

DCM: Binary Data – Intuition

• A regression will not work well, we want to predict values between 0 and 1. If we interpret the values of y_n as probabilities, the line does not work either.

• Intuition: We need to transform the data from discontinuous to continuous, like the dependent variable. We think of y_n as probabilities, but, with the idea that $f(x_n)$ should produce be very high or very low values. A candidate function: a CDF.

• This is the basic idea of all the models with discrete choice. For example, in a Probit model, we use the normal distribution as $f(x_n)$. The S shape CDF will fit the data much better than a simple line.

DCM: Binary Data – Review

- Q: How can we model this choice decision?
- We can use an ad-hoc model, say: $y_n = x_n' \beta + \varepsilon_n$
- We can use economic theory. This is what we do.
- We use the McFadden approach, described in the previous lecture.
- 1) We model a consumer's decision (1=Yes or 0=No) by
- specifying the utility to be gained from 1 as a function of:
- characteristics of the decision, \mathbf{z}_n : price, quality, fun, etc.)
- characteristics of individuals, \boldsymbol{w}_n : age, sex, income, education, etc.):

 $U_{n0} = \alpha_0 + \mathbf{z}_{n0}' \,\delta_0 + \mathbf{w}_n' \,\gamma_0 + \varepsilon_{n0} \qquad - \text{ utility from decision } 0$ $U_{n1} = \alpha_1 + \mathbf{z}_{n1}' \,\delta_1 + \mathbf{w}_n' \,\gamma_1 + \varepsilon_{n1} \qquad - \text{ utility from decision } 1$

We assume that the errors are *i.i.d.* $(0, \sigma^2)$.

DCM: Binary Data - Review

2) We introduce the probability model: $P_{n1}[Decision 1] = P(U_{n1} - U_{n0} > 0)$ $= P(\alpha_1 + \mathbf{z}_{n1}' \,\delta_1 + \mathbf{w}_n' \,\gamma_1 + \varepsilon_{n1} > \alpha_0 + \mathbf{z}_{n0}' \,\delta_0 + \mathbf{w}_n' \,\gamma_0 + \varepsilon_{n0})$ $= P(\mathbf{x}'_n \mathbf{\beta} - \xi_n > 0)$ $= P(\xi_n < \mathbf{x}'_n \mathbf{\beta})$

where $\boldsymbol{x}_n = [1 \ \boldsymbol{z}_{n1} \ \boldsymbol{z}_{n0} \ \boldsymbol{w}_n]$ ' and $\xi_n = \varepsilon_{n0} - \varepsilon_{n1}$.

Then,

$$P_{n1} = P[y_n = 1] = P(\xi_n < x_n'\beta)$$

Our problem is to estimate β given \mathbf{z}_n , \mathbf{w}_n and \mathbf{y}_n . To proceed with the estimation, we assume ε_n follows a specific distribution. Then, we can naturally estimate the model using ML.

DCM: Binary Data - Review

3) Estimation

If we assume we know $f(\varepsilon_n)$, ML is a natural way to proceed. $L(\beta) = \prod_n (1 - P[y_n = 1 | \mathbf{x}, \boldsymbol{\beta}]) P[y_n = 1 | \mathbf{x}, \boldsymbol{\beta}]$ $\Rightarrow \text{Log } L(\beta) = \sum_{n(y=0)}^{N} \log(1 - F(\mathbf{x}_n'\boldsymbol{\beta})) + \sum_{n(y=1)}^{N} \log(F(\mathbf{x}_n'\boldsymbol{\beta}))$ • If we have grouped data: $p_i, \mathbf{x}_i, \& n_i$, then $\Rightarrow \text{Log } L(\beta) = \sum_{i=1}^{N} n_i [p_i \log[F(\mathbf{x}_n'\boldsymbol{\beta})] + (1 - p_i) \log\{(1 - F(\mathbf{x}_n'\boldsymbol{\beta})\}]$ Note: NLLS is easy in this context. Since: $E[y_n | \mathbf{x}] = P[y_n=1] = P(\xi_n < \mathbf{x}_n'\boldsymbol{\beta}) = g(\mathbf{x}_n'\boldsymbol{\beta})$ $\Rightarrow \quad y_n = E[y_n | \mathbf{x}] + v_n = g(\mathbf{x}_n'\boldsymbol{\beta}) + v_n \quad - \text{ with } E[v_n | \mathbf{x}] = 0.$ (Bayesian and simulation methods can be used too.)

DCM: Binary Data – Review

- What do we do learn from this model?
- Are the $z_n \& w_n$ "relevant?"

- Can we predict behavior? Will a specific company do an M&A? How many mergers will happen next year?

- What is the effect of a change in x_n in y_n ? Do traders trade more if they receive more research/information?

Binary Data - Latent Variable Interpretation

• In the previous theoretical setup, there is an unobservable variable, the difference in utilities. We can assume that this latent variable, y_n^* , is distributed around its mean: $E[y_n^* | X_n] = \beta_0 + x_n' \beta_1$

• We observed y's (choices) -in the binary case, (0, 1). We observe $y_n=1$ for that portion of the latent variable distribution above τ .

$$y_n = \begin{cases} 1 & if \quad y_n^* > \tau \\ 0 & if \quad y_n^* \le \tau \end{cases}$$
$$= (U_{n1} - U_{n0}) > 0, \qquad n \text{ selects } 1. \qquad \Rightarrow \tau = 0.$$

Then, if y_n^*

• Given the conditional expectation assumed: $\Rightarrow y_n^* = U_{n1} - U_{n0} = \beta_0 + x_n' \beta_1 + \varepsilon_n, \qquad \varepsilon_n \sim D(0, 1)$

Binary Data – Partial Effects

• In general, we are interested not in the probability per se, but on the expected (or other central) value and the effect of a change in x_i on the expected value. With binary (0, 1) data, the expected mean is:

 $E[y_n | \mathbf{x}] = 0 * P[y_n = 0] + 1 P[y_n = 1] = P[y_n = 1] = g(\mathbf{x}'_n \mathbf{\beta})$

• The predicted y_n is the predicted probability of Yes.

• Note that β_k is not the usual elasticity. It gives the change in the probability of Yes when x_k changes. Not very interesting.

