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Lecture 4
Binary Data

(for private use, not to be posted/shared online).

DCM: Binary Data – Intuition

• It is common to have binary {(1, 0); Yes/No)} data: Invest in 
stocks or not, visit a doctor or not,  buy a Houston Texans ticket or 
not, etc. 

• We want to model the binary choice decision as a function of some 
independent variables 𝒙௡. Recall that we can do OLS, but …
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• A regression will not work well, we want to predict values between 0 
and 1. If we interpret the values of 𝑦௡ as probabilities, the line does 
not work either.

• Intuition: We need to transform the data from discontinuous to 
continuous, like the dependent variable. We think of 𝑦௡ as 
probabilities, but, with the idea that 𝑓 𝒙௡ should produce be very 
high or very low values. A candidate function: a CDF.

• This is the basic idea of all the models with discrete choice. For 
example, in a Probit model, we use the normal distribution as 𝑓 𝒙௡ . 
The S shape CDF will fit the data much better than a simple line.

DCM: Binary Data – Intuition

• Q: How can we model this choice decision?

- We can use an ad-hoc model, say: 𝑦௡ = 𝒙௡′𝛃 + ௡
- We can use economic theory. This is what we do.

• We use the McFadden approach, described in the previous lecture. 

1) We model a consumer’s decision (1=Yes or 0=No) by 
specifying the utility to be gained from 1 as a function of: 

- characteristics of the decision, 𝒛௡: price, quality, fun, etc.)  

- characteristics of individuals, 𝒘௡: age, sex, income, education, etc.):

U௡଴ = 𝛼଴ + 𝒛௡଴′ 𝛿଴ + 𝒘௡′ 𝛾଴ + ௡଴ – utility from decision 0

U௡ଵ = 𝛼ଵ + 𝒛௡ଵ′ 𝛿ଵ + 𝒘௡′ 𝛾ଵ + ௡ଵ – utility from decision 1

We assume that the errors are i.i.d. (0, σ2).

DCM: Binary Data – Review
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2) We introduce the probability model: 

𝑃௡ଵ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 1  ൌ 𝑃ሺ𝑈௡ଵ െ 𝑈௡଴ ൐ 0ሻ
ൌ 𝑃ሺ𝛼ଵ + 𝒛௡ଵ′ 𝛿ଵ + 𝒘௡′ 𝛾ଵ + ௡ଵ ൐

𝛼଴ + 𝒛௡଴′ 𝛿଴ + 𝒘௡′ 𝛾଴ + ௡଴ሻ
ൌ 𝑃ሺ𝒙௡ᇱ 𝛃 െ ξ௡ ൐ 0ሻ
ൌ 𝑃ሺ ξ௡ ൏ 𝒙௡ᇱ 𝛃ሻ

where 𝒙௡= [1 𝒛௡ଵ 𝒛௡଴ 𝒘௡ ]’ and  ξ௡ = ௡଴  െ ௡ଵ.

Then,

𝑃௡ଵ = P[𝑦௡ = 1 ] = P(ξ௡ < 𝒙௡’β)

Our problem is to estimate β given 𝒛௡, 𝒘௡ and 𝑦௡. To proceed with 
the estimation, we assume ௡ follows a specific distribution. Then, 
we can naturally estimate the model using ML.

DCM: Binary Data – Review

Probability Model for Choice Between Two Alternatives

௡଴ ൐  െሾ𝛼଴ + 𝒛௡଴′ 𝛿଴ + 𝒘௡′ 𝛾଴ ]

P௡ = P[௡ >- 𝒙௡’β]-𝒙௡’β

DCM: Binary Data – Review



RS – Lecture 17

4

3) Estimation

If we assume we know f(௡), ML is a natural way to proceed.

L() = n (1 - 𝑃ሾ𝑦௡ = 1|𝒙, 𝛃]) 𝑃ሾ𝑦௡ = 1|𝒙, 𝛃]

 Log L() = ∑ log ሺ1 െ 𝐹ሺ𝒙௡′𝛃ሻ
ே
௡ሺ௬ୀ଴ሻ ሻ + ∑ log ሺ𝐹ሺ𝒙௡′𝛃ሻ

ே
௡ሺ௬ୀଵሻ ሻ

• If we have grouped data: 𝑝௜, 𝒙௜ , & 𝑛௜, then 

 Log L() = ∑ 𝑛௜[𝑝௜ log[F(𝒙௡′𝛃 )] + (1 −𝑝௜) log{(1− F(𝒙௡′𝛃 )}] ே
௜ୀଵ

Note: NLLS is easy in this context. Since:

E[𝑦௡|𝒙] = P[𝑦௡=1] = P(ξ௡ < 𝒙௡′𝛃 ) = 𝑔ሺ𝒙௡ᇱ 𝛃ሻ
 𝑦௡ = E[𝑦௡|𝒙] + 𝑣௡ = 𝑔ሺ𝒙௡ᇱ 𝛃ሻ + 𝑣௡ -- with E[𝑣௡|𝒙] = 0.

(Bayesian and simulation methods can be used too.)

DCM: Binary Data – Review

• What do we do learn from this model?

- Are the 𝑧௡ & 𝑤௡ “relevant?”

- Can we predict behavior? Will a specific company do an M&A? 
How many mergers will happen next year?

- What is the effect of a change in 𝒙௡ in 𝑦௡? Do traders trade more 
if they receive more research/information? 

DCM: Binary Data – Review
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• In the previous theoretical setup, there is an unobservable variable, 
the difference in utilities. We can assume that this latent variable, 𝑦௡∗, is 
distributed around its mean: E[ 𝑦௡∗| 𝑿௡] = β0 + 𝒙௡′β1

• We observed 𝑦’s (choices) -in the binary case, (0, 1). We observe 
𝑦௡=1  for that portion of  the latent variable distribution above 𝜏. 

𝑦௡ ൌ ቊ
 1      𝑖𝑓   𝑦௡∗ ൐  𝜏 
0      𝑖𝑓    𝑦௡∗ ൑  𝜏

Then, if  𝑦௡∗ = (𝑈௡ଵ െ 𝑈௡଴) > 0, 𝑛 selects 1. ⇒ 𝜏 = 0.

• Given the conditional expectation assumed:
⇒   𝑦௡∗ = 𝑈௡ଵ െ 𝑈௡଴= β0 + 𝒙௡′β1 + ௡, ௡~ D(0, 1)

Binary Data – Latent Variable Interpretation

10

E[𝑦௡*] = β0 + β1 𝑥௜

=0

𝑦*

𝑦௡ = 1   (௡ > െ β0 െ β1 𝑥௡)

𝑥ଵ 𝑥ଶ

• Latent Variable Model –Goldeberg (1964): 
𝑦௡∗ = 𝑈௡ଵ െ 𝑈௡଴= β0 + β1 𝑥௜ + ௡, ௡ ~ symmetric D(0,1)

• P(𝑦௡∗ > 0) = Prob(β0 + β1 𝑥௡ + ௡ > 0) 
= Prob(௡ > െ β0 െ β1 𝑥௡) = P(𝑦௡ = 1)

௡ = െ β0 െ β1 𝑥௡

Prob(௡ > െ β0 െ β1 𝑋௡)

𝑋

𝑦௡ = 0     (௡ < െ β0 െ β1 𝑥௡)

Binary Data – Latent Variable Interpretation

• Even if  E(𝑦௡∗|𝑥௡) is in the (pink) portion where 𝑦௡ = 1, we can still 
observe a 0 if  ௡ is large and negative.
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• In general, we are interested not in the probability per se, but on  
the expected (or other central) value and the effect of a change in xi

on the expected value. With binary (0, 1) data, the expected mean is: 

E[𝑦௡| 𝒙] = 0 * P[𝑦௡ = 0] + 1 P[𝑦௡ = 1] = P[𝑦௡= 1] = 𝑔ሺ𝒙௡ᇱ 𝛃ሻ

• The predicted 𝑦௡ is the predicted probability of Yes.

• Note that β௞ is not the usual elasticity. It gives the change in the 
probability of Yes when 𝑥௞ changes. Not very interesting.

