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1. Introduction

Over the last few years, major advances have occurred in the field of simula-
tion. In particular, McFadden(1989) and Pakes and Pollard(1989) have devel-
oped simulation methods to simulate expected values of random functions and
have shown how to use those simulators in econometric estimation routines. Im-
portant applications where these techniques have been used include patent re-
newal in Pakes(1986), retirement in Berkovec and Stern(1991), market entry in
Berry(1992), dynamic programming problems in Hotz, et al.(1994), exchange
rates in Bansal, et al.(1995), and automobile pricing in Berry, Levinsohn, and
Pakes(1995). Also, for example, Geweke(1989), Chib(1993), and McCullough and
Rossi(1994, 1996) have shown how to use simulation methods to solve previously
unsolvable Bayesian econometrics problems. An and Liu(1996) and Diebold and
Schuermann(1996) use simulation to solve initial conditions problems in survival
models and ARCH models respectively that otherwise seem to have no tractable
solution.

Simulation provides an attractive solution for dealing with problems of the
following type: Let U be a random variable with density f(.), and let h(U) be
some function of U. Then

Eh(U) = /h (w) f (u) du. (1.1)

Most econometrics problems including all method of moments problems and many
maximum likelihood problems require one to evaluate equation (1.1) as part of an
estimation strategy for estimating a set of parameters 6. There are many cases



where Eh(U) can not be evaluated analytically or even numerically with precision.
But we usually can simulate Eh(U) on a computer by drawing R “pseudorandom”

variables from f(.), u!, u?,.., u®, and then constructing

R
ERh(U) = =3 h(u). (1.2)
R r=1
Equation (1.2) provides an unbiased simulator of Eh(U) which, for most of the
methods discussed later, is enough to provide consistent estimates (or estimates
with small bias) of 6.

This chapter provides some examples to motivate the problem. The first ex-
ample is the multinomial probit problem, the second is a problem with unobserved
heterogeneity, and the third is a Monte Carlo experiment. Next, the chapter de-
scribes a set of simulators that improve upon the most naive simulator in equation
(1.2). Improvement is in terms of variance reduction, increased smoothness, and
reduced computation cost. Then the most common simulation estimators are
described. Finally, it evaluates the performance of the various simulators and
estimation methods.

1.1. Multinomial Probit

The first example is the multinomial probit problem. Consider a model where y*
is the value to a person of choosing choice j for j = 1,2,...,J (a person index is
suppressed). For example, j might index whether to drive a car, ride in someone
else’s car, take a bus, or take a train to get to work (J = 4); it might index
whether to work full-time, part-time, or retire (J = 3); or it might index whether
an elderly person lives independently, in a nursing home, with a family member,
or with paid help (J = 4). It is assumed that the person chooses the choice j
with the greatest value; j is chosen iff y; > y; for all k£ # j. Furthermore, it is
assumed that y7 is a linear function of a set of observed variables and an error:

y; = Xjﬁ—l—uj, ] = 1, oy J. (13)

Let u = (uq,ug,..,u J), be the vector of errors, and assume that the covariance
matrix of u is 2. The errors sometimes represent variation in values due to
unobserved variables, and sometimes they represent variation in (3’s across people.
Let y; = 1 if choice j is chosen; y; = 1 iff yj > y; for all k # j.

Usually in data, we observe the covariates X and y = (y1,¥2, .., %)’ but not

v* = (y§,u5,.,y5). In order to estimate 5 and €2, we need to evaluate the



probability of observing y conditional on X or the moments of y conditional on
X. First, note that, since y; is binary,

E(y; | X)=Prly; =1 X]

:Pr[y;-‘>y;§Vk7éj|X}. (1.4)

If we assume that u; ~ iid Extreme Value, then the probability in equation (1.4)
has the analytical form

Priy; = 1| X] = exp {X,8} / ¥ exp {Xu5} (15)

Such a model is called multinomial logit. The problem with multinomial logit is
that the independence assumption for the errors is very restrictive. One can read
a large literature on the independence of irrelevant alternatives problem caused by
the independence of errors assumption. See, for example, Anderson, De Palma,
and Thisse(1992).

Alternatively, we could assume that u ~ N [0, 2] where €2 can be written in
terms of a small number of parameters. When we assume the error distribution
is multivariate normal, the resulting choice probabilities are called multinomial
probit. For this case, the parameters to estimate are § = (3,9).! The choice
probabilities are

Priyy =1 X] = [+ [1X;8+w; > XuB+up Yk £ j]AF (u| @) (16)

where 1[e] is an indicator function equal to one if the condition inside is true
and equal to zero otherwise and F'(u | §2) is the joint normal distribution of u
with covariance matrix Q (with individual elements wj;,). Let u}, = uj — u; for

/
all k # j, and let uj = (ujl, Uy ey U Uit ..,ujj) . Then the J-dimensional

Ji-1:
integral in equation (1.6) can be written as a J—1-dimensional integral:

Prly; = 1| X] :/* / 1[X;8 — XiB > ufy Yk # j] dF* (u | Q) (17)
1 U

where F™ (u}‘ | Q*) is the joint normal distribution of u} : uj ~ N [O, Q;‘] where
Wiy = B (ux — uj) (w — uj) = wy — wij — wji + wyj; for each element wi;, of .
Equation (1.7) can be written as

Prly; = 1] X] = Pr|uj < V] (1.8)

u

!Some restrictions are required for € for identification. See, for example, Bunch(1991).
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where V} is a vector with £’th element equal to Vj, = X3 — X 3. Note that equa-
tion (1.8) can be written as Eh(U) in equation (1.1) with A(U) =1 |:Xj/6 — Xif3 > ujy, Vk # j},
the integrand in equation (1.7).
In order to make progress in estimating 6, we need to be able to evaluate
equation (1.8) for any €27 and any V;. For example, the MLE of 6 maximizes

1

N Z Yij log Pr [Ufj < V%]} (1.9)

)

where i indexes observations, i = 1,2,.., N. If J = 3, then equation (1.8) involves
evaluating a bivariate normal probability; most computers have library routines
to perform such a calculation. If J = 4, then equation (1.8) involves a 3-dimension
integral. One can evaluate such an integral using Gaussian quadrature (see Butler
and Moffitt, 1982) or the numerical algorithm in Hausman and Wise(1978). But,
if J > 4, numerical routines will be cumbersome and frequently imprecise.

Simulation provides an alternative method for evaluating equation (1.8). The
simplest simulator of equation (1.8) is

1 R

E; 1(u < V;) (1.10)
where ;" is an iid draw from N {O, Q;‘] Essentially, the simulator in equa-
tion (1.10) draws a random vector from the correct distribution and then checks
whether that random vector satisfies the condition, u; < V. The simulator in
equation (1.10) is called a frequency simulator. It is unbiased and bounded be-
tween zero and one. But its derivative with respect to 6 is either undefined or
zero because the simulator is a step function; this characteristic makes it diffi-
cult to estimate # and to compute the covariance matrix of 0. Also, especially
when Pr[y; = 1| X] is small, the frequency simulator has a significant probabil-
ity of equaling zero; since MLE requires evaluating logPr [y; = 1 | X], this is a
significant problem. The simulators discussed in Section 2 suggest ways to simu-
late Pr[y; = 1 | X| with small variance, with derivatives, and in computationally
efficient ways.