• To make sense of the parameters, we calculate:

Partial effect = Marginal effect = $\frac{\delta P(\alpha + \beta_1 Income + ...)}{\delta x_k}$

Binary Data – Partial Effects

• The partial effects will vary with level of \boldsymbol{x} . We usually calculate them at the sample means of the \boldsymbol{x} . For example:

Estimated Marginal effect = $f(\alpha + \beta_1 Mean[Income] + ...) * \beta_k$

• The marginal effect can also be computed as the average of the marginal effects at every observation.

• Q: Computing effects at the data means or as an average?

- At the data means: easy and inference is well defined.

- As an average of the individual effects: Its appeal is based on the LLN, but the asymptotic standard errors are problematic.

Binary Data - Partial Effects & Dummies

• A complication in binary choice models arises when **x** includes dummy variables. For example, marital status, sex, MBA degree, etc.

• A derivative (with respect to a small change) is not appropriate to calculate partial effects. A jump from 0 to 1 is not small.

• We calculate the marginal effect as:

$$Prob[y_n = 1 | x_n, d_n = 1] - Prob[y_n = 1 | x_n, d_n = 0],$$

where \boldsymbol{x}_n is computed at sample mean values.

Binary Data – Non-linear Regression

• From the expected mean, we can write:

 $y_n = P[y_n=1] + v_n = g(\mathbf{x}'_n \mathbf{\beta}) + v_n$ -- with $E[v_n | \mathbf{x}] = 0$ \Rightarrow we have a **non-linear regression** relation connecting the binary variable y_n and $P(\mathbf{x}'_n \mathbf{\beta})$.

Usual $P(\mathbf{x}'_{n}\boldsymbol{\beta})$: Normal, Logistic, and Gompertz distributions.

• In principle, NLLS is possible to estimate **β**.

• But, note this model is not homoskedastic.

 $\begin{aligned} \operatorname{Var}[y_n \,|\, \pmb{x}] &= (0 - \operatorname{E}[y_n \,|\, \pmb{x}])^2 * \operatorname{P}[y_n = 0] + (1 - \operatorname{E}[y_n \,|\, \pmb{x}])^2 * \operatorname{P}[y_n = 1] \\ &= (\operatorname{P}[y_n = 1])^2 \, (1 - \operatorname{P}[y_n = 1]) + ((1 - \operatorname{P}[y_n = 1])^2 \operatorname{P}[y_n = 1] \\ &= (1 - \operatorname{P}[y_n = 1]) * \operatorname{P}[y_n = 1] \end{aligned}$

 \Rightarrow NLLS will not be efficient. A GLS adjustment is possible.

Linear Probability Model (LPM)

• A linear regression can also be used to estimate $\boldsymbol{\beta}$ by assuming $P[y_n = 1] = \boldsymbol{x}'_n \boldsymbol{\beta}$

• This model is called the *linear probability model*. It delivers:

$$y_n = P[y_n = 1] + v_n = \mathbf{x}'_n \mathbf{\beta} + v_n$$

 \Rightarrow now, we can regress the binary data against the x'_n to get an estimator of β . Very simple!

• We have constant partial effects: β_k .

• Difficult to obtain this model from utility maximization, but $\Phi(x'_n\beta) \& x'_n\beta$ are closely related over much of the likely range of $x'_n\beta$.

- Advantage: Estimation!
- Potential problems:
- The probability can be outside [0, 1].

- In addition, we may estimate effects that imply a change in x changes the probability by more than +1 or -1. Nonsense!

- Model and data suggest heteroscedasticity. LPM ignores it.

- Partial effects. The linear model predicts constant marginal effects. But, we observe non-linear effects. For example, at very low level of income a family does not own a house; at very high level of income every one owns a house; the marginal effect of income is small.

- Non-normal errors. The errors are $(1 - \mathbf{x}'_n \mathbf{\beta})$ or $(-\mathbf{x}'_n \mathbf{\beta})$.

LPM: GLS

• This model is not homoskedastic. Problem for standard inferences. $Var[y_n = 1 | \mathbf{x}_n] = (1 - P[y_n = 1 | \mathbf{x}_n]) P[y_n = 1 | \mathbf{x}_n]$ $= (1 - \mathbf{x}_n' \mathbf{\beta}) * \mathbf{x}_n' \mathbf{\beta}$ $= \mathbf{x}_n' \mathbf{\beta} - (\mathbf{x}_n' \mathbf{\beta})^2$

 \Rightarrow the variance changes with the level of the regressors.

- β is still unbiased, but inefficient. We can transform the model to gain efficiency: A GLS transformation with sqrt { $x_n'\beta - (x_n'\beta)^2$ }.

<u>Additional Problem</u>: $\mathbf{x}_n' \mathbf{\beta} - (\mathbf{x}_n' \mathbf{\beta})^2$ may not be positive.

• Despite its drawbacks, it is a good place to start when y_n is binary \Rightarrow used to get a "feel" for the relationship between y_n and x_n .

Binary Probit Model: Setup

We have data on whether individuals buy a ticket to see the Houston Rockets or the Houston Texans. We have various characteristics of the tickets/teams, \mathbf{z}_i , (price, team record, opponent's record, etc.) and the individuals who buy them, \mathbf{w}_n (age, sex, married, children, income, education, etc.).

Steps to build a DCM:

1) Specifying the utility to be gained from attending a game as a function of z_i and w_n :

 $U_{n0} = \alpha_0 + \mathbf{z}_{n0}' \,\delta_0 + \mathbf{w}_n' \,\gamma_0 + \varepsilon_{n0} \quad - \text{ utility from Rockets game}$ $U_{n1} = \alpha_1 + \mathbf{z}_{n1}' \,\delta_1 + \mathbf{w}_n' \,\gamma_1 + \varepsilon_{n1} \quad - \text{ utility from Texans game}$

We assume that the errors are *i.i.d.* $(0, \sigma^2)$.