• To make sense of the parameters, we calculate: 

Partial effect = Marginal effect = 
ఋ௉ሺఈା ஒభ ூ௡௖௢௠௘ା … ሻ 

ఋ௫ೖ

Binary Data – Partial Effects

• The partial effects will vary with level of 𝒙. We usually calculate 
them at the sample means of the 𝒙. For example:

Estimated Marginal effect = 𝑓ሺ𝛼 ൅  βଵ 𝑀𝑒𝑎𝑛ሾ𝐼𝑛𝑐𝑜𝑚𝑒ሿ ൅  … ሻ * β௞

• The marginal effect can also be computed as the average of the 
marginal effects at every observation. 

• Q: Computing effects at the data means or as an average?

- At the data means: easy and inference is well defined.

- As an average of the individual effects: Its appeal is based on the 
LLN, but the asymptotic standard errors are problematic.

Binary Data – Partial Effects
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• A complication in binary choice models arises when x includes 
dummy variables. For example, marital status, sex, MBA degree, etc. 

• A derivative (with respect to a small change) is not appropriate to 
calculate partial effects. A jump from 0 to 1 is not small.

• We calculate the marginal effect as:

Prob[𝑦௡ = 1|𝒙௡,   𝑑௡=1] െ Prob[𝑦௡ = 1|𝒙௡, 𝑑௡=0],

where 𝒙௡ is computed at sample mean values. 

Binary Data – Partial Effects & Dummies

• From the expected mean, we can write:

𝑦௡ = P[𝑦௡=1] + 𝑣௡= 𝑔ሺ𝒙௡ᇱ 𝛃ሻ + 𝑣௡ -- with E[𝑣௡|𝒙] = 0 

 we have a non-linear regression relation connecting the binary 
variable 𝑦௡ and P(𝒙௡ᇱ 𝛃). 

Usual P(𝒙௡ᇱ 𝛃): Normal, Logistic, and Gompertz distributions. 

• In principle, NLLS is possible to estimate 𝛃.

• But, note this model is not homoskedastic. 

Var[𝑦௡|𝒙] = (0 െ E[𝑦௡|𝒙])2 * P[𝑦௡=0] + (1 െ E[𝑦௡|𝒙])2 * P[𝑦௡=1]

= (-P[𝑦௡=1])2 (1 െ P[𝑦௡=1]) + ((1 െ P[𝑦௡=1])2 P[𝑦௡=1] 
= ሺ1 െ P[𝑦௡ ൌ 1ሿሻ * P[𝑦௡ ൌ 1ሿ

 NLLS will not  be efficient. A GLS adjustment is possible.

Binary Data – Non-linear Regression
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• A linear regression can also be used to estimate 𝛃 by  assuming 

P[𝑦௡ ൌ 1] = 𝒙௡ᇱ 𝛃

• This model is called the linear probability model. It delivers:

𝑦௡ = P[𝑦௡ ൌ 1] + 𝑣௡ = 𝒙௡ᇱ 𝛃 + 𝑣௡
 now, we can regress the binary data against the 𝒙௡ᇱ to get an 
estimator of 𝛃. Very simple!

• We have constant partial effects: β௞ .

• Difficult to obtain this model from utility maximization, but 
Φ(𝒙௡ᇱ 𝛃) & 𝒙௡ᇱ 𝛃 are closely related over much of the likely range of 
𝒙௡ᇱ 𝛃. 

Linear Probability Model (LPM) 

Amemiya notes that the linear probability model 0.5 + .4(𝒙௡ᇱ 𝛃) and 
Φ(𝒙௡ᇱ 𝛃) are reasonably close for values of Φ between .3 and .7. 

LPM: Approximation
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LPM: Advantages & Disadvantages

• Advantage: Estimation!

• Potential problems: 

- The probability can be outside [0, 1].

- In addition, we may estimate effects that imply a change in x 
changes the probability by more than +1 or –1. Nonsense!

- Model and data suggest heteroscedasticity. LPM ignores it.

- Partial effects. The linear model predicts constant marginal effects. 
But, we observe non-linear effects. For example, at very low level of 
income a family does not own a house; at very high level of income 
every one owns a house; the marginal effect of income is small.

- Non-normal errors. The errors are (1 െ 𝒙௡ᇱ 𝛃 ) or (െ 𝒙௡ᇱ 𝛃 ).

• This model is not homoskedastic. Problem for standard inferences.

Var[𝑦௡ = 1|𝒙௡] = ሺ1 െ 𝑃[𝑦௡ = 1|𝒙௡ሿሻ 𝑃[𝑦௡ = 1|𝒙௡ሿ
= (1 െ 𝒙௡′𝛃) * 𝒙௡′𝛃
= 𝒙௡′𝛃 െ (𝒙௡′𝛃)2

⇒ the variance changes with the level of the regressors.

- 𝛃 is still unbiased, but inefficient. We can transform the model to 
gain efficiency: A GLS transformation with sqrt{𝒙௡′𝛃 െ (𝒙௡′𝛃)2 }.

Additional Problem: 𝒙௡′𝛃 െ (𝒙௡′𝛃)2 may not be positive.

• Despite its drawbacks, it is a good place to start when 𝑦௡ is binary

⇒ used to get a “feel” for the relationship between 𝑦௡ and 𝒙௡.

LPM: GLS 
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Binary Probit Model: Setup 

We have data on whether individuals buy a ticket to see the Houston 
Rockets or the Houston Texans. We have various characteristics of 
the tickets/teams, 𝒛௜, (price, team record, opponent’s record, etc.) and 
the individuals who buy them, 𝒘௡ (age, sex, married, children, 
income, education, etc.).

Steps to build a DCM: 

1) Specifying the utility to be gained from attending a game as a 
function of 𝒛௜ and 𝒘௡:

U௡଴ = 𝛼଴ + 𝒛௡଴′ 𝛿଴ + 𝒘௡′ 𝛾଴ + ௡଴ – utility from Rockets game

U௡ଵ = 𝛼ଵ + 𝒛௡ଵ′ 𝛿ଵ + 𝒘௡′ 𝛾ଵ + ௡ଵ – utility from Texans game

We assume that the errors are i.i.d. (0, σ2).

2) Probability model: 

𝑃௡ଵ 𝑇𝑒𝑥𝑎𝑛𝑠 𝑔𝑎𝑚𝑒  ൌ 𝑃ሺ𝑈௡ଵ െ 𝑈௡଴ ൐ 0ሻ
ൌ 𝑃ሺ𝒙௡ᇱ 𝛃 െ ξ௡ ൐ 0ሻ
ൌ 𝑃ሺ ξ௡ ൏ 𝒙௡ᇱ 𝛃ሻ

where 𝒙௡=[1 𝒛௡ଵ 𝒛௡଴ 𝒘௡ ]’ and  ξ௡଴ = ௡଴  െ ௡ଵ

Let 𝑦௡ = 1 if a Texans game is chosen and 0 otherwise. Then,

𝑃௡ଵ = P[𝑦௡ = 1] = P(ξ௡ < 𝒙௡′𝛃)

Our problem is to estimate 𝛃 given 𝒛௡௜, 𝒘௡ and 𝑦௡. We assume ௡
is normally distributed. Then, ξ௡ is also normal.

P(ξ௡ < 𝒙௡′β) = Φሺ𝒙௡′β) ൌ ׬
ଵ

ଶగ 
𝒆ି 

𝟏
𝟐
 𝟐  𝑑𝒙೙ᇲ β

ିஶ

Binary Probit Model: Setup – Normal CDF



RS – Lecture 17

11

3) Identification: 

Normalization: The variance of ξ௡ is set to 1, as it is impossible to 
identify it. 

Intuition of normalization: Several views:

1) One can do it formally by observing that the score for σ2 would 
be zero for any value. 

2) Another is to observe that P(ξ௡ < 𝒙௡′β) = P[σ−1 ξ௡ < σ−1𝒙௡′β)],

making β identifiable only up to a factor of proportionality. 

3) More basic. The problem arises because the numbers in the data 
are arbitrary  - i.e. we could have assigned the values (1, 2) instead of 
(0, 1) to 𝑦௡. It is possible to produce any range of values in 𝑦௡.

Binary Probit Model: Setup – Identification

Now, we can formally write the integral: 

P(ξ௡ < 𝒙௡′β) = Φሺ𝒙௡′β) ൌ ׬
ଵ

ଶగ 
𝒆ି

𝟏
𝟐
𝟐  𝑑𝒙೙ᇲ β

ିஶ

This is the Probit Model. 

