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Preface 
 

This book began as a short note to propose the new estimator in Section 8.3.  In 
researching the recent developments in ordered choice modeling, we decided that it would be 
useful to include some pedagogical material about uses and interpretation of the model at the 
most basic level.  Our review of the literature revealed an impressive breadth and depth of 
applications of ordered choice modeling, but no single source that provided a comprehensive 
summary.  There are several somewhat narrow surveys of the basic ordered probit/logit model, 
including Winship and Mare (1984), Becker and Kennedy (1992), Daykin and Moffatt (2002) and 
Boes and Winkelmann (2006a), and a book length treatment, by Johnson and Albert (1999) that is 
focused on Bayesian estimation of the basic model using grouped data.  But, these stop well short 
of examining the extensive selection of variants of the model and the variety of fields of 
applications, such as bivariate and multivariate models, two part models, duration models, panel 
data models, models with anchoring vignettes, semiparametric approaches, and so on.  This 
motivated us to assemble this more complete overview of the topic. 

We strongly believe that many practitioners (and theorists) focus too sharply on 
coefficient estimation and do not place enough attention on the meaning of the model or its 
components.  As this review proceeded, it struck us that a more thorough survey of the model, 
itself, including its historical development might be useful and (we hope) interesting for readers.  
The following is also a survey of the methodological literature on the model of ordered choice.  
(We have, of necessity, omitted mention of many – perhaps most – of the huge number of 
applications.) 
 The development of the ordered choice regression model has emerged in two surprisingly 
disjoint strands of literature, in its earliest forms in the bioassay literature and in its modern social 
science counterpart with the pioneering paper by McElvey and Zavoina (1975) and its successors, 
such as Terza (1985).  There are a few prominent links between these two literatures, notably 
Walker and Duncan (1967).  However, even up to the contemporary literature, biological 
scientists and social scientists have largely successfully avoided bumping into each other.  [For 
example, the 500+ entry bibliography of this survey shares only four items with its 100+ entry 
counterpart in Johnson and Albert (Ordinal Data Modeling, 1999).] 
 The earliest applications of modeling ordered outcomes involved aggregate data 
assembled in table format, and with moderate numbers of levels of usually a single stimulus. The 
fundamental ordered logistic (“cumulative odds”) model in its various forms serves well as an 
appropriate modeling framework for such data.  Walker and Duncan (1967) focused on a major 
limitation of the approach.  When data are obtained with large numbers of inputs – the models in 
Brewer et al. (2008), for example, involve over 40 covariates – and many levels of those inputs, 
then crosstabulations are no longer feasible or adequate.  Two requirements become obvious, the 
use of the individual data and the heavy reliance on what amount to multiple regression-style 
techniques.  McElvey and Zavoina (1975) added to the model a reliance on a formal underlying 
“data generating process,” the latent regression, a mechanism that makes an occasional 
appearance in the bioassay treatment, but is never absent from the social science application.  The 
cumulative odds model for contingency tables and the fundamental ordered probit model for 
individual data are now standard tools. The recent advances in ordered choice modeling have 
involved modeling heterogeneity, in cross sections and in panel data sets.  These include a variety 
of threshold models and models of parameter variation such as latent class and mixed and 
hierarchical models.  The chapters in this book present in some detail, the full range of varieties 
of models for ordered choices. 



Modeling Ordered Choices 

 10  

 This book is intended to be an introduction to a certain class of discrete choice models.  
We anticipate that it can be used in a graduate level course in econometrics or statistics after the 
first one at the level of, say, Greene (2008a) and as a reference in specialized courses such as 
microeconometrics or discrete choice modeling.  The range of applications of ordered choice 
models considered here includes economics, sociology, health economics, finance, political 
science, statistics in medicine, transportation planning, and many others.  We have drawn on all 
of these in our collection of applications.  We assume that the reader is familiar with basic 
statistics and econometrics and with modeling techniques somewhat beyond the linear regression 
model. An introduction to maximum likelihood estimation and the most familiar binary choice 
models, probit and logit, is assumed, though developed in great detail in Chapter 2.  The focus of 
this book is on areas of application of ordered choice models. We leave it to others, e.g., 
Wooldridge (2002a), Hayashi (2000) or Greene (2008a) to provide background material on, e.g., 
asymptotic theory for estimators and practical aspects of nonlinear optimization. 
 All of the computations carried out here were done with NLOGIT. (See 
www.nlogit.com.) They can also be done with varying degrees of difficulty with several other 
packages, such as Stata and SAS.  Since this book is not a ‘how to’ for any particular computer 
program, we have not provided any instruction on how to obtain the results with NLOGIT (or any 
other program).  We assume that the interested reader can follow through on our developments 
with their favorite program, whatever that might be. Rather, our interest is in the models and 
techniques. 
 We would like to thank Joseph Hilbe and Chandra Bhat for their suggestions that have 
improved this work and Allison Greene for her assistance with the manuscript.  Any errors that 
remain are ours. 
William H. Greene 
David A. Hensher 
New York, January, 2009 
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1 
 

Introduction: Random Utility Models 
 
Netflix (www.netflix.com) is an internet company that rents movies on DVDs to subscribers.  
The business model works by having subscribers order the DVD online for home delivery and 
return by regular mail.  After a customer returns a DVD, the next time they log on to the website, 
they are invited to rate the movie on a five point scale, where 5 is the highest, most favorable 
rating.  The ratings of the many thousands of subscribers who rented that movie are 
 

 
Figure 1.1  Netflix Film Average Rating 

 
averaged to provide a recommendation to prospective viewers, as shown for example in Figure 
1.1.  This rating process provides a natural application of the models and methods that interest us 
in this book.   

For any individual viewer, we might reasonably hypothesize that there is a continuously 
varying strength of preferences for the movie that would underlie the rating they submit. For 
convenience and consistency with what follows, we will label that strength of preference 
“utility,” U*.  Given that there are no natural units of measurement, we can describe utility as 
having the following range: 
 

-∞  < Uim*  < +-∞ 
 
where i indicates the individual and m indicates the movie.  Individuals are invited to “rate” the 
movie on an integer scale from 1 to 5.  Logically, then, the translation from underlying utility to a 
rating could be viewed as a censoring of the underlying utility, 
 
 Rim  =  1  if  -∞  <  Uim* <  μi1, 
 Rim  =  2  if  μi1   <  Uim* <  μi2, 
 Rim  =  3  if  μi2  <  Uim* <  μi3,       (1.1) 
 Rim  =  4  if  μi3  <  Uim* <  μi4, 
 Rim  =  5  if  μi4  <  Uim* <  -∞. 
 
The crucial feature of the description thus far is that the viewer has (and presumably knows) a 
continuous range of preferences that they could express if they were not forced to provide only an 
integer from one to five.  Therefore, the observed rating represents a censored version of the true 
underlying preferences.  Providing a rating of 5 could be an outcome ranging from general 
enjoyment to wild enthusiasm.  Note that the thresholds,μij, are specific to the person and number 
(J-1) where J is the number of possible ratings (here, five)  – J-1 values are needed to divide the 
range of utility into J cells.  The thresholds are an important element of the model; they divide the 
range of utility into cells that are then identified with the observed ratings.  One of the admittedly 
unrealistic assumptions in many applications is that these threshold values are the same for all 
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individuals.  Importantly, the difference between two levels of a rating scale (e.g., 1 compared to 
2, 2 compared to 3) is not the same on a utility scale; hence we have a strictly nonlinear 
transformation captured by the thresholds, which are estimable parameters in an ordered choice 
model. 
 The model as suggested thus far provides a crude description of the mechanism 
underlying an observed rating.  But it is simple to see how it might be improved.  Any individual 
brings their own set of characteristics to the utility function, such as age, income, education, 
gender, where they live, family situation and so on, which we denote xi1, xi2,…,xiK.  They also 
bring their own aggregate of unmeasured and unmeasurable (by the statistician) idiosyncracies, 
denoted εim  How these features enter the utility function is uncertain, but it is conventional to use 
a linear function, which produces a familiar random utility function, 
 
 Uim*  =  βi0 + βi1xi1 + βi2xi2 + … + βiKxiK + εim.     (1.2) 
 
Once again, the model accommodates the intrinsic heterogeneity of individuals by allowing the 
coefficients to vary across individuals. To see how the heterogeneity across individuals might 
enter the ordered choice model, consider the user ratings of the same movie in Figure 1.1 posted 
on December 1, 2008 at a different website, IMDB.com.  This site uses a ten point scale.  The 
figure at the left below shows the overall ratings for 41,771 users of the site.  The figure at the 
right shows how the average rating varies across age, gender and whether the rater is a US viewer 
or not. 
 

 
Figure 1.2  IMDB.com Ratings  (http://www.imdb.com/title/tt0465234/ratings) 
 

An obvious shortcoming of the model is that otherwise similar viewers might naturally 
feel more enthusiastic about certain genres of movies (action, comedy, crime, etc.) or certain 
directors, actors or studios.  It would be natural for the utility function defined over movies to 
respond to certain attributes z1, z2,…,zM.  The utility function might then appear, using a vector 
notation for the characteristics and attributes, as 
 
 Uim*  =  βi̒xi + δi̒zm + εim.       (1.3) 
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Note, again, the marginal utilities of the attributes, δi, will vary from person to person.  We note, 
finally, two possible refinements to accommodate additional sources of randomness (individual 
heterogeneity).  Two otherwise observably identical individuals (same xi) seeing the same movie 
(same zm) might still react differently because of individual idiosyncracies that are characteristics 
of the person that are the same for all movies.  Second, every movie has unique features that are 
not captured by a simple hedonic index of its attributes – a particularly skillful character 
development, etc.  A relatively complete utility function might appear 
 
 Uim*  =  βi̒xi + δi̒zm + εim + ui + vm.      (1.4) 
 

To return to our rating mechanism, the model we have constructed is 
 
 Rim  =  1  if  -∞  <  βi̒xi + δi̒zm + εim + ui + vm <  μi1, 
 Rim  =  2  if  μi1   <  βi̒xi + δi̒zm + εim + ui + vm <  μi2, 
 Rim  =  3  if  μi2  <  βi̒xi + δi̒zm + εim + ui + vm <  μi3,    (1.5) 
 Rim  =  4  if  μi3  <  βi̒xi + δi̒zm + εim + ui + vm <  μi4, 
 Rim  =  5  if  μi4  <  βi̒xi + δi̒zm + εim + ui + vm <  -∞. 
 
Perhaps relying on a central limit to aggregate the innumerable small influences that add up to the 
individual idiosyncracies and movie attraction, we assume that the random components, εim, ui 
and vm are normally distributed with zero means and (for now) constant variances.  The 
assumption of normality will allow us to attach probabilities to the ratings.  In particular, arguably 
the most interesting one is 
 
 Prob(Rim = 5|xi,zm,ui,vm) = Prob(εim > βi̒xi + δi̒zm + ui + vm).   (1.6) 
 
The structure provides the framework for an econometric model of how individuals rate movies 
(that they rent from Netflix).  The resemblance of this model to familiar models of binary choice 
is more than superficial.  For example, one might translate this econometric model directly into a 
probit model by focusing on the variable 
 
 Eim  =  1  if Rim  =  5 
 Eim  =  0  if Rim  <  5.        (1.7) 
 
Thus, we see the model is an extension of a binary choice model to a setting of more than two 
choices.  But, we emphasize, the crucial feature of the model is the ordered nature of the observed 
outcomes and the correspondingly ordered nature of the underlying preference scale. 

Beyond the usefulness of understanding the behavior of movie viewers, e.g., whether 
certain genres are more likely to receive high ratings or whether certain movies appeal to 
particular demographic groups, such a model has an additional utility to Netflix.  Each time a 
subscriber logs on to the website after returning a movie, a computer program generates 
recommendations of other movies that it thinks that the viewer would enjoy (i.e., would give a 
rating of 5).  The better the recommendation system is, the more attractive will be the website.  
Thus, the ability accurately to predict a “5” rating is a model feature that would have business 
value to Netfix.  Netflix is currently (2008 until 2011) running a contest with a $1,000,000 prize 
to the individual who can devise the best algorithm for matching individual ratings based on 
ratings of other movies that they have rented.  See www.netflixprize.com, Hafner (2006) and 
Thomson (2008).  The Netflix prize and internet rating systems in general, beyond a large popular 
interest, have attracted a considerable amount of academic attention as well.  See, for example, 
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Ahsari, Essegaier and Kohli (2000), Bennett and Lanning (2007)  and Umyarov and Tuzhlin 
(2008). 
 The model described here is an ordered choice model. (The choice of the normal 
distribution for the random term makes it an ordered probit model.)  Ordered choice models are 
appropriate for a wide variety of settings in the social and biological sciences.  The essential 
ingredient is the mapping from some underlying, naturally ordered preference scale to an 
ordered observed outcome, such as the rating scheme described above.  The model of ordered 
choice pioneered by Aitcheson and Silvey (1957) and Snell (1964) and articulated in its modern 
form by McElvey and Zavoina (1969, 1971, 1975) has become a widely used tool in many fields.  
The number of applications in the current literature is large and increasing rapidly.  A quick 
search of just the “ordered probit” model identified applications on:  
 
 • academic grades [Butler et al. (1994), Li and Tobias (2006a)],  
 • bond ratings [Terza (1985)], 
 • Congressional voting on a Medicare bill [McElvey and Zavoina (1975)], 
 • credit ratings [Cheung (1996)],  
 • driver injury severity in car accidents [Eluru, Bhat and Hensher (2008)],  
 • drug reactions [Fu et al.(2004)],  
 • duration [Han and Hausman (1990), Ridder (1990)], 
 • education [Machin and Vignoles (2005), Carneiro, Hansen and Heckman (2001, 2003), 

   Cameron and Heckman (1998), Cunha, Heckman and Navarro (2007), Johnson and 
   Albert (1999)], 

 • eye disease severity [Biswas and Das (2002)], 
 • financial failure of firms [Jones and Hensher (2004), Hensher and Jones (2007)], 
 • happiness [Winkelmann (2005), Zigante (2007)], 
 • health status [Greene (2008a) based on Riphahn, Wambach and Million (2003)],  
 • insect resistance to insecticide [Walker and Duncan (1967)], 
 • job classification in the military [Marcus and Greene (1983)],  
 • job training [Groot and van den Brink (2002a)], 
 • labor supply [Heckman and MaCurdy (1981)], 
 • life satisfaction [Clark et al. (2001), Wim and ven den Brink (2002, 2003b)], 
 • monetary policy [Eichengreen, Watson and Grossman (1985)], 
 • nursing labor supply [Brewer et al. (2008)], 
 • obesity [Greene, Harris, Hollingsworth and Maitra (2008)],  
 • perceptions of difficulty making left turns [Zhang (2007)],  
 • pet ownership [Butler and Chatterjee(1997)],  
 • political efficacy (a cross country comparison) [King et al. (2004)], 
 • product quality [Prescott and Visscher (1977), Shaked and Sutton (1982)], 
 • promotion and rank in nursing [Pudney and Shields (2000)],  
 • stock price movements [Tsay (2005)], 
 • tobacco use [Harris and Zhao (2007), Kasteridis, Munkin and Yen (2008)], 
 • trip stops [Bhat (1997)], 
 • vehicle ownership [Bhat and Pulugurta (1998), Train (1986), Hensher, Smith, 
    Milthorpe and Bernard (1992), 
 • work disability [Kapteyn et al. (2007)] 
 
and hundreds more. 
 This book will survey the development and use of models of ordered choices from the 
perspective of the social sciences.  The distinction between that and the biological sciences will 



Modeling Ordered Choices 

 15  

emerge clearly as we proceed.  We will detail the model itself, estimation and inference, 
interpretation and analysis.  We will also survey a wide variety of different kinds of applications, 
and a wide range of variations and extensions on the basic model that have been proposed in the 
recent literature. 
 The practitioner who desires a quick entry level primer on the model can choose among 
numerous sources for a satisfactory introduction to the ordered choice model and its uses. Social 
science oriented introductions to the ordered choice model appear in journal articles such as 
Winship and Mare (1984), Becker and Kennedy (1992), Daykin and Moffatt (2002) and Boes and 
Winkelmann (2006a), and in textbook and monograph treatments including Maddala (1983), 
DeMaris (2004), Long (1997), Johnson and Albert (1999), Long and Freese (2006) and Greene 
(2008a).  There are also many surveys and primers for bioassay, including, e.g., Greenland 
(1994), Agresti (1999) and Ananth and Kleinbaum (1997).  This survey is offered as an addition 
to this list largely to broaden the discussion of the model and for a number of specific purposes: 
 

• Many interesting extensions of the model already appearing in the literature are 
not mentioned in the surveys listed above. 

