of ε_{nj} as picking unobserved attributes of choice *j* that change over time. For example, time-varying tastes, that can be correlated.

MNL – Link with Utility Maximization

• Like in the binary case, we get:

$$P_{nj} = P[y_n = j | i, j] = P[U_{nj} - U_{nj} > 0, \forall i \neq j]$$

= $P[\varepsilon_{ni} - \varepsilon_{nj} < V_{nj} - V_{ni}, \forall i \neq j]$
= $\int I[\xi_n < V_{nj} - V_{ni}, \forall i \neq j] f(\xi_n) d\xi_n$

• Specify *i.i.d.* Gumbel distribution for $f(\varepsilon_n) \Rightarrow$ Logit Model.

- independence across utility functions

- identical variances (means absorbed in constants)

MNL Model - Identification

• Logit Model for choice *j*:

$$P_{nj} = P[y_n = j \mid \boldsymbol{x}_n] = \frac{exp(\boldsymbol{x}_n \boldsymbol{\beta}_j)}{\sum_{l=1}^J exp(\boldsymbol{x}_n \boldsymbol{\beta}_l)}$$

• We call P_{nj} a conditional MNL model (x_n : different across n and j)

• Normalization. If we add a constant to a parameter ($\beta_i + c$), given the Logistic distribution, exp(*c*) will cancel out. Cannot distinguish between ($\beta_i + c$) & β_i . A normalization is needed:

$$\Rightarrow$$
 pick a category, say *i*, and set coefficients equal to 0 –i.e., $\beta_i = 0$.

$$P_{ni} = P[y_n = i | \mathbf{x}_n] = \frac{1}{1 + \sum_{l=1}^{J} exp(\mathbf{x}'_n \boldsymbol{\beta}_l)} \quad \text{(Typically, } i = J.\text{)}$$

$$P_{nj} = P[y_n = j | \mathbf{x}_n] = \frac{exp(\mathbf{x}_n \boldsymbol{\beta}_j)}{1 + \sum_{l \neq i}^{J} exp(\mathbf{x}'_n \boldsymbol{\beta}_l)}$$

MNL Model - Interpretation & Effects

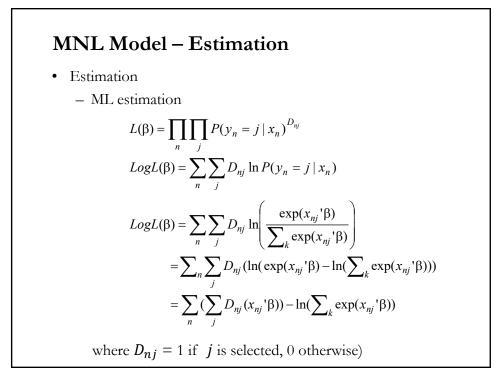
- The interpretation of parameters is based on partial effects:
- Derivative (marginal effect)

$$\frac{\partial P[y_n=j|x_n]}{\partial x_{nk}} = P_{nj} * (1 - P_{nj}) * \beta_k$$

- Elasticity (proportional changes)

$$\frac{\partial \log P[y_n=j|x_n]}{\partial \log x_{nk}} = \frac{x_{nk}}{P_{nj}} * P_{nj} * (1 - P_{nj}) * \beta_k$$
$$= x_{nk} * (1 - P_{nj}) * \beta_k$$

<u>Note</u>: The elasticity is the same for all choices "*j*." A change in the cost of air travel has the same effect on all other forms of travel. (This result is called **independence from irrelevant alternatives** (**IIA**). Not a realistic property. Many experiments reject it.)


MNL Model - Interpretation & Effects

- Interpretation of parameters
- Probability-ratio

$$\frac{P[y_n=j|x_n]}{P[y_n=i|x_n]} = \frac{exp(x_{nj'}\beta)}{exp(x_{ni'}\beta)}$$
$$\ln\left\{\frac{P[y_n=j|x_n]}{P[y_n=i|x_n]}\right\} = (x_{nj} - x_{ni})'\beta$$

– Does not depend on the other alternatives! Again, we have IIA. Implication of MNL models pointed out by Luce (1959).

<u>Note</u>: The log-odds ratio of each response follow a linear model. A regression can be used for the comparison of two choices at a time.

MNL Model – Estimation

- Estimation
 - ML (continuation):

A lot of *f.o.c.* equations, with a lot of unknowns (parameters). Each covariate has J - 1 coefficients.

We use numerical procedures, G-N or N-R often work well.

Alternative estimation procedures
 Simulation-assisted estimation (Train, Ch.10)
 Bayesian estimation (Train, Ch.12)

MNL Model – Application - PIM

• **Example** (from Bucklin and Gupta (1992)):

$$P_t^h(i|inc) = \frac{exp(U_{it}^h)}{\sum_{l=1}^J exp(U_{lt}^h)}$$

 $U_{it}^{h} = u_i + \beta_1 B L_i^{h} + \beta_2 L B P_{it}^{h} + \beta_3 S L_i^{h} + \beta_4 L S P_{it}^{h} + \beta_5 Price_{it} + \beta_6 Pro_{it}$

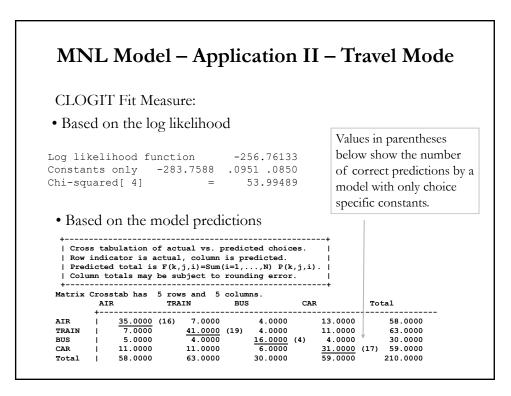
• u_i = constant for brand-size i

- BL_i^h = loyalty of household h to brand of brandsize i
- $LBP_{it}^{h} = 1$ if *i* was last brand purchased, 0 otherwise (at time *t*)
- SL_i^h = loyalty of household h to size of brandsize i
- $LSP_{it}^{h} = 1$ if *i* was last size purchased, 0 otherwise (at time *t*)
- $Price_{it}$ = actual shelf price of brand-size *i* at time *t*
- Pro_{it} = promotional status of brand-size *i* at time *t*