• In this case, the Probit model estimates

𝑦௡ = Φ(𝒙௡′𝛃 ) + 𝑣௡, 

a non-linear regression model. NLLS is possible.

Note: We could alternatively have just begun with the proposition 
that the probability of buying a Texans ticket, P[𝑦௡=1] = Φ(𝒙௡′𝛃 ),
is some function of a set of characteristics 𝒙௡. 

Binary Probit Model: Non-linear Regression
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• We derived : E[𝑦௡|𝒙] = P[𝑦௡ = 1]. We assume a normal CDF.
⇒ 𝑦௡ = Φሺ𝒙௡′𝛃ሻ + 𝑣௡

P(𝑦௡ ൌ 1 | 𝑥௡) = ׬ 𝑓   𝑑௫೙ᇲ β
ିஶ ൌ Φሺ𝑥௡′β)

P(𝑦௡ ൌ 0 | 𝑥௡) = 1 െΦሺ𝑥௡′β) 

 𝒙௡′𝛃

1

0

PDF

CDF

Φሺ𝒙௡′𝛃)

P[𝑦௡=1]

𝒙𝟑′𝛃

Pr[𝑦ଷ=1]

0.00
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0.20
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0.40

0.45

X3β

Binary Probit Model - Summary

Binary Logit Model: Setup

• Usual setup. Suppose we are interested in whether an agent chooses 
to visit a physician or not. We have data on doctor’s visits, 𝑦௡, and 
the agent’s characteristics, X (age, sex, income, etc.).

• Dependent variable:  𝑦௡ = 1, if agent visits a doctor at least one

= 0, if no visits.

• RUM:  Net utility of visit at least once
𝑈௩௜௦௜௧ =  + 1 Age + 2 Income + 3 Sex + 

• Visit if net utility is positive: Net utility = 𝑈௩௜௦௜௧ – 𝑈௡௢ ௩௜௦௜௧ >0 

⇒ Agent chooses to visit:  𝑈௩௜௦௜௧ > 0 (set 𝑈௡௢ ௩௜௦௜௧ = 0 )

 + 1 Age + 2 Income + 1 Sex +  > 0
 > -[ + 1 Age + 2 Income + 1 Sex ]
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• Agent chooses to visit:  𝑈௩௜௦௜௧ > 0 
 + 1 Age + 2 Income + 1 Sex +  > 0
 > -[ + 1 Age + 2 Income + 1 Sex ]

• Add a probability model for 
Prob[𝑦௡ = 1]  =  Prob[ > -( + 1 Age + 2 Income + 3 Sex)]

Binary Logit Model: Setup

•    𝑃௡ [𝑦௡ ׬ = [1 =  𝐼ሾ𝒙௡ᇱ β ൅  ௡ ൐ 0ሿ 𝑓   𝑑

׬ = 𝐼ሾ௡ ൐ െ𝒙௡ᇱ βሿ 𝑓   𝑑

׬ = 𝑓   𝑑ஶ
೙ ୀ ି𝒙೙

ᇲ β

Assumption: The error terms are i.i.d. and follow a Gumbel distribution. 
That is, 

• The Gumbel distribution is the most common of the three types of 
Fisher-Tippett extreme value distributions, also referred as Type I 
distribution. These are distributions of an extreme order statistic for 
a distribution of N elements. The term "Gumbel distribution" is used 
to refer to the distribution of the minimum.
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Binary Logit Model: Gumbel Distribution
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• The Gumbel distribution: General CDF and PDF
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• Parameters:  λ is the location, and β is the scale.

• Mean = λ + γ β (γ: Euler-Mascheroni constant ≈0.5772).

Variance = β2 π2/6 

• Nice property: The difference of  two Gumbel-distributed RVs has a 
logistic distribution.

Binary Logit Model: Gumbel Distribution

• Graph: Gumbel pdf 

• Parameters used in the Logit Model: λ=0, β=1

Mean = γ ≈ 0.5772.

Variance = π2/6 ≈ 1.65.

Binary Logit Model: Gumbel Distribution
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• Assuming linearity for the RUM-model, we state the choice problem 
in terms of covariates: 

𝑃௡ ൌ ׬  𝑓   𝑑ஶ
೙ ୀି 𝒙೙

ᇲ β

= 1 െ  𝐹ሺെ𝒙௡ᇱ β)

= 1 െ 1/[1 ൅ 𝑒𝑥𝑝ሺ𝒙௡ᇱ β)] 

= 𝑒𝑥𝑝ሺ𝒙௡ᇱ β)/[1 ൅ 𝑒𝑥𝑝ሺ𝒙௡ᇱ β)] (This is the logistic function.)

• Technical Details:

where we have used change of variables with 𝑐 = -ln(1 + exp(𝒙௡ᇱ β))
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Binary Logit Model: Gumbel Distribution

• Properties:

- Nonlinear effect of  covariates on dependent variable

- Logistic curve with inflection point at P=0.5

• We have the following expression for the logit choice probability:

P[𝑦௡ = 1] = 
௘௫௣ሺ௏೙)

ଵ ା ௘௫௣ሺ௏೙) = 
௘௫௣ሺ𝒙೙ᇱ𝜷)

ଵ ା ௘௫௣ሺ𝒙೙ᇱ𝜷)

Binary Logit Model: Logistic Function



RS – Lecture 17

16

Note: We could alternatively have just begun with the proposition 
that the probability of  visiting a doctor follows a logistic distribution, 
as a function of  the set of  characteristics 𝒙௡:

P[𝑦௡ = 1] = 
௘௫௣ሺ𝒙೙ᇱ𝜷)

ଵ ା ௘௫௣ሺ𝒙೙ᇱ𝜷) = 𝐹ሺ𝒙௡′𝛃) 

In this case, the logit model estimates:

𝑦௡ = 
௘௫௣ሺ𝒙೙ᇱ𝜷)

ଵ ା ௘௫௣ሺ𝒙೙ᇱ𝜷) + 𝑣௡, 

another non-linear regression model. Again, NLLS can be used.

• The logit choice probability:

P[𝑦௡ = 1] = 
௘௫௣ሺ௏೙)

ଵ ା ௘௫௣ሺ௏೙) = 
௘௫௣ሺ𝒙೙ᇱ𝜷)

ଵ ା ௘௫௣ሺ𝒙೙ᇱ𝜷)

Binary Logit Model: Non-linear Regression

Binary Logit Model: Estimation – NLLS

• We can estimate the models using NLLS or MLE.

(1) NLLS. Use Gauss-Newton. Let’s linearize 𝑃௡:

𝑃௡ ≈ F(- 𝒙௡′𝛃0) + δF/δβ(0) (β - β0) 𝑱:Jacobian = δF(xn;β)/δβ.

⇒ 𝑦௡ - F(- 𝒙௡′𝛃0) ≈ 𝑱௡,ሺ଴ሻ (β - β0) + errorn,

• The update is a regression: 𝑦௡ - F(- 𝒙௡′𝛃0) against 𝑱௡.

• Given the heteroscedasticity of  the models, NLLS will not be 
efficient. Weighted NLLS can be used. Then, in the algorithm use:

- Dependent  variable: 𝑦௡ - F(- x’nβ0) /sqrt{(1 - P[𝑦௡=1]) * P[𝑦௡=1]}

- Independent variable: 𝑱௡,ሺ଴ሻ/sqrt{(1 - P[𝑦௡=1]) * P[𝑦௡=1]}
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Binary Logit Model: Estimation – MLE

(2) MLE. Since we specify a pdf, we can do MLE:  

L() = ∏ (1 - P
 
[𝑦௡ = 1|𝒙௡, 𝛃]) P[𝑦௡=1|𝒙௡, 𝛃]௡

 Log L() = ∑ 𝑙𝑜𝑔ሺ1 െ 𝐹ሺ𝒙௡′𝛃ሻ௡ ሺ௬ୀ଴ሻ ሻ ൅  ∑ 𝑙𝑜𝑔ሺ𝐹ሺ𝒙௡′𝛃ሻ௡ ሺ௬ୀଵሻ ሻ

Then, the 𝑘 f.o.c. for maximization of  the total sample Log L() are

where 𝑓௜ is the pdf  ≡ d𝐹/d(Zi), which are functions of  β and x.

• Under most likely conditions this likelihood function is globally 
concave.  uniqueness of  the ML parameter estimates

• In general, it can get complicated.