Binary Probit Model: Setup – Normal CDF

2) Probability model:

$$P_{n1}[Texans game] = P(U_{n1} - U_{n0} > 0)$$
$$= P(\mathbf{x}'_{n}\mathbf{\beta} - \xi_{n} > 0)$$
$$= P(\xi_{n} < \mathbf{x}'_{n}\mathbf{\beta})$$

where $\mathbf{x}_n = [1 \ \mathbf{z}_{n1} \ \mathbf{z}_{n0} \ \mathbf{w}_n]'$ and $\xi_{n0} = \varepsilon_{n0} \ -\varepsilon_{n1}$

Let $y_n = 1$ if a Texans game is chosen and 0 otherwise. Then, $P_{n1} = P[y_n = 1] = P(\xi_n < \mathbf{x}_n' \mathbf{\beta})$

Our problem is to estimate β given \mathbf{z}_{ni} , \mathbf{w}_n and \mathbf{y}_n . We assume ε_n is normally distributed. Then, ξ_n is also normal.

$$P(\xi_n < \boldsymbol{x_n}'\boldsymbol{\beta}) = \Phi(\boldsymbol{x_n}'\boldsymbol{\beta}) = \int_{-\infty}^{x_n'\boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\mathcal{E}^2} d\mathcal{E}$$

Binary Probit Model: Setup – Identification

3) Identification:

<u>Normalization</u>: The variance of ξ_n is set to 1, as it is impossible to identify it.

Intuition of normalization: Several views:

1) One can do it formally by observing that the score for σ^2 would be zero for any value.

2) Another is to observe that $P(\xi_n < \boldsymbol{x}_n'\boldsymbol{\beta}) = P[\sigma^{-1} \xi_n < \sigma^{-1} \boldsymbol{x}_n'\boldsymbol{\beta})]$, making $\boldsymbol{\beta}$ identifiable only up to a factor of proportionality.

3) More basic. The problem arises because the numbers in the data are arbitrary - i.e. we could have assigned the values (1, 2) instead of (0, 1) to y_n . It is possible to produce any range of values in y_n .

Binary Probit Model: Non-linear Regression

Now, we can formally write the integral:

$$P(\xi_n < \boldsymbol{x}_n'\boldsymbol{\beta}) = \Phi(\boldsymbol{x}_n'\boldsymbol{\beta}) = \int_{-\infty}^{\boldsymbol{x}_n'\boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\mathcal{E}^2} d\mathcal{E}$$

This is the **Probit Model**.

• In this case, the Probit model estimates

$$y_n = \Phi(\mathbf{x}_n'\mathbf{\beta}) + v_n$$

a non-linear regression model. NLLS is possible.

<u>Note</u>: We could alternatively have just begun with the proposition that the probability of buying a Texans ticket, $P[y_n=1] = \Phi(x_n'\beta)$, is some function of a set of characteristics x_n .

Binary Logit Model: Setup

• Usual setup. Suppose we are interested in whether an agent chooses to visit a physician or not. We have data on doctor's visits, y_n , and the agent's characteristics, X (age, sex, income, etc.).

- Dependent variable: $y_n = 1$, if agent visits a doctor at least one = 0, if no visits.
- RUM: Net utility of visit at least once $U_{visit} = \alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex} + \varepsilon$
- Visit if net utility is positive: Net utility = $U_{visit} U_{no \ visit} > 0$ \Rightarrow Agent chooses to visit: $U_{visit} > 0$ (set $U_{no \ visit} = 0$) $\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_1 \operatorname{Sex} + \varepsilon > 0$ $\varepsilon \ge -[\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_1 \operatorname{Sex}]$

Binary Logit Model: Gumbel Distribution

$$P_n [y_n = 1] = \int I[\mathbf{x}'_n \boldsymbol{\beta} + \varepsilon_n > 0] f(\varepsilon) d\varepsilon$$
$$= \int I[\varepsilon_n > -\mathbf{x}'_n \boldsymbol{\beta}] f(\varepsilon) d\varepsilon$$
$$= \int_{\varepsilon_n = -\mathbf{x}'_n \boldsymbol{\beta}}^{\infty} f(\varepsilon) d\varepsilon$$

<u>Assumption</u>: The error terms are *i.i.d.* and follow a *Gumbel distribution*. That is, $\frac{-\varepsilon_{mi}}{\varepsilon_{mi}}$

$$CDF : F(\varepsilon_{nj}) = e^{-e^{-\varepsilon_{nj}}}$$
$$PDF : f(\varepsilon_{nj}) = e^{-\varepsilon_{nj}} e^{-e^{-\varepsilon_{nj}}}$$

• The Gumbel distribution is the most common of the three types of Fisher-Tippett extreme value distributions, also referred as *Type I distribution*. These are distributions of an extreme order statistic for a distribution of *N* elements. The term "Gumbel distribution" is used to refer to the distribution of the minimum.

Binary Logit Model: Gumbel Distribution

• The Gumbel distribution: General CDF and PDF

$$CDF: F(x) = \exp\left[-e^{-\left(\frac{x-\lambda}{\beta}\right)}\right]$$
$$PDF: f(x) = \frac{1}{\beta}e^{-\left(\frac{x-\lambda}{\beta}\right)-e^{-\left(\frac{x-\lambda}{\beta}\right)}}$$

- <u>Parameters</u>: λ is the location, and β is the scale.
- Mean = $\lambda + \gamma \beta$ (γ : Euler-Mascheroni constant ≈ 0.5772). Variance = $\beta^2 \pi^2/6$

• <u>Nice property</u>: The difference of two Gumbel-distributed RVs has a logistic distribution.

Binary Logit Model: Non-linear Regression

• The logit choice probability:

 $P[y_n = 1] = \frac{exp(V_n)}{1 + exp(V_n)} = \frac{exp(x_n'\beta)}{1 + exp(x_n'\beta)}$

<u>Note</u>: We could alternatively have just begun with the proposition that the probability of visiting a doctor follows a logistic distribution, as a function of the set of characteristics x_n :

$$P[y_n = 1] = \frac{exp(x_n'\beta)}{1 + exp(x_n'\beta)} = F(x_n'\beta)$$

In this case, the logit model estimates:

$$y_n = \frac{exp(x_n'\boldsymbol{\beta})}{1 + exp(x_n'\boldsymbol{\beta})} + v_n$$

another non-linear regression model. Again, NLLS can be used.

Binary Logit Model: Estimation – NLLS

• We can estimate the models using NLLS or MLE.