MNL Model – Application - PIM

- Data
 - A.C.Nielsen scanner panel data
 - 117 weeks: 65 for initialization, 52 for estimation
 - 565 households: 300 selected randomly for estimation, remaining hh = holdout sample for validation
 - Data set for estimation: 30,966 shopping trips, 2,275 purchases in the category (liquid laundry detergent)
 - Estimation limited to the 7 top-selling brands (80% of category purchases), representing 28 brand-size combinations (= level of analysis for the choice model)

MNL Model – Application I – PIM


•	Goodness-o	f-Fit
---	------------	-------

Model	# param.	Log Likelihood	U² (pseudo R²)	BIC
Null model	27	-5957.3	-	6061.6
Full model	33	-3786.9	.364	3914.3

• Estimation Results

Parameter	Coefficients (t-statistic)
$BL \beta_1$	3.499 (22.74)
LBP β_2	.548 (6.50)
$SL \beta_3$	2.043 (13.67)
LSP β_4	.512 (7.06)
$ \begin{array}{c} LSP \ \beta_4 \\ Price \ \beta_5 \\ Pro \ \beta_6 \end{array} \end{array} $	696 (-13.66)
<i>Pro</i> $β_6$	2.016 (21.33)

ANL Mo	del – A	Applicat	ion Il	[_ Tı	avel Mode
Data: 4 Trave	l Modes:	Air, Bus, T	rain, Ca	r . N=2	10
Discrete choic	e (multinomi	al logit) mode			
Dependent vari	able	Choice			
Dependent vari Log likelihood	function	-256.76133			
Estimation bas					
Information Cr					
		Unnormalized			
AIC					
Fin.Smpl.AIC					
Bayes IC Hannan Quinn					
R2=1-LogL/LogL					
Constants only	-				
Chi-squared[4					
Prob [chi squ					
Response data		-			
Number of obs.	= 210, ski	pped 0 obs			
Variable Coef	ficient S	tandard Error	b/St.Er.	P[Z >z]	
GC	.03711**	.01484	2.500	.0124	(General Cost)
INVC -	.05480***	.01668	-3.285	.0010	(in-vehicle cost)
INVT -	.00896***	.00215	-4.162	.0000	(in-vehicle time)
HINCA	.02922***	.00931	3.138	.0017	(household income annu
A_AIR -1	.88740***	.69281	-2.724	.0064	(air FE)
A_TRAIN	.69364***	.25010	2.773	.0055	(train FE)
A_BUS -	.20307	.24817	818	.4132	(bus FE)

MNL Model – Scaling

- Scale parameter
- Variance of the extreme value distribution $\operatorname{Var}[\mathcal{E}] = \pi^2/6$ - If true utility is $U_{nj}^* = \mathbf{x}_{nj}'\beta + \varepsilon_{nj}^*$ with $\operatorname{Var}(\varepsilon_{nj}^*) = \sigma^2 (\pi^2/6)$, the estimated representative utility $V_{nj} = \mathbf{x}_{nj}'\beta$ involves a rescaling of β^* $\Rightarrow \beta = \beta^* / \sigma$
- β^* and σ can not be estimated separately.

 \Rightarrow Take into account that the estimated coefficients indicate the variable's effect *relative to* the variance of unobserved factors

 \Rightarrow Include scale parameters if subsamples in a pooled estimation (may) have different error variances

MNL Model – Scaling

• Scale parameter in the case of pooled estimation of subsamples with different error variance.

• For each subsamples, multiply utility by μ_s , which is estimated simultaneously with β .

- Normalization: set μ_s equal to 1 for 1 subs.
- Values of μ_s reflect diff's in error variation
 - $\mu_s > 1$: error variance is smaller in s than in the reference subsample
 - $\mu_s < 1$: error variance is larger in s than in the reference subsample

MNL Model – Application

Example (from Breugelmans et al. (2005), based on Andrews and Currim (2002); Swait and Louvière (1993)):

- Data from online experiment, 2 product categories
- Three different assortments, assigned to different respondent groups
 - Assortment 1: small assortment
 - Assortment 2 = ass.1 extended with additional brands
 - Assortment 3 = ass.1 extended with add types
- Explanatory variables are the same (hh char's, MM), with exception of the constants
- A scale factor is introduced for assortment 2 and 3 (assortment 1 is reference with scale factor =1)

ole 1: Descriptiv	ve stats for eac	h assortment (margarin	a and correade)
		ii assorument (margarin	e and cerears)
	MARGAI	RINE	
Attribute	Assortment 1 (limited) Common ^a	Assortment 2 (add new flavors of existing brands)	Assortment 3 (add new brands of existing flavors)
brand	Common -	Common	Add new brands
Flavor	Common	Common	Add new brands Common
i lavoi	common	Add new flavors	Common
# alternatives	11	19	17
# respondents	105	116	100
# purchase occasions	275	279	278
# screens needed	<1	> 1	>1
	CEREAL	S	
Attribute	Assortment 1 (limited)	Assortment 2 (add new flavors of existing brands)	Assortment 3 (add new brands of existing flavors)
Brand	Common	Common	Common
			Add new brands
Flavor	Common	Common	Common
		Add new flavors	
# alternatives	21	32	46
# respondents	81	97	87
# purchase occasions	271	261	281
# screens needed	>1	>1	>1

MNL Model – Application

• MNL-model – Pooled estimation

$$P_{it|a}^{h} = \frac{\mu_a(u_{it|a}^{h})}{\sum_{l \in C_{t|a}^{h}}^{J} \mu_a(u_{lt|a}^{h})}$$

Notation:

- $P_{it|a}^{h}$ = Probability that household h chooses item i at time t, facing assortment a

 $-u_{it|a}^{h}$ = Choice utility of item *i* for household *h* facing assortment *a* = *f* (household variables, MM-variables)

- $C_{t|a}^{h}$ = Set of category items available to household h within assortment a

- μ_a = Gumbel scale factor

MNL Model – Application

Estimation results

- Goodness-of-Fit
 - (average) LL: -0.045 (M), -0.040 (C)
 - BIC: 2929 (M), 4763(C)
 - CAIC: 2871 (M), 4699 (C)

• Scale factors:

- M: 1.2498 (ass2), 1.2627 (ass3)
- C: 1.0562 (ass2), 0.7573 (ass3)

	Marg	garine		Cereals				
Variable	Assortment 1	Assortment 2	Assortment 3	Variable	Assortment 1	Assortment 2	Assortmen	
Scale factor Mean Last purchase Item preference Brand asymmetry Size asymmetry Sequence Proximity	[1.00] ^b 2.0675*** 2.8310*** 0.2805 -0.0841 - ^d 0.8332	1.2498*** [2.5840***] ^c [3.5382***] ^c 0.4228** -0.0880 0.3672** 1.0303***	1.2627*** [2.6106***] ^c [3.5747***] ^c 0.5400* 0.0169 -0.1190 0.6235	Scale factor Mean Last purchase Item preference Brand asymmetry Taste asymmetry Type asymmetry Sequence Proximity	[1.00] ^b 0.6441*** 5.2011*** 0.0077 -0.0260 0.3119 -0.3311 2.0041***	1.0562*** [0.6803***]c [5.4934***]c 0.6130 0.2938** -0.0614 -0.0695 0.7214	0.7573*** [0.4888***] [3.9109***] 0.0969 -0.1596 0.3816** 0.6190*** 4.1140***	

MNL Model – Limitations

- Limitations of the MNL model:
 - Independence of Irrelevant Alternatives or IIA (proportional substitution pattern): the relative odds between any two outcomes are independent of the number and nature of other outcomes being simultaneously considered.
 - Order (where relevant) is not taken into account
 - Systematic taste variation can be represented, not random taste variation
 - No correlation between error terms (*i.i.d.* errors)

MNL Model – IIA

• This is the big weakness of the model. The choice between any two alternatives does not depend upon a third one -i.e., the ratio of choice probabilities for alternatives i and j does not depend on characteristics of other alternatives, say, x_{i3} .

 $\frac{P[y_n=j|x_n]}{P[y_n=i|x_n]} = \frac{exp(x_{nj}'\boldsymbol{\beta}_j)}{exp(x_{ni}'\boldsymbol{\beta}_i)}$

• <u>Implications</u>: Proportional substitution patterns (or unrealistic substitution patterns!). It is possible to ignore third alternatives in estimation.

• But, it clashes with data

MNL Model - IIA

Example (McFadden (1974)): Blue Bus – Red Bus: Suppose we have three equally distributed transportation categories: - T1: Blue bus (P=33%), Car (P=33%), Red bus (P=33%)

Now, we paint the red busses blue. Then, we have two choices. Assuming IIA, we have: Blue bus (P=50%), Car (P=50%). But, a more likely distribution: Blue bus (P=66%), Car (P=33%).

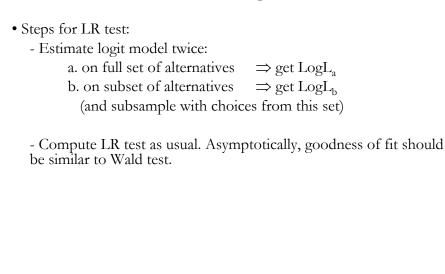
Note: Debreu (1960) has a similar example with Beethoven/Debussy.

• MNL model assumes that none of the categories can serve as substitutes (no correlation). If they can serve as substitutes, then the results of MNL may not be very realistic.

MNL Model – IIA - Testing

• We want to test IIA. We use an adaptation of the Hausman test: Hausman-McFadden specification test (*Econometrica*, 1983)

<u>Idea</u>: If a subset of the choice set is truly irrelevant, omitting it should not significantly affect the estimates. Two estimators: one efficient, one inefficient \Rightarrow Hausman test.


- Steps for Wald test:
- Estimate logit model twice:

(a) on full set of alternatives (with k "irrelevant" variables) \Rightarrow **b**_a

- (b) on subset of alternatives (& subsamples with choices from this set) $\Rightarrow \mathbf{b}_{b}$
- Compute the Wald test

- Under H₀ (IIA is true): H = ($\mathbf{b}_{a} - \mathbf{b}_{b}$)'[$\mathbf{V}_{a} - \mathbf{V}_{b}$]⁻¹($\mathbf{b}_{a} - \mathbf{b}_{b}$) $\xrightarrow{a} \chi_{k}^{2}$

MNL Model – IIA - Testing

Model - IIA: Alternative Models

• In the MNL model we assumed independent ε_{nj} with extreme value distributions. This essentially created the IIA property.

• This is not completely correct, because other distributions for the unobserved, say with normal errors, we would not get IIA exactly, but something close to it.

• The solution to the IIA problem is to relax the independence between the unobserved components of the latent utility, ε_i .

• There are a number of ways to go.

Model - IIA: Alternative Models

• Solutions to IIA

- Nested Logit Model, allowing correlation between some choices.

– Models that allow for correlation among the error terms, such as **Multinomail Probit Models**

- Mixed or random coefficients Logit, where the marginal utilities associated with choice characteristics are allowed to vary between individuals.

All of these originate in some form or another in McFadden's work (1981, 1982, and 1984).

Nested Logit Model

• <u>Idea</u>: We have *J* choices. We call a group of similar choices (alternatives) a **nest**. We allow correlations between the choices through nesting them. Each choice belongs to exactly one nest.

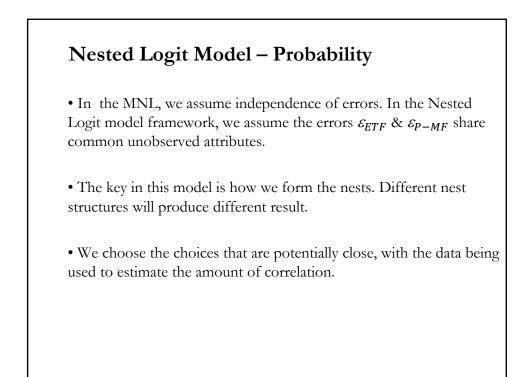
• Details:

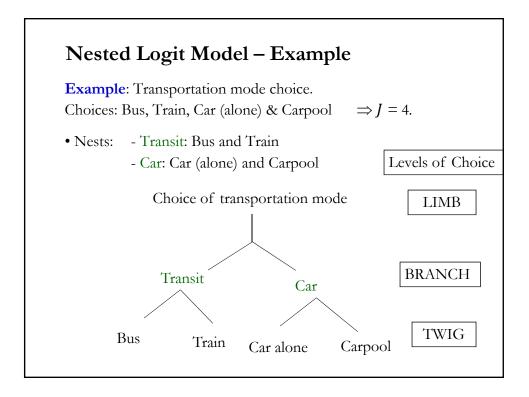
- Grouping: We group together or cluster sets of choices into S sets: $B_1, B_2, ..., B_s$, with nest characteristics Z_s .