1.2. Unobserved Heterogeneity

The second example involves unobserved heterogeneity in a nonlinear model. Let
y;¢ be a random count variable; i.e., y;; = 0,1,2,..., with ¢ = 1,2,.., N and t =
1,2,..,T. Assume that y;; ~ Poisson (A\y):
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f (yit | )\it) = exp {_)\it} )\z#t/yit! (1-11)
and that
log At = XutB + w; + e (1.12)

where u; ~ 1dG (. | ag), G (.| ag) is a specified distribution up to a set of pa-
rameters o,
€it = Peit—1 + Eit, (1.13)

gir ~ 1idH (. | a), and H (. | ayr) is a specified distribution up to a set of param-
eters ay.?For example, 1;; might be the number of trips person i takes in period
t, the number of patents firm ¢ produces in year ¢, or the number of industrial
accidents firm ¢ has in year t. Adding the unobserved heterogeneity u; and se-
rially correlated error e; allows for richness frequently necessary to explain the
data. The goal is to estimate 6 = (3, p, ag, ay). The log likelihood contribution
of observation 17 is

L; = log / / / 1:[1[exp{—)\it})\?gt/yit!dH(sit | an)]dG (ui | ag)  (1.14)

Uj €41 &1 "

where )\, = ()\ﬂ,)\m,..,)\iT)/ depends upon X3, u;, and &; = (i1,0, .., &)
through equations (1.12) and (1.13). When there is no serial correlation term
ey, the integral in equation (1.14) can be solved analytically for well chosen
G (u; | ag).® But for general G (. | ag) and H (. | ag), the integral can be evalu-
ated neither analytically nor numerically.

Simulating the integral is quite straightforward. Let €] be an ¢id pseudorandom
draw of ¢; r = 1,2,..,R. Similarly, let «] be an 7id random draw of w;,r =
1,2,.., R. Then L; can be simulated by evaluating the integrand for each draw r
and taking an average:

~

L = log {% 5 Lf[l exp {— AT} (A7) /yit!] } (1.15)

r=1

where X, is evaluated using the pseudorandom draws of ¢; and u; in equation

(1.12). The maximum simulated likelihood estimator of § maximizes 3 L;. Note

2One might want to specify a different distribution for e;o because of an initial conditions
problem.
3See Hausman, Hall, and Griliches(1984).



that even though exp {I:,} is unbiased, L; is biased for finite R (because L; is

a nonlinear function of exp{ﬁi}). This will cause # to be inconsistent unless
R — oo as NT — oo. However, Monte Carlo results discussed later show that
the asymptotic bias is small as long as “good” simulators are used.

1.3. Monte Carlo Experiments

The last example is a Monte Carlo experiment. Let U be a vector of data and
s(U) be a proposed statistic that depends upon U. The statistic s(U) may
be an estimator or a test statistic. In general, the user will want to know the
distribution of s(U). But, for many statistics s(.), deriving the small sample
properties of s(U) is not possible analytically. Simulation can by used to learn
about the small sample properties of s (U). All moments of s (U) can be written
in the form Eh (U).* Medians and, in fact, the whole distribution of s (U) can
be written in the form Eh (U). Monte Carlo experiments are powerful tools to
use in evaluating statistical properties of s (U). However care must be taken in
conducting such experiments. In particular, one must be careful in generalizing
Monte Carlo results to cases not actually simulated; a Monte Carlo experiment
really only provides information about the specific case simulated. Also, one
must be careful not to attempt simulating objects that do not exist. For example,
simulating the expected value of a two stage least squares (2SLS) estimator of
a just identified equation would provide an answer (because any particular draw
of s (U) is finite) but it would be meaningless because 2SLS estimators of just
identified equations have no finite moments. See Hendry(1984) for more on Monte
Carlo experiments.

2. Simulators

This section discusses various simulation methods. Throughout, the goal will be
to simulate Eh (U) or, in some special cases, Pr [y; = 1 | X]. The first requirement
of a simulation method is to simulate U from its distribution F. In general, if Z ~
Uniform (0,1), then F~!(Z) ~ F.5 For example, the exponential distribution is
F(x) =1—exp{—Az}. Thus, —log (1 — Z) /A ~ F. If F is standard normal, then
F~! has no closed form, but most computers have a library routine to approximate

4For Es (U), h(U) = s (U), and for Var [s (U)], h (U) = [s (U) — Es (U)]*.
®Most computers have a library routine to generate standard uniform random variables. See,
for example, Ripley (1987) for a discussion of standard uniform random number generators.
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F~! for the standard normal distribution. Truncated random variables can be
simulated in the same way. For example, assume U ~ N [u,0?] but let it be
truncated between a and b. Then, since

u— a— [ b— i (a — p)
F(u)=1|d - ) - d 2.1
-5 - () e (55) o (52)] e
where @ is the standard normal distribution function, U can be simulated by
letting F' (u) = Z in equation (2.1) and solving equation (2.1) for u as

o—qu{zl@(b_”)—@(“_”)]+q><a_’“‘>}+u. (2.2)
o o o

This idea can be applied with a small twist to discrete random variables.
Assume U = ¢ with probability p; fori =1,2,..,n. Let P, = Pr[U <i| = ;":1 D;-
Let Z ~ Uniform (0,1), and let U =i iff P,_; < Z < P, (where Py = 0). Then U
is distributed as desired.

Random variables frequently can be simulated by using a composition formula.
For example, since a binomial random variable is the sum of independent Bernoulli
random variables, we can simulate a binomial random variable by simulating
independent Bernoulli’s and then adding them up. A more useful example is
simulating multivariate U ~ N [u,2]. Let Z ~ N[0, ], and let C be any matrix
such that CC" = Q (e.g., the Cholesky decomposition of 2). Then it is easy to
verify that CZ+u ~ N [u,)]. So we can simulate U by simulating Z and then
transforming it.

In some cases, it will be necessary to simulate a random variable conditional
on some event where the inverse conditional distribution has no analytical form
(or good approximation). There are a number of acceptance-rejection methods
available for many such cases. Assume (U, Z) have joint distribution F (u, z)
and that it is straightforward to draw (U, Z) from its joint distribution. Further,
assume we want to draw U conditional on Z € S where S is a subset of the
support of Z. The simplest acceptance-rejection simulation method is:

(a) Draw (U, Z) from F.

(b) If Z ¢ S, go to (a).

(c)If Z € S, keep.

