RS — Lecture 17

Lecture 4
Binary Data

(for private use, not to be posted/shared online).

DCM: Binary Data — Intuition

* It is common to have binary {(1, 0); Yes/No)} data: Invest in
stocks or not, visit a doctor or not, buy a Houston Texans ticket or

not, etc.

* We want to model the binary choice decision as a function of some

independent variables Xy,. Recall that we can do OLS, but ...

Binary Data & Regression




RS — Lecture 17

DCM: Binary Data — Intuition

* A regression will not work well, we want to predict values between 0
and 1. If we interpret the values of ¥, as probabilities, the line does
not work either.

* Intuition: We need to transform the data from discontinuous to
continuous, like the dependent variable. We think of ¥, as
probabilities, but, with the idea that f(x;,) should produce be very
high or very low values. A candidate function: a CDF.

¢ This is the basic idea of all the models with discrete choice. For
example, in a Probit model, we use the normal distribution as f (xy,).
The S shape CDF will fit the data much better than a simple line.

DCM: Binary Data — Review

* Q: How can we model this choice decision?
- We can use an ad-hoc model, say: y, = x,'B + &,

- We can use economic theory. This is what we do.

* We use the McFadden approach, described in the previous lecture.

1) We model a consumer’s decision (1=Yes or 0=No) by
specifying the utility to be gained from 1 as a function of:

- characteristics of the decision, Z,: price, quality, fun, etc.)

- characteristics of individuals, Wy,: age, sex, income, education, etc.):
Uno = @ + Zno' 6o + Wy Yo + &no — utility from decision 0
Up =@, +25, 86 +wy, vi + e — utility from decision 1

We assume that the errors are 2z.d. (0, o2).
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DCM: Binary Data — Review

2) We introduce the probability model:
P,1[Decision 1] = P(Up; — Uy > 0)
=Play +2z,,' 61 +wW, vy + &1 >
Qo + Zno' So + Wi Yo + &no)
=P(x,B—%,>0)
= P(&, < xPB)
where X, = [1 Zp1 Zpg Wi | and &, = &p0 — €n1-

Then,
Pn1 =Plyn = 1] =P < x,’B)
Our problem is to estimate § given Z,, W, and Y. To proceed with

the estimation, we assume &, follows a specific distribution. Then,
we can naturally estimate the model using ML.

DCM: Binary Data — Review

Probability Model for Choice Between Two Alternatives

Probability Density for Random Utility

Density Function

! !
Eno > —[ag +2Zpo 6o+ Wy Vo]
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DCM: Binary Data — Review

3) Estimation

If we assume we know f(&,), ML is a natural way to proceed.
= Log L(B) = Xn(y=0ylog(1 = F(x,,'B)) + X (y=1) log(F (x,'B))

* If we have grouped data: p;, X;, & n;, then
= Log L(B) = XL mulpi log[F(@n'B)] + (1 =Py log{(1= F(xn'B)}]

Note: NLLS is easy in this context. Since:

Elyn | %] = Plyn=1] = P& < x,'B) = g(x1B)
= Yn = Elyn |X] + vn = g(x3B) + v - with E[vy, |x] = 0.

(Bayesian and simulation methods can be used too.)

DCM: Binary Data — Review

¢ What do we do learn from this model?
- Are the z, & wy, “relevant?”

- Can we predict behavior? Will a specific company do an M&A?
How many mergers will happen next year?

- What is the effect of a change in X, in ¥,? Do traders trade more
if they receive more research/information?
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Binary Data — Latent Variable Interpretation

* In the previous theoretical setup, there is an unobservable variable,

the difference in utilities. We can assume that this latent variable, yy, is
.. . % _ 1

distributed around its mean:  E[y,| X,,] = B, + x5, B,

* We observed y’s (choices) -in the binary case, (0, 1). We observe
Yn=1 for that portion of the latent variable distribution above T.

Then, if yp = (Up1 — Upo) >0, n selects 1. =>7t=0.

* Given the conditional expectation assumed:
— — !
= Yn = Un1 = Uno= B+ X2 B + &, &~ DO, 1)

Binary Data — Latent Variable Interpretation

e Latent Variable Model —Goldeberg (1964):
y;': = U‘Ill - Un0: BO+ Bl xi + én, én ~ syrnrnetric D<O91)

* Pyp>0) =Prob@,+ B xn + & >0)
= Prob(&, > =By — B xn) = PO = 1)

y* Prob(s, > —8,— 8 Xy,

Eyn] =B+ B X

=1 (6> — o By )

=0
X/ N T =0 (&n <—By—Bixn)
Sn:_ﬁo_ﬁl Xn

X1 X X

* Even if E(y, | xy,) is in the (pink) portion where y, = 1, we can still
observe a 0 if &, is large and negative. 10
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Binary Data — Partial Effects

* In general, we are interested not in the probability per se, but on
the expected (or other central) value and the effect of a change in x;
on the expected value. With binary (0, 1) data, the expected mean is:

Elyn | 2] = 0% Ply, = 0] + 1 Py, = 1] = Ply,= 1] = g(x7.8)
* The predicted ¥, is the predicted probability of Yes.

* Note that By is not the usual elasticity. It gives the change in the
probability of Yes when X}, changes. Not very interesting.

* To make sense of the parameters, we calculate:

6P(a+ B Income+ ...)
6xk

Partial effect = Marginal effect =

Binary Data — Partial Effects

* The partial effects will vary with level of x. We usually calculate
them at the sample means of the X. For example:

Estimated Matginal effect = f (a + B, Mean[Income] + ...) * B

* The marginal effect can also be computed as the average of the
marginal effects at every observation.

* Q: Computing effects at the data means or as an average?
- At the data means: easy and inference is well defined.

- As an average of the individual effects: Its appeal is based on the
LLN, but the asymptotic standard errors are problematic.
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Binary Data — Partial Effects & Dummies

* A complication in binary choice models arises when x includes
dummy variables. For example, marital status, sex, MBA degree, etc.

* A derivative (with respect to a small change) is not appropriate to
calculate partial effects. A jump from O to 1 is not small.

* We calculate the marginal effect as:
Probly, = 1|x,, d,=1] — Probly, = 1|x,, d,=0],

where X, is computed at sample mean values.

Binary Data — Non-linear Regression

* From the expected mean, we can write:

Yn = Pyn=1] + 7= g(xuB) + v, -- with E[v|x] =0
=> we have a non-linear regression relation connecting the binary
variable y, and P(xy,B).

Usual P(xy,B): Normal, Logistic, and Gompertz distributions.
* In principle, NLLS is possible to estimate f3.

* But, note this model is not homoskedastic.
Var[yp [ 2] = (0 = Elyn | X1 * Py =0] + (1 = E[yp | 2] * P[y,=1]
= (Pyn=1])* (1 = Plyn=1]) + (1 = P[yn=1])* P[yn=1]

= (1— Py, =1]) * Ply, = 1]

= NLLS will not be efficient. A GLS adjustment is possible.
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Linear Probability Model (LPM)

* A linear regression can also be used to estimate by assuming

Py, = 1] = x,B

e This model is called the Znear probability model. 1t delivers:

— — — !
yn_P[yn_ 1]+vn_an+le
= now, we can regress the binary data against the Xy, to get an
estimator of . Very simple!

* We have constant partial effects: B.

* Difficult to obtain this model from utility maximization, but
D (x7,B) & xp, B are closely related over much of the likely range of

x,B.

LPM: Approximation

Approxination of Cuoulst ive Borsal with Linser Poactios

Amemiya notes that the linear probability model 0.5 + .4(x;, ) and
@ (x5, B) are reasonably close for values of @ between .3 and .7.
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LPM: Advantages & Disadvantages

* Advantage: Estimation!

* Potential problems:
- The probability can be outside [0, 1].

- In addition, we may estimate effects that imply a change in x
changes the probability by more than +1 or —1. Nonsense!

- Model and data suggest heteroscedasticity. LPM ignores it.

- Partial effects. The linear model predicts constant marginal effects.
But, we observe non-linear effects. For example, at very low level of
income a family does not own a house; at very high level of income
every one owns a house; the marginal effect of income is small.

- Non-normal etrors. The errors are (1 — x5,8) or (— x,B).

LPM: GLS

¢ This model is not homoskedastic. Problem for standard inferences.
Var[y, = 1|x5] = (1 = Plyn = 1[xn]) Plyn = 1]x5]
=(1—=x,'B) *x,'B
= xn,B - (xn’B)Z

= the variance changes with the level of the regressors.

- B is still unbiased, but inefficient. We can transform the model to
gain efficiency: A GLS transformation with sqrt{x, B — (x,'B)* }.

Additional Problem: x,,'B — (x,'B)? may not be positive.