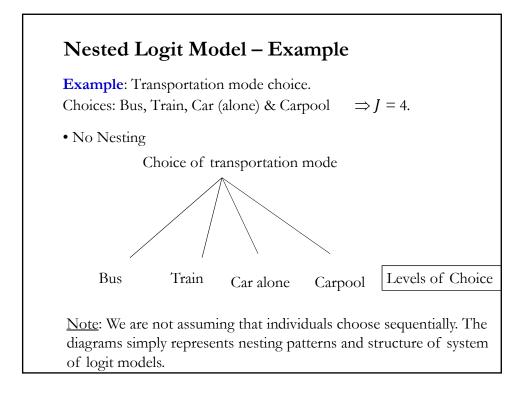
- Correlations: Choices are correlated inside the nest (B_1 (Bus nest) = red bus, blue bus). But, we force independence between the nests.

- Preferences as before: Individuals choosing the option with the highest utility, where the utility of choice j in set B_s for individual n is

$$U_{nj} = \boldsymbol{x}_{nj}' \boldsymbol{\beta} + \boldsymbol{Z}_s' \boldsymbol{\alpha} + \boldsymbol{\varepsilon}_{nj}, \qquad \boldsymbol{\varepsilon}_{nj} \sim \text{GEV}$$


Nested Logit Model


• \mathcal{E}_{nj} has a the joint cumulative distribution function of error terms is


$$F(\varepsilon_{n1},\varepsilon_{n2},...,\varepsilon_{nJ}) = \exp\left(-\sum_{s=1}^{S}\left(\sum_{j\in B_{s}}e^{-\varepsilon_{nj}/\lambda_{s}}\right)^{\lambda_{s}}\right)$$

• Within the sets the correlation coefficient for the \mathcal{E}_{nj} is approximately equal to $1 - \lambda$. Between the sets choices i & j are independent.

Example: Green investment, with 4 choices: ETF, Passive Mutual Fund, Active Mutual Fund & Roboinvestment. We allow correlation among ETF & Passive MF (ε_{ETF} , ε_{P-MF} correlated) and among Active MF & Roboinvestment (ε_{A-MF} , ε_{Robo}).

Nested Logit Model – Structure

- We cluster similar choices in nests or branches.
- The RUM as usual: $U_{nj} = V_{nj} + \varepsilon_{nj}$.
- But, it gets complicated. Now, we compound utility: U(Choice) = U(Choice | Branch) + U(Branch)

- U(Branch) = function of some variables Z (characteristics of the branch, say comfort of ride, speed, price, etc).

- U(Choice | Branch) = function of some variables X (age, education, income). These variables vary across choices.

Nested Logit Model – Structure

- Within a branch
 - Identical variances (IIA applies)
 - Covariance (all same) = variance at higher level
- Branches have different variances (scale factors)
- Nested logit probabilities: Generalized Extreme Value
- Prob[Choice, Branch] = Prob(Branch) * Prob(Choice | Branch)

 \Rightarrow We need two models:

- 1) Model of branch selection
- 2) Model of Choice, given branch selection

Nested Logit Model - Probability

• Recall that Z_s be branch/set-specific characteristics. (It may be empty, an indicator variable for set S, etc.). This set influences your choice of branch.

• Let the conditional probability of choice *j* given that your choice is in the set B_s , or $y_n \in B_s$ ("twig level probability") be equal to:

$$P[y_n = j \mid \mathbf{x}_n, y_n \in B_s] = \frac{exp(V_{nj}/\lambda_s)}{\sum_{l=1}^J exp(V_{nl}/\lambda_s)}$$

for $j \in B_s$, and 0 otherwise.

This probability describes the *lower level model* –describes choice within the nest or at twig level, given a branch.

• Unusual notation: Correlation inside the nest = $1 - \lambda_s$, $\lambda_s \in [0, 1]$.

Nested Logit Model - Probability

• Suppose the marginal probability of each choice in the set B_s :

$$P_{nBs} = P[Y_n \in B_s \mid X_n] \frac{\exp(Z_s'\alpha) \left(\sum_{k \in B_s} \exp(V_{nk} \mid \lambda_s)\right)^{\lambda_s}}{\sum_{l=1}^{s} \exp(Z_l'\alpha) \left(\sum_{k \in B_l} \exp(V_{nk} \mid \lambda_l)\right)^{\lambda_l}}$$

This is the *upper level model* –describes choices between nests (probability of a branch).

• If $\lambda_s = 1$ for all *s* –i.e., no correlation within the nest-, then

$$P_{nj} = \frac{exp(V_{nj} + \mathbf{Z}'_{s}\alpha)}{\sum_{s=1}^{S} \sum_{l \in B_{s}} exp(V_{ns} + \mathbf{Z}'_{s}\alpha)}$$

• We are back to the conditional logit model.

Nested Logit Model – Summary

The nested logit probability can be decomposed into 2 logit models:
 P_i = Prob[nest containing *j*] * Prob[*j*, given nest containing *j*]

$$P_{nj} = P_{nj} * P_{n,B_s}$$

where

$$P_{nj|B_s} = \frac{exp(V_{nj}/\lambda_s)}{\sum_{l\in B_s}^{J} exp(V_{nl}/\lambda_s)}$$
(1) Lower level model

$$P_{n,B_s} = \frac{exp(\mathbf{Z}'_{ns}\alpha + \lambda_s IV_{ns})}{\sum_{s \in B_s}^{s} exp(\mathbf{Z}'_{ns}\alpha + \lambda_s IV_{ns})}$$
(2) Upper level model

$$IV_{ns} = \ln(\sum_{s \in B_s}^{s} (V_{ns} / \lambda_s))$$
 (3) Inclusive value

• There is a link between $P_{nj|B_s} * P_{n|B_s}$ (upper and lower level): the *inclusive value IV*_{nk} --the log of the denominator of *lower level model*.