There are more sophisticated methods that reduce the expected number of draws
of (U, Z) needed (see, for example, Devroye(1986), Ripley(1987), or Tierney(1994)),
but all acceptance-rejection simulation methods suffer from a) the potentially large




number of draws needed and b) the lack of differentiability of E'h (U) with respect
to parameter vector 6.5 Thus, for the most part, they should be avoided. For the
remainder of the chapter, it will be assumed one can simulate U.

The most straightforward simulator for Eh (U) is

Bh(U) = % S h ) (2.3)

r=1

where u", r = 1,2, .., R, are R 7id pseudorandom draws of U. When simulating
Prly; = 1| X], equation (2.3) becomes equation (1.10). If A is continuous and
differentiable with respect to 6, then Eh (U) will be continuous and differentiable.
Equation (2.3) is unbiased, and its variance is Var [h (U)] /R. Note that as R —
00, the variance of the simulator — zero.

2.1. Importance Sampling

Several methods allow us to improve the performance of a simulator significantly
either in terms of reduced variance, better smoothness properties, and/or better
computation time properties. For example, the multinomial probit problem in
Borsch-Supan, et al.(1992) and the production function estimation problem in
Ohanian, et al.(1996) work with simulation only with the use of good importance
sampling simulators. The rest of this section describes the most popular simu-
lation methods. The first method is importance sampling. Consider Eh (U) in
equation (1.1) where it is either difficult to draw U from F or where h is not
smooth. In some cases, one can rewrite equation (1.1) as

h(u) f (u)

7 () g (u)du (2.4)

Eh(U) = [
where ¢ (u) is a density with the following properties:
a) it is easy to draw U from g,
b) f and g have the same support,
c) it is easy to evaluate h (u) f (u) /g (u) given u, and
d) h(u) f (u) /g (u) is bounded and smooth over the support of U.

Differentiability is important for most estimation procedures. An exception is Gibbs sam-
pling or, more generally, Monte Carlo Markov Chain estimation methods.



Note that equation (2.4) is E [h (U) f (U) /g (U)] where U ~ g. Then the impor-
tance sampling simulator for Eh (U) is

Eh(U) = % o ) S () (2.5)

where u", r = 1,2,..., Ry are R itd draws from g. The purpose of conditions
(a) and (c) are to increase computational speed. The purpose of condition (d) is
variance bounding and smoothness.

Consider simulating Pr [y; = 1 | X] for the multinomial probit problem. Equa-
tion (1.8) can be written as

[ 7y = [ [ () o ()] o () s (2:6)

u;‘<VJ u;<VJ

for some multivariate density g satisfying Conditions (a) through (d). Consider g
where the kth element of ] is distributed independently truncated normal with
upper truncation point Vj, and variance {2}, for each k. The candidate g satisfies
Conditions (a), (b), and (c), and h(u) f (u) /g (u) is smooth over the support
uf < V;. But h(u) f (u) /g (u) is not bounded especially when Q} has large off-
diagonal terms. Thus, this choice of g may be problematic. In fact, in general it is
the boundedness condition that is difficult to satisfy. For the multinomial probit
problem, the Geweke-Keane-Hajivassilliou (GHK) and decomposition simulators
discussed below both can be thought of as importance sampling simulators that
satisfy Conditions (a) through (d). The simulators described in Danielsson and
Richard(1993) and Richard and Zhang(1996) are more sophisticated importance
sampling simulators.

2.2. GHK Simulator

The GHK simulator, developed by Geweke(1991), Hajivassilliou(1990), and Keane(1994),
has been found to perform very well in Monte Carlo studies (discussed later) for
simulating Pr {uj < V}} The GHK algorithm switches back and forth between
computing univariate, truncated normal probabilities, simulating draws from uni-
variate normal distributions, and computing normal distributions conditional on
previously drawn truncated normal random variables. Since each step is straight-
forward and fast, the algorithm can decompose the more difficult problem into a

series of feasible steps. The algorithm is as follows:
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(a) Set t =1, p =0, 0* = 2, and P=1.

(b) Compute p = Pr (u;‘t < V]t) analytically, and increment P = P x p.

(c) Draw u, from a truncated normal distribution with mean y, variance o2, and
upper truncation point Vj,.

(d) If t < J — 1, increment t by 1; otherwise goto (g).

(e) Compute (analytically) the distribution of v}, conditional on u};, u%y, .., uj, ;.

Note that this is normal with an analytically computable mean vector p and

variance 2.

(f) Goto (b).
(g) P is the simulator.

The algorithm relies upon the fact that normal random variables conditional
on other normal random variables are still normal. The GHK simulator is strictly
bounded between zero and one because each increment to P is strictly bounded
between zero and one. It is continuous and differentiable in # because each in-
crement to P is continuous and differentiable. Its variance is smaller than the
frequency simulator in equation (1.10) because each draw of P is strictly bounded
between zero and one while each draw of the frequency simulator is either zero or
one.

The GHK simulator is an importance sampling simulator. Consider the case
where J = 3. Then the probability to simulate can be written as

ug | uy) ¢ (u1)
o (V1,Vs)

where @ (V1,V5) = Priu; < Vi,ug < Vo], @ (V3 | ug,us) = Priug < V3| ug,us,
¢ (ug | up) is the conditional density of us given uy, ¢ (u1) is the marginal density
of u;. Equation (2.7) can be written in the form of equation (2.4) by letting

h(u) = @(Vi,Va)® (Vs | ui,ug), (2.8)
¢ (uz | u1) ¢ (u1)

F ) B (V1,Va)

¢ (u1) ¢ (uz | up)

¢ (VI) ¢ (Vz | Ul)

where g (u) reflects the GHK algorithm’s method of simulation. Because it is an
importance sampling simulator, GHK is unbiased.

A minor modification of the algorithm provides draws of normal random vari-
ables (0 conditional on u; < Vj. Other minor modifications are useful for related
problems.

Priu< V] = (W, k) /_Vl /_V2 B (Vy |y, un) 24 dusduy (2.7

1(up < Vi,us < V),

g (u)
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2.3. Decomposition Simulators

Next, two decomposition simulators are described. The Stern(1992) simulator
uses the property that the sum of two normal random vectors is also normal. The
goal is to simulate Pr [u;‘ < V;} Decompose v} = Z; + Z, where Z; ~ N[0, )],

Zy~ N {O, Q- )\}, Zy and Z, are independent, and A is chosen to be a diagonal

matrix as large as possible such that Q% — A is positive definite.” Then equation
(1.8) can be written as

JPr(Zy < V; — 2] g(22) dzo
_ fl;[q) (V-/;;ZQk) g (22) dzo (2.9)

where ¢ (.) is the joint normal density of Z,. Equation (2.9) can be simulated as

Al (5 =

where 25, k =1,2,..,J — 1, are pseudorandom draws of Z5. The Stern simulator
has all of the properties of the GHK simulator. So which one performs better is
an empirical matter left to later discussion.