(1) NLLS. Use Gauss-Newton. Let's linearize P_n : $P_n \approx F(- \mathbf{x}_n' \mathbf{\beta}_0) + \delta F / \delta \mathbf{\beta}_{(0)} (\mathbf{\beta} - \mathbf{\beta}_0)$ J: Jacobian = $\delta F(x_n; \mathbf{\beta}) / \delta \mathbf{\beta}$. $\Rightarrow y_n - F(- \mathbf{x}_n' \mathbf{\beta}_0) \approx J_{n,(0)} (\mathbf{\beta} - \mathbf{\beta}_0) + \text{error}_n$,

• The update is a regression: $y_n - F(-x_n'\beta_0)$ against J_n .

• Given the heteroscedasticity of the models, NLLS will not be efficient. Weighted NLLS can be used. Then, in the algorithm use: - Dependent variable: $y_n - F(-x'_n\beta_0) / sqrt\{(1 - P[y_n=1]) * P[y_n=1]\}$

- Independent variable: $J_{n,(0)}/\operatorname{sqrt}\{(1 - P[y_n=1]) * P[y_n=1]\}$

Binary Logit Model: Estimation – MLE

(2) MLE. Since we specify a pdf, we can do MLE:

 $L(\beta) = \prod_{n} (1 - P[y_n = 1 | \boldsymbol{x}_n, \boldsymbol{\beta}]) P[y_n = 1 | \boldsymbol{x}_n, \boldsymbol{\beta}]$ $\Rightarrow Log L(\beta) = \sum_{n (y=0)} log(1 - F(\boldsymbol{x}_n'\boldsymbol{\beta})) + \sum_{n (y=1)} log(F(\boldsymbol{x}_n'\boldsymbol{\beta}))$

Then, the k f.o.c. for maximization of the total sample $\text{Log L}(\beta)$ are

$$\frac{\partial L}{\partial \beta} = \sum_{i=1}^{T} \left[\frac{y_i f_i}{F_i} + (1 - y_i) \frac{-f_i}{(1 - F_i)} \right] X_i = 0$$

where f_i is the pdf $\equiv dF/d(Z_i)$, which are functions of β and **x**.

• Under most likely conditions this likelihood function is globally concave. ⇒ uniqueness of the ML parameter estimates

• In general, it can get complicated.

Binary Choice Models: Estimation - Review

- In general, we assume the following distributions:
- Normal: **Probit Model** = $\Phi(\mathbf{x}_n'\boldsymbol{\beta})$
- Logistic: Logit Model = $\frac{exp(x_n'\beta)}{1 + exp(x_n'\beta)}$

- Gompertz: Extreme Value Model = $1 - exp[-exp(x_n'\beta)]$

• Methods

- ML estimation (Numerical optimization)
- Bayesian estimation (MCMC methods)
- Simulation-assisted estimation

• Logit]	Model for	doctor's	s visits as f	unction	of age, inco	ome and s
108.01		400001	, 10100 00 1	anouon	or uge,e	ine une s
					1	
	LOGI	ŗ	PRO	BIT	EXTREME	VALUE
Variable	Estimate	t-ratio	Estimate	t-ratio	Estimate	t-ratio
Constant	-0.42085	-2.662	-0.25179	-2.600	0.00960	0.078
Age	0.02365	7.205	0.01445	7.257	0.01878	7.129
Income	-0.44198	-2.610	-0.27128	-2.635	-0.32343	-2.536
Sex	0.63825	8.453	0.38685	8.472	0.52280	8.407
Log-L	-209	97.48	-209	7.35	-209	8.17
Log-L(0)	-216	59.27	-216	9.27	-216	9.27

ML Estimation – Application II (Wooldridge)

• Labor participation of married women (Example 15.2).

Independent Variable	LPM	Logit	Probit
	(OLS)	(MLE)	(MLE)
nwifeinc	0034	021	012
	(.0015)	(.008)	(.005)
educ	.038	.221	.131
	(.007)	(.043)	(.025)
exper	.039	.206	.123
	(.006)	(.032)	(.019)
exper ²	00060	0032	0019
	(.00019)	(.0010)	(.0006
age	016	088	053
	(.002)	(.015)	(.008)
kidsl16	262	-1.443	868
	(.032)	(0.204)	(.119)
kidsge6	.013	.060	.036
	(.013)	(.075)	(.043)
constant	.586	.425	.270
	(.151)	(.860)	(.509)
Number of observations	753	753	753
Percent correctly predicted	73.4	73.6	73.4
Log-likelihood value	_	-401.77	-401.30
Pseudo R-squared	.264	.220	.221

Partial Effects

• Recall the β are not marginal effects. We need to calculate them with the 1st derivative of P[.]. w.r.t. *x*. For the Logit Model:

- Partial effects:

$$\frac{\partial P[y_n=j|x_n]}{\partial x_{nk}} = P_{nj} * (1 - P_{nj}) * \beta_k$$
- Quasi-elasticity

$$\frac{\partial P(y_n=1|x_n)}{\partial x_n} x_n = P_n(1 - P_n)\beta_k x_n$$

 \Rightarrow Both values depend on x_n . We usually evaluate these effects using sample means for x_n . We can also average the partial effects over individuals.

Partial Effects

• The partial effects vary with the models:
LOGIT:
$$\mathbf{E}[y | \overline{\mathbf{x}}] = \exp(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}}) / [1 + \exp(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] = \Lambda(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})$$

 $\hat{\boldsymbol{\delta}} = \frac{\partial \mathbf{E}[y | \overline{\mathbf{x}}]}{\partial \overline{\mathbf{x}}} = [\Lambda(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] [1 - \Lambda(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] \hat{\boldsymbol{\beta}}$
PROBIT $\mathbf{E}[y | \overline{\mathbf{x}}] = \Phi(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})$
 $\hat{\boldsymbol{\delta}} = \frac{\partial \mathbf{E}[y | \overline{\mathbf{x}}]}{\partial \overline{\mathbf{x}}} = [\phi(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] \hat{\boldsymbol{\beta}}$
EXTREME VALUE $\mathbf{E}[y | \overline{\mathbf{x}}] = P_1 = \exp[-\exp(-\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})]$
 $\hat{\boldsymbol{\delta}} = \frac{\partial \mathbf{E}[y | \overline{\mathbf{x}}]}{\partial \overline{\mathbf{x}}} = P_1[-\log P_1] \hat{\boldsymbol{\beta}}$