Nested Logit Model - Summary

• IV_{B_s} is also called the log-sum for nest B_s . It represents the expected utility for the choice of alternatives within nest B_s .

 $IV_{B_s} = E[\max_{j \in B_s} (U_j)] = E[\max_{j \in B_s} (V_j + \varepsilon_j)]$

• For consistency with RUM, λ_k must be in the [0, 1] interval (*sufficient condition*) –see McFadden (1981). The value of λ_k can serve as a check on the nested logit model.

• IIA within, not across nests:

$$\frac{P_{ni}}{P_{nj}} = \frac{\exp(V_{ni} / \lambda_k) \left(\sum_{m \in B_k} \exp(V_{nm} / \lambda_k)\right)^{\lambda_k - 1}}{\exp(V_{nj} / \lambda_l) \left(\sum_{m \in B_l} \exp(V_{nm} / \lambda_l)\right)^{\lambda_l - 1}}$$

• When $\lambda_k = 1 \Rightarrow$ no correlation within nests: $\frac{P_{ni}}{P_{nj}} = \frac{exp(V_{ni})}{exp(V_{nj})}$

Nested Logit Model – Summary

Example: Transportation mode with 4 choices(Bus, Train, Car (alone) & Carpool) and 2 nests (Transit: Bus and Train; Car: Car (alone) and Carpool).

- *Lower level model.* It gives conditional probability of transit choices – conditional on choosing transit mode. For exampe, conditional probability of choosing Bus, conditional on choosing the Transit nest:

$$P[Y_n = Bus \mid X_n, Y_n \in B_{Transit}] = \frac{\exp(x_{nBus}'\beta/\lambda_{Transit})}{\exp(x_{nBus}'\beta/\lambda_{Transit}) + \exp(x_{nTrain}'\beta/\lambda_{Transit})}$$

Similarly, conditional probability of choosing Carpool, conditional on choosing the Car nest:

 $P[Y_n = Carpool | X_n, Y_n \in B_{Car}] = \frac{\exp(x_{nCarpool}'\beta/\lambda_{Car})}{\exp(x_{nCarpool}'\beta/\lambda_{Car}) + \exp(x_{nCar-alone}'\beta/\lambda_{Car})}$

Nested Logit Model - Summary

Example (continuation).

<u>Note</u>: β enters into both equations \Rightarrow simultaneous estimation

- IIA holds within nests:

$$\frac{P[Y_n = Bus \mid X_n, Y_n \in B_{Transit}]}{P[Y_n = Train \mid X_n, Y_n \in B_{Transit}]} = \frac{\exp(x_{nBus}'\beta/\lambda_{Transit})}{\exp(x_{nTrain}'\beta/\lambda_{Transit})}$$

it depends on x_{bus} and x_{Train} only.

- Inclusive value: Expected utility from choice given branch choice

$$IV_{Transit} = \ln \left[\exp(x_{nBus} '\beta / \lambda_{Transit}) + \exp(x_{nTrain} '\beta / \lambda_{Transit}) \right]$$
$$IV_{Car} = \ln \left[\exp(x_{nCarpool} '\beta / \lambda_{Car}) + \exp(x_{nCar-alone} '\beta / \lambda_{Car}) \right]$$

Nested Logit Model - Summary

Example (continuation).

- *Upper level model.* It gives the probability of choosing a nest/branch. For example, the probability of choosing Transit:

$$P[Y_n \in B_{Transit} | X_n] = \frac{\exp(Z_{nTransit} '\alpha + \lambda_{Transit} IV_{nTransit})}{\sum_{l=Transit} \exp(Z_l '\alpha + \lambda_l IV_{nl})}$$

Nested Logit Model – Estimation

• Estimation

- ML joint estimation.

Complicated, especially since the log likelihood function is not concave, but it is not impossible. Convergence is not guaranteed.

- Sequential estimation using nesting structure:

(1) Estimate lower model: Within the nest we have a conditional MNL with coefficients β/λ_s . (Easy to estimate, log likelihood is concave.)

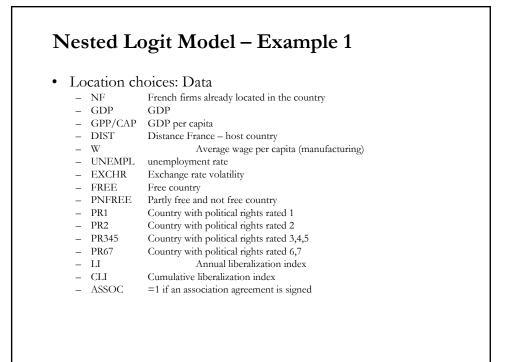
(2) Compute *inclusive value*, $\ln(\sum_{l\in B_s}^{J} exp(V_{nl}/\lambda_s))$, using the estimates of β/λ_s .

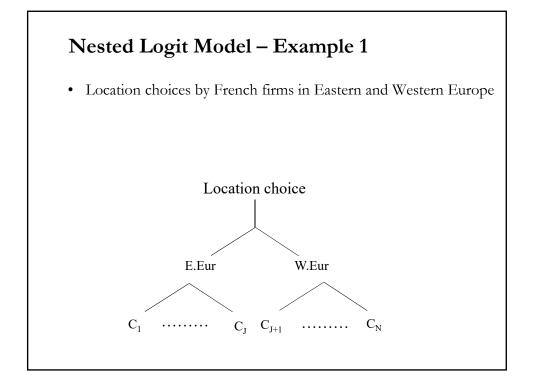
(3) Estimate upper model with inclusive value as explanatory variable: Plug the estimates of β/λ_s in P_{ni} . Another conditional MNL model.

Nested Logit Model – Estimation

- Disadvantages sequential estimation
- The sequential (two-step) estimators are not efficient.
- The covariance has to be computed separately -McFadden (1981).
- Parameters that enter both levels are not constrained to be equal.
- It does not insure consistency with utility maximization.

<u>Note</u>: We can use the parameter estimates from the sequential estimation as starting values for joint ML estimation.


• Different nests can produce very different results. Partition choice set into mutually exclusive subsets within which


- (a) unobserved factors are correlated, and
- (b) relative odds are independent of other alternatives.