Another decomposition simulator, suggested by McFadden(1989), changes the
specification of equation (1.3) to

y; = X8 +uj+71ej, j=1,..,J (2.11)

where 7 is a small number and e; ~ vid Extreme Value. In the limit, as 7 — 0,
Prly; = 1| X] converges to a multinomial probit probability. But for any 7 > 0,

Pr[yjzlrm:/exp{”*%}/z p{X’“““’“}ﬂu)du (212)

which is the multinomial logit probability conditional on u = (uy,us, .., us) inte-
grated over f. Equation (2.12) can be simulated as

_ZleXp{Xﬁ—f—u }/Z {MH (2.13)

TAn easy way to pick ) is to set each diagonal element of A equal to the smallest eigenvalue
of 27 minus a small amount.
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where u" are pseudorandom draws of u. The idea in McFadden(1989) is to think
of equation (2.11) as a kernel-type approximation of equation (1.3) for small 7.
However, assuming equation (2.11) is the true structure (where 7 is a parameter
that can sometimes be estimated) takes away no flexibility and frequently eases
simulation. Multivariate normality is a desirable assumption because of its flexi-
ble covariance matrix. But there are very few applications where theory dictates
that the error in equation (1.3) should be multivariate normal. Berkovec and
Stern(1991) and Berry, Levinsohn, and Pakes(1995) use the McFadden specifica-
tion as the “true” specification in a structural model of retirement behavior.

2.4. Antithetic Acceleration

Antithetic acceleration is a powerful variance reduction method (see Geweke,
1988). In any simulation method, there is some probability that the pseudo-
random draws will be unusually large (or small). Antithetic acceleration prevents
such events from occurring and thus reduces the variance of the simulator. Con-
sider the general problem of simulating Eh (U) where U ~ F. Let Z ~ Uniform
(0,1). Then h(F~'(Z)) is a simulator of Eh (U). But h(F~' (1 — Z)) is also
a simulator of Eh(U) (because 1 — Z ~ Uniform (0,1) also). The antithetic
acceleration simulator of Eh (U) is

R
S h(FrE) wh(Fra- )] (2.14)

r=1

where 2" is a pseudorandom draw of Z. When F is N [0,0?%], equation (2.14)
becomes

1 R
B 2R r=1

where u" is a pseudorandom draw of U. For any symmetric F', if h is linear,
the variance of Eh (U) is zero. For monotone h, the variance of Eh (U) with R
draws and antithetic acceleration is smaller than the variance of Eh (U) with 2R
draws and no antithetic acceleration. If Eh (U) is being simulated to estimate a

Eh (u) [h (u") + h (—u")] (2.15)

parameter # with N observations and A is monotone, then the increase in Var (9)
due to simulation when antithetic acceleration is used is of order (1/N) times the
increase in Var (9) due to simulation when antithetic acceleration is not used. The
value of this is discussed more in the next section.

There are simulation problems where antithetic acceleration does not help. For
example, let U ~ N [0,02], and let h (U) = U?. Then Var [Eh (U)} with antithetic
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acceleration and R draws is greater than that without antithetic acceleration and
2R draws. This is because h (—U) = h(U) which means that equation (2.15)
becomes equation (2.3); the variance is twice as great as with no antithetic accel-
eration and 2R draws. In general, deviations from monotone h will diminish the
performance of antithetic acceleration. But Hammersly and Handscomb(1964)
suggests generalizations of antithetic acceleration that will reduce variance for
more general h.

A related method is the use of control variates. Let Eh(U) be a simulator of
Eh(U), and let k (U) be some other simulator with known expected value Ek(U).
Then

Eh(U) = En(U) — k(U) + Ek(U) (2.16)

has expected value Fh(U) and variance
Var [Eh(U)| = Var [ER(U)| + Var [k (U)] — 2Cov |ER(U), k(U)] . (2.17)

If Cov {EAh(U), k (U)} > Var {l% (U)} /2, then Var {Eh (U)} < Var {EAh(U)} This
idea can be used effectively in Monte Carlo testing and covariance matrix estima-
tion (where it is easy to find a simulator k (U) with known expected value). In
fact, it can be used to increase the rate of convergence of such estimators (see, for
example, Hendry 1984 or Brown and Newey 1996).

3. Estimation Methods

The goal of this section is to use the simulators developed in the last section
in some estimation problems. Four different estimation methods are discussed:
method of simulated moments (MSM), maximum simulated likelihood estima-
tion (MSL), method of simulated scores (MSS), and Monte Carlo Markov Chain
methods (with emphasis on Gibbs sampling). Each method is described, and its
theoretical properties are discussed.

3.1. Method of Simulated Moments

Many estimation problems involve finding a parameter vector 6 that solves a set
of orthogonality conditions
Qh(y. X |6) =0 (3.1)
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where Q is a set of instruments with dimension equal to the dimension of .8 Such
estimators are called method of moments (MOM) estimators. All least squares
methods are special cases of equation (3.1), and many problems usually estimated
as MLE can be recast as MOM estimators. For example, Avery, Hansen, and
Hotz(1983) suggest how to recast the the multinomial probit problem as a MOM
problem where h (y, X | 0) is the vector y — E (y | X) in the multinomial probit
problem of Section 1 with jth element given by equation (1.4).

In many MOM problems, the orthogonality condition can not be evaluated
analytically. For example, in the multinomial probit problem, evaluating F [y | X]
involves evaluating equation (1.4). MSM replaces h (y, X | #) with an unbiased
simulator & (y, X | #) and then finds the 6 that solves

Q'h(y,X | 6) = 0. (3.2)

The 6 that solves equation (3.2) is the MSM estimator of 6, §. McFadden(1989)
and Pakes and Pollard(1989) show that, as long as iz(y,X | 6) is an unbiased
simulator of & (y, X | ), deviations between h and h will wash out by the Law
of Large Numbers because equation (3.2) is linear in h and plim(@) = 0 as the

sample size N — oo even for small R.°
Consider the multinomial probit problem in more detail. As in Section 1, let y;
be the vector of dependent variables for observation ¢, i = 1,2, .., N, where y;; = 1
iff choice j is chosen by ¢. The probability of ¢ choosing j conditional on Xj; is
given in equation (1.8), and its frequency simulator is given in equation (1.10).
The frequency simulator should be replaced by one of the simulators discussed in
Section 2, but for now we will use the frequency simulator for ease of presentation.
As was discussed earlier, F [y;; | X;] = Pry;; = 1| Xi]. Let P, be a J-element
vector with Pr[y;; = 1| X;] in the jth element of P, and let ¢; = y; — P;. Then
Ele; | X;] =0, and
EY Qe =0 (3.3)

for any set of exogenous instruments ();. Thus, conditional on a chosen ) =
(Q1,Qa, .., Qn), the 6 = (3,9) that satisfies 3-; Qie; = 0 is the MOM estimator
of §. Let P; be an unbiased simulator of P;, and let &; = y; — P;. Then the 6 that
solves