• Recent analyses of the ordered choice model have uncovered some interesting 
avenues of generalization.  

• The model formulation rests on a number of subtle underlying aspects that are 
not developed as completely as are the mechanics of using the “technique.”  
Only a few of the surveys devote substantial space to interpreting the model’s 
components once they are estimated.  As made clear here and elsewhere, the 
coefficients in an ordered choice provide, in isolation, provide little useful 
information about the phenomenon under study. Yet, estimation of coefficients 
and tests of statistical significance are the central (sometimes, only) issue in 
many of the surveys listed above, and in some of the received applications. 

• We will offer our own generalizations of the ordered choice model. 
• With the creative development of easy to use contemporary software, many 

model features and devices are served up because they can be computed 
without much (or any) discussion of why they would be computed, or, in some 
cases, even how they are computed.  To cite an example, Long and Freese 
(2006, pp. 195-196) state “several different measures [of fit] can be 
computed…” [using Stata] for the ordered probit model.  Their table that 
follows lists 20 values, seven of which are statistics whose name contains “R 
squared.”  The values range from 0.047 to 0.432.  No discussion of what the 
measures are, what they mean, or how they are computed follows; the section 
provides the reader with a single statement that two Monte Carlo studies have 
found that one of the measures “closely approximates the R2 obtained by fitting 
the linear regression model on the underlying latent variable.”  (Note that the 
underlying variable – utility in our earlier example – is never observed.)  
Obviously researchers differ on what information they wish to extract from the 
data. We will attempt to draw the focus to a manageable few aspects of the 
model that appear to have attained some degree of consensus. 

 
 The book proceeds as follows.  Standard models of binary choice are presented in 
Chapter 2.  The fundamental ordered choice model is developed in some detail in Chapter 3.  The 
historical antecedents to the basic ordered choice model are documented in Chapter 4.  In Chapter 
5, we return to the modern form of the model, and develop the different aspects of its use, such as 
interpreting the model, statistical inference and fit measures.  Some recent generalizations and 
extensions are presented in Chapters 6 - 11.  Semiparametric models that reach beyond the 
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mainstream of research are discussed in Chapter 12.  An application based on a recent study of 
health care [Riphahn, Wambach and Million (2003)] will be dispersed through the discussion to 
provide an illustration of the points being presented. 
 There is a large literature parallel to the social science applications in the areas of 
biometrics and psychometrics.  The distinction is not perfectly neat, but there is a tangible 
difference in orientation, as will be evident below. From the beginning with Bliss’s (1934a) 
invention of probit modeling, many of the methodological and statistical developments in the area 
of ordered choice modeling have taken place in this setting.  It will be equally evident that these 
two areas of application have developed in parallel, but by no means in concert.  This book is 
largely directed toward social science applications.  However, the extensions and related features 
of the models and techniques in biometrics will be integrated into the presentation. 
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2 
 

Modeling Binary Choices 
 
 The random utility model described in the Introduction is one of two essential building 
blocks that form the foundation for modeling ordered choices.  The second fundamental pillar is 
the model for binary choices.  The ordered choice model that will be the focus of the rest of this 
book is an extension of a model used to analyze the situation of a choice between two alternatives 
– whether the individual takes an action or does not, or chooses one of two elemental alternatives, 
and so on.  This chapter will develop the standard model for binary choices in considerable detail.  
Many of the results analyzed in the chapters to follow will then be straightforward extensions.   

We present a lengthy survey of binary choice modeling.  There are numerous such 
surveys available, including Amemiya (1981), Greene (2008a, Chapter 23) and several book 
length treatments such as Cox (1970). Our interest here is in the aspects of binary choice 
modeling that are likely to reappear in the analysis of ordered choices.  We have therefore 
bypassed numerous topics that do appear in other treatments, notably semiparametric and 
nonparametric approaches, but whose counterparts have not yet made significant inroads in 
ordered choice modeling.  (Chapter 12 does contain some description of a few early entrants to 
this nascent literature.)  This chapter also contains a long list of topics related to binary choice 
modeling, such as fit measures, multiple equation models, sample selection and many others, that 
are useful as components or building blocks in the analysis of ordered choices.  Our intent with 
this chapter is to extend beyond conventional binary choice modeling, and provide a bridge to the 
somewhat more involved models for ordered choices.  Quite a few of these models, such as the 
sample selection model, are straightforward to generalize to the ordered probit model. 

The orientation of our treatment is the analysis of individual choice data, as typically 
appears in social science applications using survey data. An example is the application developed 
below in which survey data on health satisfaction are transformed into a binary outcome that 
states whether or not a respondent feels healthier than average. A parallel literature in, e.g., 
bioassay such as Cox (1970) and Johnson and Albert (1999) is often focused on ‘grouped’ data in 
the form of proportions.  Two examples would be an experiment to determine the lethality of a 
new insecticide in which ni insects are subjected to dosage xi, and a proportion pi succumb to the 
dose, and a state by state tally of voting proportions in a national election.  With only a few 
exceptions noted in passing, we will not be concerned with data of this type.   
 
2.1  Random Utility Formulation of a Model for Binary Choice 
 

An application we will develop is based on a survey question in a large German panel 
data set, roughly, “on a scale from zero to ten, how satisfied are you with your health?”  The full 
data set consists of from one to seven observations – it is an unbalanced panel – on 7,293 
households for a total of 27,326 family year observations.  A histogram of the responses appears 
in Figure 5.1.  Consistent with the description in the Introduction, we might formulate a random 
utility/ordered choice model for the variable Ri =  “Health Satisfaction” as 

 
Ui*  =  β′xi + εi, 
Ri    =  0  if  -∞ <  Ui*  <  μ0, 
Ri    =  1  if  μ0  <  Ui*  <  μ1,    
… 
Ri    =  10  if  μ9  <  Ui*  <  +∞, 
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where xi is a set of variables such as gender, income, age, and education that are thought to 
influence the response to the survey question.  (Note that at this point, we are pooling the panel 
data as if it were a cross section of n = 32,726 independent observations and denoting by i one of 
those observations.)  The average response in the full sample is a bit less than 7.  Consider a  
 
simple response variable, yi = “Healthy,” 
 
 yi  =  1  if  Ri  >  7  and yi  =  0 otherwise. 
 
Then, in terms of the original variables, the model for yi is 
 
 yi  =  0 if Ri = 0, 1, 2, 3, 4, 5 or 6. 
 
By adding the terms, we then find, for the two possible outcomes, 
 
 yi  =  0 if  Ui*  <  μ6,    
 yi  =  1 if  Ui*  >  μ6. 
 
Figure 2.1 shows how the variable yi is generated from the underlying utility. 
 
-------------------+---------------------------------------------------------------------------------------------+ 
                         |   -------|-------|-------|-------|-------|--------|------|-------|------|--------|-------     | 
Ui*                   |   -∞        μ0       μ1       μ2       μ3      μ4        μ5      μ6       μ7      μ8      μ9      +∞     | 
Satisfaction Ri   |        0           1        2       3        4         5          6        7       8        9         10         | 
Healthy        yi  |                           0                                                ||                     1                        | 
                          |                                    0                                                               1                       | 
-------------------+---------------------------------------------------------------------------------------------+ 
Figure 2.1  Random Utility Basis for a Binary Outcome 

 
Substituting for Ui*, we find 

 
 yi  =  1  if  β′xi + εi > μ6 
or yi  =  1  if  εi  >  μ6 -  β′xi      
and  yi  =  0 otherwise. 
 
We now assume that the first element of β′xi is a constant term, α, so that β′xi – μ6  equivalent to 
γ̒xi where the first element of γ is α – μ6 and the rest of γ is the same as the rest of β.  Then, the 
binary outcome is determined by 
 
 yi  =  1  if  γ̒xi + εi  >  0 
and  yi  =  0 otherwise.   
 
In general terms, we write our binary choice model in terms of the underlying utility as 
 
 yi*  =  γ̒xi  +  εi, 
 yi    =  1[yi*  >  0],        (2.1) 
 
where the function 1[condition] equals one if the condition is true and zero if it is false. 
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2.2  Probability Models for Binary Choices 
 
 The observed outcome, yi, is determined by a latent regression, 
 
 yi*  =  γ̒xi + εi. 
 
The random variable yi takes two values, one and zero, with probabilities 
 
 Prob(yi = 1|xi)   =  Prob(yi* > 0|xi) 
   =  Prob(γ̒xi + εi > 0)      (2.2) 
   =  Prob(εi > -γ̒xi ). 
 
The model is completed by the specification of a particular probability distribution for εi. In terms 
of building an internally consistent model, we require that the probabilities be between zero and 
one and that they increase when γ′xi increases.  In principle, any probability distribution defined 
over the entire real line will suffice, though empirically, one might be interested in investigating 
whether one specification is preferable to another.   
 
2.2.1  Nonparametric and Semiparametric Specifications 
 

The fully parametric probit and logit models discussed in the rest of this chapter remain 
by far the mainstays of empirical research on binary choice.  Fully nonparametric discrete choice 
models are fairly exotic and have made only limited inroads in the applied literature – though 
they have attracted a considerable attention in the more theoretical literature, e.g., Matzkin 
(1993).   The primary obstacle to application is their paucity of interpretable results. [See Manski 
(1987, 1995).]  Semiparametric estimators represent a compromise between the robust but thinly 
informative nonparametric estimators and fragile fully parametric approaches.  Klein and Spady’s 
(1993) model has been used in several applications, including Gerfin (1996), Horowitz (1993), 
and Fernandez and Rodriguez-Poo (1997).  The single index formulation departs from a linear 
“regression” formulation, 
 

E[yi | xi] = E[yi |γ̒xi ]. 
Then 

Prob(yi = 1 | xi) = F(γ̒xi | xi ) = G(γ̒xi), 
 
where G is an unknown continuous distribution function whose range is [0, 1]. The function G is 
not specified a priori; it is estimated along with the parameters.  The estimator of the probability 
function, Gn, is computed using a nonparametric kernel estimator of the density of γ̒xi.  There is a 
large and burgeoning literature on kernel estimation and nonparametric estimation in 
econometrics. [An application is Melenberg and van Soest (1996).]  Li and Racine (2007) is a 
comprehensive introduction to the subject. 
 
2.2.2  The Linear Probability Model 
 

The binary choice model is sometimes based on a linear probability model (LPM), 
 
 Prob(yi = 1|xi)  =  γ̒xi.  
 
The model has a fundamental flaw in that probabilities must lie between zero and one, but the 
linear function cannot be so constrained.  Further discussion of the LPM may be found in Aldrich 
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and Nelson (1984), Amemiya (1981), Maddala (1983, Section 2.2) and Greene (2008a).  
Notwithstanding its shortcomings, the model has been employed in numerous applications, such 
as Caudill (1988), Heckman and MaCurdy (1985), Heckman and Snyder (1997) and Angrist 
(2001).  Since the LPM has not played a role in the evolution of the ordered choice models, we 
will not consider it further.   
 
2.2.3  The Probit and Logit Models 
 

The literature is overwhelmingly dominated by two models, the standard normal 
distribution, which gives rise to the probit model, 
 

( )2exp / 2
( )
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ε =
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,        (2.3) 

 
and the standard logistic distribution, which produces the logit model.  The logistic distribution,  
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f ε
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+ ε
,        (2.4) 

 
resembles the normal distribution, but has somewhat thicker tails – it more closely resembles the t 
distribution with seven degrees of freedom.  Other distributions, such as the complementary log 
log and Gompertz distribution that are built into modern software such as Stata and NLOGIT are 
sometimes specified as well, without obvious motivation.  The normal distribution can be 
motivated by an appeal to the central limit theorem and modeling human behavior as the sum of 
myriad underlying influences.  The logistic distribution has proved to be a useful functional form 
for modeling purposes for several decades.  These two are by far the most frequently used in 
applications. 

Figure 2.2 shows how the distribution of the underlying utility is translated into the 
probabilities for the binary outcomes for yi.  The shaded area is Prob(yi = 1|xi) = Prob(εi > -γ̒xi ). 
 

 
Figure 2.2.  Probability Model for Binary Choice 
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 The implication of the model specification is that yi|xi is a Bernoulli random variable with 
 
 Prob(yi = 1|xi)   =  Prob(yi* > 0|xi) 
   =  Prob(εi  >  -γ̒xi) 

   =  
 

 
( )

i
i if d

∞

′−
ε ε∫ xγ

      (2.5) 

   =  1 – F(-γ̒xi), 
 
where F(.) denotes the cumulative density function (CDF) for εi.  The standard normal and 
standard logistic distributions are both symmetric distributions that have the property that 
 
 F(γ̒xi)  =  1 – F(-γ̒xi). 
 
This produces the convenient result 
 
 Prob(yi = 1|xi)  =  F(γ̒xi).       (2.6) 
 
Standard notations for the normal and logistic distribution functions are 
 
 Prob(yi = 1|xi)  =  Φ(γ̒xi) if εi is normally distributed and    (2.7) 

Prob(yi = 1|xi)  =  Λ(γ̒xi) if εi is logistically distributed. 
 