Nested Logit Model – Example 1

Example (from Disdier and Mayer (2004)): Location choices by French firms in Eastern and Western Europe

- We want to model the factors involving the selection of location *j*: $P_j = P(\pi_j > \pi_k \ \forall k \neq j)$
- Location choices are likely to have a nested structure (non-IIA)
 - First, select region (East or Western Europe)
 - Next, select country within region
- Data
 - 1843 location decisions in Europe from 1980 to 1999
 - 19 host countries (13 West Europe, 6 East Europe)

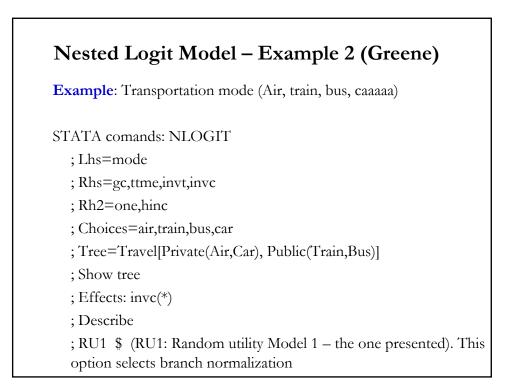
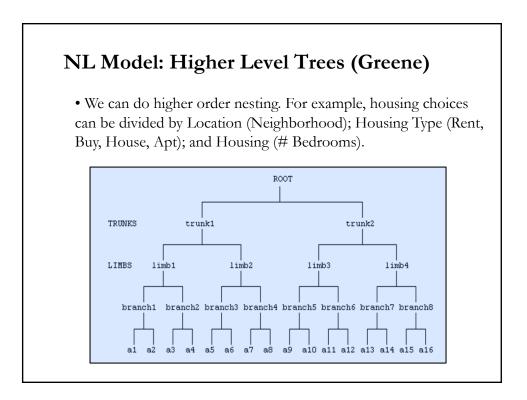
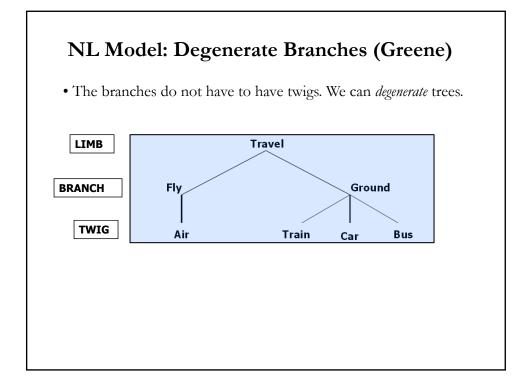


Table 1			
Independent	variables: data sources and expected sign		
Variable	Definition	Source	Expected sign
NF	French firms already located in the country	DREE	?
GDP	GDP	CHELEM	+
GDP/CAP	GDP per capita	CHELEM	+
DIST	Weighted sub-national distance between	REGIO (for the regional	-
	France and the host country	population)	
w	Average wage per capita in manufacturing	OECD	-
UNEMPL	Unemployment rate	World Bank	?
EXCHR	Exchange rate volatility	IMF	?
FREE	Free country	Freedom House	+
PNFREE	Partly Free and Not Free country	Freedom House	var.
PRI	Country with political rights rated 1	Freedom House	+
PR2	Country with political rights rated 2	Freedom House	+
PR345	Country with political rights rated 3, 4, or 5	Freedom House	+
PR67	Country with political rights rated 6 or 7	Freedom House	Var.
LI	Annual liberalization index	de Melo et al. (1997)	+
CLI	Cumulative liberalization index	de Melo et al. (1997)	+
ASSOC	= 1 if an association agreement is signed		+

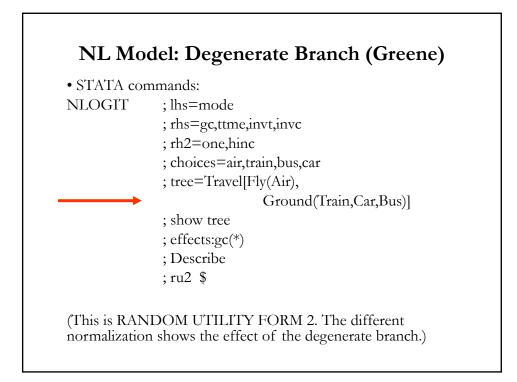
	0		el - E	- I		
Table 3 Location choice	of French firms i	n Europe: the co	onditional logit m	odel		
Model	(1)	(2)	(3)	(4)	(5)	(6)
Ln NF	0.46*** (0.04)	0.45*** (0.04)	0.46*** (0.07)	0.45***	0.49*** (0.05)	0.46 ^{***} (0.05)
Ln GDP	0.35**** (0.03)	0.35*** (0.03)	0.35 ^{***} (0.04)	0.35*** (0.04)	0.36*** (0.04)	0.38 ^{***} (0.04)
Ln GDP/CAP	-0.34 ^{**} (0.15)	0.44** (0.18)	-0.70 ^{***} (0.22)	-0.77 ^{***} (0.24)	0.17 (0.26)	-0.08 (0.29)
Ln DIST	-0.88 ^{***} (0.09)	-0.89*** (0.10)	-0.84 ^{***} (0.14)	-0.83 ^{***} (0.14)	-0.74 ^{***} (0.14)	-0.78 ^{***} (0.14)
Ln W	-0.33*** (0.11)	-0.36*** (0.13)	-0.05 (0.17)	-0.09 (0.18)	-0.71*** (0.20)	-0.62 ^{***} (0.20)
Ln UNEMPL	0.37*** (0.07)	0.30**** (0.07)	0.60 ^{***} (0.10)	0.56 ^{***} (0.11)	-0.01 (0.11)	-0.05 (0.11)
EXCHR	-2.18** (0.98)	-2.50** (1.08)	2.65 (4.12)	-2.03 (4.67)	-2.28** (1.10)	-2.14 [*] (1.11)
FREE	1.83*** (0.24)		2.09*** (0.44)		0.84*** (0.28)	
PNFREE	ref. var.	4.09***	ref. var.	3.36***	ref. var.	1.16***
PRI PR2		4.09 (0.73) 3.55****		3.36 (0.76) 2.81***		(0.31) 0.76 ^{***}
PR2 PR345		0.73) 2.61***		(0.75) L89**		(0.28)
PR67		(0.75) var.		(0.84) var.		
Observations	1843	1843	825	825	1018	1018
Pseudo R ²	0.152	0.156	0.221	0.223	0.108	0.109