Partial Effects – Summary (Greene)

• We start with Prob[Outcome] = some $F(\alpha + \beta_1 Income...) = F(x'_n \beta)$

• Partial effect = $\partial F(\alpha + \beta_1 \text{Income...}) / \partial x = f(\alpha + \beta_1 \text{Income...}) \times \beta_1$

Partial effects are derivatives (usually, evaluated at data means.)Results vary with model:

-Logit: $\partial F(\alpha + \beta_1 \text{Income...})/\partial \mathbf{x} = \text{Prob} * (1-\text{Prob}) \times \boldsymbol{\beta}$ -Probit: $\partial F(\alpha + \beta_1 \text{Income...})/\partial \mathbf{x} = \text{Normal density} \times \boldsymbol{\beta}$ -Extreme Value: $\partial F(\alpha + \beta_1 \text{Income...})/\partial \mathbf{x} = \text{Prob} * (-\log \text{Prob}) \times \boldsymbol{\beta}$

Note: Scaling usually erases model differences.

• Partial effects for a Dummy Variable:

If $F(\alpha + \beta_1 \text{Income...} + \beta_k \text{Sex...}) = F(\boldsymbol{x_n}'\boldsymbol{\beta} + \boldsymbol{d_n}'\boldsymbol{\gamma})$ \Rightarrow Partial effect of $d = \text{Prob}[y_n = 1 | \boldsymbol{x_n}, d_n = 1] - \text{Prob}[y_n = 1 | \boldsymbol{x_n}, d_n = 0]$

Partial Effects - Summary (Greene)

• Partial effects with non-linearities

When the model has non-linear effects, squared terms, interactive terms, the partial effects have to incorporate them.

• Suppose we have:

Prob[Outcome] = $F(\alpha + \beta_1 Income + \beta_2 Age + \beta_3 Age^2 ...)$

The usual partial effects, given by a computer software, will make no sense. The software treats Age and Age² as two different variables.

Partial effect = $\partial F(\alpha + \beta_1 \text{Income...}) / \partial \text{Age}$

= $f (\alpha + \beta_1 \text{Income...}) * (\beta_2 + 2\beta_3 \text{ Age})$

<u>Note</u>: Similar problem for interactive terms –say, β_4 Income x Age.

Partial Effects – Summary (Greene)

• Partial effects with interaction effects

- The partial effect calculated as before, the partial derivative of F(.) w.r.t. x_k .

- There is also an *interaction effect*: The cross derivative w.r.t the two interacted variables. Careful, if $x_n'\beta = 0$ the effect will be non-zero!

Example: A Probit Model

```
Prob = \Phi(\alpha + \beta_1 Age + \beta_2 Income + \beta_3 Age*Income + ...)\frac{\partial Prob}{\partial Income} = \phi(\alpha + \beta_1 Age + \beta_2 Income + \beta_3 Age*Income + ...)(\beta_2 + \beta_3 Age)The "interaction effect"
```

 $\frac{\partial^2 \mathbf{P} \mathbf{r} \mathbf{o} \mathbf{b}}{\partial \mathrm{Income} \partial \mathrm{Age}} = -\mathbf{\beta}' \mathbf{x} \ \phi(\mathbf{\beta}' \mathbf{x})(\beta_1 + \beta_3 \mathrm{Income})(\beta_2 + \beta_3 \mathrm{Age}) + \phi(\mathbf{\beta}' \mathbf{x})\beta_3$ $= -(\mathbf{\beta}' \mathbf{x})\phi(\mathbf{\beta}' \mathbf{x})\beta_1\beta_2 \ \mathrm{if} \ \beta_3 = 0. \ \mathrm{Note, \ nonzero \ even \ if} \ \beta_3 = 0.$

Partial Effects - Standard Errors (Greene)

• Q: How do we compute SE for the partial effects?

- Delta method: Variance of linear approximation to non-linear function.

- Krinsky and Robb: Variance of a sample of draws for the underlying population of function.

- Bootstrapping: Variance of a sample replicates the underlying estimates.

Partial Effects - SE: Delta Method

- We use the delta method to calculate the standard errors.
- Delta Method Review:

$$\hat{\delta} = f\left(\hat{\beta}, \mathbf{x}\right)$$

$$Est.Asy.Var\left[\hat{\delta}\right] = \left[\mathbf{G}\left(\hat{\beta}, \mathbf{x}\right)\right]\hat{\mathbf{V}}\left[\mathbf{G}\left(\hat{\beta}, \mathbf{x}\right)\right]$$

$$\hat{\mathbf{V}} = Est.Asy.Var\left[\hat{\beta}\right]$$

$$\mathbf{G}\left(\hat{\beta}, \mathbf{x}\right) = \frac{\partial f\left(\hat{\beta}, \mathbf{x}\right)}{\partial \hat{\beta}'}$$

Partial Effects - SE: Krinsky & Robb

- Estimate β by Maximum Likelihood with b
- Estimate asymptotic covariance matrix with V

- Draw R observations **b**(r) from the normal population, N(**b**, **V**):

$$\mathbf{b}(\mathbf{r}) = \mathbf{b} + \mathbf{C} * \mathbf{v}(\mathbf{r}),$$

 $\boldsymbol{v}(\boldsymbol{r})$ drawn from $N(0,\,\boldsymbol{I})$ and

 \mathbf{C} = Cholesky matrix, \mathbf{V} = \mathbf{CC}

- Compute partial effects **d**(r) using **b**(r)

- Compute the sample variance of $\mathbf{d}(\mathbf{r}), \mathbf{r} = 1, 2, ..., R$

- Use the sample standard deviations of the R observations to estimate the sampling standard errors for the partial effects.

Partial Effects – SE: Bootstrapping

For R repetitions:

- Draw N observations with replacement
- Refit the model
- Recompute the vector of partial effects

- Compute the empirical standard deviation of the R observations on the partial effects.