There is no closed form for the normal cdf, Φ(t); it is computed by approximation (usually by a 
ratio of polynomials.)  But, the logistic cdf does exist in closed form, 
 
 Λ(t)  =  exp(t) / [1 + exp(t)]. 
 
The resulting probit model for a binary outcome is shown in Figure 2.3.  
 

 
Figure 2.3  Probit Model for Binary Choice 
 
 There is an issue of identification in the binary choice model.  We have assumed that the 
random term in the random utility function has a zero mean and known variance equal to one for 
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the normal distribution and π2/3 for the logistic.  These are normalizations of the model.  
Consider the zero mean assumption first.  Assume that rather than having mean zero, εi has 
nonzero mean θ.  The model for determination of yi will then be 
 
 Prob(yi = 1|xi)   =  Prob(εi <  α  +  γ ̒xi) 
   =  Prob(εi – θ  <  (α – θ) + γ ̒xi) 
   =  Prob(εi*  <  α*  + γ ̒xi). 
 
Where γ  is the rest of γ not including the constant term. The same model results, with εi* now 
having a zero mean and the nonzero mean of εi being absorbed into the constant term of the 
original model. The end result is that as long as the binary choice model contains a constant term, 
there is no loss of generality in assuming the mean of the random term is zero.  A nonzero mean 
would disappear into the constant term of the utility function.  The reason for the assumption of a 
known variance is more subtle.  Suppose that εi comes from population with standard deviation σ.  
For convenience, write εi = σvi where vi has zero mean and standard deviation one.  Then, 
 
 yi   =  1[γ̒xi + σvi  >  0]. 
 
Now, multiply the term in square brackets by any positive constant, λ.  The same observation 
mechanism results;  because we only observe zeros and ones, 
 
 yi   =  1[λ(γ̒xi + σvi)  >  0)] 
    =  1[γ*̒xi + σ*vi  >  0], 
 
for any positive λ we might choose.  We can assume any positive σ and observe exactly the same 
data, the same zeros and ones.  Contrast this to the linear regression model, 
 
 yi   =  γ̒xi  +  εi, 
 
in which a scaling of the right hand side of the equation translates into an equal scaling of yi.  To 
remove the indeterminacy in the probit model, it is conventional to assume that σ = 1. In the logit 
model, f(εi) is kept in the standardized form with implied standard deviation, σ = / 3π . The end 
result is that because yi has no scale – it is always zeros and ones – the data do not provide any 
way that we could estimate a variance parameter. 
 
2.3  Estimation and Inference 
 
 Estimation and inference for probit and logit models for binary choice models is usually 
based on maximum likelihood estimation.  The recent literature does contain some applications of 
Bayesian methods, so we will examine a Bayesian estimator as well. 
 
2.3.1  Maximum Likelihood Estimation 
 

Each observation is a draw from a Bernoulli distribution (binomial with one trial).  The 
model with success probability F(γ̒xi) and independent observations leads to the joint probability, 
or likelihood function, 
 
        Prob(Y1 = y1,Y2 = y2,…,Yn = yn|x1,x2,…,xn)  =  

 0  1
[1 ( )] ( )

i i
i iy y

F F
= =

′ ′− ×∏ ∏x xγ γ .    (2.8) 
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Let X denote the sample of n observations, where the ith row of X is the ith observation on xi 
(transposed, since xi is a column) and let y denote the column vector that is the n observations on 
yi.  Then, the likelihood function for the parameters may be written 
 
 L(γ|X,y)  =  

 1
 1

[1 ( )] [ ( )]i i
n y y

i ii
F F−

=
′ ′−∏ x xγ γ .     (2.9) 

 
Taking logs, we obtain the log likelihood function, 
 
 lnL(γ|X,y)  =  

1
(1 ) ln[1 ( )] ln ( ).n

i i i ii
y F y F

=
′ ′− − +∑ x xγ γ    (2.10) 

 
We are limiting our attention to the normal and logistic, symmetric distributions.  This permits a 
useful simplification.  Let 
 
 qi  =  2yi – 1.         (2.11) 
 
Thus, qi equals –1 when yi equals zero and +1 when yi equals one.  Because the symmetric 
distributions have the property that F(t) = 1 – F(– t), we can combine the preceding into  
 
 lnL(γ|X,y)  =  

1
ln [ ( )].n

i ii
F q

=
′∑ xγ       (2.12) 

 
The maximum likelihood estimator (MLE) of γ is the vector of values that maximizes this 
function. 
 The MLE is the solution to the likelihood equations, 
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where f(.) is the density, dF(.) /d(γ̒xi).  The likelihood equations will be nonlinear and require an 
iterative solution. For the logit model, the likelihood equations can be reduced to 
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     (2.14) 

 
If xi contains a constant term, then, by multiplying the likelihood equation by 1/n, we find that the 
first-order condition with respect to the constant term implies   
 

 [ ]1

1 ˆ( ) 0.n
i ii

y
n =

′− Λ =∑ xγ        (2.15) 

 
where γ̂  is the MLE of γ.  That is, the average of the predicted probabilities must equal the 
proportion of ones in the sample, P1 = (1/n)Σiyi.  Although the same result has not been shown to 
hold exactly (theoretically) for the probit model, it does appear as a striking empirical regularity 
there as well.  The likelihood equation also bears some similarity to the least squares normal 
equations if we view the term yi – Λ(γ̒xi)  as a residual.  The first derivative of the log-likelihood 
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with respect to the constant term produces the generalized residual in many settings.  [See, for 
example, Chesher  and Irish (1985).]  The log-likelihood function for the probit model is 
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The likelihood equations are 
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Note that λi is negative when yi equals zero and positive when yi equals one. 

 
2.3.2  Maximizing the Log Likelihood Function 
 
 The second derivatives of the log likelihood function are 
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Where f ̒ (t) is the derivative of the density function for the normal or logistic distribution.   For 
the normal distribution, this is φ′(t) = -tφ(t) while for the logistic distribution, this is  
 
 f ̒(t) = [1-2Λ(t)]Λ(t)[1-Λ(t)].         (2.19) 
 
These expressions simplify the second derivatives considerably.  For the probit model, 
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while for the logit model this is 
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In both of these cases, the term in braces, hi,Model, is always negative.  This means that the second 
derivatives matrix of the log likelihood is always negative definite, which greatly simplifies 
maximization of the function. 
 Newton’s method uses the iteration 
 

 
1ˆˆ ˆ ˆ( 1) ( ) ( ) ( )r r r r

−
⎡ ⎤+ = − ⎣ ⎦H gγ γ ,      (2.21) 

 
where r indexes the iterations, ˆ ( )rH is the second derivatives matrix computed at the current 
value of the parameters and ˆ ( )rg is the vector of first derivatives evaluated at the current values 
of the parameters.  An alternative method based on the expected value of the second derivatives 
matrix is the method of scoring.  The Hessian for the logit model is not a function of yi (i.e., qi), 
so 
 E[HL]  =  HL. 
 
For the probit model, a considerable amount of tedious algebra produces the result 
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The method of scoring is used by replacing H(r) with E[H(r)] in Newton’s method.  Because of 
the shape of the log likelihood function – the negative definiteness of the Hessian implies that the 
function is globally concave; it has only one mode – maximization using either of these methods 
is likely to be fast and simple.  [See Pratt (1981).] 
 Two other methods of maximizing the log likelihod are interesting to examine at this 
point, the EM algorithm and a Bayesian estimator, the Markov Chain Monte Carlo (MCMC) 
approach using a Gibbs sampler.  Neither of these methods is well suited to estimation of the logit 
model, surprisingly for the same reason.  In each case, the mean of the truncated random variable, 
E[εi |εi> -γ̒xi] is needed. The result is well known for the probit model but not for the logit model. 
 
2.3.3  The EM Algorithm 
 
 The EM method is built around the idea that the probit model is a missing data model.  If 
Ui* = γ̒xi + εi were observed, the estimation problem would be much simpler; γ would be 
estimated by a linear regression of Ui* on xi.  With the normality assumption, this would be the 
maximum likelihood estimator.  To use the EM algorithm, we would maximize the log likelihood 
function that is constructed by replacing Ui* with E[Ui*|yi,xi].  [The method is only equivalent to 
doing this regression – see Dempster, Laird and Rubin (1977) for the actual specifics of the 
algorithm.  We will also add some details in Section 8.2.3.]  The conditional mean functions we 
need are 
  
 E[Ui*|yi = 1,xi] = E[γ̒xi + εi | γ̒xi + εi > 0, xi] 
   =  γ̒xi + E[εi | εi > - γ̒xi] 

   =  γ̒xi + 
( )

1 ( )
i

i

′φ −
′− Φ −

x
x

γ
γ

      (2.23a) 

   = γ̒xi + 1
iλ . 
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[See (2.17).]  By the same logic, then 
 
 E[Ui* | yi = 0,xi]   =  γ̒xi + 0

iλ .       (2.23b) 
 
The iteration works as follows:  We begin with a starting value of γ, say γ(0).  At each iteration, r, 
we compute the predictions 
 
 * ˆˆ ˆ( ) ( ) ( ).i i iU r r r′= + λxγ  
 
Then, the new ˆ( 1)r +γ is computed by linear regression of *ˆ ( )iU r on xi.  Therefore, the iteration 
for the EM method is 
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     (2.24) 

 
Notice that the summation at the end is just the derivatives of the log likelihood function 
evaluated at ˆ ( )rγ . [See (2.17).]   This means that the EM method for the probit model is the 
same as Newton’s method or the method of scoring except that (X̒X)-1 is used in place of –H or  
–E[H].  For this particular model (not in general), the EM method is not a particularly effective 
approach to maximizing the log likelihood function.  Using (X̒X)-1 instead of the Hessian in a 
Newton-like iteration turns out generally to be a slower method of maximizing the log likelihood.  
There are fewer computations, since (X̒X)-1 needs ony to be computed ones.  But, typically, 
many more iterations than Newton’s method are required to locate the solution. 
 
2.3.4  Bayesian Estimation by Gibbs Sampling and MCMC 
 
 Bayesian estimation of a probit model builds on the method pioneered by Albert and 
Chib (1993).  [See Lancaster (2004) for this development.] The Gibbs sampler is constructed 
using a crucial device labeled data augmentation. [See Tanner and Wong (1987).]  The binary 
choice case departs from 
 
 yi*  =  γ′xi + εi,  εi ~  with mean 0 and known variance, 1 (probit) or π2/3 (logit), 
 
 yi    =  1  if yi* > 0. 
 
Let the prior for γ be denoted p(γ).  Then, the posterior density for the probit or logit (symmetric 
distribution) models is 
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where we use y and X (and later, y*) to denote the full set of N observations.  Estimation of the 
posterior mean is done by setting up a Gibbs sampler in which the unknown values yi* are treated 
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as nuisance parameters to be estimated along with γ.  For convenience at this point, we will 
assume the probit model is of interest.  Conditioned on γ and xi, yi* has a normal distribution with 
mean γ′xi and variance 1.  However, when conditioned on yi (observed), as well, the sign of yi* is 
known; 
 
 p(yi* | γ,y, X)  =  normal with mean γ′xi and variance 1, truncated at zero; 
     truncated from below if yi = 1 and from above if yi = 0. 
 
Using basic results for Bayesian analysis of the linear model with known disturbance [see Greene 
(2008a, p. 605)] and a diffuse prior, the posterior for γ conditioned on y*, y and X would be 
 
 p(γ| y*,y,X)  =  NK[c,(X′X)-1] where c = (X′X)-1X′y*. 
 
If, instead, the prior for γ is normal with mean γ0 and covariance matrix, Σ, then the posterior 
density is normal with posterior mean 
 
 E[γ|y*,y,X]  =  [Σ-1 + (X′X)]-1 (Σ-1 γ0  +  X′y*) 
and 
 Var[γ|y*,y,X]  =  [Σ-1 + (X′X)]-1. 
 
This sets up a simple Gibbs sampler for drawing from the joint posterior, p(γ,y*|y,X).  It is 
customary to use a diffuse prior for γ.  Then, compute initially, (X′X)-1 and the lower triangular 
Cholesky matrix, L such that LL′ = (X′X)-1.  (The matrix L needs only to be computed once at 
the outset for the informative prior as well.  In that case, LL′ = (Σ-1 + X′X)-1.)  To initialize the 
iterations, any reasonable value of γ may be used.  Albert and Chib suggest the classical MLE.  
The iterations are then given by 
 
1.  Compute the N draws from p(y*|γ,y,X).   
     Draws from the appropriate truncated normal can be obtained using  
 
     yi*(r) = γ′xi + Φ-1[Φ(-γ′xi) + U × (1-Φ(-γ′xi))] if yi= 1 and  
 
     yi*(r) = γ′xi + Φ-1[U × Φ(-γ′xi)] if yi = 0, 
 
     where U is a single draw from a standard uniform population and Φ-1(U) is the inverse 
     function of the standard normal. 
2.  Draw an observation on γ from the posterior p(γ|y*,y,X) by first computing the mean 
 
     c(r) =  (X′X)X′y*(r).   
 
      Use a draw, v, from the K-variate standard normal, then compute γ(r) = c(r) + Lv. 
 
(We have used “(r)” to denote the rth cycle of the iteration.)  The iteration cycles between steps 1 
and 2 until a satisfactory number of draws is obtained (and a burn-in number are discarded), then 
the retained observations on γ are analyzed.  With an informative prior, the draws at step 2 
involving the prior mean and variance are slightly more time consuming. The matrix L is only 
computed at the outset, but the computation of the mean adds a matrix multiplication and 
addition. 
 The MCMC estimator for this model shows an interesting application of the technique.  
For the probit model, in particular, however, it can be an extremely inefficient method of 
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estimation.  With a diffuse prior, the posterior density will look very much like log likelihood 
and, particularly when the sample is reasonably large, the posterior mean will be essentially the 
same as the MLE.  But, estimating the posterior mean will require possibly thousands of 
generations of thousands of observations (on yi*(r)) each followed by a regression, compared to a 
small handful of regressions for Newton’s method.  In a sample of two thousand, for example, we 
found that the MCMC estimator took more than 25 times as long as Newton’s method to reach 
essentially the same set of results. 
 We have developed the Bayesian estimator in this section to illustrate the technique and 
to introduce a few concepts, including the Gibbs sampler and the method of data augmentation 
which is extremely useful in discrete choice modeling.  Save for a few applications to be 
presented later, we will now focus on classical, likelihood based methods of estimation and 
inference. 
 