Y QiEi=0 (3.4)

7

8When the dimension of @ is greater than the dimension of @, the problem can be generalized
to a GMM problem.
9Extra conditions are found in McFadden(1989) and Pakes and Pollard(1989).
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is the MSM estimator of 6.
To find a reasonable ), consider the log likelihood contribution for the multi-
nomial probit model:

J

The score statistics for 6 can be written as

aLz/ae - Z z] aPi ‘./.89

Py

_Zapu/ao( yii — P; + Pyj) (3.6)
Z P/89( i —Pij)‘i‘%:%l

where the last term equals zero because the 3 P;; = 1. Thus, one can write the

j
score statistics in the form of equation (3.4). With an initial estimate of 6, one
can construct (1/F;;) (0P;;/06) for § and all j and use it as an instrument matrix
Q; for each i. It is likely that the instruments () will need to be simulated (e.g.,
if the elements of ); are (1/P;;) (0PF;;/00)). This presents no significant problems
as long as the pseudorandom variables used to simulate @); are independent of
those used in the estimation process (to ensure exogeneity). For any exogenous
Q, the 6 that solves equation (3.4) is a consistent estimate of §. Thus, once 6 is
estimated, () can be updated using 6 and then used to find a new @ that solves
equation (3.4). A

For any exogenous @), the covariance matrix of § has two terms: a term due
to random variation in the data and a term due to simulation. As long as P; is
an exogenous, unbiased simulator of P;, one can write

Pi=P+¢ (3.7)

where &, is a random variable caused by simulation with zero mean independent
of €;, the deviation between y; and P;. Thus, the covariance matrix of £; can be
written as Eee' + EEE”. If P, is the frequency simulator of P, then ¢ is just an
average of R independent pseudorandom variables each with the same covariance
matrix as €. Thus, the covariance matrix of ¢ is the covariance matrix of € times
[1+ R~']. The asymptotic covariance matrix of @ is a linear function of the covari-
ance matrices for &;,1 = 1,2,.., N (McFadden, 1989, p. 1006). Note that for any
R>1, 0 is consistent; that as R — oo, the MSM covariance matrix approaches
the MOM covariance matrix (which is efficient when the two-step procedure de-
scribed above is used); and that the marginal improvement in precision declines

15



rapidly in R. If an alternative simulator with smaller variance is used, then the
loss of precision due to simulation declines. For example, if antithetic acceleration
is used, then the loss in precision becomes of order (1/N) (see Geweke 1988) which
requires no adjustment to the asymptotic covariance matrix.

Below is a roadmap for using MSM to estimate multinomial probit parameters:
a) Choose an identifiable parameterization for Q and initial values for 0 = (3,Q).
Make sure that the initial guess results in probabilities reasonably far from zero
or one.
b) Choose a simulator.
c) Simulate 2N JR'Y standard normal random variables. Store NJR of them in
an instruments random number file and NJR in an estimation random number
file. These random numbers will be used throughout the estimation process and
never changed.
d) Given the initial guess of 6 and the instruments random number file, simulate
(. Store the simulated instruments.
e) Given the initial guess of #, the simulated (), and the estimation random number
file, solve equation (3.4) for §. This is an MSM estimator of 6.
f) Given the initial MSM estimator, reperform steps (d) and (e) once.
Solving equation (3.4) requires using an optimization algorithm to find the 6 that
minimizes

Y EQiQ: (3.8)

The derivatives of P; are well behaved, so derivative based optimization routines
should be used. At each guess of #, the standard normal pseudorandom numbers
in the estimation random number file are used to create a new set of N [0, (]
random numbers using the method described in Section 2. Thus, even though
the standard normal random numbers never change, one is always using random
numbers from the correct normal distribution.

Consider the unobserved heterogeneity count problem described in equations
(1.11) through (1.13). Let y; be the number of events for ¢ at time t. E [yit | Ait]
is Aj;, but the covariance matrix of y; has no closed form. Let v; be a vector of
residuals with [T+ T (T + 1) /2] elements. The first T" elements of v; are y; — E\;
for t = 1,2,..,T where the expectation is over e; and u; in equation (1.12). The
last T' (T + 1) /2 elements correspond to “covariance residuals.” A representative
element would be

(Yir — EXit) (Yis — EXis) — Cigs (3.9)

0Remember that N = sample size, J = number of choices, and R = number of draws.
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for two periods, t and s, where Cj;s is the Cov(yy, yis). The MOM estimator of
0 = (6,p,06,0H) solves

> Qui=0 (3.10)
given a set of instruments (). Since both EF)\;; and Cj;s can not be evaluated ana-
lytically,''the MOM estimator is not feasible. But E\;; and Cj;s can be simulated.
Let g7, be a simulated count variable. We can simulate e;; and u; and therefore
Ait. Conditional on the simulated \;, we can simulate y;; either directly or by
using the relationship between Poisson random variables and exponential random
variables.

Applications using MSM include a retirement problem in Berkovec and Stern(1992),
a market entry problem in Berry(1992), a dynamic programming problem in
Hotz, et al.(1994), and an automobile pricing model in Berry, Levinsohn, and
Pakes(1995).

3.2. Maximum Simulated Likelihood

A common estimation method with good optimality properties is maximum like-
lihood (ML) estimation. The basic idea is to maximize the log likelihood of the
observed data over the vector of estimated parameters. ML estimators are consis-
tent and efficient for a very large class of problems. Their asymptotic distribution
is normal for a slightly smaller class of problems. However there are many like-
lihood functions that can not be evaluated analytically. In many cases, they can
be thought of as expected values of some random function that can be simulated.

Consider again the multinomial probit problem. The log likelihood contribu-
tion for observation i is defined in equation (3.5). Note that only one element of
y; is not zero, so only one probability needs to be computed. This is a significant
advantage of maximum simulated likelihood (MSL) over MSM. Still, to evaluate
the log likelihood function, one must be able to evaluate or simulate P;; for the
choice chosen. The MSL estimator of 8 is the value of # that maximizes

N

i=1 j

where JSij is the simulated value of P;;.

' Under special assumptions about the distribution of u; and e;; described in Hausman, Hall,
and Griliches (1984), the moments have analytical forms.
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A significant problem with MSL is that the log likelihood function is not linear
in P. Thus, unlike MSM, the simulation errors, P—pP , will not wash out asymptot-
ically as N — oo unless R — oo also. Lerman and Manski(1981) suggested using
MSL with a frequency simulator. They found that R needed to be quite large
to deal with this problem. However, Borsch-Supan and Hajivassilliou(1993) show
in Monte Carlo studies that if better simulators are used, in particular smooth,
smaller variance simulators bounded away from zero and one, then the bias caused
by finite R is small for moderate sized R. In fact, in their study, MSL performs
better than MSM.