* Despite its drawbacks, it is a good place to start when Y, is binary

= used to get a “feel” for the relationship between ¥, and X;,.
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Binary Probit Model: Setup

We have data on whether individuals buy a ticket to see the Houston
Rockets or the Houston Texans. We have various characteristics of
the tickets/teams, z;, (ptice, team record, opponent’s record, etc.) and
the individuals who buy them, w,, (age, sex, married, children,
income, education, etc.).

Steps to build a DCM:

1) Specitying the utility to be gained from attending a game as a
function of z; and wy,:

Upo = @o + Zpgo' 89 + Wy yo + &9 — utility from Rockets game
Upp = a1 +2Zpq 64 + Wy, yq + &1 — utility from Texans game

We assume that the errors are 2z.d. (0, 62).

Binary Probit Model: Setup — Normal CDF

2) Probability model:
Pp1[Texans game] = P(Up; — Upg > 0)
= P(xuB — & > 0)
= P(& < xuB)

where X, =[1 Zp1 Zpo Wi |’ and &9 = &no — &nt

Let y, =1 if a Texans game is chosen and 0 otherwise. Then,
Pp1 = Plyp, = 1] = P& < x,'B)
Our problem is to estimate B given Z,;, Wy, and y,,. We assume &,

is normally distributed. Then, &, is also normal.

xn _1
Py < X8 = DB = [P L 2% e

10
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Binary Probit Model: Setup — Identification
3) Identification:
Normalization: The variance of &, is set to 1, as it is impossible to

identify it.

Intuition of normalization: Several views:

1) One can do it formally by observing that the score for 62 would
be zero for any value.

2) Another is to observe that P(¢, < x,,'B) = P[o™' &, < o 'x,,'B)],
making B identifiable only up to a factor of proportionality.
3) More basic. The problem arises because the numbers in the data

are arbitrary - i.e. we could have assigned the values (1, 2) instead of
(0, 1) to yy. It is possible to produce any range of values in Y.

Binary Probit Model: Non-linear Regression

Now, we can formally write the integral:
B 1 1z
Py < x,'B) = D(x,'®) = [P L &2 de

This is the Probit Model.

* In this case, the Probit model estimates

Yn = Ox,'B) + vn,
a non-linear regression model. NLLS is possible.

Note: We could alternatively have just begun with the proposition
that the probability of buying a Texans ticket, P[y,=1] = ®(x,,'B),

is some function of a set of characteristics Xp,.

11
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Binary Probit Model - Summary

* We derived : E[y, |X] = P[y, = 1]. We assume a normal CDE
= Y = P(x,'B) + v

Plya=1] |
1

Pr{ys=1]

X8 PDF
= [ D e = b
Py 1| xp) f_oo f(e)de = O(x,'B)

Py =0]x,)=1—®(x,'B) <——‘—\CDF

Binary Logit Model: Setup

¢ Usual setup. Suppose we are interested in whether an agent chooses
to visit a physician or not. We have data on doctor’s visits, Yy, and
the agent’s characteristics, X (age, sex, income, etc.).

* Dependent variable: y,, = 1, if agent visits a doctor at least one
= (), if no visits.

* RUM: Net utility of visit at least once
Upisit = o + B, Age + B, Income + B;Sex + ¢

* Visit if net utility is positive: Net utility = Uy;sir — Uno visit >0
= Agent chooses to visit: Upigir > 0 (set Upg pisit = 0)

o + B, Age + B, Income + B, Sex + € > 0
e > -[a+ B, Age + B,Income + B, Sex ]

12
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Binary Logit Model: Setup

* Agent chooses to visit: Uyigi > 0
o + B, Age + B, Income + B, Sex + € > 0
e > -[a+ B, Age + B,Income + B, Sex ]

* Add a probability model for &
Prob[y, = 1] = Prob[e > -(a + B, Age + B, Income + [, Sex)]

Probability Lensity for kandom Utility

Density Function

Binary Logit Model: Gumbel Distribution

¢ P, yn = 1] :fl[x;l§+gn>0]f(8)d5
= [1[&, > —x38] f (&) de
= oo pf (@ de

Assumption: The error terms are zzd. and follow a Gumbel distribution.
That is,

~&p)

CDF : F(g,;)=e ¢

~&nj

PDF : f(g,)= e ‘e

* The Gumbel distribution is the most common of the three types of
Fisher-Tippett extreme value distributions, also referred as Type I
distribution. These are distributions of an extreme order statistic for
a distribution of N elements. The term "Gumbel distribution" is used
to refer to the distribution of the minimum.

13
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Binary Logit Model: Gumbel Distribution
* The Gumbel distribution: General CDF and PDF

x=2
-4
CDF: F(x)=exp[-e 7 ]

1 _(Eié)_e%lﬁﬁ
PDF f(x)=Ee p

* Parameters: A is the location, and 8 is the scale.

*Mean =X+ 7y (y: Euler-Mascheroni constant =0.5772).

Variance = 2 7%/6

* Nice property: The difference of two Gumbel-distributed RVs has a
logistic distribution.

Binary Logit Model: Gumbel Distribution

* Graph: Gumbel pdf

0.2

P>
[ [
W=r—0
Qwuaown

TR

[T
[ SEN]

* Parameters used in the Logit Model: A=0, =1
Mean =y = 0.5772.
Variance = n%/6 = 1.65.

14
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Binary Logit Model: Gumbel Distribution

* Assuming linearity for the RUM-model, we state the choice problem
in terms of covariates:

Po=lf o gpf@ds  SEy)=ee

=1 F(-x}p) F(e,)=e
=1—1/[1+ exp(x,,p)]
= exp(x,B)/[1 + exp(xy,P)] (This is the logistic function.)

&pj

Enj

* Technical Details:

J.e’ge";g de = F(c) = exp(—exp(—c))
I efe de= I e e dn=¢ J-e'”e’ei”d n =exp(c)

where we have used change of vatiables with ¢ = -In(1 + exp(xy,B))

Binary Logit Model: Logistic Function

* We have the following expression for the logit choice probability:
- _exp(Vn) _  exp(xn’B)
Plyn =1] = 1+exp(Vp) 1+ exp(xn’f)

* Properties:
- Nonlinear effect of covariates on dependent variable

- Logistic curve with inflection point at P=0.5

15
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Binary Logit Model: Non-linear Regression

* The logit choice probability:
_ g _exp(Vn) _  exp(xn’B)
Py =11 = 1+ exp(Vn) T1+ exp(xn'B)

Note: We could alternatively have just begun with the proposition
that the probability of visiting a doctor follows a logistic distribution,
as a function of the set of characteristics Xp,:

_ i __exp(xn’B) ,

In this case, the logit model estimates:
exp(xn'B) v
1+ exp(xn’B) n

another non-linear regression model. Again, NLLS can be used.

Binary Logit Model: Estimation — NLLS

* We can estimate the models using NLLS or MLE.

(1) NLLS. Use Gauss-Newton. Let’s linearize By:
P, = F(- x,,'By) + 3F/3B ) B - By) J:Jacobian = 8F(x,,B)/5B.
= Y - FC X'Bo) = Jn0) B - Bo) + error,,

* The update is a regression: Y, - F(- x,,"B,) against J,.

* Given the heteroscedasticity of the models, NLLS will not be
efficient. Weighted NLLS can be used. Then, in the algorithm use:

- Dependent variable: y, - F(- <° B) /sqrt{(1 - P[y,=1]) * P[y,=1]}
- Independent variable: J, (0y/sqrt{(1 - Py, =1]) * Ply,=1]}

16
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Binary Logit Model: Estimation — MLE

(2) MLE. Since we specify a pdf, we can do MLE:
L) = [Tn (1 - P [yn = 1] xn, B) Plyn=1]Xn, B]
= Log L(B) = X (y=0) l0g (1 = F(xn'B)) + Xy (y=1) log (F (xnB))

Then, the k f.o.c. for maximization of the total sample Log L(j) are

oL I f.
—=2 y—_1+(1'Yi)

i _fi X
op 51| F (1-F)

i=0

where f; is the pdf = dF/d(Z,), which are functions of f and x.

¢ Under most likely conditions this likelihood function is globally
concave. => uniqueness of the ML parameter estimates

¢ In general, it can get complicated.

Binary Choice Models: Estimation - Review

* In general, we assume the following distributions:
—Normal:  Probit Model = ®(x,,"B)

exp (xn'B)

— Logistic: ~ Logit Model = 1+ exp(xn/B)

— Gompertz: Extreme Value Model = 1 — exp[- exp(x,,'B)]

* Methods
- ML estimation (Numerical optimization)
- Bayesian estimation (MCMC methods)

- Simulation-assisted estimation

17
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Comparison: Probit vs Logit

1.0

Probability
0.6 [1§:)

04

0.2

Standardized inverse link

* Logit has fatter tails, but, in practica, it is difficutl to distinguish
probabilities and fit of both models.

* The coefficients are not directly comparable.

e Signs and signficances are similar.

ML Estimation — Application I (Greene)

* Logit Model for doctor’s visits as function of age, income and
gender.