2.3.5  Estimation with Grouped Data and Iteratively Reweighted Least Squares 
 
 Many applications of binary choice modeling in biological and social sciences involve 
grouped data.  Consider, for example, a study intended to learn the appropriate dosage level of a 
drug or the effectiveness of a pesticide.  A group of ni individuals is subjected to dosage level xi 
and a proportion pi1 = ni1/ni respond to the drug (by recovering or by dying).  Thus, proportion pi0 
= 1 – pi1 do not respond.  The term repeated measures is sometimes applied to such data. This 
setting is only slightly different from the one we have examined so far.  Let Yi equal the number 
of responders among the ni subjects and let yit denote whether individual t in group i responds.  
Then Yi = Σtyit.  We assume that the random utility/binary choice model applies to each subject, 
where yit* would correspond to the subject’s own tolerance or resistance level to the treatment. 
 The log likelihood function would be 
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This is the same function we maximized earlier, where ni = 1, pi0 = 1-yi and pi1 = yi.    
 Johnson and Albert (1999) note that this function can be maximized by a type of 
iteratively reweighted least squares. The authors argue that “The difficulty in obtaining maximum 
likelihood estimates for a binary regression stems from the complexity of (3.16), which makes an 
analytic expression for the maximum likelihood estimates of β impossible to obtain.  However, the 
iteratively reweighted least squares algorithm makes point estimation of maximum likelihood 
estimates a trivial task and underlies the algorithm used in most commercial software packages.”  
(p. 119).  The iteratively weighted least squares method was pioneered by Nelder and 
Wedderburn (1972) and McCullagh and Nelder (1989) for the class of generalized linear models. 
For the case of a binary regression model, the technique is simply another Newton-like method, 
as we now demonstrate. 
 Using our notation but the identical functions, Johnson and Albert (1999) define the 
algorithm as follows:  Let 
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where γ is the current estimate of the parameter vector, Yi is the number of responders in group i, 
Fi is the probability (logit or probit cdf), fi is the density (derivative of Fi) and the second line is 
obtained by noting that Yi = nipi.  Define the weight, 
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The iteratively reweighted least squares estimator is obtained by weighted least squares 
regression of zi on xi, with weights wi.  Thus, the iterative estimator is 
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where the terms wi

0 and zi
0 are computed using γ0.  It is obvious based on the form of zi

0 that this 
can be written 
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The derivative of the log likelihood with respect to γ is, after a bit of manipulation, 
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By multiplying 0  by ( ) /i i i iw p F f− in the iteration, we find the product exactly equals the scalar 
term in the derivative.  It follows, then, that the iteratively reweighted least squares estimator is 
simply 
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Ostensibly, the only difference between this and Newton’s method is the weighting matrix in 
brackets.  However, for the logit model, fi = Fi(1-Fi), from which it follows that the estimator is, 
in fact, identical to Newton’s method.  For the probit model it differs slightly because of the form 
of fi; but it is surely no more complicated to compute. 
 
2.3.6  The Minimum Chi Squared Estimator 
 

The minimum chi squared estimator (MCS)  is obtained by treating pi1 as an estimator, 
subject to sampling variability, of F(γ′xi).  The simpler case to work with is the logit model.  
Write 

pi1  =  F(γ′xi) + wi. 
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Then, log[pi1/(1-pi1)] = logit(pi1)  =  γ′xi + wi* where wi* is a heteroscedastic error of 
approximation that embodies wi and the error in linearization of the function.  For the logit model, 
γ may now be estimated by weighted least squares regression of logit(pi1) on xi with weights 

[ ]1 11/ (1 )i i in p p− .  The estimator may be iterated by replacing pi1 in the weights with îF  from 
the previous iteration.  It has been shown that the MCS estimator, though numerically different, is 
as efficient as MLE.  [See Greene (2003, pp. 688-689).] Nonetheless, the MLE is the preferred 
estimator in nearly all contemporary applications. 
 
2.4  Covariance Matrix Estimation 
 
 There are three available estimators for the asymptotic covariance matrix of the MLE.  
The conventional approach is based on the actual second derivatives of the log likelihood;  
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where the expressions for hi are given in the braces in the expressions for HP and HL in (2.20).  A 
second approach that is usually not available for more complicated models, but is for the probit 
and logit models, is to base the covariance matrix estimation on the expected Hessian, rather than 
the actual estimated one.  This is the same matrix for the logit model.  For the probit model, the 
estimator is 
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The third estimator is the Berndt, Hall, Hall and Hausman (1973) estimator based only on the first 
derivatives; 
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where the first derivative terms are gi = [yi – Λ(γ̒xi)] for the logit model and gi =  λi for the probit 
model.  Any of the three of these may be used; all are appropriate estimators of the asymptotic 
covariance matrix for the MLE. 
 
Robust Covariance Matrix Estimation 
 

The probit and logit maximum likelihood estimators are often labeled quasi-maximum 
likelihood estimators (QMLE) in view of the possibility that the normal or logistic probability 
model might be misspecified. White’s (1982a) robust “sandwich” estimator for the asymptotic 
covariance matrix of the QMLE,  
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has been used in a number of studies based on the probit model [e.g., Fernandez and Rodriguez-
Poo (1997), Horowitz (1993), and Blundell, Laisney, and Lechner (1993)] and is a standard 
feature in contemporary software such as Stata and NLOGIT. 

If the probit model is correctly specified, then plim(1/n) B̂  = plim(1/n)( ˆ-H ) and either 
single matrix will suffice, so the robustness issue is moot. But, the probit (Q-) maximum 
likelihood estimator is not consistent in the presence of any form of heteroscedasticity, 
unmeasured heterogeneity, omitted variables (even if they are orthogonal to the included ones), 
correlation across observations, nonlinearity of the functional form of the index, or an error in the 
distributional assumption [with some narrow exceptions as described by Ruud (1986)]. Thus, in 
almost any case, the sandwich estimator provides an appropriate asymptotic covariance matrix for 
an estimator that is biased in an unknown direction. [See Greene (2008a, Section 16.8) and 
Freedman (2006).] White raises this issue explicitly, although it seems to receive little attention in 
the literature: “It is the consistency of the QMLE for the parameters of interest in a wide range of 
situations which insures its usefulness as the basis for robust estimation techniques” (1982a, p. 
4). His very useful result is that if the quasi-maximum likelihood estimator converges to a 
probability limit, then the sandwich estimator can, under certain circumstances, be used to 
estimate the asymptotic covariance matrix of that estimator. But there is no guarantee that the 
QMLE will converge to anything interesting or useful. Simply computing a robust covariance 
matrix for an otherwise inconsistent estimator does not give it redemption. Consequently, the 
virtue of a robust covariance matrix in this setting is unclear. 
 
2.5  Application of the Binary Choice Model to Health Satisfaction 
 
 Riphahn, Wambach and Million (RWM, 2003) analyzed individual data on health care 
utilization (doctor visits and hospital visits) using various models for counts.  The data set is a 
large panel extracted from the German Socioeconomic Panel (GSOEP).  [See RWM (2003) and 
Greene (2008a) for discussion of the data set in detail.]  The data set is an unbalanced panel  
including 7,293 German households observed from 1 to 7 times and a total of 27,326 
observations.  (We will visit the panel data aspects of the data and models later.)  Among the 
several interesting variables in this data set is HSAT, a self reported health assessment that is 
recorded with values 0,1,..,10.  The sample mean response is 6.8.  To construct an example for 
this chapter, we will define the dependent variable 
 
 Healthyi  =   1  if  HSATi >  7 
   0 otherwise. 
 
The families were observed in 1984-1988, 1991 and 1995.  For purposes of the application, to 
maintain as closely as possible the assumptions of the model, at this point, we have selected the 
most frequently observed year, 1988, for which there are a total of 4,483 observations, 2,313 
males (Female = 0) and 2,170 females (Female = 1).  We will use the following variables in the 
regression part of the model, 
 
 xi  = (constant, Agei, Incomei, Educationi, Marriedi, Kidsi). 
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In the original data set, Income is HHNINC (household income) and Kids is HHKIDS (household 
kids).  Married and Kids are binary variables, the latter indicating whether or not there are 
children in the household.  Descriptive statistics for the data used in the application are shown in 
Table 2.1. 
 
Table 2.1  Data Used in Binary Choice Application 
--------+---------------+-----------------|---------------+----------+ 
        |  Male (n=2313)| Female (n=2170) | All (n=4483)  |          | 
Variable|  Mean    S.D. | Mean      S.D.  | Mean   S.D.   |Min. Max. | 
--------+---------------+-----------------|---------------+----------+ 
HEALTHY | 0.624   0.485 | 0.582    0.493  | 0.604   0.489 |  0     1 | 
AGE     | 42.73   11.39 | 44.20    11.23  | 43.44   11.29 | 25    64 | 
EDUC    | 11.83   2.494 | 10.98    2.142  | 11.42   2.368 |  7    18 | 
INCOME  | 0.355   0.165 | 0.342    0.163  | 0.349   0.164 |  0     2 | 
MARRIED | 0.756   0.429 | 0.748    0.434  | 0.752   0.432 |  0     1 | 
KIDS    | 0.387   0.487 | 0.372    0.483  | 0.379   0.485 |  0     1 | 
--------+---------------+-----------------|---------------+----------+ 
 
 Estimates of the parameters of the probit and logit models are shown in Table 2.2.  In 
terms of the diagnostic statistics, the log likelihood function and the t ratios for the parameters, 
the two models appear almost identical.  However, there are prominent differences between the 
coefficients.  To a reasonable approximation, the regularity, that will show up in most cases, is 
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The substantial difference between the coefficients in the two models exaggerates the substantive 
difference between the specifications.  When we turn, instead, to the partial effects implied by the 
models, the difference largely disappears.  An example appears below.  Table 2.3 displays the 
standard errors obtained by the different methods shown earlier.  As might be expected in a 
sample this large, and in the absence of some major flaw in the model specification, the estimates 
are almost identical.  Note that this holds even for the “robust” estimator.  We have only shown 
the results for the probit model, but they are almost identical for the logit model. 
 
Table 2.2  Estimated Probit and Logit Models 
+--------+-------------------------------+------------------------------+---------+ 
|        |             Logit             |           Probit             |         | 
|        |       LogL = -2890.393        |      LogL = -2890.288        |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  .7595  .2349    3.233  .0012 |  .4816  .1423    3.383  .0007|  1.0000 | 
|AGE     | -.0329  .0032  -10.266  .0000 | -.0203  .0020  -10.386  .0000| 43.4401 | 
|EDUC    |  .0860  .0148    5.805  .0000 |  .0520  .0089    5.872  .0000| 11.4181 | 
|INCOME  |  .3454  .2083    1.658  .0972 |  .2180  .1265    1.724  .0847|  .34874 | 
|MARRIED | -.0483  .0828    -.584  .5592 | -.0311  .0508    -.612  .5403|  .75217 | 
|KIDS    |  .1278  .0756    1.692  .0907 |  .0800  .0463    1.727  .0841|  .37943 | 
+--------+-------------------------------+------------------------------+---------+ 
 
Table 2.3  Alternative Estimated Standard Errors for the Probit Model 
+--------+-------------+------------+----------=-+------------+------------+ 
|Variable| Coefficient | Std.Error  | Std.Error  | Std. Error | Std.Error  | 
|        |             |     E[H]   |      H     |    BHHH    |   Robust   | 
+--------+-------------+------------+------------+------------+------------+ 
|Constant|  .48160673  |  .14234358 |  .14248075 |  .14191210 |  .14282907 | 
|AGE     | -.02035358  |  .00195967 |  .00196013 |  .00195847 |  .00196118 | 
|EDUC    |  .05204356  |  .00886339 |  .00890657 |  .00870141 |  .00902935 | 
|INCOME  |  .21801803  |  .12646534 |  .12695827 |  .12469930 |  .12830838 | 
|MARRIED | -.03107496  |  .05075075 |  .05081510 |  .05053493 |  .05098501 | 
|KIDS    |  .08004423  |  .04633938 |  .04629982 |  .04649873 |  .04618606 | 
+--------+-------------+------------+------------+------------+------------+ 
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2.6  Partial Effects in a Binary Choice Model 
 

The probability model is a regression: 
 

E[yi | xi] = 0 × [1 − F(γ̒xi)] + 1 × F(γ̒xi) = F(γ̒xi). 
 
Therefore, the probability that yi equals one is also the expectation, or regression function. 
Whatever distribution is used, it is important to note that the parameters of the model, like those 
of any nonlinear regression model, are not necessarily the marginal effects we are accustomed to 
analyzing. In general, 
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where f (.) is the probability density function (PDF) that corresponds to the CDF, F(.). For the 
normal distribution, this result is 
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where φ(t) is the standard normal density. For the logistic distribution, 
 

 
( ) ( )[1 ( )].

( )
i

i i
i

d
d

⎡ ⎤′Λ ′ ′Λ − Λ⎢ ⎥′⎣ ⎦

x x x
x

γ
= γ γ

γ
      (2.32) 

 
 
Thus, in the logit model, 
 

 
[ | ] ( )[1 ( )]i i

i i
i
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∂

x x x
x

γ γ γ.       (2.31b) 

 
These values will vary with the values of x. The effect is illustrated in Figure 2.4, where Δxk = 1 
for both cases, but ΔF(γ′x) depends on where the calculation begins..  In interpreting the 
estimated model, it will be useful to calculate this value at, say, the means of the variables and, 
possibly, other specific values.  For convenience, it is worth noting that the same scale factor 
applies to all the slopes in the model. For computing marginal effects, one can evaluate the 
expressions at the sample means of the data or evaluate the marginal effects at every observation 
and use the sample average of the individual marginal effects.  Current practice favors averaging 
the individual marginal effects when it is possible to do so (though in practice, there is usually 
only minor numerical difference between the two results). 
 Recall, as shown in the earlier example, that the estimated coefficients in the logit model 
will generally be approximately equal to 1.6 times their counterparts in the probit model.  The 
scale factors in (2.28a,b), at least near γ′xi = 0, will be roughly 0.25 for the logit model and 0.4 for 
the probit model.  Thus, the scaling to obtain the marginal effects will undo the difference in the 
coefficients.  This effect is clearly visible in the example in Table 2.4. 
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2.6.1  Partial Effect for a Dummy Variable 
 
Another complication for computing marginal effects in a binary choice model arises 

because x will often include dummy variables—for example, our application to health satisfaction 
includes dummy variables for marital status and number of children. Because the derivative is 
with respect to a small change, it is not appropriate to compute derivatives for the effect of a 
change in a dummy variable, or change of state. The appropriate marginal effect for a binary 
independent variable, say, d, would be 
 
 Marginal effect = [Prob(yi = 1| ( )dx ,di = 1)]  –  [Prob(yi = 1| ( )dx ,di=0)], 

where ( )dx , denotes the means of all the other variables in the model. Simply taking the 
derivative with respect to the binary variable as if it were continuous provides an approximation 
that is often surprisingly accurate. For example, the marginal effect for Married of  
-0.01191157 shown in table 2.4 is obtained by computing the probability that Healthy equals one 
while holding all the other variables at their means and Married equaling one then zero and 
taking the difference.  The scale factor used to compute the partial effects for the other variables, 
using the values for Income in Tables 2.2 and 2.4 for the computation, is 0.08375583/0.21801803 
= 0.3841693.  Multiplying the coefficient on Married of -0.03107496 by this scale factor 
produces an estimated partial effect of -0.01193805.  The error is only 0.2%. We will revisit this 
computation in the examples and discussions to follow.  The first difference computation is now 
common in applications, and is built into modern software. 
 