   
T

i i i
i i

i 1 i i

L y f f
1-y X 0

β F 1 F

  
      

Binary Choice Models: Estimation - Review

• In general, we assume the following distributions: 

– Normal:  Probit Model = Φ(𝒙௡′𝛃) 

– Logistic: Logit Model = 
௘௫௣ሺ𝒙೙ᇱ𝜷)

ଵ ା ௘௫௣ሺ𝒙೙ᇱ𝜷)

– Gompertz: Extreme Value Model = 1 – 𝑒𝑥𝑝[- 𝑒𝑥𝑝ሺ𝒙௡′𝜷ሻ] 

• Methods

- ML estimation (Numerical optimization)

- Bayesian estimation (MCMC methods)

- Simulation-assisted estimation
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Comparison: Probit vs Logit

• Logit has fatter tails, but, in practica, it is difficutl to distinguish 
probabilities and fit of  both models.

• The coefficients are not directly comparable.

• Signs and signficances are similar.

• Logit Model for doctor’s visits as function of age, income and 
gender. 

ML Estimation – Application I (Greene)

What do these mean?
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LOGIT PROBIT EXTREME VALUE

Variable  Estimate  t-ratio   Estimate   t-ratio   Estimate    t-ratio

Constant   -0.42085  -2.662   -0.25179   -2.600     0.00960     0.078

Age         0.02365   7.205    0.01445    7.257     0.01878     7.129

Income     -0.44198  -2.610   -0.27128   -2.635    -0.32343    -2.536

Sex         0.63825   8.453    0.38685    8.472     0.52280     8.407

Log-L           -2097.48 -2097.35              -2098.17

Log-L(0)        -2169.27            -2169.27              -2169.27

Note: For now, ignore the t-ratios.

• Logit Model for doctor’s visits as function of  age, income and sex. 

ML Estimation – Application I (Greene)

• Labor participation of married women (Example 15.2). 

ML Estimation – Application II (Wooldridge)
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 + 1 (Age+1) + 2 (Income) + 3 Sex

• We want to study the effect on the predicted probability of  an 
Increase in Age. We need to calculate partial effects.

(1 is positive)

Partial Effects (Greene)

• Recall the β are not marginal effects. We need to calculate them 
with the 1st derivative of P[.]. w.r.t. x. For the Logit Model: 

- Partial effects:  
డ௉ሾ௬೙ୀ௝  𝒙೙

డ𝒙೙ೖ
ൌ 𝑃௡௝  ∗ ሺ1 െ 𝑃௡௝ሻ * β௞

- Quasi-elasticity 

 Both values depend on 𝒙௡. We usually evaluate these effects 
using sample means for 𝒙௡. We can also average the partial effects 
over individuals.

nknnn
n

nn xPPx
x

xyP





)1(
)|1(

Partial Effects
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     
 

EXTREM E VALUE x x

x
x

 

   

Partial Effects

• The partial effects vary with the models:

• We start with Prob[Outcome] = some F(+1Income…) = F(x’nβ)
• Partial effect = F(+1Income…)/x = f (+1Income…) x 1

- Partial effects are derivatives (usually, evaluated at data means.)
- Results vary with model:

–Logit: F(+1Income…)/x =  Prob * (1-Prob)    
–Probit: F(+1Income…)/x =  Normal density     
–Extreme Value: F(+1Income…)/x =  Prob * (-log Prob) 

Note: Scaling usually erases model differences.

• Partial effects for a Dummy Variable:

If  F(+1Income…+ kSex...) = F(𝒙௡′β + 𝒅௡′)
 Partial effect of  d = Prob[yn=1|𝒙௡,dn=1] - Prob[yn=1|𝒙௡,dn=0]

Partial Effects – Summary (Greene)
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• Partial effects with non-linearities

When the model has non-linear effects, squared terms, interactive 
terms, the partial effects have to incorporate them.

• Suppose we have: 

Prob[Outcome] = F( + 1Income + 2 Age + 3 Age2 …)

The usual partial effects, given by a computer software, will make no 
sense. The software treats Age and Age2 as two different variables. 

Partial effect = F(+1Income…)/Age 

= f  (+1Income…) * (2 +2 3 Age)

Note: Similar problem for interactive terms –say, 4 Income x Age. 

Partial Effects – Summary (Greene)

• Partial effects with interaction effects

- The partial effect calculated as before, the partial derivative of  F(.) 
w.r.t. 𝑥௞. 

- There is also an interaction effect: The cross derivative w.r.t the two 
interacted variables. Careful, if  𝒙௡′β = 0 the effect will be non-zero!

Example: A Probit Model

Partial Effects – Summary (Greene)

1 2 3

1 2 3 2 3

2

1 3 2 3 3

       Prob = (  + Age Income Age*Income ...)

Prob
(  + Age Income Age*Income ...)( Age)

Income

The "interaction effect"

Prob
 ( )( Income)( Age) ( )

Income Age

  

       


           



              
 

x x x  

1 2 3 3                      =  ( ( )  if 0.  Note, nonzero even if  0.        x) x 
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Partial Effects – Standard Errors (Greene)

• Q: How do we compute SE for the partial effects?

- Delta method: Variance of  linear approximation to non-linear function.

- Krinsky and Robb: Variance of  a sample of  draws for the underlying 
population of  function.

- Bootstrapping: Variance of  a sample replicates the underlying 
estimates.

Partial Effects – SE: Delta Method

• We use the delta method to calculate the standard errors.

• Delta Method Review:

 
   

   

ˆ ˆ ,

ˆ ˆ ˆˆ. . , ,

ˆˆ . .
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          
 
 






x

G x V G x

V =

x
G x

  

  







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Partial Effects – SE: Delta Method

• For the Logit and Probit Models we compute:

• Logit

• Probit

:

     
   

      
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y
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       
           

                  
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   

Partial Effects – SE: Krinsky & Robb

• Estimate β by Maximum Likelihood with b

- Estimate asymptotic covariance matrix with V

- Draw R observations b(r) from the normal population, N(b, V): 

b(r)  =  b +  C * v(r),  

v(r) drawn from N(0, I) and 

C = Cholesky matrix, V = CC’

- Compute partial effects d(r) using b(r)

- Compute the sample variance of  d(r), r = 1, 2, …, R

- Use the sample standard deviations of  the R observations to 
estimate the sampling standard errors for the partial effects.
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Partial Effects – SE: Bootstrapping

For R repetitions:

- Draw N observations with replacement

- Refit the model

- Recompute the vector of  partial effects

- Compute the empirical standard deviation of  the R observations 
on the partial effects.

The Linear Probability Model vs. Parametric Logit Model

Partial Effects – Application I (Greene)
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• Now, we calculate the partial effects after scaling.

Partial Effects – Application I (Greene)

Note: Scaling usually erases model differences.

• Average Partial Effects vs. Partial Effects at Data Means

===========================================
Variable     Mean       Std.Dev.  S.E.Mean 
===========================================
--------+----------------------------------

ME_AGE|  .00511838  .00061147   .0000106
ME_INCOM| -.0960923   .0114797    .0001987
ME_FEMAL|  .137915    .0109264    .000189

Partial Effects – Application I (Greene)

i i
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Note: Similar results!.
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Delta Method

Partial Effects – Application I (Greene) – K&R

Delta Method

Partial Effects – Standard Errors: Bootstrapping
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Partial Effects – Application I (Greene)

• Partial Effects for the Sex dummy.

Partial Effects – Application I (Greene)

• Partial Effects with Non-linear effects Φ

----------------------------------------------------------------------
Binomial Probit Model
Dependent variable               DOCTOR
Log likelihood function     -2086.94545
Restricted log likelihood   -2169.26982
Chi squared [   4 d.f.]       164.64874
Significance level               .00000
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Index function for probability
Constant|    1.30811***       .35673        3.667   .0002

AGE|    -.06487***       .01757       -3.693   .0002      42.6266
AGESQ|     .00091***       .00020        4.540   .0000      1951.22
INCOME|    -.17362*         .10537       -1.648   .0994       .44476
FEMALE|     .39666***       .04583        8.655   .0000       .46343

--------+-------------------------------------------------------------
Note: ***, **, * = Significance at 1%, 5%, 10% level.
----------------------------------------------------------------------

Now, we have the following Probit F, with Φ(Age; Age2; Income; Sex)
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Partial Effects – Application I (Greene)

• Partial Effects with Non-linear effects

The probability implied by the model is.