~
Binary Logit Hodel for Binary Choice
Dependent wvariable DOCTOR
Log likelihood function —2097 48109
Restricted log likelihood —2169. 26982
Chi sguared [ 3 d.f. 143 . 57744
Significance level .ooooo
HcFadden Pseudo E-sguared .0330935
Estimation based on N = 3377, K = 4
Information Criteria: Normalization=1-H
Hormalized Tnnormalized
AIC 1.24458 4202 .96219
Fin.Snpl  AIC 1.24459 4202.97405
Baye=s IC 1.25184 4227 . 461l6
Hannan Quinn 1.24718 4211 72150
Model estimated: Nov 04, 2009, 08:07:51 |Whatdothesemean?
Hosmner—-Lemeszhow chi-sgquared = 26.50241
Powalue= .00036 vith deg. fr. - /a/
Variable| Coefficient Standand/Eerr bsSt . Er. P[|Z]:=z] Hean of X
|Characteristicir}p/ﬁ;meratnr of Prob[¥ = 1]
Constant | — . 42085%%x .15810 —2.662 .oo78
AGE | .02365 =% .oo0z2g 7.205 .gooo 42 6266
INCOME | —.44198%%x .16936 —2.610 .o091 44476
FEMALE | LB3820%%x .07551 8.453 .oooo .46343
Hote: **x, %% * = Significance at 1¥, 5%, 10¥ lewvel.
v

< >

18
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ML Estimation — Application I (Greene)

* Logit Model for doctor’s visits as function of age, income and sex.

Variable

Constant

Log-L(0)

LOGIT PROBIT EXTREME _VALUE
Estimate Estimate
-0.42085 -0.25179 0.00960
0.02365 0.01445 0.01878
-0.44198 -0.27128 -0.32343
0.63825 0.38685 0.52280
-2097.48 -2097.35 -2098.17
-2169.27 -2169.27 -2169.27

Note: For now, ignore the #ratios.

ML Estimation — Application II (Wooldridge)

* Labor participation of married women (Example 15.2).

Dependent Variable: indf”

LPM Logit Probit
Independent Variable (OLS) (MLE) (MLE)
nwifeine 0034 021 012
(.0015) (.008) (.005)
educ 038 221 131
(.007) (.043) (025)
exper 039 206 123
(.006) (.032) (019)
exper? 00060 L0032 0019
{.00019) (.0010) (.0006)
age 016 088 053
(.002) (.015) (.008)
Kiclsit6 262 1.443 868
(.032) (0.204) (119)
kidsge6 013 060 036
(.013) (.075) (043)
constant 586 425 270
(.151) (.860) (.509)
Number of observations 753 753 753
Percent correctly predicted 734 73.6 734
Log-likelihood value 401.77 401.30
Pseudo R-squared 264 .220 221
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Partial Effects (Greene)

* We want to study the effect on the predicted probability of an
Increase in Age. We need to calculate partial effects.

I
Iyl
k1

Probability Distribution for Random Utility

1

Probability that yi =

o + B, (Age+1) + B, (Income) + B, Sex (B, is positive)

Partial Effects

* Recall the B are not marginal effects. We need to calculate them
with the 1st derivative of P[.]. w.r.t. x. For the Logit Model:

- Partial effects: fiﬂ);nx—zjl;l%] = Ppj * 1- Pnj) * Bk
- Quasi-elasticity PG, =11x,) x, =P,(1-P,)B,x,

ox

n

=> Both values depend on X,,. We usually evaluate these effects
using sample means for X;,,. We can also average the partial effects
over individuals.

20
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Partial Effects

* The partial effects vary with the models:

5 E 8[43
PROBIT E[y|X]=® (ﬁ'i)

5= %0 197, <4 ()]
EXTREME VALUE E[y|X]=P, = exp[—exp(—ﬁ'i)}

A

§ = OELYIX]/ b [-logP,1p

Partial Effects — Summary (Greene)

* We start with Prob[Outcome] = some F(a+f;Income...) = F(x’ B)
* Partial effect = OF(a+f3,Income...)/0x = f(a+PB,Income...) x B,

- Partial effects are derivatives (usually, evaluated at data means.)

- Results vary with model:

—Logit: OF(a.+f,Income...)/0x = Prob * (1-Prob) x B
—Probit: OF (au+,Income...)/0x = Normal density x B
—Extreme Value: OF(o+f3,Income...)/0x = Prob * (-log Prob)x 8

Note: Scaling usually erases model differences.

* Partial effects for a Dummy Variable:

If F(a+B,Income...+ B,Sex...) = F(x,'B + d,,'y)
=> Partial effect of d = Probly,=1]|x,,d,=1] - Prob[y,=1|x;,d,=0]

21
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Partial Effects — Summary (Greene)

e Partial effects with non-linearities

When the model has non-linear effects, squared terms, interactive
terms, the partial effects have to incorporate them.

* Suppose we have:
Prob[Outcome] = F(a + B;Income + B, Age + B; Age?...)

The usual partial effects, given by a computer software, will make no
sense. The software treats Age and Age? as two different variables.

Partial effect = OF (a+f3,Income...)/0Age

= f (a+B,Income...) * (B, +2 B; Age)

Note: Similar problem for interactive terms —say, 3, Income x Age.

Partial Effects — Summary (Greene)

e Partial effects with interaction effects

- The partial effect calculated as before, the partial derivative of F(.)
w.rt. X .

- There is also an interaction effect: The cross derivative w.r.t the two
interacted variables. Careful, if x,'B = 0 the effect will be non-zero!

Example: A Probit Model

Prob = ®(a + B,Age + B,Income + f;Age*Income +...)
OProb
Jdlncome

=o¢(a + B,Age + B,Income + f,Age*Income +...)(B, + B,Age)

The "interaction effect"

0*Prob

OdlncomedAge =—B'x ¢(B"x)(B, + BsIncome)(B, + B;Age) + (B'x)B;

= —(B'x)0(B'x)B,B, if B, = 0. Note, nonzero even if B, =0.

22



RS — Lecture 17

Partial Effects — Standard Errors (Greene)

* Q: How do we compute SE for the partial effects?
- Delta method: Variance of linear approximation to non-linear function.

- Krinsky and Robb: Variance of a sample of draws for the underlying
population of function.

- Bootstrapping: Variance of a sample replicates the underlying
estimates.

Partial Effects — SE: Delta Method

* We use the delta method to calculate the standard errors.
* Delta Method Review:

§ = f([g,x)
Est.Asy.Var[S} :[
V = Est.Asy.Var[]g

G(B,Q:m

o’

23
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Partial Effects — SE: Delta Method

* For the Logit and Probit Models we compute:
* Logit E[y|X]= exp(ﬁ'i)/[l + exp(ﬁ’i)} = A(ﬁ’i)
5= OB IN)L —TA(Bx)|[1-A(p) 8
G= [A(f}’i)}[l—A(ﬁ'i)}{I +[1 —2A(ﬁ’i)}ﬁi'}

« Probit E[y|X]=® (ﬁ'i)

Partial Effects — SE: Krinsky & Robb

* Estimate § by Maximum Likelithood with b

- Estimate asymptotic covariance matrix with V

- Draw R observations b(r) from the normal population, N(b, V):

b(t) = b + C*v(),

v(r) drawn from N(0, I) and

C = Cholesky matrix, V = CC’

- Compute partial effects d(r) using b(r)

- Compute the sample variance of d(r),r=1,2,...,R

b

- Use the sample standard deviations of the R observations to
estimate the sampling standard errors for the partial effects.

24
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Partial Effects — SE: Bootstrapping

For R repetitions:

- Draw N observations with replacement

- Refit the model

- Recompute the vector of partial effects

- Compute the empirical standard deviation of the R observations

on the partial effects.

Partial Effects — Application I (Greene)

Binary Logit Model for Binary Choice

Dependent wvariable DOCTOR
Fog likelihood function —2097 48109
' | Standard Prob 95% Conf idence
DOCTOR| Coesfficient Error = |=| +Z= Interwval
|Characteristics in numerator of Prob[DOCTOR=1]
Constant | — . 42085%xx 15810 —2 . kb6 oo78 —. 73072 —.11099
AGE | L0226 5xxx .pozze 721 oooo 01722 .D3008
INCOHME | —.44190%xx .1l6936 —2.61 o091 —. 77393 —.1l10032
FEMALE | E3E 25 07551 845 ooon 49026 78624
Partial deriwvatiwes of E[v] = F[*] with
respect to the wector of characteristics
Average partial effects for sample obs
| Partial Standard Praob. 95% Confidence
DOCTOR | Effect Error = |=| »Z= Interwval
AGE| . 0051 0%%% ooozo 725 oooo 00372 00GE48
IHCOHE | —.09531%xx .03649 —2.61 .0090 —.le68d —.02378
FEHMALE | L1384 9%xx .01603 8.64 oooo .10707 L1699z
# Partial effect for dumny wvariable is E[y|=.d=1] — E[v]|=.d=0]
Hote: %%, xx, * ==> Significance at 1¥. &%, 10¥ lewvel

The Linear Probability Model vs. Parametric Logit Model

Standard Frob. 95% Confidence
DOCTOR| Coefficient Error z |z | >Z% Interval
Constant | 4201 233 03468 12.12 ooon 35216 43808
AGE 00504 %% .00063 7.27 oooo 00368 00640
INCOME| =.09273%= .03697 -2.51 0121 -.16519 —.n0zo27
FEHALE | 13837 %%x .01611 g.59 oooo .10678 .16995
Hote: **;, *#% % ==3 Significance at 1%. G5¥, 10% lewel.
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Partial Effects — Application I (Greene)

* Now, we calculate the partial effects after scaling;

LOGIT PROBIT EXTREME VALUE
Estimate t ratio Estimate t ratio Estimate t ratio
Age .00527 7.235 .00527 7.269 .00506 6.291
Income -.09844 -2.611 -.09897 -2.636 -.09711 -2.527
Female .14026 8.663 .13958 8.264 13539 8.747

Note: Scaling usually erases model differences.