 
Figure 2.4  Partial Effects in a Binary Choice Model 
 
 The partial effects for the estimated probit and logit models are shown in Table 2.4.  As 
expected, the different scaling of the two models that makes the coefficient estimates appear 
different is absent from the partial effects, which are nearly the same. 
 

Δxk = 1 

ΔF(γ′x) = γk f(γ′x) or 
  F(γ′x+d) - F(γ′x)
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Table 2.4  Partial Effects for Probit and Logit Models at Means of x 
+--------+---------------------------------+----------------------------------+ 
|        |             PROBIT              |               LOGIT              | 
|        +---------------------------------+----------------------------------+ 
|Variable|Partial | Std.  |  t    | Elast. | Partial | Std.  |  t    | Elast. | 
|        |Effect  | Error |       |        | Effect  | Error |       |        | 
+--------+--------+-------+-------+--------+---------+-------+-------+--------+ 
|AGE     | -.0078   .0007  -10.39  -.5584  | -.0078   .0006    -10.28  -.5587 | 
|EDUC    |  .0200   .0034    5.88   .3753  |  .0205   .0035      5.81   .3837 | 
|INCOME  |  .0838   .0486    1.72   .0480  |  .0822   .0496      1.66   .0471 | 
|MARRIED*| -.0119   .0194    -.61  -.0147  | -.0115   .0196      -.59  -.0142 | 
|KIDS*   |  .0307   .0177    1.73   .0191  |  .0303   .0178      1.70   .0189 | 
+--------+---------------------------------+----------------------------------+ 

* Partial effects for dummy variables computed using discrete differences 
 
 
2.6.2  Odds Ratios 
 
 For the logit model with a set of variables x and an additional (any) variable of interest, 
the odds in favor of a response of one are 
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Consider how the the odds ratio changes when z changes by one unit 
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Analysts are occasionally interested in changes in odds ratios rather than changes in probabilities.  
Then, the interesting quantity to report as opposed to (or inaddition to) the partial effect is the 
change in the odds ratio, exp(γk).  (Stata labels this as the “odds ratio” rather than the change in 
the odds ratio in its reported results.)  Note that a full unit change in a variable is often not the 
change of interest.  In our example, for instance, the income variable is scaled so that its full 
range of variation is only from zero to two, so a full unit change is not likely to be a useful 
measure for a derivative, even for an odds ratio with its ambiguous units of measurement.  But, 
age, years of education and marital status are variables for which a one unit change is an 
empirically reasonable experiment. 
 
2.6.3  Elasticities 
 
 It is common in some areas, such as transportation, to report elasticities of probabilities, 
rather than derivatives.   These are straightforward to compute as 
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The elasticities are simple to obtain from the estimated partial effects.  These are shown in Table 
2.4 with the derivatives.  We note, however, since it is a ratio of percentage changes, the elasticity 
is not likely to be useful for dummy variables such as marital status, or for discrete variables such 
as age and education. 
 Like a partial effect, an elasticity for a dummy variable or an integer valued variable will 
not necessarily produce a reasonable result.  The computation for a dummy variable or an integer 
variable would be a semi-elasticity, [%ΔProb]/Δx, where Δx would equal one.  Whether a 
percentage change in an integer valued x would make sense would depend on the context.  
Obviously it would not for a dummy variable.  Whether it would for, say, years of education, 
would depend on the study in hand – we would surmise in most instances not, however.  In sum, 
the relevant semi-elasticity for the change in a dummy variable (or a unit change in a discrete 
regressor) would be 
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The denominator computation removes the asymmetry in the computation that makes it otherwise 
dependent on whether the change is from di = 1 or 0. 
 
2.6.4  Inference for Partial Effects 
 

The predicted probabilities, ˆ( )iF ′xγ  = îF   and the estimated partial effects  
 

 ( )ˆ ˆ ˆf ′= xδ γ γ , 
 
are nonlinear functions of the parameter estimates. To compute standard errors, we can use the 
linear approximation approach (delta method).  For the predicted  probabilities, 
 

Asy.Var[ îF ] = [∂ îF /∂ γ̂ ]̒ V [∂ îF /∂ γ̂ ], 
 
where V = Asy.Var[ γ̂ ].  The estimated asymptotic covariance matrix of γ̂  can be any of the 
three described in Section 2.4.  Let zi = γ̂ ̒xi.  Then the derivative vector is 

[∂ îF /∂ γ̂ ]= [d îF  /dz][∂zi/∂ γ̂ ] = îf × xi. 
 
Combining terms gives  
 

Asy.Var[ îF ] =  ( îf )2 xi′Vxi, 
 

which depends on the particular xi vector used. This result is useful when a marginal effect is 
computed for a dummy variable. In that case, the estimated effect is 
 

Δ îF  = [ îF  | (di = 1)] – [ îF  | (di = 0)]. 
 
The asymptotic variance would be 
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Asy.Var[Δ îF  ] =  [∂(Δ îF )/∂ γ̂ ]̒ V[∂(Δ îF )/∂ γ̂ ], 
where 

 [∂(Δ îF )/∂ γ̂ ]  =  ( ) ( )ˆ ˆ( | 1) ( | 0)
1 0
i d i d

i if d f d
⎛ ⎞ ⎛ ⎞

= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x x
. 

 
For the other partial effects, 
 

 Asy.Var[ δ̂ ] = 
ˆ ˆ
ˆ ˆ

′⎡ ⎤ ⎡ ⎤∂ ∂
⎢ ⎥ ⎢ ⎥′ ′∂ ∂⎣ ⎦ ⎣ ⎦
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The matrix of derivatives is 
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     (2.33) 

 
For the probit model, ˆ ˆ/df dz z= − φ , so 

 Asy.Var[ δ̂ ] = { } { }ˆ ˆˆ ˆ ˆ ˆ[ ( ) ] [ ( ) ] ′′ ′ ′ ′φ − φ −I x x V I x xγ γ γ γ     (2.34a) 

          =  GPROBIT V G′PROBIT. 
 
For the logit model, f̂ = ˆ ˆ(1 )Λ − Λ so  
 

ˆˆ ˆ ˆ ˆ ˆ/ (1 2 ) (1 2 ) (1 )ddf dz
dz

⎛ ⎞Λ
= − Λ = − Λ Λ − Λ⎜ ⎟

⎝ ⎠
. 

Collecting terms, we obtain 
 

 Asy.Var[ δ̂ ] = { } { }ˆ ˆ[ (1 )] [ 1- 2 ] [ (1 )][ 1- 2 ] ′′ ′Λ − Λ Λ Λ − Λ ΛI + ( ) x V I + ( ) xγ γ . (2.34b) 
         =  GLOGIT V G′LOGIT. 
 
As before, the value obtained will depend on the x vector used.  We have suggested the sample 
mean above. 
 
2.6.5  Standard Errors for Estimated Odds Ratios 
 
 The computation for the estimated odds ratio, ˆˆ exp( )k kτ = γ  is straightforward. Using the 
delta method, the estimated standard error for ˆ kτ will equal ˆ kτ  times the standard error for ˆ kγ .  
Note, however that the conventional t ratio for testing the hypothesis that γk equals zero would be 
inappropriate for τk.  The appropriate test would be H0:τk = 1, and the t statistic reported should be 
tτ  =  ( ˆ kτ – 1)/standard error. 
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2.6.6  Average Partial Effects 
 

The preceding has emphasized computing the partial effects for the average individual in 
the sample. Current practice has many applications based, instead, on “average partial effects.” 
[See, e.g.,Wooldridge (2002b).] The underlying logic is that the quantity of interest is 
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[ | ] .x

E yE ∂⎡ ⎤
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In practical terms, this suggests the computation 
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       (2.35) 

 
Both the “partial effects at the means” and the “average partial effects” are computed by scaling 
the coefficient vector.   The scale factor for the first is the density evaluated at γ′ x .  The scale 
factor for the second is the sample mean of f(γ′xi).  Table 2.5 shows a comparison of the average 
partial effects and the partial effects at the sample means for our estimated probit model. 
 
Table 2.5  Marginal Effects and Average Partial Effects 
+-------------+-----------+-------------+ 
              | Marginal  |Avg. Partial | 
 Variable     |  Effects  |   Effects   | 
+-------------+-----------+-------------+ 
 AGE          | -.00782   |  -.00751    | 
 EDUC         |  .01999   |   .01919    | 
 INCOME       |  .08376   |   .08041    | 
 MARRIED      | -.01191   |  -.01146    | 
 KIDS         |  .03066   |   .02952    | 
 Scale Factor |  .38417   |   .36881    | 
+-------------+-----------+-------------+ 

 
 This does raise two complications. First, because the computation is (marginally) more 
burdensome than the simple marginal effects at the means, one might wonder whether this 
produces a noticeably different answer. That will depend on the data. Generally, except for small 
sample variation, the difference in these two results is likely to be quite minor, particularly in a 
large sample.  Second, computing the individual effects, then using the natural estimator to 
estimate the variance of the mean, may badly estimate the asymptotic variance of the average 
partial effect. [See, e.g. Contoyannis et al. (2004, p. 498).]   The natural estimator would be 
 

 ( )2

,1

1 1ˆ ˆ ˆ. .
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k i k ki

Est AsyVar
n n =

⎡ ⎤⎡ ⎤δ = δ − δ⎢ ⎥⎢ ⎥⎣ ⎦ −⎣ ⎦
∑ . 

 
The problem with this computation is that the observations in the APE are highly correlated – 
they all use the same estimate of γ – but this variance computation treats them as a random 
sample. The computations are analyzed in Greene (2008a, pp. 784-785).  In principle, the 
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variance of the mean of n correlated variables should involve n2 terms (which would be 17 
million for our example).  But, this computation turns out to be simpler than that; the end result is 
 

 ˆ ˆˆ ˆ. . ( ) ( )Est AsyVar ⎡ ⎤ ′=⎢ ⎥⎣ ⎦
G VGδ γ γ ,       (2.36) 

 
where ˆ( )G γ  is the sample means of the individual matrices,  
 

 { }1

1 ˆˆ ˆ ˆ( ) [ ( ) ]n
i i iin =

′ ′= φ −∑G I x xγ γ γ   for the probit model and   (2.37) 

 
1

1ˆ( ) n

in =
= ∑G γ  { }ˆ ˆ ˆ ˆ[ (1 )][ 1- 2 ]i i i i′Λ − Λ ΛI + ( ) xγ  for the logit model. 

 
2.6.7  Standard Errors for Marginal Effects Using the Krinsky and Robb Method 
 
 An alternative to the delta method described above that is sometimes advocated 
is the Krinsky and Robb (1986, 1990, 1991) method. By this device, we have our 
estimate of the model coefficients, γ̂ , and the estimated asymptotic covariance matrix, 
V. The marginal effects are computed as a function of γ̂  and the vector of means of the 
sample data, x , say gk( γ̂ , x ) for the kth variable. The Krinsky and Robb technique 
involves sampling R draws from the asymptotic normal distribution of the estimator, i.e., 
with mean γ̂  and covariance V, computing the function with these R draws, then 
computing the empirical variance.  Draws from the required population are obtained as 
follow: Let LL′ denote the Cholesky factorization of V; L is a lower triangular matrix. Let 
wr denote the rth vector of K independent draws from the standard normal.  Then, 
ˆ ˆr r= Lwγ γ + .  The routine below uses the Krinsky and Robb method to recompute the standard 
errors for the partial effects that are computed using the delta method in Table 2.4.  The 
simulation uses 1,000 draws.  The comparison is shown below.  The results with the two methods 
are nearly identical. 
 
Probit   ; lhs=healthy;rhs=x; marginal effects $ 
Namelist ; x = one,age,educ,income,married,kids $ 
Matrix   ; xb=mean(x) ; xbc=xb(1:4) $ 
Calc     ; xb5=xb(5);xb6=xb(6) ; Ran(123457) $ (Set seed for RNG) 
Wald     ; k&r ; pts=1000 ; start=b ; var=varb ; labels = a,b1,b2,b3,b4,b5 
         ; fn1 = n01(a'xb)*b1  ; fn2 = n01(a'xb)*b2  ; fn3 = n01(a'xb)*b3 
         ; fn4 = phi(a'xbc+b4*1+b5*xb6) - phi(a'xbc+b4*0+b5*xb6) 
         ; fn5 = phi(a'xbc+b4*xb5+b5*1) - phi(a'xbc+b4*xb5+b5*0) $ 
 
+--------+--------+-------+ 
|        | St. Er.| St.Er.| 
|Variable| Delta  |  K&R  | 
+--------+--------+-------+ 
|AGE     |  .0007 | .0007 |  
|EDUC    |  .0034 | .0032 | 
|INCOME  |  .0486 | .0490 | 
|MARRIED*|  .0194 | .0198 | 
|KIDS*   |  .0177 | .0179 | 
+--------+--------+-------+ 

 
2.6.8  Fitted Probabilities 
 
 A useful display when the model contains both continuous and interesting discrete 
variables is a plot of the fitted probabilities that holds the other variables fixed, say at their means, 
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while simultaneously varying the continuous and discrete variables.  This type of plot can show 
graphically the information contained in the partial effects.  For example, Figure 2.5 shows the 
effect of changes in Income on the probability that Healthy equals one for 21 year olds and 45 
year olds. 
 

 
Figure 2.5  Fitted Probabilities for a Probit Model 
 
2.7  Hypothesis Testing 
 
 The full standard menu of procedures is available for testing hypotheses about the 
coefficients. The simplest method for a single restriction would be based on the usual t tests, 
using the standard errors from the estimated asymptotic covariance matrix for the coefficients. 
Using the normal distribution of the estimator, we would use the standard normal table rather than 
the t table for critical points.  Thus, as in conventional regression analysis, the test statistic for 
testing the null hypothesis that a coefficient equals a specific value, 
 
 H0: γk =  γk

0, 
 
would be 

 
0ˆ

ˆ. . ( )
k k

k

z
Est AsyVar

γ − γ
=

γ
. 

 
Critical values would be based on the normal distribution, since the distribution used for the 
statistic holds only asymptotically.  The statistic for testing the hypothesis that each coefficient 
equals zero will be presented with the coefficient estimates by all standard software. See, for 
example, the third column of results for each model in Table 2.2. 
 