Consider the unobserved heterogeneity model described in equations (1.11)
through (1.13). The log likelihood contribution for observation i is given in equa-
tion (1.14). The argument of the log is the expected value of

T fexp {=Aa} N /] (3.12)

t=1

over the distribution of the errors determining \;;. One can simulate \; for each
i and t and therefore the expected value of the term in equation (3.12). Since
the simulator of L; is the log of this term, it is biased, and the bias disappears
only as R — oo. But the simulator of equation (3.12) is smooth, and antithetic
acceleration can be used to significantly reduce the variance. Thus the asymptotic
bias associated with simulating the log likelihood function should be small.

Applications of MSL include a patent renewal model in Pakes(1986), a long-
term care model in Borsch-Supan, et al.(1992), and the production function model
in Ohanian, et al.(1996).

3.3. Method of Simulated Scores

A property of maximum likelihood is that the score statistic, the derivative of
the log likelihood function, should have an expected value of zero at the true
value of 6. This idea is the motivation behind the method of simulated scores
(MSS). Hajivassiliou and McFadden(1990) use MSS in a model of external debt
crises. The potential advantage of MSS is to use an estimator with the efficiency
properties of ML and the consistency properties of MSM. MSM is asymptotically
efficient if the proper weights are used (those that turn the moment condition into
a score statistic). MSS ensures that the proper weights are used. The difficulty
in this method is to construct an unbiased simulator of the score statistic. The
problems this causes will become clear in the multinomial probit example. The
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log likelihood contribution of observation i is given in equation (3.5), and its

derivative is 8Py /68
OL;/00 = y;: —LL—
/00 =205, (3.13)

_ 0P;/09
P;;

for the j corresponding to the chosen alternative. The goal is to construct an
unbiased simulator for equation (3.13) so that the problem can be turned into
a MSM problem. While it is straightforward to construct an unbiased simulator
for both the numerator and denominator in equation (3.13), the ratio will not be
unbiased as long as the denominator is random.

Consider constructing an unbiased simulator of the ratio. Supressing the ¢
subscript, equation (3.13) can be written as

dP; /98 9 o
= @Jf(y dy' /P (3.14)

where y* = (y5, s, ..,y7), [ is the joint density of y*, and A, is the subset of the
support of y* where y; > y; for all k # j. This equals

oP; /90 - £\ 1k
Y =/ LWL f (y7) dy* [ Py

j (3.15)
=E[gWnf") |y =1]

where the expectation is with respect to the joint density of y*. One usually can
simulate the expectation in equation (3.15) (e.g., using the GHK simulator) and
thus get an unbiased estimator of the ratio. Hajivassiliou and Ruud (1994) show
that this method of simulating the score generalizes for all limited dependent
variable problems.

3.4. Monte Carlo Markov Chain Methods

The last estimation procedure discussed is quite different than the others in that
it is a Bayesian estimator. In general, we have a model specified up to a set of
parameters 6, some data {(yi,Xi)}ZJ.\il, and a prior distribution for . The goal
is to use the data to update the prior distribution to get a posterior distribution
for 8. Computing the posterior involves using Bayes rule which usually involves
solving a difficult integral, thus making it an intractable problem. Consider a
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general problem where 7 (z) is a known density function and p (2" | 2") is a
transition density function such that

7 (2) = / p(z|2) 7 () dz. (3.16)

Then Markov Chain theory tells us that repeated application of the transition
density to an arbitrary density ¢ (z) will asymptote to 7 (z):

m(2) = [ (=] () (3.17)
where
Pl = [P e e () (3.18)
P (z12) = p(z|2)

The idea in Monte Carlo Markov Chain (MCMC) methods is to simulate from
p (2" | 2") repeatedly and to thus generate a sample from 7 (z). A popular
MCMC method is Gibbs sampling (possibly with data augmentation). Continuing
with our general notation, assume that there is natural way to partition z into
(21, 22, ..., 2) such that the conditional densities, 7 (z; | 21, 22, .-s Zi—1, Zit 1y -+ 2k)
are easy to simulate from for all 7. Then the Gibbs sampling algorithm is:

(a) Initialize 2° = (29,29, ..., 20) and set n = 0.

(b) Simulate 2] ~ 7 (zf“ | 25, z:’;‘...z,?);

n+1 n+1 n+l _n ny.
25 NW(ZQ | 21 ,23...zk),

n+1 n+1 n+1 _n+l _n ny.
25 Nﬂ(zg | 277, 25 ,24,...zk),...

n+1 n+1 n+1 _n+l n+1
2~ (zk | 207, 257 o 2y )

(c) Set n =n + 1, and return to (b).

MCMC theory shows that this procedure will generate a sample {z”}iV;NO
from 7 (z) where Ny is chosen to give any effects due to initialization of 2° an
opportunity to die out. Sometimes, while it is difficult to simulate from all of the
conditional densities 7 (z; | z1, 22, ..., 2Zi—1, Zi+1, ---, 2k ), there is a way to augment
the data with a latent variable so that all of the new conditional densities can be
simulated from; such an approach is called Gibbs sampling with data augmenta-
tion.

Returning to our Bayesian estimation problem, let’s say {y:‘}f\il that has the
following properties:
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a) the posterior distribution of y; given (y;, 6) is easy to simulate from, and

b) the posterior distribution of 6 given (y;,y;) and the prior distribution of 6 is
easy to compute and simulate from.

Assume there is a {yf}i]\il that satisfies these two conditions. Then the Gibbs
sampling with data augmentation algorithm draws {y:}~, given {y;}~, and 6,
then draws 6 given new {y, yi}fil, and repeats this process over and over again.
The draws of 6 provide information about the posterior distribution of #. The
algorithm is:

(a) Assume a prior distribution for #. Choose Ry such that the first Ry draws will
not count and R; such that the process will stop after R; draws. Set r = 0.

(b) Simulate one draw of  from its posterior distribution.
(c) If r > Ry, store the draw of 6 as draw r — Rj.

(d) If r > Ry, then r =7 + 1 and goto (g).
()
(

e) Simulate one draw of {y}, conditional on ({yl}f\il : 9).

f) Evaluate analytically the posterior distribution for 6 given {(y;,y)}r,. In-

crement r = r + 1. Goto (b).
(g) Use the Ry — Ry draws of 6 as a random sample of draws of # and compute
any sample characteristics desired.

Markov chain theory implies that the Gibbs sampling algorithm described
above will produce a distribution of draws of 6 corresponding to the posterior
distribution of § conditional on {(y;, X;)}~ |. See, for example, Casella and George
(1992), Gelfand and Smith(1990), Geman and Geman(1984), and Tanner and
Wong(1987) for more about Markov chains.