Binary Lo Dependent Log likel	git Model for Bi: variable ibood function	nary Choice DOCT -2097 481	OR		
DOCTOR	Coefficient	Standard Error	z	Prob. z >Z *	95% Confidence Interval
Constant AGE INCOME FEMALE	Characteristics - 42085*** .02365*** - 44198*** .63825***	in numerator .15810 .00328 .16936 .07551	of Prob -2.66 7.21 -2.61 8.45	[DOCTOR=1] .0078 .0000 .0091 .0000	7307211099 .01722 .03008 7739311003 .49026 .78624
respect t Average p	o the vector of artial effects f	characterist or sample ob	ics s.		
DOCTOR	Partial Effect	Standard Error	z	Prob. z >Z *	95% Confidence Interval
AGE INCOME FEMALE	.00510*** 09531*** .13849***	.00070 .03649 .01603	7.25 -2.61 8.64	.0000 .0090 .0000	.00372 .00648 1668402378 .10707 .16992
	l effect for dum	my variable	is E[y]x	,d=1] - E[y[x,d=0]
# Partia Note: *** The L	, **, * ==> Sig: Linear Probabili	ty Model v	s. Paran	netric Log	git Model
# Partia Note: *** The I DOCTOR	, **, * ==> Sig	ty Model v Standard Error	1%. 5%. s. Paran	Prob.	git Model 95% Confidence Interval

N.T.	1 1		. 1 . 66		,	
• Now, v	we calculate	the part	al effects a	fter scalır	ng.	
	LO	GIT	PR	овіт	EXTREME	VALUE
	Estimate	t ratio	Estimate	t ratio	Estimate	t ratio
Age	.00527	7.235	.00527	7.269	.00506	6.291
Income	09844	-2.611	09897	-2.636	09711	-2.527
Famala	44026	0.662	42050	0.064	42520	0 747
remale	.14026	0.003	.13958	0.204	.13539	0.747

Note: Scaling usually erases model differences.

, n	. 1		1.	• т	
nary D	ata – N	lodel E	valuat	10n I	(Greene
·					
GOF Meas	nres				
SOI meas	uics				
Binary Logit	Model for Bi	nary Choice			
Log likelihor	d function	-2085 92452	F 1111	model	LogI
Restricted 10	a likelihood	-2169.26982	Cons	tant term	only LogL0
Chi squared	5 d.f.]	166.69058	•		1 9
Significance	level	.00000			
McFadden Pseu	ido R-squared	.0384209	🗕 1 - 1	LogL/logL	.0
Estimation ba	ased on N =	3377, К = 6			
Information (Criteria: Nor	malization=1/N			
	Normalized	Unnormalized			
AIC	1.23892	4183.84905	-2Lo	gL + 2K	
Fin.Smpl.AIC	1.23893	4183.87398	-210	gL + 2K +	· 2K(K+1)/(N-K-1)
Bayes IC	1.24981	4220.59751	-2Lo	gL + KlnN	ſ
Hannan Quinn	1.24282	4196.98802	-2Lo	gL + 2Kln	(lnN)
Variable Coe	fficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
+ Chai	acteristics	in numerator of	Prob[Y =	 11	
Constant	1.86428***	. 67793	2.750	.0060	
AGE	10209***	.03056	-3.341	.0008	42.6266
AGESQ	.00154***	.00034	4.556	.0000	1951.22
INCOME	.51206	.74600	.686	. 4925	.44476
	- 01843	01691	-1.090	2756	19.0288
AGE_INC	01045				

Binary Data – Application III - PIM

Example (Bucklin and Gupta (1992)): Purchase Incidence Model

$$p_t^n$$
 (inc) $= \frac{exp(W_t^n)}{1 + exp(W_t^n)}$

 p_t^n (inc) = Probability that household n engages in a category purchase in the store on purchase occasion t.

 W_t^n = Utility of the purchase option. Let W_t^n follow

$$W_t^n = \gamma_0 + \gamma_1 CR^n + \gamma_2 INV_t^n + \gamma_3 CV_t^n + \varepsilon_t^n$$

where

 CR^n = rate of consumption for household *n* INV_t^n = inventory level for household *n*, time *t* CV_t^n = category value for household *n*, time *t*

Binary Data – Application III - PIM

• Goodness-of-Fit

Model	# param.	LogL	U ²	BIC
			(pseudo R ²)	
Null model	1	-13614.4	-	13619.6
Full model	4	-11234.5	.175	11255.2

• Parameter estimates

Parameter	Estimate (t-statistic)
Intercept γ ₀	-4.521 (-27.70)
$CR \gamma_1$.549 (4.18)
INV γ_2	520 (-8.91)
$CV \gamma_3$.410 (8.00)

- Binary Logit Model (Franses and Paap (2001): www.few.eur.nl/few/people/paap)
- Data
 - A.C.Nielsen scanner panel data
 - 117 weeks: 65 for initialization, 52 for estimation
 - 565 households: 300 selected randomly for estimation, remaining hh = holdout sample for validation
 - Data set for estimation: 30.966 shopping trips, 2275 purchases in the category (liquid laundry detergent)
 - Estimation limited to the 7 top-selling brands (80% of category purchases), representing 28 brand-size combinations (= level of analysis for the choice model)

Binary D	Data – App	olication IV	⁷ - Ketchup)
• ML Estimat	tion			
Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.222121	0.668483	0.332277	0.7397
DISPLHEINZ	0.573389	0.239492	2.394186	0.0167
DISPLHUNTS	-0.557648	0.247440	-2.253674	0.0242
FEATHEINZ	0.505656	0.313898	1.610896	0.1072
FEATHUNTS	-1.055859	0.349108	-3.024445	0.0025
FEATDISPLHEIN	Z 0.428319	0.438248	0.977344	0.3284
FEATDISPLHUN ⁻	TS -1.843528	0.468883	-3.931748	0.0001
PRICEHEINZ	-135.1312	10.34643	-13.06066	0.0000
PRICEHUNTS	222.6957	19.06951	11.67810	0.0000

Binary Da	ata –	Applic	ation III - Ketchup	
• Model Evalua	ation			
Mean dependent va	ar	0.890279	S.D. dependent var	0.312598
S.E. of regression		0.271955	Akaike info criterion	0.504027
Sum squared resid		206.2728	Schwarz criterion	0.523123
Log likelihood		-696.1344	Hannan-Quinn criter.	0.510921
Restr. log likelihood		-967.918	Avg. log likelihood	-0.248797
LR statistic (8 df)		543.5673	McFadden R-squared	0.280792
Probability(LR stat)		0.000000		
Obs with Dep=0	307	Total obs	2798	
Obs with Dep=1	2491			