2.7.1  Wald Tests 
 
 For more involved restrictions, it is possible to use the Wald test. For a set of restrictions 
Rγ = q, the statistic is 
 
 1ˆ ˆ ˆ( ) [  . . ( ) ] ( )W Est AsyVar −′ ′= R q R R R qγ − γ γ − . 
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This statistic has a chi squared distribution with degrees of freedom equal to the number of 
restrictions being tested.  (That will be the number of rows in R.)  For example, for testing the 
hypothesis that a subset of the coefficients, say, the last M, are zero, the Wald statistic uses R = [0 
| IM] and q = 0. Collecting terms, we find that the test statistic for this hypothesis is 
 
 1ˆ M MM MW −′= Vγ γ , 
 
where the subscript M indicates the subvector or submatrix corresponding to the M variables and 
V is the estimated asymptotic covariance matrix for γ̂ .   For a set of nonlinear restrictions of the 
form r(γ,q) = 0, based on the delta method, we would use 
 

 ( ) ˆ( , )ˆ
ˆ

∂
=

′∂
r qR γ

γ
γ

 

 
in the expression for the Wald statistic.  In the linear case, r(γ,q) = Rγ - q. 
 
2.7.2  Likelihood Ratio Tests. 
 
 Likelihood ratio and Lagrange multiplier statistics can also be computed. The likelihood 
ratio statistic is 
 
 2[ln ln ]R ULR L L= − − ,        (2.39) 
 
where lnLR and lnLU are the log-likelihood functions evaluated at the restricted and unrestricted 
estimates, respectively.  The statistic has a limiting chi squared distribution with degrees of 
freedom equal to the number of restrictions being tested. 
 A common test, which is similar to the F test that all the slopes in a regression are zero, is 
the likelihood ratio test that all the slope coefficients in the probit or logit model are zero. For this 
test, the constant term remains unrestricted. In this case, the restricted log-likelihood is the same 
for both probit and logit models, 
 
 ln L0 = n[P1 ln P1 + (1 − P1) ln(1 − P1)],      (2.40) 
 
where P1 is the proportion of the observations that have dependent variable equal to 1.  The model 
chi squared often reported in statistical results is 
 
 χModel

2  =  2(lnL – lnL0). 
 
This is a counterpart to the F statistic typically computed for a linear regression model.  The 
statistic is used to test the joint hypothesis that the K-1 coefficients on the non-constant variables 
in the model are all zero. 
 It might be tempting to use the likelihood ratio test to choose between the probit and logit 
models. But there is no restriction involved, and the test is not valid for this purpose. To 
underscore the point, there is nothing in its construction to prevent the chi-squared statistic for 
this “test” from being negative.  
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2.7.3  Lagrange Multiplier Tests 
 

The Lagrange multiplier test statistic is  
 
LM = g′Vg,  
 

where g is the vector of first derivatives of the unrestricted model evaluated at the restricted 
parameter vector and V is any of the three estimators of the asymptotic covariance matrix of the 
maximum likelihood estimator of γ̂ , once again computed using the restricted estimates. A 
convenient formulation that requires only the first derivatives of the log likelihood is based on the 
BHHH estimator. For either the probit or logit models the first derivative vector can be written as  
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n
i ii

L g
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∂
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where ˆ ig  equals ( )ˆ

i iy − Λ  for the logit model and ˆ
iλ  for the probit model. [See (2.14) and 

(2.17).]  Define a diagonal matrix Ĝ   = diag[ ˆ ig ] and let i denote an n×1 column vector of ones.  
Then, 
 

 ln ˆ
ˆ
L∂ ′=

∂
X Gi

γ
. 

 
The BHHH estimator of the Hessian will be X′ ˆ ˆ′G G X, so the LM statistic based on this estimator 
is 

 LM = n 11 ˆ ˆ ˆ ˆ( )( ) ( ) .
n

−⎡ ⎤′ ′ ′ ′ ′⎢ ⎥⎣ ⎦
i GX X G GX X G i  

 
Another way to write the statistic which suggests how to set it up for computer programs is 
 

 ( ) ( )2
, , ,1 1 1

ˆ ˆ ˆn n n
i R i i R i i i R ii i i

LM g g g
= = =

′ ⎡ ⎤′= ⎣ ⎦∑ ∑ ∑x x x x .     (2.41) 

 
 All the statistics listed here are asymptotically equivalent and under the null hypothesis of 
the restricted model have limiting chi-squared distributions with degrees of freedom equal to the 
number of restrictions being tested.   
 
2.7.4  Application of Hypothesis Tests 
 
The application below shows three tests:  
 
a.  The individual tests that coefficients equal zero 
b.  The three tests of the hypothesis that all coefficients except the constant term are zero 
c.  A homogeneity test.  When the sample can be divided into G groups, a test of the hypothesis 

that the same parameter vector applies to all G groups is carried out by estimating the model 
G+1 times, once with each group, obtaining log likelihood functions lnLg and once with the full 
pooled data set, obtaining lnLPooled..  The likelihood ratio test statistic is 
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 LR  =  12 ln lnG
Pooled g gL L=⎡ ⎤− − Σ⎣ ⎦ .       (2.42) 

 
   The chi squared statistic has (G-1)K degrees of freedom, where K is the number of parameters 

in the model, including the constant term. 
 
Table 2.6 Presents the estimated probit and logit models from Table 2.2.  The individual 
significance tests for the coefficients appear in the column labeled “t.”  For both models, Age and 
Educ are statistically significant while the other variables are not.  We would not expect the two 
models to produce different conclusions.   We have also reported the chi squared tests that all 
coefficients save the constant term are zero.  As might be expected, the hypothesis is rejected.  
(The critical chi squared for 5 degrees of freedom is 11.07 while the model value is about 240.  
The probit results also include the Wald and LM statistic for the same hypothesis.  The similarity 
to the likelihood ratio statistic is to be expected.  Finally, the test for pooling the 7 years of data is 
carried out in table 2.7.  The log likelihood for the pooled sample is -17365.76.  The sum of the 
log likelihoods for the seven individual years is -17324.33.  Twice the difference is 82.87.  The 
degrees of freedom is 6×6 = 36.  The 95% critical value from the chi squared table is 50.998, so 
the pooling hypothesis is rejected. 
 
2.8  Goodness of Fit Measures 
 
 There have been many fit measures devised for binary choice models. At a minimum, one 
should report the maximized value of the log-likelihood function, lnL. Because the hypothesis 
that all the slopes in the model are zero is often interesting, the log-likelihood computed with only 
a constant term, lnL0, should also be reported. One of the most often reported computations is 
McFadden’s (1974) likelihood ratio index or Pseudo R2, 
 
 Pseudo R2 = LRI = 1 − (lnL / lnL0). 
 
Table 2.6  Hypothesis Tests 
+--------+-------------------------------+------------------------------+---------+ 
|        |             Logit             |           Probit             |         | 
|        |      LogL  = -2890.393        |     LogL  = -2890.288        |         | 
|        |      LogL0 = -3010.421        |     LogL0 = -3010.421        |         | 
|        |      Chisq =   240.056        |     Chisq =   240.266        |         | 
|        |                               |     Wald  =   234.349        |         | 
|        |                               |     LM    =   238.677        |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  .7595  .2349    3.233  .0012 |  .4816  .1423    3.383  .0007|  1.0000 | 
|AGE     | -.0329  .0032  -10.266  .0000 | -.0203  .0020  -10.386  .0000| 43.4401 | 
|EDUC    |  .0860  .0148    5.805  .0000 |  .0520  .0089    5.872  .0000| 11.4181 | 
|INCOME  |  .3454  .2083    1.658  .0972 |  .2180  .1265    1.724  .0847|  .34874 | 
|MARRIED | -.0483  .0828    -.584  .5592 | -.0311  .0508    -.612  .5403|  .75217 | 
|KIDS    |  .1278  .0756    1.692  .0907 |  .0800  .0463    1.727  .0841|  .37943 | 
+--------+-------------------------------+------------------------------+---------+ 
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Table 2.7  Homogeneity Test 
+------+----------------+--------+          
|      | Log Likelihood | Sample | 
| Year |    Function    |  Size  | 
+------+----------------+--------+ 
| 1984 |  -2395.137     |  3874  | 
| 1985 |  -2375.090     |  3794  | 
| 1986 |  -2387.602     |  3792  | 
| 1987 |  -2337.835     |  3666  | 
| 1988 |  -2890.288     |  4483  | 
| 1991 |  -2769.375     |  4340  | 
| 1994 |  -2168.998     |  3377  | 
| Pool |  -17365.76     | 27326  | 
+------+----------------+--------+ 
 

This measure has an intuitive appeal in that it is bounded by zero and one. If all the slope 
coefficients are zero, then it equals zero. There is no way to make LRI equal one, although one 
can come close. If Fi  is always one when yi equals one and always zero when yi equals zero, then 
ln L equals zero (the log of one) and LRI equals one. It has been suggested that this finding is 
indicative of a “perfect fit” and that LRI increases as the fit of the model improves. To a degree, 
this point is true. Unfortunately, the values between zero and one have no natural interpretation. If 
F(γ′xi) is a proper pdf, then even with many regressors the model cannot fit perfectly unless γ′xi 
goes to +∞ or −∞. As a practical matter, it does happen. But when it does, it indicates a flaw in 
the model, not a good fit.  [See, for example, Cragg and Uhler (1970), Amemiya (1981), Maddala 
(1983), McFadden (1974), Ben-Akiva and Lerman (1985), Kay and Little (1986), Veall and 
Zimmermann (1992), Zavoina and McKelvey (1975), Efron (1978), and Cramer (1999). A survey 
of techniques appears in Windmeijer (1995).]   
 It should be emphasized that whatever its value, the Pseudo R2 has no connection to a 
“proportion of variation explained.”  The dependent variable in the model is only zeros and ones, 
and the “variation” such as it is, has not appeared in any of the computations we have done.  In 
this regard, it is not, in fact, an analog to R2 in regression.  One other point worth noting is that 
the LRI should never be computed for any model that is not a discrete choice model.  The reason 
is that it is only in discrete choice models that the log likelihood is guaranteed to be negative.  
When the dependent variable is continuous, for example in linear regression, the log likelihood 
function can be positive or negative, and LRI can take any value. 

The Akaike (1973) information criterion (AIC) statistic or its log, 
 
 lnAIC = (-2lnL+2K)/n, 
 
is a fit measure based on the likelihood function that is like the adjusted R2 in linear regression in 
that it “rewards” good fit but penalizes the model for having a large number of parameters.  The 
AIC measure is often used to compare nonnested models when there is no obvious criterion or 
rule for comparing fits.  There is no distribution theory for AIC or lnAIC that produces a formal 
test of any hypothesis.  Rather, the statistic is used as a practical measure for comparing models, 
for example, in cases in which the models are nonnested. 
 Some authors have proposed other “fit measures” that are based on the log likelihood 
function.  Veall and Zimmermann’s (1992) suggested measure is 
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Another is 
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where χ0

2 is the likelihood ratio statistic used to test the hypothesis that all the coefficients in the 
model are zero.   Like the LRI, in spite of their names, these are not fit measures as such, nor, for 
that matter are they correlation coefficients.  These are all function of the log likelihood function 
that are bounded by zero and one and that increase, albeit at different rates, when variables are 
added to the model. 
 
2.8.1  Perfect Prediction 
 
 If the range of one of the independent variables contains a value, say, x*, such that the 
sign of (x − x*) predicts y perfectly and vice versa, then the model will become a perfect 
predictor. This result also holds in general if the sign of γ′xi gives a perfect predictor for some 
vector γ.  For example, one might mistakenly include as a regressor a dummy variables that is 
identical, or nearly so, to the dependent variable. In this case, the maximization procedure will 
break down precisely because γ′xi  is diverging during the iterations. [See McKenzie (1998) for 
an application and discussion.] Of course, this situation is not at all what we had in mind for a 
good fit.  
 
2.8.2  Dummy Variables with Empty Cells 
 
 A problem similar to the one noted above arises when a model includes a 
dummy variable that has no observations in one of the cells of the dependent variable. 
An example appears on page 673 of the fifth (1993) edition of Greene (2003), in which 
the dependent variable is always zero when the variable ‘Southwest’ is zero. McKenzie 
(1998) and Stokes (2004) have used this example and others to examine a number of 
econometrics programs. He found that no program which did not specifically check for 
the failure – only one did – could detect the failure in some other way. All iterated to 
apparent convergence, though with very different estimates of this coefficient and 
differing numbers of iterations because of their use of different convergence rules. This 
form of incomplete matching of values likewise prevents estimation, though the effect is 
likely to be more subtle. In this case, a likely outcome is that the iterations will fail to 
converge, though the parameter estimates will not necessarily become extreme.  
 
2.8.3  Explaining Variation in the Implied Regression 
 
 The fit measures suggested do not actually correspond to the conventional measure of fit 
in a regression model, that is, the ability of the model to predict the dependent variable.  One 
might interpret the model directly as a nonlinear regression, since 
 
 E[yi|xi] = 0 × (1 – Fi) + 1 × Fi 
  = Fi.  
 
It follows that 
 
 ui =  yi  -  ( )ˆF ′xγ  

  =  yi - îF  
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is a bona fide residual, albeit one that is always equal either to îF  or 1 - îF .  With this in hand, 
Efron’s (1978) proposed fit measure is 
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The statistic bears some resemblance to the conventional R2 in regression if one considers the 
denominator the total variation of the binary dependent variable.  If the model contains only a 
constant term, then 2

EfR equals zero because îF  will equal y  for every observation.  How the 
statistic behaves when one adds variables to an existing model is uncertain, however. Nothing in 
the construction guarantees that the numerator in the fraction will fall when variables are added to 
a model that already contains at least one variable.  Also, it should not be interpreted as a 
“proportion of variation explained,” as it is not bound in the [0,1] interval.   

Notwithstanding its somewhat ambiguous nature, a modification of ui that has been 
suggested is the Pearson residual, [see Johnson and Albert (1999, p.94)], 
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(The authors’ suggestion that the distribution of ui,P can be reasonably approximated by a 
standard normal distribution is clearly inappropriate for binary data, though it might work better 
for grouped date when yi = pi, the proportion of ni observations with identical xi that “respond” 
with outcome equal to 1, such as in bioassay or in a clinical trial.)  Two suggested refinements on 
this computation (for binary data) are the deviance residuals, 
 

, 2 lni D i iu q L= − ,  
 
where qi = 2yi – 1 and Li is the contribution of observation i to the likelihood function and the 
adjusted deviance residuals, 
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The authors suggest that plots of the residuals against the fitted probabilities can be helpful in 
identifying outliers in the data. 

McKelvey and Zavoina’s (1975) suggestion is based on the latent regression, 
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The McElvey and Zavoina measure corresponds to the ratio of the regression variation to the total 
variation in the latent regression yi* = γ′xi + εi.  The computation is made possible because the 
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variance of εi is known to equal one for a probit model.  Note, as well, that this computation will 
differ substantively when used for a logit model, since the sums will be multiplied by roughly 
1.62 while the n×1 in the denominator must be replaced with nπ2/3.  It follows that RMZ

2 will be 
systematically lower for a logit model than a probit model. Since prediction of yi* is rarely the 
objective of estimation, this measure is not commonly used.  
 