Partial Effects — Application I (Greene)

* Average Partial Effects vs. Partial Effects at Data Means

Probability = P, = F(B 'x;)
oP, OF(B'x,) _
ox, ox

Partial Effect = f(B'x)xp =d,

Average Partial Effect = I—Z:_nldi =[3(1—z L fB'x)
n = n =

are estimates of 8 =E[d,] under certain assumptions.

)

. S===================r PROBIT
Variable Mean sStd.Dev. S.E.Mean - =
Estimate t ratio

________ PO .~ —— —— == o= o= .00527 7.269

ME AGE| .00511838 | .00061147 .0000106
ME_INCOM| -.0960923 | .0114797 .0001987 -09897 R
ME FEMAL| .137915 .0109264 .000189

— .13958 8.264

Note: Similar results!.
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Partial Effects — Application I (Greene) — K&R

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Delta Method
WALD procedure. Estimates and standard errors

for nonlinear functions and joint test of PROBIT
nonlinear restrictions.

Wald statistic =Hwereeery Estimate t ratio
Prob. from Chi-squared[ 5] = Laooo0a0

Krinsky-Robb method used with 1000 draws

———————— P .00527 /7.269
Variable| Coefficient Standard Error bsSt.Er.

________ e

Fricn(1l)| L 42279% % 02273 18.599 /(

Frncni2)| L 36483**¥ . 00351 104.020 =09897 ,»-2'636
Frcn(3) | 005277 %% 00071 7. 467 //

Frncn(4) | (ke Aol .03829 -2.585

Fncn(5) | L 14114%%* .01642 8.597 1—13958—| ,8.264
,,,,,,,, "

MNote: ***, ** * = gignificance at 1%. 5%, 10% les

Partial Effects — Standard Errors: Bootstrapping

£Z) Untitled 1 * = ===
| Insert Mame: -
procedure $ Delta Method
logit ; lhs=doctor
;rhs=one,age,income,female | Partial Standard
L prob = plogit $ DOCTOR | Effect Error
create ; g = plogit*(1-plogit) $ AGE | 0051 0%%x 00070
FHp. = = E IHCOME | —. 09531 exx .03649
matrix ; ape = {dpdbx = xbr(g)}"b $ FEMALE| (1384 T%wx “01603
endproc $ =
execute ; n = 50 ; bootstrap = ape $ u
« 0 =
Fesults of bootstrap estimation of nodel.
Hodel has been reestimated 50 times.
Cozfficients shown below are the original
model estimates based on the full sanple.
Bootstrap samples have 3377 observations.
E=stinated parameter wector iz AFE .
Estimated wvariance matrix saved as VARE.
i Standard Prob. Q8% Confidence
BootStrp| Coefficient Error z |z | »Z= Interval
APEDD2i L0051 0% .00066 7.74 0000 .o03s81 00639
APEOOZ| —. 0953 1exx .03353 -2.84 0045 —.16102 —. 02960
APEOD4 | 13764%%x 01787 7.70 oooo 10262 17266
Hote **;, *#%  *® == Significance at 1%, 5%, 10% lewel.
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Partial Effects — Application I (Greene)

* Partial Effects for the Sex dummy.

Partial derivatives of E[v] = F[*] with
respect to the vector of characteristics
They are computed at the means of the ¥s
Observations used for means are All Ohks.

________ o o
Variahle| Coefficient Standard Error bs3t.Er. P[|Z2|>z] Elasticity
________ o T
| Index function for probability
Constant | — 09156%x= .03550 -2.588 L0097
AGE| LO0527 =% .00073 7.269 .oooo .33855
TMCOME | — N9597 e 3755 =2 h3F Ons4 = ORR3IZ
|Marginal effect for dummy wvariable is P|1 - P|O0.
FEMALE | + 13958% % .01618 B8.624 .0ooo .09745
Hote: =x%, %2 = Dignificance at 1%, 5, 10% lewvel.

Elasticity for a binary wvariable = marginal effect. Mean.

Partial Effects — Application I (Greene)

* Partial Effects with Non-linear effects @

Now, we have the following Probit F, with ®(Age; Age?; Income; Sex)

Binomial Probit Model

Dependent variable DOCTOR
Log likelihood function -2086.94545
Restricted log likelihood -2169.26982
Chi squared [ 4 d.f.] 164.64874
Significance level .00000
________ +____________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z]
________ +____________________________________________________
|Index function for probability
Constant| 1.30811*** .35673 3.667 .0002
AGE | -.06487*** .01757 -3.693 .0002
AGESQ| .00091*** .00020 4.540 .0000
INCOME | -.17362* .10537 -1.648 .0994
FEMALE | .39666%** .04583 8.655 .0000
________ +____________________________________________________

Note: *** ** * = Sjignificance at 1%, 5%, 10% level.

42.6266
1951.22
.44476
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Partial Effects — Application I (Greene)

e Partial Effects with Non-linear effects

The probability implied by the model is.

Frobahilty vs. Age for Women with Average Income

Probability

Partial Effects — Application I (Greene)

¢ Partial Effects with Non-linear effects

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
They are computed at the means of the Xs
Observations used for means are All Obs.

________ o

Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Elasticity

________ +_____________________________________________________________

| Index function for probability

AGE | -.02363%** .00639 -3.696 .0002 -1.51422

AGESQ| .00033*** .729872D-04 4.545 .0000 .97316

INCOME | -.06324* .03837 -1.648 .0993 -.04228
|Marginal effect for dummy variable is P|1 - P|O.

FEMALE | .14282%%* .01620 8.819 .0000 .09950

________ +_____________________________________________________________

Note: “Usual” partial (separate) effects for Age and Age? make no
sense. They are not varying “partially.”
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Partial Effects — Application I (Greene)

* Partial Effects with Interaction terms
We estimate a Probit model, with ®(Age; Income; Income*Age; Sex)

Note: The software does not know that Age_Inc = Age*Income.

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
They are computed at the means of the Xs
Observations used for means are All Obs.

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Elasticity
________ +_____________________________________________________________
| Index function for probability
Constant| -.18002** .07421 -2.426 .0153
AGE | .00732%** .00168 4.365 .0000 .46983
INCOME | .11681 .16362 .714 .4753 .07825
AGE_INC| -.00497 .00367 -1.355 .1753 -.14250
|Marginal effect for dummy variable is P|1l - P|O.
FEMALE | .13902*** .01619 8.586 .0000 .09703
________ +_____________________________________________________________

Binary Data — Model Evaluation

* GoF Measures

- Calculated from the Log L.
- “Pseudo R squared” = 1 —log L/log L.O
- LR tests

- Information Criteria, especially for non-nested models.