Partial Effects – Application I (Greene)

• Partial Effects with Non-linear effects

Note: “Usual” partial (separate) effects for Age and Age2 make no 
sense. They are not varying “partially.”

----------------------------------------------------------------------
Partial derivatives of E[y] = F[*]  with
respect to the vector of characteristics
They are computed at the means of the Xs
Observations used for means are All Obs.
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]  Elasticity
--------+-------------------------------------------------------------

|Index function for probability
AGE|    -.02363***       .00639       -3.696   .0002     -1.51422

AGESQ|     .00033***     .729872D-04     4.545   .0000       .97316
INCOME|    -.06324*         .03837       -1.648   .0993      -.04228

|Marginal effect for dummy variable is P|1 - P|0.
FEMALE|     .14282***       .01620        8.819   .0000       .09950

--------+-------------------------------------------------------------
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Partial Effects – Application I (Greene)

• Partial Effects with Interaction terms

We estimate a Probit model, with Φ(Age; Income; Income*Age; Sex)

Note: The software does not know that Age_Inc = Age*Income.

----------------------------------------------------------------------
Partial derivatives of E[y] = F[*]  with
respect to the vector of characteristics
They are computed at the means of the Xs
Observations used for means are All Obs.
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]  Elasticity
--------+-------------------------------------------------------------

|Index function for probability
Constant|    -.18002**        .07421       -2.426   .0153

AGE|     .00732***       .00168        4.365   .0000       .46983
INCOME|     .11681          .16362         .714   .4753       .07825
AGE_INC|    -.00497          .00367       -1.355   .1753      -.14250

|Marginal effect for dummy variable is P|1 - P|0.
FEMALE|     .13902***       .01619        8.586   .0000       .09703

--------+-------------------------------------------------------------

• GoF Measures

- Calculated from the Log L.

- “Pseudo R squared” = 1 – log L/log L0

- LR tests

- Information Criteria, especially for non-nested models.

• Forecasting accuracy/Model evaluation

• Predictions : 𝑦௡ = 1 if F(𝒙௡′𝛃) > c  (e.g. 0.5)

𝑦௡ = 0 if F(𝒙௡′𝛃)  c

• Compute hit rate = % of correct predictions

• Many measures: Cramer, Efron, Veall and Zimmerman.

Binary Data – Model Evaluation
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• GoF Measures

Binary Data – Model Evaluation I (Greene)

----------------------------------------------------------------------
Binary Logit Model for Binary Choice
Dependent variable               DOCTOR
Log likelihood function     -2085.92452       Full model         LogL
Restricted log likelihood   -2169.26982       Constant term only LogL0
Chi squared [   5 d.f.]       166.69058
Significance level               .00000
McFadden Pseudo R-squared      .0384209       1 – LogL/logL0
Estimation based on N =   3377, K =   6
Information Criteria: Normalization=1/N

Normalized   Unnormalized
AIC              1.23892     4183.84905       -2LogL + 2K
Fin.Smpl.AIC     1.23893     4183.87398       -2LogL + 2K + 2K(K+1)/(N-K-1)
Bayes IC         1.24981     4220.59751       -2LogL + KlnN
Hannan Quinn     1.24282     4196.98802       -2LogL + 2Kln(lnN)
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Characteristics in numerator of Prob[Y = 1]
Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266
AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476
AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288
FEMALE|     .65366***       .07588        8.615   .0000       .46343

--------+-------------------------------------------------------------

Binary Data – Model Evaluation

• Fit Measures Based on Predictions

- Cramer Fit Measure:

   

1 1

1 0

F̂ = Predicted Probability

ˆ ˆF (1 )Fˆ
N N

ˆ ˆ ˆMean F | when = 1   -  Mean F | when = 0

   = 

N N
i i i iy y

y y

   
  

 

reward for correct predictions minus
    penalty for incorrect predictions

+----------------------------------------+
| Fit Measures Based on Model Predictions|
| Efron                        =   .04825|
| Ben Akiva and Lerman         =   .57139|
| Veall and Zimmerman          =   .08365|
| Cramer                       =   .04771|
+----------------------------------------+
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Example (Bucklin and Gupta (1992)): Purchase Incidence Model

𝑝௧
௡ (inc) =

௘௫௣ሺௐ೟
೙)

ଵ ା ௘௫௣ሺௐ೟
೙)

𝑝௧
௡ (inc) = Probability that household 𝑛 engages in a category

purchase in the store on purchase occasion 𝑡.
𝑊௧

௡ = Utility of the purchase option. Let 𝑊௧
௡ follow

where
𝐶𝑅௡ = rate of consumption for household n
𝐼𝑁𝑉௧

௡ = inventory level for household n, time t
𝐶𝑉௧

௡ = category value for household n, time t

n
t

n
t

n
t

nn
t CVINVCRW   3210

Binary Data – Application III - PIM

Model # param. LogL U² 
(pseudo R²)

BIC

Null model

Full model

1

4

-13614.4

-11234.5

-

.175

13619.6

11255.2

• Goodness-of-Fit

Parameter Estimate (t-statistic)

Intercept γ0

CR γ1

INV γ2

CV γ3

-4.521  (-27.70)

.549  (4.18)

-.520  (-8.91)

.410  (8.00)

• Parameter estimates

Binary Data – Application III - PIM 
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• Binary Logit Model (Franses and Paap (2001): 
www.few.eur.nl/few/people/paap)

• Data
– A.C.Nielsen scanner panel data
– 117 weeks: 65 for initialization, 52 for estimation
– 565 households: 300 selected randomly for estimation, 

remaining hh = holdout sample for validation
– Data set for estimation: 30.966 shopping trips, 2275 purchases 

in the category (liquid laundry detergent)
– Estimation limited to the 7 top-selling brands (80% of category 

purchases), representing 28 brand-size combinations (= level of 
analysis for the choice model)

Binary Data – Application IV - Ketchup

Variable Coefficient Std. Error z-Statistic Prob.

C 0.222121 0.668483 0.332277 0.7397

DISPLHEINZ 0.573389 0.239492 2.394186 0.0167

DISPLHUNTS -0.557648 0.247440 -2.253674 0.0242

FEATHEINZ 0.505656 0.313898 1.610896 0.1072

FEATHUNTS -1.055859 0.349108 -3.024445 0.0025

FEATDISPLHEINZ 0.428319 0.438248 0.977344 0.3284

FEATDISPLHUNTS -1.843528 0.468883 -3.931748 0.0001

PRICEHEINZ -135.1312 10.34643 -13.06066 0.0000

PRICEHUNTS 222.6957 19.06951 11.67810 0.0000

• ML Estimation 

Binary Data – Application IV - Ketchup
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Mean dependent var 0.890279 S.D. dependent var 0.312598

S.E. of regression 0.271955 Akaike info criterion 0.504027

Sum squared resid 206.2728 Schwarz criterion 0.523123

Log likelihood -696.1344 Hannan-Quinn criter. 0.510921

Restr. log likelihood -967.918 Avg. log likelihood -0.248797

LR statistic (8 df) 543.5673 McFadden R-squared 0.280792

Probability(LR stat) 0.000000

Obs with Dep=0 307 Total obs 2798

Obs with Dep=1 2491

• Model Evaluation 

Binary Data – Application III - Ketchup

0.0

0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000 2500

HEINZF

Forecast: HEINZF
Actual: HEINZ
Forecast sample: 1 2798
Included observations: 2798

Root Mean Squared Error 0.271517
Mean Absolute Error      0.146875
Mean Abs. Percent Error 7.343760
Theil Inequality Coefficient  0.146965
     Bias Proportion         0.000000
     Variance Proportion  0.329791
     Covariance Proportion  0.670209

• Model Evaluation: Forecast Accuracy 

Binary Data – Application III - Ketchup
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Classification Tablea

81 226 26,4

34 2457 98,6

90,7

Observed
,00

1,00

HE

Overall Percentage

Step 1
,00 1,00

HE Percentage
Correct

Predicted

The cut value is ,500a. 

Binary Data – Application III - Ketchup

• Model Evaluation: Aggregate Predictions
We judge the forecast accuracy based on the hit rate. 