	-		LAG	mple	1
	C. Disdier, T. Mayer	/ Journal of Compa	trative Economics 3	2 (2004) 280–296	
Table 4 Location choice of	French firms in Euro	ope: the nested logit	model		
Model	(1)	(2)	(3)	(4)	(5)
Ln NF	0.68*** (0.06)	0.71 ^{***} (0.06)	0.62*** (0.10)	0.70*** (0.13)	0.83*** (0.10)
Ln GDP	0.30*** (0.04)	0.29*** (0.04)	0.42*** (0.07)	0.24*** (0.09) 1.05	0.20 ^{***} (0.08) -0.18
Ln GDP/CAP	-0.10 (0.29)	-0.13 (0.29) -0.60***	-0.65 (0.51) -0.89***	(0.79) -0.69**	(0.43) -0.13
Ln DIST	-0.70*** (0.17) -0.68***	-0.60 (0.16) -0.51**	(0.24) 0.57	(0.34) -0.88	(0.30) 0.33
Ln W Ln UNEMPL	(0.25) -0.06	(0.24) -0.06	(0.40) -0.16	(0.67) 0.35	(0.36) -0.17
EXCHR	(0.11)	(0.11) -4.79**	(0.17) -6.00***	(0.29) -0.81	(0.19) -13.68*
FREE	(2.08) 1.03***	(2.00)	(2.29)	(16.66)	(8.22)
PNFREE	(0.32) ref. var.				
Inclusive value	0.91 ^{***} (0.08)	0.77 ^{***} (0.06)	0.47 ^{***} (0.13)	0.51 ^{***} (0.07)	0.92*** (0.12)
Observations Pseudo R ²	1008 0.141	1008 0.139	430 0.151	223 0.147	355 0.137
the sample rangir reports the coeffic from 1996 to 199	ident variable is loca ing from 1991 to 1999 cients for the period f 9. Standard errors in at the 10% level.	. Column (3) consid rom 1994 to 1995, v	iers the first time pe	riod from 1991 to 1	995, colulim (+

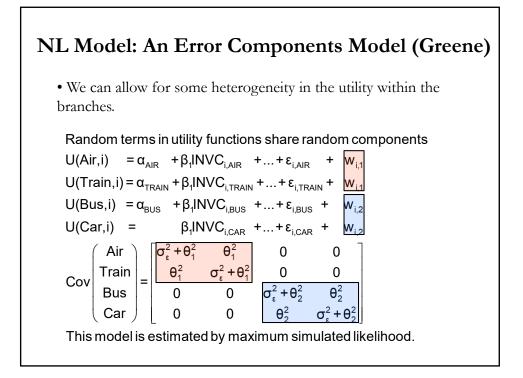


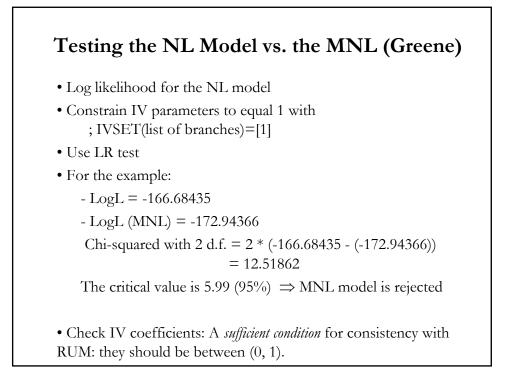

Sample p		uc						
Choices			ns are ma ith * are	rginal, n excluded	ot condit: for the 1	ional. IIA test.	ted Logi	
	(prop	.) I	Limb	(prop.) B	ranch (j	prop.) Ch	oice (pro	p.) Weight IIA
	1.000	•		1.00000 P 	RIVATE	.55714 AI CA	R .27 R .28	7619 1.000 8095 1.000
				P'	JBLIC			0000 1.000 286 1.000
+	+- ****	+ **	Paramete					 -+
I			GC				A_AIR	1
 	Row	21	AIR_HIN1	TTME A_TRAIN			_	1
 + AIR	Row -+	21		A_TRAIN		A_BUS	BUS_HIN4	 ++
	Row -+	2 + 1	AIR_HIN1 GC HINC	A_TRAIN TTME none	TRA_HIN3	A_BUS	BUS_HIN4	 -
AIR 	Row -+ 	2 + 1 2 1	AIR_HIN1 GC HINC GC	A_TRAIN TTME none TTME	TRA_HIN3	A_BUS INVC	BUS_HIN4 Constant	 +
AIR CAR 	Row -+ 	2 + 1 2 1 2	AIR_HIN1 GC HINC GC none	A_TRAIN TTME none TTME none	TRA_HIN3 INVT none	A_BUS INVC none INVC none	BUS_HIN4 Constant none none none	 +
AIR CAR 	Row -+ 	2 1 2 1 2 1	AIR_HIN1 GC HINC GC none GC	A_TRAIN TTME none TTME none TTME	TRA_HIN3 INVT none INVT none INVT	A_BUS INVC none INVC none INVC	BUS_HIN4 Constant none none none	 +
	Row 	2 + 2 1 2 1 2 1 2	AIR_HIN1 GC HINC GC none GC none	A_TRAIN TTME none TTME none	TRA_HIN3 INVT none INVT none INVT HINC	A_BUS INVC none INVC none INVC none	BUS_HIN4 Constant none none none none none	

Nested	l Logit M	lodel – Ex	ample	2 (Gr	eene)
	0		1	``	,
	ING VALUES				
• START					
Discrete d	choice (multing	omial logit) mode	1		
Dependent	variable	Choice			
Log likeli	hood function	-172.94366			
Estimatior	n based on $N =$	210, K = 10			
		ıcn R-sqrd R2Adj			
		588 .3905 .3787			
-		= 221.63022			
-	-	Lue] = .00000			
-	-	as ind. choices			
	obs.= 210, s	skipped 0 obs			
•	Coefficient	Standard Error	-		
 GC I		.01833			
TTME	10289***	.01109	-9.280	.0000	
INVT	01399***	.00267	-5.240	.0000	
INVC	08044***	.01995	-4.032	.0001	
A_AIR	4.37035***	1.05734	4.133	.0000	
AIR_HIN1	.00428	.01306	.327	.7434	
A_TRAIN	5.91407***	. 68993	8.572	.0000	
TRA_HIN3	05907***	.01471	-4.016	.0001	
A DITCI	4.46269***	.72333	6.170	.0000	
A_BOSI	1110200				