* Forecasting accuracy/Model evaluation
* Predictions:  y, =1 if F(x,'B) > c (e.g. 0.5)
Yn =0 if F(x,'B) <c
* Compute hit rate = % of correct predictions

* Many measures: Cramer, Efron, Veall and Zimmerman.
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Binary Data — Model Evaluation I (Greene)

¢ GoF Measures

Binary Logit Model for Binary Choice

Dependent variable DOCTOR

Log likelihood function -2085.92452 === Full model LogL
Restricted log likelihood -2169.26982 <= Constant term only LogL0
Chi squared [ 5d.£.] 166.69058

Significance level .00000

McFadden Pseudo R-squared .0384209 <= 1 - LogL/logL0
Estimation based on N = 3377, K = 6

Information Criteria: Normalization=1/N
Normalized Unnormalized

AIC 1.23892 4183.84905 -2LogL + 2K
Fin.Smpl.AIC 1.23893 4183.87398 -2LogL + 2K + 2K(K+1)/(N-K-1)
Bayes IC 1.24981 4220.59751 -2LogL + KlnN
Hannan Quinn 1.24282 4196.98802 -2LogL + 2Kln(1lnN)
________ e — —_— .
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ e — —_— R,
|Characteristics in numerator of Probl[Y = 1]
Constant| 1.86428*** .67793 2.750 .0060
AGE| =.10209*** .03056 -3.341 .0008 42.6266
AGESQ| .00154%** .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE_INC| -.01843 .01691 -1.090 .2756 19.0288
FEMALE | .65366%** .07588 8.615 .0000 .46343
________ o — —_— R,

Binary Data — Model Evaluation

¢ Fit Measures Based on Predictions

- Cramer Fit Measure:

F = Predicted Probability
Z;Zlyile‘ _ Z“.'V:l(l _yi)F

N N
X:(Meanfﬂwheny:l ) - (Meanl:“\whenyZO)

>

1 0

=reward for correct predictions minus
penalty for incorrect predictions

B e e L T e +
| Fit Measures Based on Model Predictions]|
| Efron = .04825]|
| Ben Akiva and Lerman = .57139|
| Veall and Zimmerman = .08365]|
| Cramer = .04771|
B e et e e L +
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Binary Data — Application III - PIM

Example (Bucklin and Gupta (1992)): Purchase Incidence Model
) _ exp(Wh)
p? (lﬂC) - 1+ exp(;vtn)
pt (inc) = Probability that household n engages in a category
purchase in the store on purchase occasion t.

W = Utility of the purchase option. Let W{"* follow
W' =y, +7,CR" +y,INV" +y,CV/" +¢&/

where

CR™ = rate of consumption for household 7
INV{* = inventory level for household 7, time #
CV{* = category value for household 7, time #

Binary Data — Application III - PIM

¢ Goodness-of-Fit

Model # param. Logl. U2 BIC
(pseudo R?)

Null model |1 -13614.4 - 13619.6

Full model |4 -11234.5 175 11255.2

* Parameter estimates

Parameter Estimate (t-statistic)
Intercept vy, -4.521 (-27.70)
CRy, 549 (4.18)
INV v, -520 (-8.91)
CV 410 (8.00)
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Binary Data — Application IV - Ketchup

* Binary Logit Model (Franses and Paap (2001):
www.few.eur.nl/few/people/paap)

e Data
— A.C.Nielsen scanner panel data
— 117 weeks: 65 for initialization, 52 for estimation

— 565 households: 300 selected randomly for estimation,
remaining hh = holdout sample for validation

— Data set for estimation: 30.966 shopping trips, 2275 purchases
in the category (liquid laundry detergent)
— Estimation limited to the 7 top-selling brands (80% of category

purchases), representing 28 brand-size combinations (= level of
analysis for the choice model)

Binary Data — Application IV - Ketchup

* ML Estimation

Variable Coefficient Std. Error z-Statistic Prob.

C 0.222121 0.668483 0.332277 0.7397
DISPLHEINZ 0.573389 0.239492 2.394186 0.0167
DISPLHUNTS -0.557648 0.247440 -2.253674 0.0242
FEATHEINZ 0.505656 0.313898 1.610896 0.1072
FEATHUNTS -1.055859 0.349108 -3.024445 0.0025
FEATDISPLHEINZ 0.428319 0.438248 0.977344 0.3284
FEATDISPLHUNTS -1.843528 0.468883 -3.931748 0.0001
PRICEHEINZ -135.1312 10.34643 -13.06066 0.0000
PRICEHUNTS 222.6957 19.06951 11.67810 0.0000
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Binary Data — Application III - Ketchup

¢ Model Evaluation

Mean dependent var 0.890279 S.D. dependent var 0.312598
S.E. of regression 0.271955  Akaike info criterion 0.504027
Sum squared resid 206.2728 Schwarz criterion 0.523123
Log likelihood -696.1344 Hannan-Quinn criter. 0.510921
Restr. log likelihood -967.918  Avg. log likelihood -0.248797
LR statistic (8 df) 543.5673 McFadden R-squared 0.280792
Probability(LR stat) 0.000000
Obs with Dep=0 307 Total obs 2798
Obs with Dep=1 2491
Binary Data — Application III - Ketchup
* Model Evaluation: Forecast Accuracy
1.0 e e —
AR L i I"'r'r"”[r AR | Forecast HENZF
Actual: HEINZ
0.8 Forecast sample: 1 2798
Included observations: 2798
0.6 Root Mean Squared Error 0.271517
Mean Absolute Error 0.146875
Mean Abs. Percent Error 7.343760
0.4 Theil Inequality Coefficient ~ 0.146965
Bias Proportion 0.000000
Variance Proportion 0.329791
0.2+ Covariance Proportion 0.670209
0.0

AR UL LU ILEL LU IR IR
500 1000 1500 2000 2500

— HEINZF
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Binary Data — Application III - Ketchup

* Model Evaluation: Aggregate Predictions
We judge the forecast accuracy based on the hit rate.

Classification Tablé®

Predicted
HE Percentage
Observed ,00 1,00 Correct
Step1 HE ,00 81 226 26,4
1,00 34 2457 98,6
Overall Percentage 90,7

a. The cut value is ,500

Binary Data — Testing (Greene)

* ML estimation framework. Testing is based on the ML trilogy:
- LR Test, Wald Statistics and LM Tests.
* Different from regression (no residuals!). There is no F statistic.

Example: Base Model

Binary Logit Model for Binary Choice H: Age is not a significant determinant
Dependent variable DOCTOR _
Log likelihood function -2085.92452 of Prob(Doctor = 1)
Restricted log likelihood -2169.26982
Chi squared [ 5d.£f.] 166.69058 H . — =R. = 0
Significance level .00000 0° 52 57’ BD
McFadden Pseudo R-squared .0384209
Estimation based on N = 3377, K= 6 H1: at least one 52 s 53 and/or 55 7é 0
________ Y
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ e e
|Characteristics in numerator of Prob[Y = 1]
Constant| 1.86428%** .67793 2.750 .0060
AGE | =.10209*** .03056 -3.341 .0008 42.6266
AGESQ| .00154*** .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE_INC| -.01843 .01691 -1.090 .2756 19.0288
FEMALE | .65366%** .07588 8.615 .0000 .46343
________ e e
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Binary Data — Testing (Greene)

Testing is based on the ML trilogy: LR, Wald and LM Tests.

In L{max)

In L{res)

MLE(R)

MLE

Binary Data — LR Test (Greene)

¢ LR Test: Based on Unrestricted and Restricted models
- LR-test statistic = 2 (LogL.|H, - Unrestricted model —

LogL|H,, - Restrictions) > 0 ~ x5

UNRESTRICTED MODEL

Binary Logit Model for Binary Choice
Dependent variable DOCTOR
Log likelihood function -2085.92452
Restricted log likelihood -2169.26982
Chi squared [ 5d.f.] 166.69058
Significance level .00000
McFadden Pseudo R-squared .0384209
Estimation based on N = 3377, K = 6

RESTRICTED MODEL
Binary Logit Model for Binary Choice

Dependent variable DOCTOR
Log likelihood function -2124.06568
Restricted log likelihood -2169.26982
Chi squared [ 2 d.f.] 90.40827
Significance level .00000
McFadden Pseudo R-squared .0208384
Estimation based on N = 3377, K = 3

LR-test = 2[-2085.92452 - (-2124.06568)] = 77.46456

= reject H,

36



RS — Lecture 17

Binary Data — Wald Testing (Greene)

¢ Wald Test: Based on Unrestricted model

- Discrepancy: q = Rb —m (or r(b,m) if nonlinear) is computed
- Variance of discrepancy is estimated

- Wald Statistic is q’[Var(q)]'!q ~ )(éf=3

Binarv Logit Model for Binary Choice

Dependent wariable DOCTOR
Iog likelihood function —2085.92452
Reztricted log likelihood —2169 . 26982
Chi =guared [ 5 d.f.] 166 . 69058
Significance lewel aoooo
HoFadden Pseudo R—sguared 034209
Estimation based on H = 3377, K = -]
Inf Cr AIC = 4182.8 AIC-H = 1.239

Wald test of 3 linear restrictions

Chi—-=guared = 59 .05, P wvalus = .oooo
| Standard Prob . 95% Confidence
DOCTOR | Cozf ficient Error = |=| »Z2 Interval
|Characteristics in numerator of Prob[DOCTOR=1]
Constant | 1. 86420%x= LBTT793 2.75 . 00& LB3EE7 3.139299
AGE —. 10209 %% .03056 —3.34 0008 —.16199 —.04219
AGESQ| 00154 .ooo034 4 56 oooo oooss oozzo
INCOME | .51206 .74600 .69 4925 —.95008 1.97420
AGE_IHNC]| —.012432 01691 —-1.09 2756 —. 05157 .01470
FEMALE| L BEIEGExR .o7Ees 2.61 0000 LE0494 LBO237
Hote: %*x, %% % == Significance at 1X, 55X, 10% lewvel.