Binary Data – Testing (Greene)

• ML estimation framework. Testing is based on the ML trilogy:
- LR Test, Wald Statistics and LM Tests. 
• Different from regression (no residuals!). There is no F statistic.

Example: Base Model
----------------------------------------------------------------------
Binary Logit Model for Binary Choice
Dependent variable               DOCTOR
Log likelihood function     -2085.92452
Restricted log likelihood   -2169.26982
Chi squared [   5 d.f.]       166.69058
Significance level               .00000
McFadden Pseudo R-squared      .0384209
Estimation based on N =   3377, K =   6
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Characteristics in numerator of Prob[Y = 1]
Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266
AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476
AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288
FEMALE|     .65366***       .07588        8.615   .0000       .46343

--------+-------------------------------------------------------------

H0: Age is not a significant determinant
of  Prob(Doctor = 1)

H0: β2 = β3 = β5 = 0 

H1: at least one β2 , β3 and/or β5 ≠ 0
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Binary Data – Testing (Greene)

Testing is based on the ML trilogy: LR, Wald and LM Tests. 

Binary Data – LR Test (Greene)

• LR Test: Based on Unrestricted and Restricted models
- LR-test statistic =   2 (LogL|H1 - Unrestricted model –

LogL|H0 - Restrictions) > 0 ~ 𝜒ଷ
ଶ

RESTRICTED MODEL
Binary Logit Model for Binary Choice
Dependent variable               DOCTOR
Log likelihood function     -2124.06568
Restricted log likelihood   -2169.26982
Chi squared [   2 d.f.]        90.40827
Significance level               .00000
McFadden Pseudo R-squared      .0208384
Estimation based on N =   3377, K =   3

UNRESTRICTED MODEL
Binary Logit Model for Binary Choice
Dependent variable               DOCTOR
Log likelihood function     -2085.92452
Restricted log likelihood   -2169.26982
Chi squared [   5 d.f.]       166.69058
Significance level               .00000
McFadden Pseudo R-squared      .0384209
Estimation based on N =   3377, K =   6

LR-test = 2[-2085.92452 - (-2124.06568)]  =  77.46456 

 reject H0
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Binary Data – Wald Testing (Greene)

• Wald Test: Based on Unrestricted model
- Discrepancy:  q = Rb – m (or r(b,m) if  nonlinear) is computed

- Variance of  discrepancy is estimated

- Wald Statistic is q’[Var(q)]-1q ~ 𝜒ௗ௙ୀଷ
ଶ

Binary Data – Testing (Greene)

• Wald Test – Matrix Computation

Wald Test  =  69.0541  reject H0
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Binary Data – Test (Greene)

• LM Test: Based on Restricted model
- Derivatives of  unrestricted model and variances of  derivatives are 

computed at restricted estimates
- Wald test of  whether derivatives are zero tests the restrictions
- Usually hard to compute – difficult to program the derivatives 

and their variances.

Example: Computation for Logit Model

- Compute b0 subject to H0 –i.e., with zeros in appropriate positions.

- Compute 𝑃௜(b0) for each observation.

- Compute 𝑒௜(b0) = [𝑥𝒊 – 𝑃௜(b0)]

- Compute 𝑔௜ (b0) = 𝑥௜𝑒௜ using full 𝑥௜ vector

LM = [Σigi(b0)]’[Σigi(b0)gi(b0)]-1[Σigi(b0)] ~ 𝜒ௗ௙ୀଷ
ଶ

Binary Data – LM Test (Greene)

• LM Test: Compuations

Matrix LM       has  1 rows and  1 columns.
1

+-------------+

1|   81.45829  | => reject H0
+-------------+

Summary: LM test = 81.45829

LR-test = 77.46456

Wald test  =  69.0541

Matrix DERIV    has  6 rows and  1 columns.
+-------------+

1|  .2393443D-05       zero from FOC
2| 2268.60186
3|  .2122049D+06
4|  .9683957D-06       zero from FOC
5|  849.70485
6|  .2380413D-05       zero from FOC
+-------------+
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Binary Data – Chow Test I (Greene)

• Health Satisfaction: Panel Data – 1984,85,86,87,88,1991,1994
To test parameter constancy over time, we do a Chow test: 1) Fit a 
model for each year (7 years total); 2) Fit a pooled model. 3) Do a LR 
test. LR ~ 𝜒ௗ௙ୀଷ଺

ଶ

The log likelihood for the pooled sample 
is -17365.76.  The sum of  the log 
likelihoods for the seven individual years 
is -17324.33.  Twice the difference is 
82.87.  The degrees of  freedom is 66 = 
36.  The 95% critical value from the chi 
squared table is 50.998, so the pooling 
hypothesis is rejected.

Healthy(0/1) = f(1, Age, Educ, Income, Married(0/1), Kids(0.1)

Binary Data – Chow Test II (Greene)

• Determinants of  Doctor’s visits.
To test parameter constancy over groups (male, female), we do a 
Chow test: 1) Fit a model for males & another for females; 2) Fit a 
pooled model. 3) Do a LR test. LR ~ 𝜒ௗ௙ୀହ

ଶ

--------------------------------------------------------------
Dependent variable               DOCTOR
Pooled Log likelihood function   -2123.84754
--------+-----------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z] 
--------+-----------------------------------------------------
Constant|    1.76536***       .67060        2.633   .0085

AGE|    -.08577***       .03018       -2.842   .0045  
AGESQ|     .00139***       .00033        4.168   .0000

INCOME|     .61090          .74073         .825   .4095
AGE_INC|    -.02192          .01678       -1.306   .1915         

--------+-----------------------------------------------------
Male Log likelihood function     -1198.55615
--------+-----------------------------------------------------
Female Log likelihood function    -885.19118
--------+-----------------------------------------------------
LR-test = 2[-885.19118+(-1198.55615)–(-2123.84754] = 80.2004
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Specification Issues 

• Main issues 
- Neglected heterogeneity
- Omitted variables
- Endogeneity

- These problems are relevant for all index models
-Since the normal distribution allows us to obtain concrete results, 

the focus is on Probit models.

• In  linear models:
- Heterogeneity causes OLS to be inefficient, though it is still 
consistent and unbiased.

- Omitted variables can lead to inconsistent estimates, unless...
- The omitted variable does not affect y
- The omitted variable is uncorrelated with x

Hetersocedasticity (Greene) 

• Scaling each individual by its variance. 

Steps:

(1) Parameterize: Var[𝜀௡]  = exp(𝒛௡′)
(2) Reformulate probabilities

Binary Probit or Logit: Pn[𝑦௡ = 1|𝒙௡] = P(𝒙௡′β /exp(𝒛௡′)) 

• Marginal effects are more complicated. If  xn =zn, signs and 
magnitudes of  marginal effects tend to be ambiguous.

Example: For the univariate case:
E[𝑦௡|𝒙௡,𝒛௡]           =  Φ[𝒙௡′β/exp(𝒛௡′)]
∂ E[𝑦௡|𝒙௡,𝒛௡]/∂𝒙௡=  φ[𝒙௡′β/exp(𝒛௡′)] * β
∂ E[𝑦௡|𝒙௡,𝑧௡]/∂𝒛௡=  φ[𝒙௡′β/exp(𝒛௡′)] * [-𝒙௡′β/exp(𝒛௡′)] * γ
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Hetersocedasticity (Greene) 

• Scaling with a dummy variable. For example,

Var[𝜀௡]  = exp(𝒛௡′)

 
 

Prob(Doctor=1) = F  is equivalent to
exp( Female )

Prob(Doctor=1) = F  for men

Prob(Doctor=1) = F  for women where 

Heteroscedasticity of this type is equivalent to an implicit

scaling

i

i

i

i e 

 
  


  

x

x

x







 of the preference structure for the two (or G) groups.