Consider how Gibbs sampling with data augmentation can be applied to the
multinomial probit problem.!? To simplify exposition, assume we know  and
only need to estimate . Assume [3; = 0 as a normalizing factor. For step (a), we

J
need a prior distribution for { ﬁj} e If we pick Ry big enough and the prior with
]:

a large enough variance, then the choice of prior will become irrelevant. Thus,
pick the prior to be diffuse. The diffuse prior makes it easy to compute posterior

J
distributions for {ﬂ j}, ) Next, let y! be the latent variable associated with y;:
j:

yho= XiB +ug, k=1,2,...,J,i=1,2,.,N (3.19)

where u; ~ N [0, §2].

12This is described in much more detail in McCulloch and Rossi (1996).
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For step (b), we need to simulate 3 from its posterior distribution. Since, at
any iteration of the algorithm, [ is normal, we can simulate § using the method
described in Section 2.

For step (e), we need to simulate {y}., conditional on ({yz}f\il ,ﬁ) Since
the observations are independent, we need only simulate y; conditional on (y;, 5)
for each © = 1,2, .., N separately. Let j be the chosen choice. Then

or
< X (8; = B) Yk #£J (3.21)
where uj;, = ug — uy;. The errors uj;, Vk # j can be simulated using the GHK

algorithm, and the yj;, can be constructed Vk # 1'% as
Yir = Xy, + ujj, — U (3.22)

Alternatively, we can use an acceptance-rejection simulator.

For step (f), we need to evaluate the posterior distribution of 3 given {y;}
Since u;; ~ N (0,wj;) for each i and j, yj; ~ N [Xiﬂj,w]‘jl)WhiCh means that
computing a posterior distribution for  involves running an OLS regression of y*
on X.

For step (g), the sample of Ry — Ry draws of 3 are distributed from the distri-
bution of 3 conditional on the data (including the dependent variables {y,}fil) A
few notes of caution are in order here. First, the draws of 3 are not independent
even though any dependence dies out as the number of draws between two draws
becomes large. Thus, we must not compute any statistics that depend upon the
ordering of the draws. Second, the draws are conditional on {yl}f\il This is quite
different than what we would expect in classical statistical analysis (where we
would condition on only the exogenous variables). The effect of this is that the
researcher does not know how the estimator would have behaved had a different
realization of the data been observed. This is a fundamental difference between
classical estimators and Bayesian estimators. There are other reasonable (and
perhaps better) choices for implementing the Gibbs sampler to the multinomial
probit problem. The real issues involve also estimating 2. See McCullough and
Rossi(1994, 1996) or Albert and Chib(1993) for a much more extensive discussion.

The unobserved heterogeneity count problem is also easily adaptable to Gibbs
sampling. The data should be augmented with {)\it}le ,N | and its prior should be

N
i=1"

13Recall that choice 1 is the base choice.
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normal. Steps (b) and (f) are the same as in the multinomial probit problem. Step
(e) involves simulating A;; conditional on (y;, 3) which is not as straightforward.
The density of \;; conditional on (y;, ) is

(3.23)

F O ) = € ) iy (B2
where o is the standard deviation of the composite error in equation (1.12), ¢
is the standard normal density function, and C (y) is a proportionality constant
chosen so that equation (3.23) integrates to one. One can evaluate the integral
of equation (3.23) numerically for each value of y = 0,1, .. for a finite number of
points: 6, 20,.., K6 for some small 6. Figure 1 draws the approximate distribution
curves for y =0,1,..,5, 6 = .01, and K = 1000. Then one can use the discretized
distribution as an approximation to draw A from. This is equivalent to drawing a
random point on the vertical axis of Figure 1 (e.g., point A), drawing a horizontal
line to the curve corresponding to y (e.g., B when y = 4) and choosing A to be
the horizontal component of the curve at that vertical point (e.g., point C').

A generalization of Gibbs sampling is the Metropolis-Hastings (MH) algorithm
described in, for example, Chib and Greenberg(1994). Returning to our general
notation, let p (2! | 2") be the density we want to simulate from so that we can
generate a sample with density 7 (z), but assume it is difficult to simulate from
p (2" | 2") directly. Let q (2" | 2™) be a “candidate density” chosen according
to criteria described in Chib and Greenberg(1994). Then the MH algorithm is:
(a) Initialize 2° and set n = 0.

(b) Simulate 2" from g (2™*! | 2™) and keep it with probability o (2™, 2") where

ﬂ.Zn+1 ann+1
(=t )a(=mzm )

. . n n+1 n
a2, 2m) = ¢ [1’ e | E ()T >0 g0y
1 otherwise.

(c) Set n =n + 1 and return to (b).

The MH algorithm is essentially a sophisticated acceptance-rejection method. The
acceptance probability « (2", 2™) oversamples transitions where 7 (2"*1) /7 (2")
is high relative to ¢ (2" | z2") /q (2™ | 2™™). Gibbs sampling is a special case of
the MH algorithm for ¢ (2" | 2™) being the conditional density and a (2"*1, 2") =
1. The difficult part of implementing the MH algorithm is choosing the candidate
density q (2" | 2"). One wants a ¢ (2"*! | 2") that moves around fast enough so
that the whole support of 7 (z) is sampled but slow enough so that a (2", 2")
is not too small. Also, it is worthwhile to have a candidate density such that
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q (2" ] 2") = q (2" | 2"™).1* Chib and Greenberg suggest using candidate den-
sities of the form q (2" | 2") = q; (2" — 2™) or ¢ (2" | 2") = q2 (2"™!). They
also provide an example estimating an ARMA model with regressors using the
MH algorithm.

3.5. Empirical Comparison of Methods

A number of studies have compared the performance of various simulators and
estimation methods especially for the multinomial probit problem. This section
summarizes the results of four of those studies and presents some new results
focusing on questions that are neglected in the other studies.

Borsch-Supan and Hajivassiliou (1993) compare the GHK simulator to the
Stern simulator and a frequency simulator. They present convincing evidence
that the GHK simulator has a significantly smaller standard deviation than the
other two simulators. They further show that the standard deviation of the GHK
simulator is small enough so that it can be used in an MSL estimation routine
providing parameter estimates with small root mean squared errors (RMSE’s).
Having a good simulator with a small standard deviation for MSL is important
because, unlike MSM, MSL does not provide consistent estimates for fixed R.

Hajivassiliou, McFadden, and Ruud (1994) compare ten different simulators
(including the Stern simulator, a Gibbs sampler, and a kernel smoothed simulator)
in terms of the RMSE of the multinomial probit probability and its derivatives.
They consider a large class of V;’s and Q}’s. They find that the GHK simulator
performs the best overall. In particular, it performs well relative to the alternatives
when (27 displays high correlation terms. They provide no results concerning
parameter estimates.

Geweke, Keane, and Runkle (1994a) compare MSM using GHK, MSL using
GHK, Gibbs sampling, and kernel smoothing. In an unrestricted estimation pro-
cedure (including covariance parameters), MSM-GHK and Gibbs sampling dom-
inated MSL-GHK. Kernel smoothing was dominated by all methods. In various
restricted models, the performance of MSL-GHK improved. In general, as more
restrictions were placed on the model, the performance of MSM-GHK, MSL-GHK,
and Gibbs sampling converged. But Gibbs sampling seemed to dominate other
methods overall.