2.8.4  Fit Measures Based on Predicted Probabilities 
 
 A fundamental flaw in the fit measures already suggested is that although they are labeled 
R2 measures, with the exception of the Efron measure, they do not, in fact, measure the fit of the 
model to the data.  The likelihood function is not maximized so as to minimize the distance 
between Fi and yi.  Other fit measures have been suggested that are more in line with this 
objective. Ben-Akiva and Lerman (1985) and Kay and Little (1986) suggested a fit measure that 
is keyed to the prediction rule, 
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This is the average probability of correct prediction of yi using îF .  The difficulty in this 
computation is that in unbalanced samples, the less frequent outcome will usually be predicted 
very badly by the standard procedure, and this measure does not pick up that point. Cramer 
(1999) has suggested an alternative measure that directly measures this failure, 
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Cramer’s measure heavily penalizes the incorrect predictions, and because each proportion is  
taken within the subsample, it is not unduly influenced by the large proportionate size of the 
group of more frequent outcomes.  
 Table 2.8 reports the various fit measures for the probit model.  The small values are 
somewhat surprising, given the results in the next section that show the model actually does quite 
a good job in predicting the outcome variable.  The very large difference between the Ben 
Akiva/Lerman measure and Cramer’s statistic underscores the need to look carefully at these 
results when reporting them. 
 
Table 2.8 Fit Measures for Probit Model 
+----------------------------------------+ 
| Proportions P0= .396386   P1= .603614  | 
| N =    4483 N0=    1777   N1=    2706  | 
| LogL=    -2890.288 LogL0=   -3010.421  | 
+-----------+------------+---------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .05254 |    .03991  |       .54668  | 
|  Rsqrd_ML | Veall/Zim. |  Cramer       |  
|    .05218 |    .08874  |       .05262  | 
+----------------------------------------+ 
| Akaike InformationCriterion 1.29212    | 
+----------------------------------------+ 
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2.8.5  Assessing the Model’s Ability to Predict 
 
 A useful summary of the predictive ability of the model is a 2 × 2 table of the hits and 
misses of a prediction rule such as  
 
 ˆˆ 1 if   * and 0 otherwise.iy F F= >  
 
The usual threshold value is 0.5, on the basis that we should predict a one if the model says a one 
is more likely than a zero.   Table 2.9 shows the results for our probit model for Healthy.  
Although the R2 measures based on the log likelihood function are all very small, less than 0.1, 
the model correctly predicts 62% of the observations. This demonstrates the substantial 
disconnecton between these two notions of “fit.” 
 
Table 2.9  Prediction Success for Probit Model 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |    530 ( 11.8%)|   1247 ( 27.8%)|   1777 ( 39.6%)| 
|  1   |    456 ( 10.2%)|   2250 ( 50.2%)|   2706 ( 60.4%)| 
+------+----------------+----------------+----------------+ 
|Total |    986 ( 22.0%)|   3497 ( 78.0%)|   4483 (100.0%)| 
+------+----------------+----------------+----------------+ 
 

A number of summary measures can be constructed for the success of the model to predict the 
outcome using this rule.  A list is shown in Table 2.10 for the health care example. 
 
Table 2.10  Success Measures for Predictions by Estimated Probit Model 
======================================================================= 
Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 
----------------------------------------------------------------------- 
Prediction Success 
----------------------------------------------------------------------- 
Sensitivity = actual 1s correctly predicted                     83.149% 
Specificity = actual 0s correctly predicted                     29.826% 
Positive predictive value = predicted 1s that were actual 1s    64.341% 
Negative predictive value = predicted 0s that were actual 0s    53.753% 
Correct prediction = actual 1s and 0s correctly predicted       62.012% 
----------------------------------------------------------------------- 
Prediction Failure 
----------------------------------------------------------------------- 
False pos. for true neg. = actual 0s predicted as 1s            70.174% 
False neg. for true pos. = actual 1s predicted as 0s            16.851% 
False pos. for predicted pos. = predicted 1s actual 0s          35.659% 
False neg. for predicted neg. = predicted 0s actual 1s          46.247% 
False predictions = actual 1s and 0s incorrectly predicted      37.988% 
======================================================================= 

 
 These fit measures can be problematic in highly unbalanced samples, that is, that have 
many more ones than zeros, or vice versa.   Consider, for example, the naive predictor, always 
predict ŷ  =1 if P > 0.5 and 0 otherwise, where P is the simple proportion of ones in the sample. 
This rule will always predict correctly 100P percent of the observations, which means that the 
naive model does not have zero fit. In fact, if the proportion of ones in the sample is very high, it 
is possible to construct examples in which the naive predictor (no model) will generate more 
correct predictions than the prediction rule with a fuller model.  Once again, this flaw is not in the 
model; it is a flaw in the fit measure. The important element to bear in mind is that the 
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coefficients of the estimated model are not chosen so as to maximize this (or any other) fit 
measure, as they are in the linear regression model where b maximizes R2.  Another consideration 
is that 0.5, although the usual choice, may not be a very good value to use for the threshold. If the 
sample is heavily unbalanced, then this prediction rule might never predict a one (or zero). To 
consider an example, suppose that in a sample of 10,000 observations, only 1,000 have yi = 1.We 
know that the average predicted probability in the sample will be 0.10. As such, it may require an 
extreme configuration of regressors even to produce an îF  of 0.2, to say nothing of 0.5. In such a 
setting, the prediction rule may fail every time to predict when yi = 1. The obvious adjustment is 
to reduce F*. Of course, this adjustment comes at a cost. If we reduce the threshold F* so as to 
predict yi = 1 more often, then we will increase the number of correct classifications of 
observations that do have y = 1, but we will also increase the number of times that we incorrectly 
classify as ones observations that have yi = 0. In general, any prediction rule of the form 

ˆˆ 1 if   * and 0 otherwise.iy F F= >  will make two types of errors: It will incorrectly classify zeros 
as ones and ones as zeros. In practice, these errors need not be symmetric in the costs that result. 
For example, in a credit scoring model [see Boyes, Hoffman, and Low (1989)], incorrectly 
classifying an applicant as a bad risk is not the same as incorrectly classifying a bad risk as a 
good one. Changing F* will always reduce the probability of one type of error while increasing 
the probability of the other. There is no correct answer as to the best value to choose. It depends 
on the setting and on the criterion function upon which the prediction rule depends.   Figure 2.6 
shows the tradeoff inherent in choosing different thresholds for the health care example. 
 
 

 
Figure 2.6   Prediction Success for Different Prediction Rules 
 
2.8.6  A Specification Test Based on Fit 
 
 Hosmer and Lemeshow (2000) have proposed a diagnostic measure for the 
probit and logit models (they focus on the latter) that assesses the match between actual 
and predicted values. To do the computation, we compute a fitted probability, Fi for each 
observation using the estimated model parameters. We then sort the fitted values in 
ascending order, carrying the actual yi with them. The data are then divided into 10 



Modeling Ordered Choices 

 50  

percentiles based on the fitted values, and means of the predicted and actual data are 
computed within each group. The statistic is 
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 (If the sample is not large, some groups at the high or low end may have insufficient 
variation to compute the denominator – the fitted values may all be very close to zero or 
one. The resulting statistic has a limiting chi squared distribution with 10 degrees of 
freedom. Large values of the statistic suggest that the model is inappropriate. The 
example for the health care data below suggests this case.  The H statistic for the model 
in Table 2.2 is 16.789 with 8 degrees of freedom.  The P value is 0.03238 which casts 
doubt on the distributional assumption. 
 
2.8.7  ROC Plots for Binary Choice Models 
 
 Receiver operating characteristic (ROC) plots provide a loose descriptive measure of fit 
in a binary choice model, and can be used to some extent to compare models. An example 
appears in Figure 2.7. The curve is constructed by computing for the range of values of P* from 
zero to one, the Sensitivity(P*) which equals the proportion of observations for which estimated 
and actual values of yi are both equal to one (when the estimated yi equals one if the the predicted 
probability is greater than or equal to P*).  The Specificity(P*) equals the proportion of values for 
which predicted and actual zeros match. The graph is constructed by plotting Sensitivity(P*) 
against 1 - Specificity(P*). The ‘fit measure’ is then computed as the area under the ROC curve. 
A greater area implies a greater model fit. (The field is a unit rectangle.) A model with no fit has 
an area of 0.5.  
 

 

 
Figure 2.7  ROC Curve for Estimated Probit Model 
 



Modeling Ordered Choices 

 51  

 
2.9  Heteroscedasticity 
 
 The assumption of homoscedasticity of εi in the binary choice model (and the ordered 
choice model discussed later), is likely to be violated in micro- level data.  Unfortunately, there 
are no robust parametric approaches to model fitting and analysis. Moreover, semiparametric 
approaches that are robust to heteroscedasticity such as maximum score [Manski (1995)] and the 
Klein and Spady (1993) approach, have a fundamental shortcoming; only ratios of partial effects 
and coefficients can be estimated and fit measures, to the extent that they measure anything, are 
meaningless in these contexts.  For better or worse, formal treatment of heteroscedasticity in 
binary choice models must be specified parametrically in terms of observables.  (I.e., there is no 
counterpart to the White (1980) estimator for unspecified heteroscedasticity.)   
 We use the general formulation analyzed by Harvey (1976), 
 
 Var[εi|zi] = [exp(θ′zi )]2. 
 
This model can be applied equally to the probit and logit models. We will derive the results 
specifically for the probit model; the logit model is essentially the same. Thus, 
 
 yi* = γ′xi + εi, 
 Var[εi | x,z] = [exp(θ′zi )]2. 
 
The presence of heteroscedasticity necessitates some care in interpreting the coefficients for a 
variable wk that could be in x or z or both.  The partial effects are 
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Only the first (second) term applies if wk appears only in x (z). This implies that the simple 
coefficient may differ radically from the effect that is of interest in the estimated model. [See 
Knapp and Seaks (1992).] The log-likelihood function is  
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To be able to estimate all the parameters, zi cannot include a constant term. The derivatives are  
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which implies a difficult log-likelihood to maximize – though the model is provided as a built in 
procedure in NLOGIT and Stata.  
 The LM test provides a convenient way to test for heteroscedasticity.  The model is easily 
estimated assuming that θ = 0, as this is the probit or logit model we began with.  Let wi equal the 
data vector in parentheses in the derivatives of the log likelihood in (2.45) and let gi be the term in 
square brackets.  Then, the LM statistic is just 
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The likelihood ratio or Wald statistics are also straightforward to compute if one is able to 
estimate the unrestricted heteroscedastic model. 
 An application is shown in Table 2.11.  We have modeled the variance function in terms 
of Income, Kids, Female and Working, a dummy variable for whether the respondent is employed 
at the time of the survey.  The results carry out the LR, Wald and Lagrange multipllier tests of 
homoscedasticity.  The coefficients in the variance function are constrained to zero.  The LM 
statistic is 3.8577 with two degrees of freedom.  The critical value (95%) is 5.99, so the 
hypothesis of homoscedasticity is not rejected.  The second set of results are for the model with 
heteroscedasticity.  The likelihood ratio statisic is LR=2[(-2888.328) - (-2890.288)] = 3.92.  The 
conclusion is the same.  The Wald test based on the unrestricted (heteroscedastic) model is 
3.72828, leading to the same inference.  The coefficient estimates are shown in the table as well. 
Overall, the data do not suggest that there is heteroscedasticity present.  Partial effects for the 
restricted and unrestriced models are shown at the end of Table 2.11.  The index function and 
variance function have two variables in common, Income and Kids.  Partial effects are computed 
as the sum of the two terms shown in (2.43).  The change from the homoscedastic model is minor 
for this model. 
 
Table 2.11  Heteroscedastic Probit Model 
+--------+-------------------------------+------------------------------+---------+ 
|        |      Heteroscedastic          |     Homoscedastic            |         | 
|        |      LogL  = -2888.328        |     LogL  = -2890.288        |         | 
|        |      LogLR = -2890.288        |     LogL0 = -3010.421        |         | 
|        |      Chisq =     3.920        |     Chisq =   240.266        |         | 
|        |      Wald  =     3.728        |                              |         | 
|        |      LM    =     3.858        |                              |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  .7595  .2349    3.233  .0012 |  .4816  .1423    3.383  .0007|  1.0000 | 
|AGE     | -.0329  .0032  -10.266  .0000 | -.0203  .0020  -10.386  .0000| 43.4401 | 
|EDUC    |  .0860  .0148    5.805  .0000 |  .0520  .0089    5.872  .0000| 11.4181 | 
|INCOME  |  .3454  .2083    1.658  .0972 |  .2180  .1265    1.724  .0847|  .34874 | 
|MARRIED | -.0483  .0828    -.584  .5592 | -.0311  .0508    -.612  .5403|  .75217 | 
|KIDS    |  .1278  .0756    1.692  .0907 |  .0800  .0463    1.727  .0841|  .37943 | 
+--------+      Variance Function        |                              |         | 
|INCOME  |  .0141  .5193     .027  .9784 |                              |  .34874 | 
|KIDS    | -.1608  .1975    -.814  .4158 |                              |  .37943 | 
|FEMALE  |  .0291  .1073     .271  .7864 |                              |  .48405 | 
|WORKING | -.1831  .1350   -1.356  .1750 |                              |  .67232 | 
|        +        Partial Effects        |          Partial Effects     |         | 
|AGE     | -.0080  .0008   -9.469  .0000 | -.0078  .0008  -10.392  .0000| 43.4401 | 
|EDUC    |  .0190  .0035    5.443  .0000 |  .0200  .0034    5.875  .0000| 11.4181 | 
|INCOME  |  .0859  .1539     .558  .5769 |  .0838  .0486    1.724  .0847|  .34874 | 
|MARRIED | -.0171  .0217    -.789  .4301 | -.0119  .0194    -.614  .5394|  .75217 | 
|KIDS    |  .0314  .0478     .657  .5113 |  .0307  .0177    1.733  .0831|  .37943 | 
|FEMALE  | -.0029  .0104    -.282  .7779 |                              |  .48405 | 
|WORKING |  .0184  .0186     .989  .3227 |                              |  .67232 | 
+--------+-------------------------------+------------------------------+---------+ 
 

2.10  Panel Data 
 
 A structural model for a possibly unbalanced panel of data would be written 
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Ideally, we would like to specify that εit and εis are freely correlated within a group, but 
uncorrelated across groups. But doing so will involve computing joint probabilities from a Ti 
variate distribution, which is generally problematic. (See Section 2.14.)  A more limited approach 
is an effects model, 
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1 if  0 and 0 otherwise.
it it it i i
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where ui is the unobserved, individual specific heterogeneity. We distinguish between “random” 
and “fixed” effects models by the relationship between ui and xit. The assumption that ui is 
unrelated to xit , so that the conditional distribution f (ui | xit ) is not dependent on xit, produces the 
random effects model. Note that this places a restriction on the distribution of the heterogeneity. If 
that distribution is unrestricted, so that ui and xit may be correlated, then we have the fixed effects 
model. The distinction does not relate to any intrinsic characteristic of the effect, itself.  This is a 
modeling framework that is fraught with difficulties and unconventional estimation problems. 
Prominent among them are the following:  
 
 Estimation of the random effects model requires very strong assumptions 
 about the heterogeneity.  
 