Hetersocedasticity – Application I

• Determinants of Doctor’s visits (Logit Model).
Model for Variance: Var[𝜀௡]  = exp(Female´)
----------------------------------------------------------------------
Binary Logit Model for Binary Choice
Dependent variable               DOCTOR
Log likelihood function     -2096.42765
Restricted log likelihood   -2169.26982
Chi squared [   4 d.f.]       145.68433
Significance level               .00000
McFadden Pseudo R-squared      .0335791
Estimation based on N =   3377, K =   6
Heteroscedastic Logit Model for Binary Data
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Characteristics in numerator of Prob[Y = 1]
Constant|    1.31369***       .43268        3.036   .0024

AGE|    -.05602***       .01905       -2.941   .0033      42.6266
AGESQ|     .00082***       .00021        3.838   .0001      1951.22
INCOME|     .11564          .47799         .242   .8088       .44476
AGE_INC|    -.00704          .01086        -.648   .5172      19.0288

|Disturbance Variance Terms
FEMALE|    -.81675***       .12143       -6.726   .0000       .46343

--------+-------------------------------------------------------------
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Hetersocedasticity – Partial Effects Application 
I
• Determinants of  Doctor’s visits (Logit Model).
Model for Variance: Var[𝜀௡]  = exp(Female´)

------------------------------------------------------------------------------------
Partial derivatives of probabilities with respect to the vector of characteristics.
They are computed at the means of the Xs. Effects are the sum of the mean and var-
iance term for variables which appear in both parts of the function.
--------+---------------------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]  Elasticity
--------+---------------------------------------------------------------------------

AGE|    -.02121***       .00637       -3.331   .0009     -1.32701
AGESQ|     .00032***     .717036D-04     4.527   .0000       .92966

INCOME|     .13342          .15190         .878   .3797       .08709
AGE_INC|    -.00439          .00344       -1.276   .2020      -.12264
FEMALE|     .19362***       .04043        4.790   .0000       .13169

|Disturbance Variance Terms
FEMALE|    -.05339          .05604        -.953   .3407      -.03632

|Sum of terms for variables in both parts
FEMALE|     .14023***       .02509        5.588   .0000       .09538

--------+---------------------------------------------------------------------------
|Marginal effect for variable in probability – Homoscedastic Model

AGE|    -.02266***       .00677       -3.347   .0008     -1.44664
AGESQ|     .00034***     .747582D-04     4.572   .0000       .99890

INCOME|     .11363          .16552         .687   .4924       .07571
AGE_INC|    -.00409          .00375       -1.091   .2754      -.11660

|Marginal effect for dummy variable is P|1 - P|0.
FEMALE|     .14306***       .01619        8.837   .0000       .09931

--------+---------------------------------------------------------------------------

Hetersocedasticity Test (Greene)

• Determinants of  Doctor’s visits (Probit Model).
To test for heteroscedasticity, we do a LR test: 1) Fit restricted model 
(H0: No heteroscedasticity), and 2) Fit unrestricted model (H1: 
Var[𝜀௡]  = exp(𝒛௡′)). Then, 3) Do a LR test. LR ~ 𝜒ௗ௙ୀସ

ଶ



RS – Lecture 17

43

Binary Data – Robust Covariance Matrix 

• Determinants of  Doctor’s visits (Probit Model).
We calculate the “Robust” Covariance Matrix: Var[b] = A-1B A-1

--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Robust Standard Errors
Constant|    1.86428***       .68442        2.724   .0065

AGE|    -.10209***       .03115       -3.278   .0010      42.6266
AGESQ|     .00154***       .00035        4.446   .0000      1951.22
INCOME|     .51206          .75103         .682   .4954       .44476
AGE_INC|    -.01843          .01703       -1.082   .2792      19.0288
FEMALE|     .65366***       .07585        8.618   .0000       .46343

--------+-------------------------------------------------------------
|Conventional Standard Errors Based on Second Derivatives

Constant|    1.86428***       .67793        2.750   .0060
AGE|    -.10209***       .03056       -3.341   .0008      42.6266

AGESQ|     .00154***       .00034        4.556   .0000      1951.22
INCOME|     .51206          .74600         .686   .4925       .44476
AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288
FEMALE|     .65366***       .07588        8.615   .0000       .46343

• Not a big difference. Harmless to use the robust estimator.

• A popular descriptive statistics is the odds ratio. The odds ratio is 
just the ratio of two choice probabilities:

• For the Logit Model the odds ratio is very simple to calculate:

• We may be interested in measuring the effect of a unit change in 
the odds ratio. Simple to do for a dummy variable (D=1 to D=0). 
For the Logit Model, this ratio simplifies to exp(coeff. of dummy):















n

n

nn
X

X

XX

nn

nn e
e

ee

xyP

xyP

)1/(1

)1/(

)|0(

)|1(

Odds Ratio

)|0(

)|1(
 Ratio Odds

nn

nn

xyP

xyP























 e

e

ee

e

ee
n

nn

n

nn

X

XX

DX

DXDX

)1/(1

)1/(
/

)1/(1

)1/(
 Ratio Odds of Ratio



RS – Lecture 17

44

• We are interested in estimating the change in odds of buying public 
insurance for a female headed household (D=1) compared to a male 
headed household (D=0). For the Logit Model:

Odds ratio: exp(.23427) = 1.26399 (odds up by 26%)

Odds Ratio – Application (Greene)

Endogeneity
• In the doctor’s visits problem, we want to study the effect of  public 
health insurance, ℎ, on doctor’s visits, 𝑦௡. But, individuals also make a 
decision to take public health insurance or not. 

 endogeneity problem! 

• Two cases: (1) ℎ is continuous (complicated); (2) ℎ is binary (easier).

• There are many approaches to estimate this problem: ML. GMM, 
ad-hoc solutions, especially for case (2).

• We focus on MLE. It requires full specification of  the model, 
including the assumption that underlies the endogeneity of  ℎ௡. 

• We present an example for the Probit Model.
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Endogeneity – ML – Continuous Variable

• CASE 1 – ℎ continuous

• Full specification:

- RUM: U௡ = 𝒙௡′𝛃 + ℎ௡′θ ൅ 𝜀௡

- Revealed preference: 𝑦௡ = 1  if  U௡ > 0    

- Endogenous variable(s): ℎ௡ = 𝒛௡′α + 𝑢௡,

with E[𝜀௡| ℎ] ≠ 0  Cov[𝑢௡, 𝜀௡] ≠ 0  (𝜌=Corr[𝑢௡, 𝜀௡])

- Additional Assumptions:

1) 𝑢௡, 𝜀௡ ~ 0
0

,
1 𝜌𝜎௨
𝜌𝜎௨ 𝜎௨ଶ

2) 𝒛 = IV (exogenous variables), uncorrelated with (𝑢௡, 𝜀௡)

• ML becomes a simultaneous equations model. 

Endogeneity - ML

• FIML estimation. Steps: 

- Write down the joint density: 𝑓ሺ𝑦௡|𝒙௡, 𝒛௡ሻ  ∗ 𝑓ሺ𝒛௡ሻ

- Assume a Probit Model  Normal for 𝑓ሺ𝑦௡|𝒙௡, 𝒛௡):

P[𝑦௡=1|xn,zn] = Φ(𝒙௡′𝛃 + ℎ௡′θ + 𝜀௡). 

- Assume marginal for 𝑓ሺ𝒛௡ሻ, a normal distribution.

- Use the projection:    

𝜀௡|𝑢௡ = [(𝜌𝜎௨)/𝜎௨ଶ] 𝑢௡ + 𝑣௡, with   𝜎௩ଶ= (1 െ𝜌ଶ).

- Insert projection in 

P[𝑦௡=1|𝒙௡, 𝒛௡] = Φ(𝒙௡′𝛃 + ℎ௡′θ+[ሺ𝜌𝜎௨ሻ/𝜎௨ଶ] 𝑢௡)

- Replace 𝑢௡ = ℎ௡  െ 𝒛௡′α in P(𝑦௡).

- Maximize Log L(.) w.r.t. (𝛃, α ,θ, 𝜌,𝜎௨)
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Endogeneity – ML: Probit (Greene)

Probit fit of y to  and  w ill not consistently estimate ( , )

because of the correlation betw een h and  induced by the

correlation of u and .  Using the bivariate normality, 
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Endogeneity - ML

• Two step limited information ML (Control Function) is also 
possible:

- Use OLS to estimate α, 𝜎௨  get estimates 𝑎 and 𝑠.

- Compute the residual 𝑢௡. Standardize them: 𝑢ො/𝑠 
- Plug residuals 𝑢ො/𝑠 into Φ. 

- Fit the Probit Model. 

- Transform the estimated coefficients into the structural ones.