Binary Data - Chow Test I (Greene)

• Health Satisfaction: Panel Data – 1984,85,86,87,88,1991,1994 To test parameter constancy over time, we do a Chow test: 1) Fit a model for each year (7 years total); 2) Fit a pooled model. 3) Do a LR test. LR ~ $\chi^2_{df=36}$

+	+	L4	
 Year	Log Likelihood Function	Sample Size	The log likelihood for the pooled sample is -17365.76. The sum of the log
1984 1985 1986 1987 1987 1988 1991 1994 Pool	-2395.137 -2375.090 -2387.602 -2337.835 -2890.288 -2769.375 -2168.998 -17365.76		likelihoods for the seven individual years is -17324.33. Twice the difference is 82.87. The degrees of freedom is $6 \times 6 =$ 36. The 95% critical value from the chi squared table is 50.998, so the pooling hypothesis is rejected.

cy over groups (r	nale, fema	le), we do a
for males & anot		,,
	her for fer	males: 2) Eit
		11a(c3, 2) 1 ft
k test. LR ~ χ^2_{df} =	:5	
DOCTOR		
nction -2123.8	4754	
Standard Error	b/St.Er.	P[Z >z]
. 67060	2.633	.0085
.03018	-2.842	.0045
.00033	4.168	.0000
74072	. 825	.4095
. /40/3	.010	
.01678	-1.306	.1915
	R test. LR $\sim \chi^2_{df=}$ DOCTOR Inction -2123.8 Standard Error .67060 .03018 .00033	R test. LR ~ $\chi^2_{df=5}$ DOCTOR Inction -2123.84754 Standard Error b/St.Er. .67060 2.633 .03018 -2.842 .00033 4.168

Specification Issues

- Main issues
- Neglected heterogeneity
- Omitted variables
- Endogeneity
 - These problems are relevant for all index models

-Since the normal distribution allows us to obtain concrete results, the focus is on Probit models.

• In linear models:

- Heterogeneity causes OLS to be inefficient, though it is still consistent and unbiased.

- Omitted variables can lead to inconsistent estimates, unless...
 - The omitted variable does not affect y
 - The omitted variable is uncorrelated with x

Hetersocedasticity (Greene)

• Scaling each individual by its variance.

Steps:

(1) Parameterize: $\operatorname{Var}[\varepsilon_n] = \exp(\mathbf{z_n}'\gamma)$

(2) Reformulate probabilities

Binary Probit or Logit: $P_n[y_n = 1 | \mathbf{x}_n] = P(\mathbf{x}_n'\beta / \exp(\mathbf{z}_n'\gamma))$

• Marginal effects are more complicated. If $\mathbf{x}_n = \mathbf{z}_n$, signs and magnitudes of marginal effects tend to be ambiguous.

Example: For the univariate case:

 $E[y_n | x_n, z_n] = \Phi[x_n'\beta/\exp(z_n'\gamma)]$ $\partial E[y_n | x_n, z_n] / \partial x_n = \varphi[x_n'\beta/\exp(z_n'\gamma)] * \beta$ $\partial E[y_n | x_n, z_n] / \partial z_n = \varphi[x_n'\beta/\exp(z_n'\gamma)] * [-x_n'\beta/\exp(z_n'\gamma)] * \gamma$

Hetersocedasticity (Greene)

Scaling with a dummy variable. For example,
 Var[ε_n] = exp(z_n'γ)

Prob(Doctor=1) = F
$$\left(\frac{\beta' \mathbf{x}_i}{\exp(\gamma \text{Female}_i)}\right)$$
 is equivalent to

 $Prob(Doctor=1) = F(\beta' \mathbf{x}_i) \text{ for men}$

Prob(Doctor=1) = F($\lambda \beta' \mathbf{x}_i$) for women where $\lambda = e^{-\gamma}$

Heteroscedasticity of this type is equivalent to an implicit scaling of the preference structure for the two (or G) groups.

Hetersocedasticity – Application I								
1100010			, incuti					
• Determi	nants of Doc	tor's visits (L	logit Mo	del).				
Model for	Variance: Va	$r[c_1] = evo(1)$	emale'v)				
Widdel 101	variance. va	$u[c_n] - cxp(n)$)				
Binary Log:	it Model for Bi	inary Choice						
Dependent	variable	DOCTOR						
Log likeli	nood function	-2096.42765						
Restricted	log likelinood	1 -2109.20982						
Chi squared		145.00433						
McFadden P	se ievei seudo B-squarec	1 0335791						
Estimation	based on N =	3377 K = 6						
Heterosceda	astic Logit Mod	del for Binary D	ata					
+								
Variable 0	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X			
+-								
C1	haracteristics	in numerator of	Prob[Y =	1]				
Constant	1.31369***	. 43268	3.036	.0024				
AGE	05602***	.01905	-2.941	.0033	42.6266			
AGESQ	.00082***	.00021	3.838	.0001	1951.22			
INCOME	.11564	. 47799	.242	. 8088	. 44476			
AGE_INC	UU/04	.01086	648	.5172	19.0288			
D:	isturbance vari	Lance Terms	6 706					
EEMAT.E !	- 81675***	12143	-6 / 75	0000	46-44			