Binary Data — Testing (Greene)

* Wald Test — Matrix Computation

1| Cel 15.6] ol
1 | 1 | 2 | 3 1 | 5 | ]
1 166428 1 0459584 0019386 0000198178 0231031 00055639 000125442
2 0102093 2 0019886 0.000934022 998629006 000516338 000014332 -0.000160159
E] 000154004 J =3~ | D00TSAI7E 338629006 1142720007 103054006 283343007 1 56007e-006
4 0512059 ([T~ | TS 82T1031 Q0051633 10N 059523 00122606 -0.000B0SEE3
5 anungd 5§ OOG56396" ~ Q00014332 283343007 0122686 (0285847 2775350005
[ 0653659 B~ | 000125432 <0.0001E0IGY, 1560072006 -0.000805883 277635e005  0.00575729
a R i Ma Q |
[3.8] cob o %] T~ T~a_ T~o_ |BU Celt [0102093
1 [ 2 | 3 [ a4 [ &6 =~J “e-~ [[C-~ 1 [
1 0 1 0 0 0 ~< 01 0102033
7 0 0 1 0 0 07 fF=2 |~ noots4004
3 0 0 0 0 [ 0 3 [~ 00843
Matrix - VQ —
| Celt: [0000334022 ~ X
1 ? [ 3 [ | [R Cell [63.0541 x|
0.000334022 | -9.986295-006 | -0.00014392 | 7 |
3986290008 | 1142720007 28368436007 i .
000014392 | 263843007 | 0.000285847 ni—l
] LI +

Wald Test =

69.0541 = reject H,,
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Binary Data — Test (Greene)

* LM Test: Based on Restricted model

- Derivatives of unrestricted model and variances of derivatives are
computed at restricted estimates

- Wald test of whether derivatives are zero tests the restrictions

- Usually hard to compute — difficult to program the derivatives
and their variances.

Example: Computation for Logit Model

- Compute b, subject to H, —i.e., with zeros in appropriate positions.
- Compute P;(b,) for each observation.

- Compute e;(by) = [x; — Pi(by)]

- Compute g; (by) = x;e; using full x; vector

LM = [Zgi(b)I'[Zgi(bygi(by)] ' [Z:g(by)] ~ Xéf =3

Binary Data — LM Test (Greene)

* LM Test: Compuations

Matrix DERIV has 6 rows and 1 columns.

1| .2393443D-05 == zero from FOC
2| 2268.60186

3] .2122049D+06

4| .9683957D-06 == zero from FOC
5| 849.70485

6| .2380413D-05 == zero from FOC

fommmmmm oo +
Matrix LM has 1 rows and 1 columns.
1
fomm +
1] 81.45829 | => reject H,,
fomm +

Summary: LM test = 81.45829
LR-test = 77.46456
Wald test = 69.0541
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Binary Data — Chow Test I (Greene)

* Health Satisfaction: Panel Data — 1984,85,86,87,88,1991,1994

To test parameter constancy over time, we do a Chow test: 1) Fit a
model for each year (7 years total); 2) Fit a pooled model. 3) Do a LR
test. LR ~ )(éf:%

Healthy(0/1) = £(1, Age, Educ, Income, Married(0/1), Kids(0.1)

Fomm e S — E +

I | Leg Likelircod | sample | |'The log likelithood for the pooled sample

e L EE M is 117365.76. The sum of the log

o o oo + | 1S - . /0. u.

| 1984 | -2395.137 | 3874 | | 1ial; TS T

s | o3eloes e | yk6111;1302(2¥d;3f0fr th.e sex}flen dl.rghvlduallyears

| 1986 | -2387.602 | 3792 ] [1S - D)5, lwice the airrerence 1s

| 1987 | -2337.835 | 3666 | .

| 1988 | -2890.288 : 4Z°; | 82.87. The degrees of freedom is 6x6 =

: iggi : ‘410939 : 4340 : 36. The 95% critical value from the chi
—£100. =] e NN . .

| Beol | -17365.76 | 2732¢ | | squared table is 50.998, so the pooling

o Frrmm A ¥ hypothesis is rejected.

Binary Data — Chow Test II (Greene)

* Determinants of Doctor’s visits.

To test parameter constancy over groups (male, female), we do a
Chow test: 1) Fit a model for males & another for females; 2) Fit a
pooled model. 3) Do a LR test. LR ~ Xéf:s

Dependent variable DOCTOR
Pooled Log likelihood function -2123.84754
________ +_____________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z]
________ +_____________________________________________________
Constant| 1.76536%** .67060 2.633 .0085
AGE | -.08577*** .03018 -2.842 .0045
AGESQ| .00139%*%* .00033 4.168 .0000
INCOME | .61090 .74073 .825 .4095
AGE _INC| -.02192 .01678 -1.306 .1915
________ +_____________________________________________________
Male Log likelihood function -1198.55615
________ +_____________________________________________________
Female Log likelihood function -885.19118
________ +_____________________________________________________

LR-test = 2[-885.19118+(-1198.55615)—-(-2123.84754] = 80.2004
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Specification Issues

* Main issues
- Neglected heterogeneity
- Omitted variables
- Endogeneity
- These problems are relevant for all index models
-Since the normal distribution allows us to obtain concrete results,
the focus is on Probit models.

* In linear models:
- Heterogeneity causes OLS to be inefficient, though it is still
consistent and unbiased.

- Omitted variables can lead to inconsistent estimates, unless...
- The omitted variable does not affect y
- The omitted variable is uncorrelated with x

Hetersocedasticity (Greene)

* Scaling each individual by its variance.
Steps:
(1) Parameterize: Var[g,] = exp(Z,'y)
(2) Reformulate probabilities
Binary Probit or Logit: P, [V, = 1|X,] = P(x,'B /exp(Z,,'Y))

* Marginal effects are more complicated. If x =z, signs and
magnitudes of marginal effects tend to be ambiguous.

Example: For the univariate case:
EYn | Xn,2x] = O[x,'B/exp(zny)]
O B[Yn | Xn.Zn]/0xn= ¢[x,'B/exp(zn'y)] * B
O E[yn | Xn.2nl/0Zn= ¢[Xp'B/exp(@n'V)] * [-X0'B/exp(Za'V)] * v
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Hetersocedasticity (Greene)

* Scaling with a dummy variable. For example,

Vat[ey] = exp(Zy IY)

B'x,
exp(yFemale,)
Prob(Doctor=1) = F(B'x, ) for men

Prob(Doctor=1) = F

Prob(Doctor=1) = F(AB'x, ) for women where L =e””
Heteroscedasticity of this type is equivalent to an implicit

scaling of the preference structure for the two (or G) groups.

is equivalent to

Hetersocedasticity — Application I

* Determinants of Doctor’s visits (Logit Model).

Model for Variance: Var|[e,] = exp(Femaley)

Binary Logit Model for Binary Choice

Dependent variable DOCTOR
Log likelihood function -2096.42765
Restricted log likelihood -2169.26982
Chi squared [ 4 d.f.] 145.68433
Significance level .00000
McFadden Pseudo R-squared .0335791
Estimation based on N = 3377, K = 6

Heteroscedastic Logit Model for Binary Data

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er.
________ +_____________________________________________________________
|Characteristics in numerator of Prob[Y =
Constant| 1.31369*** .43268
AGE| -.05602*** .01905
AGESQ| .00082*** .00021
INCOME | .11564 .47799
AGE_INC| -.00704 .01086
|Disturbance Variance Terms
FEMALE | -.81675*** .12143
________ +_____________________________________________________________

3.
-2.
3.

036
941
838

.242

.648

P[|Z]|>z]

Mean of X

42.6266
1951.22

.44476
19.0288
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Hetersocedasticity — Partial Effects Application
I

* Determinants of Doctor’s visits (Logit Model).
Model for Variance: Var[e,] = exp(Femaley)

Partial derivatives of probabilities with respect to the vector of characteristics.
They are computed at the means of the Xs. Effects are the sum of the mean and var-
iance term for variables which appear in both parts of the function.

— e

Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Elasticity

AGE| =.02121%** .00637 -3.331 .0009 -1.32701

AGESQ| .00032*%** .717036D-04 4.527 .0000 .92966

INCOME | .13342 .15190 .878 .3797 .08709

AGE_INC| -.00439 .00344 -1.276 .2020 -.12264

FEMALE | .19362*%** .04043 4.790 .0000 .13169

|Disturbance Variance Terms

FEMALE | -.05339 .05604 -.953 .3407 -.03632
|Sum of terms for variables in both parts

FEMALE | .14023*%** .02509 5.588 .0000 .09538

— e

|Marginal effect for variable in probability - Homoscedastic Model

AGE| -.02266%** .00677 -3.347 .0008 -1.44664

AGESQ| .00034*** .747582D-04 4.572 .0000 .99890

INCOME | .11363 .16552 .687 .4924 .07571

AGE_INC| -.00409 .00375 -1.091 .2754 -.11660
|Marginal effect for dummy variable is P|1 - P|O.