- Use delta method to calculate standard errors. 
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Endogeneity – ML - Application

• Health Satisfaction example, with income as endogenous variable.
----------------------------------------------------------------------
Probit with Endogenous RHS Variable
Dependent variable              HEALTHY
Log likelihood function     -6464.60772
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Coefficients in Probit Equation for HEALTHY
Constant|    1.21760***       .06359       19.149   .0000

AGE|    -.02426***       .00081      -29.864   .0000      43.5257
MARRIED|    -.02599          .02329       -1.116   .2644       .75862
HHKIDS|     .06932***       .01890        3.668   .0002       .40273
FEMALE|    -.14180***       .01583       -8.959   .0000       .47877
INCOME|     .53778***       .14473        3.716   .0002       .35208

|Coefficients in Linear Regression for INCOME
Constant|    -.36099***       .01704      -21.180   .0000

AGE|     .02159***       .00083       26.062   .0000      43.5257
AGESQ|    -.00025***     .944134D-05   -26.569   .0000      2022.86
EDUC|     .02064***       .00039       52.729   .0000      11.3206

MARRIED|     .07783***       .00259       30.080   .0000       .75862
HHKIDS|    -.03564***       .00232      -15.332   .0000       .40273
FEMALE|     .00413**        .00203        2.033   .0420       .47877

|Standard Deviation of Regression Disturbances
Sigma(w)|     .16445***       .00026      644.874   .0000

|Correlation Between Probit and Regression Disturbances
Rho(e,w)|    -.02630          .02499       -1.052   .2926
--------+-------------------------------------------------------------

Endogeneity – Partial Effects (Greene)

• Partial effects have to be re-scaled. 
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Endogeneity – Partial Effects (Greene)

• Health Satisfaction example, with income as endogenous variable.

The scale factor is computed using the model coefficients, means 
of  the variables and 35,000 draws from the standard normal 
population.

Endogeneity – Binary Variable - Application 

• CASE 2 – ℎ is binary. (From Greene).

Doctor’s visit example. Public insurance option = endogen. variable. 
----------------------------------------------------------------------
FIML Estimates of Bivariate Probit Model
Dependent variable               DOCPUB
Log likelihood function    -25671.43905
Estimation based on N =  27326, K =  14
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Index    equation for DOCTOR
Constant|     .59049***       .14473        4.080   .0000

AGE|    -.05740***       .00601       -9.559   .0000      43.5257
AGESQ|     .00082***     .681660D-04    12.100   .0000      2022.86

INCOME|     .08883*         .05094        1.744   .0812       .35208
FEMALE|     .34583***       .01629       21.225   .0000       .47877
PUBLIC|     .43533***       .07357        5.917   .0000       .88571

|Index    equation for PUBLIC
Constant|    3.55054***       .07446       47.681   .0000

AGE|     .00067          .00115         .581   .5612      43.5257
EDUC|    -.16839***       .00416      -40.499   .0000      11.3206

INCOME|    -.98656***       .05171      -19.077   .0000       .35208
MARRIED|    -.00985          .02922        -.337   .7361       .75862
HHKIDS|    -.08095***       .02510       -3.225   .0013       .40273
FEMALE|     .12139***       .02231        5.442   .0000       .47877

|Disturbance correlation
RHO(1,2)|    -.17280***       .04074       -4.241   .0000
--------+-------------------------------------------------------------
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Endogeneity – Binary Variable - Application 

• Doctor’s visit example, with public insurance option as the 
endogenous binary variable. (From Greene.)

- MODEL PREDICTIONS

+--------------------------------------------------------+
| Bivariate Probit Predictions for DOCTOR   and PUBLIC   |
| Predicted cell (i,j) is cell with largest probability  |
| Neither DOCTOR   nor PUBLIC   predicted correctly      |
|                          1599 of   27326 observations  |
| Only    DOCTOR   correctly predicted                   |
|         DOCTOR   = 0:    1062 of   10135 observations  |
|         DOCTOR   = 1:     632 of   17191 observations  |
| Only    PUBLIC   correctly predicted                   |
|         PUBLIC   = 0:     140 of    3123 observations  |
|         PUBLIC   = 1:     632 of   24203 observations  |
| Both    DOCTOR   and PUBLIC   correctly predicted      |
|         DOCTOR   = 0 PUBLIC   = 0:      69 of    1403  |
|         DOCTOR   = 1 PUBLIC   = 0:      92 of    1720  |
|         DOCTOR   = 0 PUBLIC   = 1:     252 of    8732  |
|         DOCTOR   = 1 PUBLIC   = 1:   15008 of   15471  |
+--------------------------------------------------------+
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• Sample selection problem. We only observe data if a condition is 
met; for example, an individual decides to invest in stocks.

• Adapted framework, to this problem:

- RUM: U௡ = 𝒙௡′𝛃 + ℎ௡′θ ൅ 𝜀௡

- Revealed preference: 𝑦௡ = 1  if  U௡ > 0    

- Endogenous variable(s): ℎ௡ = 𝒛௡′α + 𝑢௡,

with E[𝜀௡| ℎ] ≠ 0  Cov[𝑢௡, 𝜀௡] ≠ 0  (𝜌=Corr[𝑢௡, 𝜀௡])

- Sample selection: (𝑦௡, 𝒙௡) are observed only when ℎ = 1

- Additional Assumptions:

1) 𝑢௡, 𝜀௡ ~ 0
0

,
1 𝜌𝜎௨
𝜌𝜎௨ 𝜎௨ଶ

2) 𝒛 = IV (exogenous variables), uncorrelated with (𝑢௡, 𝜀௡)

Endogeneity – Application: Selection Model 

• Doctor’s visits, with public insurance option.

DATA: 3 Groups of observations: 

(Public=0), (Doctor=0|Public=1), (Doctor=1|Public=1) 

Endogeneity – Application: Selection Model 
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Doctor = F(age,age2,income,female,Public=1)

Public = F(age,educ,income,married,kids,female)

Endogeneity – Application: Selection Model 

• Selected Sample

+-----------------------------------------------------+
| Joint Frequency Table for Bivariate Probit Model    |
| Predicted cell is the one with highest probability  |
+-----------------------------------------------------+
|                         PUBLIC                      |
+-------------+---------------------------------------+
|  DOCTOR     |       0            1         Total    |
|-------------+-------------+------------+------------+
|         0   |         0   |     8732   |     8732   |
|    Fitted   |   (     0)  |  (   511)  |  (   511)  |
|-------------+-------------+------------+------------+
|         1   |         0   |    15471   |    15471   |
|    Fitted   |   (   477)  |  ( 23215)  |  ( 23692)  |
|-------------+-------------+------------+------------+
|     Total   |         0   |    24203   |    24203   |
|    Fitted   |   (   477)  |  ( 23726)  |  ( 24203)  |
|-------------+-------------+------------+------------+
| Counts based on  24203 selected of  27326 in sample |
+-----------------------------------------------------+

Endogeneity – Application: Selection Model 
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• ML Estimates, with Probit Model

----------------------------------------------------------------------
FIML Estimates of Bivariate Probit Model
Dependent variable               DOCPUB
Log likelihood function    -23581.80697
Estimation based on N =  27326, K =  13
Selection model based on PUBLIC
Means for vars. 1- 5 are after selection.
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

|Index    equation for DOCTOR
Constant|    1.09027***       .13112        8.315   .0000

AGE|    -.06030***       .00633       -9.532   .0000      43.6996
AGESQ|     .00086***     .718153D-04    11.967   .0000      2041.87

INCOME|     .07820          .05779        1.353   .1760       .33976
FEMALE|     .34357***       .01756       19.561   .0000       .49329

|Index    equation for PUBLIC
Constant|    3.54736***       .07456       47.580   .0000

AGE|     .00080          .00116         .690   .4899      43.5257
EDUC|    -.16832***       .00416      -40.490   .0000      11.3206

INCOME|    -.98747***       .05162      -19.128   .0000       .35208
MARRIED|    -.01508          .02934        -.514   .6072       .75862
HHKIDS|    -.07777***       .02514       -3.093   .0020       .40273
FEMALE|     .12154***       .02231        5.447   .0000       .47877

|Disturbance correlation
RHO(1,2)|    -.19303***       .06763       -2.854   .0043
--------+-------------------------------------------------------------

Endogeneity – Application: Selection Model 

• Partial Effects in the Selection Model

E[y| ,Selection] = Prob(y=1| ,h=1)
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Endogeneity – Application: Selection Model 