Hetersocedasticity Test (Greene) • Determinants of Doctor's visits (Probit Model). To test for heteroscedasticity, we do a LR test: 1) Fit restricted model (H₀: No heteroscedasticity), and 2) Fit unrestricted model (H₁: $\operatorname{Var}[\varepsilon_n] = \exp(\mathbf{z}_n' \gamma)$). Then, 3) Do a LR test. LR ~ $\chi^2_{df=4}$ Heteroscedastic LogL = -2888.328 LogLR = -2890.288 Chisq = 3.920 Wald = 3.728 LM = 3.858 Homoscedastic LogL = -2890.288 LogL0 = -3010.421 Chisq = 240.266 Mean of X Coef. |Variable| P t PI S.E. t Coef. S.E. ____ |Constant| |AGE | |EDUC | |INCOME | .2349 .0032 .0148 .2083 .0828 .0756 .4816 -.0203 .0520 .2180 .1423 .0020 .0089 .1265 3.383 -10.386 5.872 1.724 .0007| .0000| .0000| .0847| 1.0000 .7595 3.233 -10.266 5.805 1.658 .0012 .0000 .0000 .0972 .0860 .3454 11.4181 .34874 MARRIED -.0483 -.584 1.692 .5592 -.0311 .0508 -.612 1.727 .5403 .75217 KIDS .1278 .0907 .0800 .0841 .37943 Variance Function .0141 .5193 .027 -.1608 .1975 -.814 .0291 .1073 .271 INCOME .9784 .34874 .4158 .7864 .1750 KIDS FEMALE .37943 WORKING -.1831 .1350 -1.356 .67232 Partial Effects Partial Effects Partial Lifects | 0008 -10.392 .0000| 43.4401 .0034 5.875 .0000| 11.4181 .0486 1.724 .0847| .34874 .0194 -.614 .5394| .75217 .0177 1.733 .0831| .37943 -.0080 AGE .0008 -9.469 5.443 .0000 -.0078 .0200 .0838 -.0119 .0307 .0190 EDUC .0000 MARRIED .1539 .0217 .0478 .558 .5769 .4301 .5113 .0859 -.0171 .0314

-.0029

.0104

FEMALE

-.282

.7779

.48405

• Dotorr	• Determinente of Dector's visite (Drobit Model)								
• Deten	minants of Do	ctors visits (Pic	but mode	<i>:</i> 1).					
We calcu	ulate the "Rob	ust" Covariance	Matrix: V	Var[b] = ∡	4 -1 B A -1				
				L J					
Variable	Coefficient	Standard Error	b/St Fr	 D[7 >71	Mean of				
variabie			D/SC.EI.						
I:	Robust Standard	l Errors							
Constant	1.86428***	. 68442	2.724	.0065					
AGE	10209***	.03115	-3.278	.0010	42.626				
AGESQ	.00154***	.00035	4.446	.0000	1951.2				
INCOME	.51206	.75103	. 682	. 4954	. 4447				
AGE INC	01843	.01703	-1.082	.2792	19.028				
FEMALE	.65366***	.07585	8.618	.0000	.4634				
+	Conventional St	andard Errors Ba	sed on Se	cond Deriv	atives				
Constant	1.86428***	. 67793	2.750	.0060					
AGE	10209***	.03056	-3.341	.0008	42.626				
AGESQ	.00154***	.00034	4.556	.0000	1951.2				
INCOME	.51206	.74600	.686	.4925	. 4447				
AGE_INC	01843	.01691	-1.090	.2756	19.028				
FEMALE	.65366***	.07588	8.615	.0000	.4634				

Odds Ratio

• A popular descriptive statistics is the odds ratio. The odds ratio is just the ratio of two choice probabilities:

Odds Ratio =
$$\frac{P(y_n = 1 \mid x_n)}{P(y_n = 0 \mid x_n)}$$

• For the Logit Model the odds ratio is very simple to calculate:

$$\frac{P(y_n = 1 \mid x_n)}{P(y_n = 0 \mid x_n)} = \frac{e^{X_n \beta} / (1 + e^{X_n \beta})}{1 / (1 + e^{X_n \beta})} = e^{X_n \beta}$$

• We may be interested in measuring the effect of a unit change in the odds ratio. Simple to do for a dummy variable (D=1 to D=0). For the Logit Model, this ratio simplifies to exp(coeff. of dummy):

Ratio of Odds Ratio =
$$\frac{e^{X_n\beta+\gamma D} / (1+e^{X_n\beta+\gamma D})}{1/(1+e^{X_n\beta+\gamma D})} / \frac{e^{X_n\beta} / (1+e^{X_n\beta})}{1/(1+e^{X_n\beta})} = e^{\gamma}$$

Odds Ratio - Application (Greene)

• We are interested in estimating the change in odds of buying public insurance for a female headed household (D=1) compared to a male headed household (D=0). For the Logit Model:

Odds ratio: exp(.23427) = 1.26399 (odds up by 26%)

Endogeneity

• In the doctor's visits problem, we want to study the effect of public health insurance, h, on doctor's visits, y_n . But, individuals also make a decision to take public health insurance or not.

 \Rightarrow endogeneity problem!

• Two cases: (1) h is continuous (complicated); (2) h is binary (easier).

• There are many approaches to estimate this problem: ML. GMM, ad-hoc solutions, especially for case (2).

• We focus on MLE. It requires full specification of the model, including the assumption that underlies the endogeneity of h_n .

• We present an example for the Probit Model.

Endogeneity - ML

- FIML estimation. Steps:
 - Write down the joint density: $f(y_n | \mathbf{x}_n, \mathbf{z}_n) * f(\mathbf{z}_n)$
 - Assume a Probit Model \Rightarrow Normal for $f(y_n | \mathbf{x}_n, \mathbf{z}_n)$: $P[y_n=1 | \mathbf{x}_n, \mathbf{z}_n] = \Phi(\mathbf{x}_n' \mathbf{\beta} + h_n' \mathbf{\theta} + \mathbf{\varepsilon}_n).$
 - Assume marginal for $f(\mathbf{z}_n)$, a normal distribution.
 - Use the projection: $\varepsilon_n | u_n = [(\rho \sigma_u) / \sigma_u^2] u_n + v_n,$ with $\sigma_v^2 = (1 - \rho^2).$ - Insert projection in
 - $P[y_n=1 | \mathbf{x}_n, \mathbf{z}_n] = \Phi(\mathbf{x}_n' \mathbf{\beta} + h_n' \mathbf{\theta} + [(\rho \sigma_u) / \sigma_u^2] u_n)$
 - Replace $u_n = h_n \mathbf{z}_n' \alpha$ in $P(y_n)$.
 - Maximize Log L(.) w.r.t. ($\boldsymbol{\beta}, \boldsymbol{\alpha}, \boldsymbol{\theta}, \boldsymbol{\rho}, \boldsymbol{\sigma}_{u}$)

Endogeneity - ML

• Two step limited information ML (Control Function) is also possible:

- Use OLS to estimate α , $\sigma_u \Rightarrow$ get estimates a and s.
- Compute the residual u_n . Standardize them: \hat{u}/s
- Plug residuals \hat{u}/s into Φ .
- Fit the Probit Model.
- Transform the estimated coefficients into the structural ones.
- Use delta method to calculate standard errors.