FEMALE | .14306*%** .01619 8.837 .0000 .09931

— e

Hetersocedasticity Test (Greene)

* Determinants of Doctor’s visits (Probit Model).

To test for heteroscedasticity, we do a LR test: 1) Fit restricted model
(Hy: No heteroscedasticity), and 2) Fit unrestricted model (H;:
Var[en] = exp(2,'y)). Then, 3) Do a LR test. LR ~ xGr,
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Binary Data — Robust Covariance Matrix

* Determinants of Doctor’s visits (Probit Model).
We calculate the “Robust” Covariance Matrix: Vat[b] = A'B Al

________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ +_____________________________________________________________
|Robust Standard Errors
Constant| 1.86428%** .68442 2.724 .0065
AGE | -.10209*** .03115 -3.278 .0010 42.6266
AGESQ| .00154*** .00035 4.446 .0000 1951.22
INCOME | .51206 .75103 .682 .4954 .44476
AGE_INC| -.01843 .01703 -1.082 .2792 19.0288
FEMALE | .65366%** .07585 8.618 .0000 .46343
________ +_____________________________________________________________
|Conventional Standard Errors Based on Second Derivatives
Constant| 1.86428%** .67793 2.750 .0060
AGE | -.10209*** .03056 -3.341 .0008 42.6266
AGESQ| .00154*** .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE_INC| -.01843 .01691 -1.090 .2756 19.0288
FEMALE | .65366%** .07588 8.615 .0000 .46343

* Not a big difference. Harmless to use the robust estimator.

Odds Ratio

* A popular descriptive statistics is the odds ratio. The odds ratio is
just the ratio of two choice probabilities:

P(y, =1]x,)
Py, =0]x,)
* For the Logit Model the odds ratio is very simple to calculate:

Odds Ratio =

P(y, =1]x,) _e™Pid+e™)  yp
P(y,=0]x,)  1/(1+e"P)

* We may be interested in measuring the effect of a unit change in
the odds ratio. Simple to do for a dummy variable (D=1 to D=0).
For the Logit Model, this ratio simplifies to exp(coeff. of dummy):

eXnB+YD /(1+ean3+YD) eXnB /(1+eX”B) ~

Ratio of Odds Ratio =
1/(1+ e PrrPy 1/(1+e*P)y

=e
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Odds Ratio — Application (Greene)

* We are interested in estimating the change in odds of buying public
insurance for a female headed household (D=1) compared to a male
headed household (D=0). For the Logit Model:

Odds ratio: exp(.23427) = 1.26399 (odds up by 26%)

Binomial Probit Hodel

Dependent wariable FUBLIC

Standard Frob 95% Confidence
FUBLIC| Coefficient Error z |z|>Z% Interval

|Index function for probability
Constant|| 3. 46197 %= .07059 49.04 0000 3.32361 3.60033
AGE 00169 00100 1.70 ne94 —. 00026 00365
EDTIC | — . lE7E3xxx .o0408 —41.09 0000 —.17563 —.15963
HHHINC| —. 9985 1nxx 05497 —18. 1% oooo -1.10625 —.89077
FEMALE| .11847xxx .0z2z209 5.36 .0000 .07518 .16176

Binary Logit Model for Binary Choice

| Standard Frob. 95% Confidence
FUEBLIC| Coefficient Error -4 |=| 2% Interval

|Characteristics in numerator of Prob[FUBLIC=1]
.13143 46.68 0000

Constant | 6.13526%%x 5.87767 6.39285
AGE

anz74 oolso 1.44 1494 —.oonss D0E46

EDIIC | —.29933%%x .00711 —42.09 0000 —.31327 —.28539

HHNINC| —1.7099 7% .10129 —-17.67 .0000 —1.98849 -1.5914%

FEMALE| L2342 mEx .04239 5.53 .0000 .15118 .31737
Hote: #=x%,  =x_ * ==: Significance at 1. Bx. 10X lewvel

Endogeneity

* In the doctor’s visits problem, we want to study the effect of public
health insurance, h, on doctot’s visits, ¥,,. But, individuals also make a
decision to take public health insurance or not.

=> endogeneity problem!
* Two cases: (1) h is continuous (complicated); (2) h is binary (easier).

* There are many approaches to estimate this problem: ML. GMM,
ad-hoc solutions, especially for case (2).

* We focus on MLE. It requires full specification of the model,
including the assumption that undetlies the endogeneity of hy,.

* We present an example for the Probit Model.
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Endogeneity — ML — Continuous Variable

* CASE 1 — h continuous

* Full specification:

- RUM: Up=x,"B+h,'0+¢,

- Revealed preference: Vo =1 1£ U, >0

- Endogenous variable(s): h, =2z,'0 +u,,

with E[e, | h] # 0 & Covluy, 4] # 0 (p=Cott[uy, &,))

- Additional Assumptions:

b e [©) (o o)

2) z = IV (exogenous variables), uncorrelated with (U, &,)

* ML becomes a simultaneous equations model.

Endogeneity - ML

* FIML estimation. Steps:
- Write down the joint density: — f (V| Xn, Z) * f(25,)

- Assume a Probit Model = Normal for f(yy, | Xn, Zp):
Plyn=1]x,2,] = @B + hy'0 + &y).

- Assume marginal for f(Z,), a normal distribution.

- Use the projection:
En|Un = [(POU)/ 0] Un + Vn, with 6= (1 —p?).
- Insert projection in
Plyn=1|%n, 2] = ®(xy'B + hp'0+[(00y) /0] Un)
- Replace u, = hy, — z,'« in P(yy).
- Maximize Log L(.) wt.t. (B, & ,0, p, oy,)

45



RS — Lecture 17

Endogeneity — ML: Probit (Greene)

Probit fit of y to x and % will not consistently estimate (8,0)
because of the correlation between h and & induced by the

correlation of u and €. Using the bivariate normality,

B'x+6h+(p/o,)u
J1-p?

Insert u, = (h; - a'z)/o, and include f(h|z) to form logL

ﬁ'x,. +0h, + p(hi'azij

Prob(y =1|x,h) = CD{

(e

u

log®| (2y;, - 1)

logL:Z:iN:1 \/1—p2

Endogeneity - ML

* Two step limited information ML (Control Function) is also
possible:

- Use OLS to estimate &, 0,, = get estimates @ and S.
- Compute the residual u,. Standardize them: 41/s

- Plug residuals 11 /s into @.

- Fit the Probit Model.

- Transform the estimated coefficients into the structural ones.

- Use delta method to calculate standard errors.
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Endogeneity — ML - Application

* Health Satisfaction example, with income as endogenous variable.

Probit with Endogenous RHS Variable

Dependent variable HEALTHY
Log likelihood function -6464.60772
________ o e
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ e e
|Coefficients in Probit Equation for HEALTHY
Constant| 1.21760%** .06359 19.149 .0000
AGE | -.02426*** .00081 -29.864 .0000 43.5257
MARRIED | -.02599 .02329 -1.116 .2644 .75862
HHKIDS| .06932*** .01890 3.668 .0002 .40273
FEMALE | -.14180%*** .01583 -8.959 .0000 .47877
INCOME | .53778*** .14473 3.716 .0002 .35208
|Coefficients in Linear Regression for INCOME
Constant| -.36099%*x* .01704 -21.180 .0000
AGE| .02159*** .00083 26.062 .0000 43.5257
AGESQ| -.00025**x* .944134D-05 -26.569 .0000 2022.86
EDUC| .02064*** .00039 52.729 .0000 11.3206
MARRIED | .07783*** .00259 30.080 .0000 .75862
HHKIDS| -.03564**x* .00232 -15.332 .0000 .40273
FEMALE | .00413** .00203 2.033 .0420 .47877

| Standard Deviation of Regression Disturbances

Sigma (w) | -16445%*% .00026 644.874 -0000
|Correlation Between Probit and Regression Disturbances

Rho (e, w) | -.02630 .02499 -1.052 .2926

Endogeneity — Partial Effects (Greene)

¢ Partial effects have to be re-scaled.

Conditional Mean
E[y|x,h]=DB'x + 6h)
h=a'z+u=a'z+c,v where v ~ N[0,1]
Ely|x,z,v] =Q[B'x +6(at'z + 5, V)]
Partial Effects. Assume z = x (just for convenience)
OE[y|x,z,v]
10)'¢
OE[y|x,z] “E {8E[y|x,z,v]
ox Y ox
The integral does not have a closed form, but it can easily be simulated :
OE[ylx.z]
X

Esl.a— =P+ 60:)%211 OB'x+6(az+0,v,)]

For variables only in x, omit 6a, . For variables only in z, omit 3, .