Nested L	ogit Mod	el – Exa	mple 2	(Gree	ene)
• FIML Ne	ested Multin	omial Logit	_ Model	•	·
Dependent v	ariable	MODE			
Log likelih	ood function	-166.64835			
The model h	as 2 levels.				
	ity Form 1: IVp	•	L		
	bs.= 210, ski				
•					
•	oefficient S			?[Z >z]	
•					
•	tributes in the .06579***	-	3.504		
•	07738***				
•	01335***				
	07046***				
	2.49364**				
AIR HIN1	.00357	.01057	. 337	.7358	
A TRAIN	3.49867***	.80634	4.339	.0000	
TRA HIN3	03581***	.01379	-2.597	.0094	
A_BUS	2.30142***	.81284	2.831	.0046	
	01128			.4395	
	parameters, la				
	2.16095***				
	1.56295***				
	derlying standa				
•	.59351***				
PUBLIC	.82060***	.18114	4.530	.0000	

lasticity	averag	averaged over observations.						
Attribute is INVC								
				ct if Nest				
	Trunk	Limb	Branch	Choice	Mean	St.Dev		
Branch=PRIVATE								
* Choice=AIR				-3.091				
	.000	.000	-2.456	2.916	.460	3.178		
Branch=PUBLIC Choice=TRAIN								
Choice=BUS				.000		4.865		
Attribute is INVC	in choi	ce CAR						
Branch=PRIVATE								
Choice=AIR				.650				
* Choice=CAR	.000	.000	757	830	-1.587	1.292		
Branch=PUBLIC								
Choice=TRAIN								
Choice=BUS				.000				
	in choi							
Branch=PRIVATE								
Choice=AIR	.000	.000	1.340	.000	1.340	1.475		
Choice=AIR Choice=CAR	.000	.000	1.340	.000	1.340	1.475		
Branch=PUBLIC								
 Choice=TRAIN 	.000	.000	-1.986	-1.490	-3.475	2.539		
Choice=BUS	.000	.000	-1.986	2.128	.142	1.321		
Attribute is INVC	in choi	ce BUS						
Branch=PRIVATE								
Choice=AIR	.000	.000	. 547	.000	.547	.871		
Choice=CAR				.000	.547			
Branch=PUBLIC								
Choice=TRAIN	.000	.000	841	.888	.047	.678		
* Choice=BUS	.000			-1.469				




NL Model: Degenerate Branch (Greene) • FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function -148.63860 Variable | Coefficient Standard Error b/St.Er. P[|Z|>z] -------------Attributes in the Utility Functions (beta) GC| .44230*** .11318 3.908 .0001 TTME | -.10199*** .01598 -6.382 .0000 -.07469*** .01666 .0000 INVTI -4.483 -.44283*** INVC| .11437 -3.872 .0001 3.97654*** A AIR 1.13637 3.499 .0005 AIR_HIN1| .02163 .01326 1.631 .1028 A TRAIN 6.50129*** .0000 1.01147 6.428 -.06427*** TRA HIN2| .01768 .0003 -3.635 4.52963*** .99877 A BUSI 4.535 .0000 -.01596 .02000 -.798 BUS_HIN3| .4248 |IV parameters, lambda(b|l),gamma(l) .18345 FLY| .86489*** 4.715 .0000 .24364*** GROUND .05338 4.564 .0000 |Underlying standard deviation = pi/(IVparm*sqr(6) FLY 1.48291*** 31454 4.715 .0000 GROUND | 5.26413*** 1.15331 4.564 .0000 _____ _____

NL N	Iodel: De	generate I	Branch	n (Gree	ne)
		0		·	,
• Estima	tion of RU2 H	Form of Nestee	d Logit N	Iodel	
FIML Ne	sted Multing	omial Logit M	odel		
	variable	MODE			
		-168.81283		360 with RU	1)
	Coefficient	Standard Error	b/St.Er.	P[Z >z]	
++		he Utility Funct		 a)	
GC	.06527***	.01787	3.652	.0003	
•	06114***				
•	01231***				
	07018***				
_ `	1.22545				
	.01501				
<u> </u>	3.44408***		5.036		
_ `	02823*** 2.58400***		-3.311		
BUS HINSI			4.086		
		RU2 form = $mu(b)$			
FLY	• ·	(Fixed			
GROUND		.10508		.0000	
1	Underlying stan	dard deviation =	pi/(IVpa	rm*sqr(6)	-
FLY	1.28255	(Fixed	Parameter	r)	
GROUND	2.68438***	.59041	4.547	.0000	

L Model: An Error Components Model Error Components (Random Effects) model Dependent variable MODE Log likelihood function -182.27368 Response data are given as ind. choices Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups ←	
Dependent variable MODE Log likelihood function -182.27368 Response data are given as ind. choices Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups <	
Dependent variable MODE Log likelihood function -182.27368 Response data are given as ind. choices Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups <	
Log likelihood function -182.27368 Response data are given as ind. choices Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups <	
Response data are given as ind. choices Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups <	
Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups <	
Halton sequences used for simulations ECM model with panel has 70 groups <	
ECM model with panel has 70 groups \leftarrow	
. , , , , , , , , , , , , , , , , , , ,	
Fixed number of obsrvs./group= 3	
Hessian is not PD. Using BHHH estimator	
Number of obs.= 210, skipped 0 obs	
Variable Coefficient Standard Error b/St.Er. P[Z >z]	
Nonrandom parameters in utility functions	
GC .07293*** .01978 3.687 .0002	
TTME 10597*** .01116 -9.499 .0000	
INVT 01402*** .00293 -4.787 .0000	
INVC 08825*** .02206 -4.000 .0001	
A_AIR 5.31987*** .90145 5.901 .0000	
A_TRAIN 4.46048*** .59820 7.457 .0000	
A_BUS 3.86918*** .67674 5.717 .0000	
Standard deviations of latent random effects	
SigmaE0127336 3.25167084 .9330	