Geweke, Keane, and Runkle (1994b) compare MSM-GHK, MSL-GHK, and
Gibbs sampling in the related multinomial multiple period probit model. They

" This simplifies evaluation of o (2", 2™) among other things.
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find that Gibbs sampling dominates and MSM-GHK is second. Estimated stan-
dard errors are good for Gibbs sampling and MSM-GHK but are downward biased
for MSL-GHK.

None of these methods compare the computational cost of the alternatives.
Computational cost is important because the simulators are essentially a method
to reduce computation time; if time was not an issue, we could compute the
relevant integrals numerically using arbitrarily precise approximation methods or
we could simulate them letting R be an arbitrarily large number. If one method
takes twice as much time as another for a given R, then a fair comparison requires
using different R for each method to produce comparable times. Also none of
the methods considers the effect of using antithetic acceleration (AA) despite
Geweke’s strong theoretical results.

Table 1 presents the results of a small Monte Carlo study. Its results should
be interpreted as suggestive of where more work needs to be done. The methods
that are compared are MSM-GHK, MSM-Stern, MSL-GHK, MSL-Stern, Gibbs
sampling (with acceptance-rejection), and MSM-KS (kernel smoothing). Three
different models are used: a) () is diagonal and N (sample size) = 500, b) Q is
diagonal and N = 1000, and c¢) € corresponds to an AR (1) process with p = .9
and N = 1000. Except for Gibbs sampling, results are reported with and without
AA. RMSE results and average times per estimation procedure are reported.

Kernel smoothing methods performed poorly in terms of RMSE of the sim-
ulated multinomial probit probabilities. Also, more importantly, its derivatives
with respect to parameters were poorly behaved in that if the bandwidth pa-
rameter was small, the derivatives were very volatile (and therefore derivative
based optimization algorithms for estimation behaved poorly), and if it was large,
parameter bias was very large. Thus kernel smoothing method results are not
reported. In terms of RMSE, Gibbs sampling estimators behave reasonably well.
But the amount of time involved is an order of magnitude greater than for the
MSM and MSL estimates.'> Thus, there are only limited results reported for the
Gibbs samplers.

The remainder of the discussion focuses on MSM, MSL, GHK, Stern, and
AA. First, it is clear that MSL dominates MSM in these examples. It provides
smaller RMSE’s and it requires less computation time. GHK dominates Stern in
terms of RMSE, but Stern is significantly faster. One might consider using Stern

15Tt should be noted that in these Monte Carlo experiments, I am conditioning on the true
value of 2. It might be the case that the Gibbs sampler performs better relative to the other
methods when 2 also is estimated.
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with twice as large R. Unreported Monte Carlo experiments suggest that for the
examples used here the standard deviation of the multinomial probit probabilities
is about twice as large for the Stern simulator as for the GHK simulator when
R = 10. This would suggest that doubling R for the Stern simulator (relative to
the GHK simulator) would make the GHK simulator more efficient by a factor
of v/2. Thus, these results are consistent with Borsch-Supan and Hajivassiliou,
suggesting that MSL-GHK provides estimates with the smallest RMSE’s even
after controlling for variation in computation time. Based on results in Borsch-
Supan and Hajivassiliou and Hajivassiliou, McFadden, and Ruud, it probably
performs even better for pathological cases with highly correlated errors or small
multinomial probit probabilities.

The poor performance of AA is striking. AA almost uniformly improves the
performance of the Stern simulator. But it behaves poorly for the GHK simula-
tor. However, Table 2 shows that AA significantly reduces the standard deviation
of the simulated multinomial probit probabilities for GHK, Stern, and kernel
smoothing. This apparent paradox occurs because of the small sample properties
of method of moments (MOM) and maximum likelihood (MLE). In other words,
the RMSE of MOM and MLE dominate any extra randomness caused by simula-
tion. This is verified by unreported results showing that when R is increased to
50, MSL-GHK and MSL-Stern RMSE’s converge to each other with or without
AA and they are similar to the RMSE’s for the case when R = 5 with AA or
R = 10 without AA. The bottom line is that for MSM and MSL, the choice of
simulation method has a second order effect on RMSE relative to RMSE caused
by the underlying estimation method. This further suggests that computation
time issues should be given high priority.
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Table 1

Monte Carlo Estimation Results

Results for Diagonal Covariance Matrix

N = 500
w/ Antithetic Acceleration wo/ Antithetic Acceleration
Method Avg RMSE  Avg Time Avg RMSE  Avg Time
MSM-GHK  0.299 3559.0 0.257 3373.8
MSM-Stern  0.270 1047.0 0.288 1097.0
MSL-GHK  0.247 1571.0 0.246 1598.8
MSL-Stern  0.254 654.9 0.252 674.7
Gibbs 0.263 16119.9
Results for Diagonal Covariance Matrix
N = 1000
w/ Antithetic Acceleration wo/ Antithetic Acceleration
Method Avg RMSE Avg Time Avg RMSE  Avg Time
MSM-GHK 0.181 6470.9 0.167 6283.1
MSM-Stern  0.173 1911.4 0.186 2006.0
MSL-GHK  0.158 1951.5 0.161 1889.9
MSL-Stern  0.161 802.0 0.163 853.0
Gibbs 0.170 29746.9
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Table 1 cont’d

Results for Non-Diagonal Covariance Matrix
N = 1000
w/ Antithetic Acceleration wo/ Antithetic Acceleration
Method Avg RMSE  Avg Time Avg RMSE Avg Time

MSM-GHK 0.267 7192.1 0.201 6782.8
MSM-Stern  0.358 2422.5 0.420 2565.2
MSL-GHK  0.175 2194.8 0.192 2010.0
MSL-Stern  0.180 1114.3 0.195 1174.0
Notes:

There are 200 Monte Carlo draws per experiment.

There are 6 choices and 5 explanatory variables per choice.

For experiments with AA, R = 5, and for experiments without AA, R = 10.

All experiments are performed on an IBM RS6000 Model 390.

Gibbs sampling results are based on 10000 draws after skipping 2000 draws;
i.e., Ry = 2000 and R; = 12000.
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Table 2
Probability Simulations

wo/ AA w/ AA

GHK -0.00050 -0.00269
(0.033)  (0.021)
Stern -0.00266 -0.00086

(0.059)  (0.023)
Kernel Smoothing 0.00000  0.00000
(0.077)  (0.063)
Notes:
AA is antithetic acceleration.
First row for each simulation method is a sample mean, and second row
(in parentheses) is a sample standard deviation.
There are 3000 Monte Carlo draws per experiment.
There are 6 choices and 5 explanatory variables per choice.
For experiments with AA, R = 5, and for experiments without AA, R = 10.
All experiments are performed on an IBM RS6000 Model 390.
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