=¢[B'x+0(a'z+05,v)](B +6a)

} = (B+00)[ [Bx+ 0@z +0,)]0()dv
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Endogeneity — Partial Effects (Greene)

* Health Satisfaction example, with income as endogenous variable.

i Listed Calculator Results
'SP - 380919
B Matrix - BMODEL [ |[E ][5 ] | @ Matrix- ALPHA [ |[1][ 52 ] || B Matrix- SCALEDB [ |[= |
[7.11 cel [T2176 [7.1] Celt [-036099 [7.1] Cell: [0.299023
1 | . 1 | A 1 | -
1 1.2176 1 036039 1 0.293023
2 -0.02426 2 0.02159 2 -0.00369571
3 0 e 3 0.00025 | 3 | -3.92804e-005 L
4 0 4 0.02054 1 4 0.00324299 3
5 -0.02599 5 0.07783 5 0.00453535
6 0.08932 6 0.03564 6 0.0146532
7 -0.1418 | 7 0.00413 7 -0.0407803

The scale factor is computed using the model coefficients, means
of the variables and 35,000 draws from the standard normal

population.

Endogeneity — Binary Variable - Application

* CASE 2 — h is binary. (From Greene).

Doctor’s visit example. Public insurance option = endogen. variable.

FIML Estimates of Bivariate Probit Model

Dependent variable
Log likelihood function
Estimation based on N =

DOCPUB
-25671.43905
27326, K = 14

Standard Error b/St.Er. P[|Z|>z] Mean of X

.0000

.0000 43.5257
.0000 2022.86
.0812 .35208
.0000 .478717
.0000 .88571
.0000

.5612 43.5257
.0000 11.3206
.0000 .35208
.7361 .75862
.0013 .40273
.0000 .478717
0000

________ o e e e
Variable| Coefficient
________ o e e
| Index equation for DOCTOR
Constant| .59049%** .14473 4.080
AGE | -.05740%** .00601 -9.559
AGESQ| .00082*** .681660D-04 12.100
INCOME | .08883* .05094 1.744
FEMALE | .34583%** .01629 21.225
PUBLIC| .43533%** .07357 5.917
| Index equation for PUBLIC
Constant| 3.55054*** .07446 47.681
AGE | .00067 .00115 .581
EDUC| -.16839%%%* .00416 -40.499
INCOME | -.98656*%** .05171 -19.077
MARRIED | -.00985 .02922 -.337
HHKIDS| -.08095*%** .02510 -3.225
FEMALE | .12139%** .02231 5.442
|Disturbance correlation
RHO(1,2) | -.17280%%% .04074 -4.241
________ o e e
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Endogeneity — Binary Variable - Application

* Doctor’s visit example, with public insurance option as the
endogenous binary variable. (From Greene.)

- MODEL PREDICTIONS

Bivariate Probit Predictions for DOCTOR and PUBLIC
Predicted cell (i,j) is cell with largest probability
Neither DOCTOR nor PUBLIC predicted correctly

1599 of 27326 observations
Only DOCTOR correctly predicted

| |
| |
| |
| |
| |
| DOCTOR = 0: 1062 of 10135 observations |
| DOCTOR =1: 632 of 17191 observations |
| Only PUBLIC correctly predicted |
| PUBLIC = 0: 140 of 3123 observations |
| PUBLIC =1: 632 of 24203 observations |
| Both DOCTOR and PUBLIC correctly predicted |
| DOCTOR = 0 PUBLIC = 0: 69 of 1403

| DOCTOR = 1 PUBLIC = 0: 92 of 1720

| DOCTOR = 0 PUBLIC = 1: 252 of 8732 |
| DOCTOR = 1 PUBLIC =1 15008 of 15471 |
o e +

Endogeneity — Binary Variable — Partial Effects

Conditional Mean

E[y|x,h]=D(P'x + 6h)

E[y|x.2]=E,E[y| x. /]
=Prob(h=0]|z)E[y|x,h=0]+Prob(h=1|2)E[y]|x,h=1]
=0(-a'z)0(B'x) + D(a'z)D(P'x + 0)

Partial Effects
Direct Effects

% oD@ + Daz)o@'x +6)] p
X

Indirect Effects

% = [Fo(-a'2)®(B'x) + d(a'z)P(PB'x + 0)] &
Zz

= (I)(oc'z)[d)(ﬁ'x +0)— (I)(ﬁ'x)] a
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Endogeneity — Application: Selection Model

¢ Sample selection problem. We only observe data if a condition is
met; for example, an individual decides to invest in stocks.

¢ Adapted framework, to this problem:

- RUM: Up=x,'B+h,'0+¢,

- Revealed preference: Vo =1 1£ U, >0

- Endogenous variable(s): h, =z,'0 +u,,

with E[e, | h] # 0 & Covluy, 5] # 0 (p=Cott[uy,, &,))
- Sample selection: (Vn, Xp) are observed only when h = 1

- Additional Assumptions:

b e [Q) (L)

2) z = IV (exogenous variables), uncorrelated with (U, &,)

Endogeneity — Application: Selection Model

* Doctor’s visits, with public insurance option.
DATA: 3 Groups of observations:
(Public=0), (Doctor=0 | Public=1), (Doctor=1 | Public=1)

B e et ettt e e e e +
|Cross Tabulation |
|Row wariable is DOCTOR [(Out of range 0-49: ) |
|Humber of Rows = 2 (DOCTOR = 0 to 1) |
|Cal wariable is PUBLIC [(Out of range 0-49: ) |
|Humber of Cals = 2 (FUBLIC = 0 to 1) |
|Chi-squared independence tests: |
|Chi-squared| 1] = 92.77760 Prob walue = aoooo |
| G-sgquared [ 1] = 90.86999 Prob walue = aoooo |
B e ettt +
| FUELIC |
+o——————- o ——— o + |
| DOCTOR| 0 1| Total] |
Fmmm————— e m————— + |
| 0] 1403 8732| 10135] |
| 1] 1720 | 15471 17191 |
Fmmm————— Fmr————— e - + |
| Total| 3123 | 24203| 27326| |
+-——————— +
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Endogeneity — Application: Selection Model

| Doctor = F(age,age?,income,female,Public=1) |

...................................

e ' Public = F(age,educ,income,married,kids,female)

Frenuency

Endogeneity — Application: Selection Model
* Selected Sample

| Joint Frequency Table for Bivariate Probit Model |
| Predicted cell is the one with highest probability |

o e +
I PUBLIC |
LT EE P B ittt ittt T T +
| DOCTOR | 0 1 | Total

[ it dmmm e E T Fomm - +
| 0 | 0 8732 | 8732 |
| Fitted | ( 0) ( 511) q ( 511) |
[ T T et Fommm - +
| 1 | 0 | 4 | 15471 |
| Fitted | ( 477) | ( | ( 23692) |
[ e et t-—m T domm e +
| Total | 0 | 24203 | 24203 |
| Fitted | ( 47f7) | ( 23726) | ( 24203) |
[ 4l e dmmm e +
| Counts based on 24203 selected of 27326 in sample |
e e e L PP P e e +
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Endogeneity — Application: Selection Model

* ML Estimates, with Probit Model

FIML Estimates of Bivariate Probit Model

Dependent variable DOCPUB
Log likelihood function -23581.80697
Estimation based on N = 27326, K = 13

Selection model based on PUBLIC
Means for vars. 1- 5 are after selection.

+

Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
| Index equation for DOCTOR
Constant| 1.09027*** .13112 8.315 .0000
AGE| -.06030%** .00633 -9.532 .0000 43.6996
AGESQ| .00086*** .718153D-04 11.967 .0000 2041.87
INCOME | .07820 .05779 1.353 .1760 .33976
FEMALE | .34357*** .01756 19.561 .0000 .49329
| Index equation for PUBLIC
Constant| 3.54736%** .07456 47.580 .0000
AGE| .00080 .00116 .690 .4899 43.5257
EDUC| -.16832%** .00416 -40.490 .0000 11.3206
INCOME | -.98747***x .05162 -19.128 .0000 .35208
MARRIED | -.01508 .02934 -.514 .6072 .75862
HHKIDS | =.077T7T*** .02514 -3.093 .0020 .40273
FEMALE | .12154%** .02231 5.447 .0000 .47877
|Disturbance correlation
RHO(1,2) | =.19303*%** .06763 -2.854 .0043

+

Endogeneity — Application: Selection Model

e Partial Effects in the Selection Model

Conditional Mean : Case 1, Given Selection
E[y|x,Selection] = Prob(y=1|x,h=1)
_ Prob(y=1,h=1[x,z)

Prob(h=1|z)
_O(B'x,a'z,p)
- ®(a'z)
Partial Effects
OE[y[x,z,Selection] (0P (B'x,a'z,p)/0B'x)
ox B D(a'z)
OE[y|x,z,Selection] {(6®(l3'x,oc'z,p)/6a'z) B ¢(a’z)®(ﬁ'x,a'z,p)}a
oz D (a'z) [@(a'z)]
b—pa
00, (a,b,p)/0a =d(a)d 1—p2

For variables that appear in both x and z, the effects are added.
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