 The fixed effects model encounters an incidental parameters problem that  
 renders the maximum likelihood estimator inconsistent even when the  
 model is properly specified. 
 
 As in the linear model, there cannot be any time invariant variables in a  
 fixed effects binary choice model.  The time invariant variables become 
 indistinguishable from the fixed effects. 
 
This is a pessimistic beginning.  We will develop an approach that suggests at least a partial path 
around these shortcomings. 
 
2.10.1  Pooled Estimation, Clustering and Robust Covariance Matrix Estimation 
  
 If the appropriate model is either a fixed or random effects specification (or any other 
specification that involves correlation across observations), then the pooled estimator obtained by 
ignoring the panel nature of the data will be inconsistent.  We will obtain an explicit expression 
for the random effects case below.  Assume, however, that the pooled estimator is consistent for 
some vector of constants – perhaps even one that is useful.  In the same manner that the 
covariance matrix computed for OLS in a linear model with random effects is inappropriate, the 
covariance matrix computed for the pooled probit or logit estimator will not estimate the correct 
asymptotic covariance.  A computation that is often used is the cluster corrrected covariance 
matrix.  [See Wooldridge (2008). 
 The pooled MLE based on using Newton’s method or a similar algorithm, 
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where Hit is the contribution of individual it to the second derivatives matrix, git is the first 
derivative vector and the final term is the sampling error that vanishes as n increases – Ti does 
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not.  We have used plim γ̂  rather than γ in the first term because the estimator is likely to be 
inconsistent.  The result can be written 
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Assuming that H  converges to a finite negative definite matrix, the implied estimator for the 
asymptotic covariance matrix should be 
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The terms with unequal subscripts in the double sum in the middle term correspond to different 
individuals.  Since observations are independent, these terms should (in aggregate) converge to 
zero.  This would leave 
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This is the cluster corrected covariance matrix for the binary choice estimator.  A refinement that 
is sometimes employed [See Stata (2007)] is 
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 The assertion of robustness is dubious.  First, the estimator is not robust to any 
conceivable failure of the assumptions of the model.  The pooled MLE will be inconsistent for γ 
regardless of the nature of the correlation across observations.  On the other hand, the direct 
question would be whether the cluster corrected estimator is a robust estimator of the asymptotic 
covariance matrix for the pooled estimator, regardless of what the estimator, itself converges to.  
Several assumptions have been made to reach this point, so the answer is uncertain.  In practical 

terms, the estimator usually differs substantively from that based on ( ) 1−
H , which is at least 

suggestive that the simple pooled estimator is, itself, not robust to the failure of the pooling 
assumption.  The example in Table 2.12 is illustrative.  The estimator uses the full unbalanced 
panel of 27,326 observations.  The corrected and uncorrected standard errors are shown with the 
estimates.  The correction produces a 40% - 50% increase in the standard errors.  This is typical 
for applications in which there is a significant degree of correlation across observations that is 
ignored by the pooled estimator. 
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Table 2.12  Cluster Corrected Covariance Matrix (7293 Groups) 
+--------+-------------+------------+--------------+ 
|        |             | Standard   | Standard     | 
|Variable| Coefficient | Error      | Error        |     
|        |             | Pooled     | Cluster Cor. | 
+--------+-------------+------------+--------------+ 
|Constant|  .49632326  | .05891212  |   .08678277  | 
|AGE     | -.02317830  | .00079949  |   .00111641  | 
|EDUC    |  .05732077  | .00370607  |   .00578509  | 
|INCOME  |  .34245820  | .04810999  |   .06162735  | 
|MARRIED |  .01293268  | .02062755  |   .02926480  | 
|KIDS    |  .06657821  | .01859187  |   .02493187  | 
+--------+-------------+------------+--------------+  

 
2.10.2  Fixed Effects 
 
 The fixed effects model is 
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where dit is a dummy variable that takes the value one in every period for individual i and zero 
otherwise. For convenience,we have redefined xit to be the nonconstant variables in the model. 
The parameters to be estimated are the K elements of γ and the n individual constant terms. 
Before we consider the several virtues and shortcomings of this model, we consider the practical 
aspects of estimation of what are possibly a huge number of parameters, (n + K) − the number of 
groups, n is not limited here, and could be in the thousands in a typical application. The log 
likelihood function for the fixed effects model is 
 
 [ ]1 1

ln ln ( ) ,in T
it i iti t

L F q
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where F(.) is the probability of the observed outcome, [ ]( )it i itq ′Φ α + xγ  for the probit model or 

[ ]( )it i itq ′Λ α + xγ  for the logit model. It will be convenient to let zit = αi + γ′xit  so  
Prob(Yit = yit | xit) = F(qitzit). 
 In the linear regression case, estimation of the parameters is made possible by  
transforming the data to deviations from group means. This eliminates the individual specific 
constants from the estimator. That trick will not be usable here, so that if one desires to estimate 
the parameters of this model, it will be necessary actually to compute the possibly huge number 
of constant terms at the same time as γ. This has been widely viewed as a practical obstacle to 
estimation of this model because of the need to invert a potentially large second derivatives 
matrix, but this is a misconception. [See, e.g., Maddala (1987), p. 317.] A method for estimation 
of nonlinear fixed effects models such as the probit and logit models is detailed in Greene (2008a, 
Section 16.9.6.c).  The problems with the fixed effects estimator are statistical, not practical. The 
estimator relies on Ti increasing for the constant terms to be consistent—in essence, each αi is 
estimated with Ti observations. But, in this setting, not only is Ti fixed, it is likely to be quite 
small. As such, the estimators of the constant terms are inconsistent (not because they converge to 
something other than αi, but because they do not converge at all). The estimator of γ is a function 
of the estimators of αi, which means that the MLE of γ is not consistent either. This is the 
incidental parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] There is a 
small sample (small Ti ) bias in the estimators. How serious this bias is remains a question in the 
literature. Two pieces of received wisdom are Hsiao’s (1986) results for a binary logit model 
[with additional results in Abrevaya (1997)] and Heckman’s (1981a,b) results for the probit 
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model. Hsiao found that for Ti = 2, the bias in the MLE of γ is 100 percent, which is extremely 
pessimistic. Heckman found in a small Monte Carlo study that in samples of n = 100 and T = 8, 
the bias appeared to be on the order of 10 percent, which is substantive, but certainly less severe 
than Hsiao’s results suggest. No other theoretical results have been shown for other models, 
although in very few cases, it can be shown that there is no incidental parameters problem. (The 
Poisson regression model is one of these special cases.)  A 100% bias for the probit estimator has 
been widely observed [e.g., Katz (2001), Greene (2004)], but not proven analytically.  The fixed 
effects approach does have some appeal in that it does not require an assumption of orthogonality 
of the independent variables and the heterogeneity. An ongoing pursuit in the literature is 
concerned with the severity of the tradeoff of this virtue against the incidental parameters 
problem. Some commentary on this issue appears in Arellano (2001). Results of our own 
investigation appear in Greene (2004, 2008a, Chapter 17).  
 Estimates of a fixed effects probit model are presented in Table 2.13.  The results indicate 
that 3,289 individuals were dropped from the sample.  These are the individuals who had yit equal 
one or zero in every period.  Except for the income coefficient, which is surprisingly stable, the 
fixed effects estimates and partial effects are quite different from the pooled results.  Given the 
very large change in the log likelihood function, this is not surprising. The likelihood ratio test 
against the null hypothesis of no effects is over 17,700.  The partial effects also change 
substantially when the effects are added to the model. Since the group sizes are small (Ti ranges 
from 1 to 7), the slope estimator is inconsistent.  Whether this is propogated to the estimates of 
the partial effects ramains to be established. 
 
Table 2.13  Fixed Effects Probit Model 
+--------+-------------------------------+------------------------------+---------+ 
|        |     Fixed Effects             |     Pooled                   |         | 
|        |     LogL  = -8500.704         |     LogL  = -17365.76        |         | 
|        |     LogLR = -17365.76         |     LogL0 = -18279.95        |         | 
|        |     7293 Individuals          |                              |         | 
|        |     3289 Individuals Bypassed |                              |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|                               |  .4963  .0589    8.425  .0000|  1.0000 | 
|AGE     | -.0649  .0045  -14.418  .0000 | -.0232  .0008  -28.991  .0000| 43.5257 | 
|EDUC    |  .0027  .0506     .054  .9570 |  .0573  .0037   15.467  .0000| 11.3206 | 
|INCOME  |  .3530  .1161    3.040  .0024 |  .3425  .0481    7.118  .0000|  .35208 | 
|MARRIED | -.0609  .0666    -.915  .3600 |  .0129  .0206     .627  .5307|  .75862 | 
|KIDS    | -.0118  .0475    -.249  .8032 |  .0666  .0186    3.581  .0003|  .40273 | 
|        +        Partial Effects        |          Partial Effects     |         | 
|AGE     | -.0248  .0049   -5.087  .0000 | -.0089  .0003  -29.012  .0000| 43.5257 | 
|EDUC    |  .0010  .0192     .054  .9567 |  .0219  .0014   15.478  .0000| 11.3206 | 
|INCOME  |  .1349  .0515    2.617  .0089 |  .1309  .0184    7.118  .0000|  .35208 | 
|MARRIED | -.0233  .0010  -22.562  .0000 |  .0049  .0079     .626  .5311|  .75862 | 
|KIDS    | -.0045  .0004  -10.792  .0000 |  .0254  .0071    3.589  .0003|  .40273 | 
+--------+-------------------------------+------------------------------+---------+ 

 
 The incidental parameters problem in estimation of the slope parameters arises here and 
(apparently) not in the linear regression model.  Estimation in the regression model is based on 
the deviations from group means, not the original data as it is here. The result exploited there is 
that although f(yit |Xi) is a function of αi, f(yit |Xi, iy ) is not a function of αi , and the latter is used 
in least squares estimation of γ.  In the regression setting, iy  is a sufficient statistic for αi. 
Sufficient statistics are available for a few distributions, but not for the probit model. They are 
available for the logit model, as we now examine.  Before considering the alternative estimator, 
we note, the absence of the incidental parameters problem in the regression is, in fact, only 
apparent.  The MLE of σ2 in the fixed effects linear regression model (assuming a balanced 
panel) is e′e/(nT), which converges to [(T-1)/T]σ2.  If T is small, σ2 may be significantly 
underestimated (e.g., by 50% if T = 2).  The problem shows up in the scaling parameter, not the 
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slopes. We might note, implicitly, the probit MLE is estimating γ/σ2.  The case of the +100% bias 
in the fixed effects probit MLE is perhaps not surprising. 
 A fixed effects binary logit model is 
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The unconditional likelihood for the nT independent observations is 
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Chamberlain (1980) [following Rasch (1960) and Andersen (1970)] observed that the conditional 
likelihood function, 
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is free of the incidental parameters, αi .The joint likelihood for each set of Ti observations 
conditioned on the number of ones in the set is 
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The function in the denominator is summed over the set of all 
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 different sequences of Ti 

zeros and ones that have the same sum as  1
iT

t ity=Σ .  (The enumeration of all these computations 
stands to be quite a burden—see Arellano (2000, p. 47) or Baltagi (2005, p. 235). In fact, using a 
recursion suggested by Krailo and Pike (1984), the computation even with Ti up to 100 is routine. 
 Consider the example of Ti = 2. The unconditional likelihood is 
 
 Li = Prob(Yi1 = yi1)Prob(Yi2 = yi2). 
 
For each pair of observations, we have these possibilities: 
 
 1. yi1 = 0 and yi2 = 0. Prob(0,0 | sum = 0) = 1. 
 2. yi1 = 1 and yi2 = 1. Prob(1,1 | sum = 2) = 1. 
 
The ith term in Lc for either of these is just one, so they contribute nothing to the conditional 
likelihood function.   When we take logs, these terms (and these observations) will drop out. But 
suppose that yi1 = 0 and yi2 = 1. Then 
 

 3. Prob(0,1|sum=1) = Prob(0,1 and sum = 1) Prob(0,1) .
Prob(sum = 1) Prob(0,1)+Prob(1,0)

=  

. 
Therefore, for this pair of observations, the conditional probability is 
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By conditioning on the sum of the two observations,we have removed the heterogeneity. 
Therefore, we can construct the conditional likelihood function as the product of these terms for 
the pairs of observations for which the two observations are (0,1). Pairs of observations with (1,0) 
are included analogously. The product of the terms such as the preceding, for those observation 
sets for which the sum is not zero or Ti , constitutes the conditional likelihood. Maximization of 
the resulting function is straightforward and may be done by conventional methods.  [Cecchetti 
(1986) and Willis (2006) present an application of this model.] 
 Computation of partial effects in the fixed effects binary choice model presents a new 
problem.  If the sample contains any groups that contain no variation – i.e., yit is always one or 
zero – then those groups must be dropped from the sample.  This is true both for the 
unconditional estimator or the Rasche/Chamberlain conditional estimator.  (Note in the earlier 
results it is reported that 3,289 observations (groups) have been omitted from the sample.)  This 
precludes computation of average partial effects for either estimator.  This follows automatically 
in the conditional estimator since the constant terms are not computed.  One might base 
estimation of partial effects on the individuals remaining in the sample. An alternative is to base 
the computation on the means of the data and the mean of the constant terms for the included 
groups.  Then 
 
 ( )ˆ ˆ ˆ ˆf ∗ ′= α + xδ γ γ , 

 
where x  would be the overall mean vector for the independent variables, or some suitably chosen 
alternative. 

This does not solve the problem for the conditional estimator, however, since the constant 
terms are not estimated for that model.  One way to proceed in this case is as follows:  The log 
likelihood for one individual is 
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The problem solved by the conditional estimator is consistent estimation of γ.  If γ were known, 
and if there were variation of yi in the Ti observations, then estimation of αi would be done by 
maximizing lnLi with respect to αi.  Using the first order conditions derived earlier, we find the 
solution can be found by solving 
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where pi1 is the proportion of the Ti observations with yit equal to one and ait = γ′xit.  There is no 
closed form solution, but the root can be found by a simple one dimensional search.  Estimation 
of partial effects, probabilities, etc. can then be based on the average of these estimates. 
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 Table 2.14 presents estimates of a fixed effects logit model, computed with both the 
conditional and unconditional estimators.  The theory suggests that the coefficient estimates with 
the unconditional approach should be systematically larger than the conditional estimates.  This 
does seem to be the case in general.  The exception, the coefficient on Educ, is also the one with 
the lowest t ratio, by far.  This suggests that for this coefficient, we should expect very large 
sampling variation.   The major differences between the estimators show up in the partial effects. 
These are computed by obtaining estimates of the constant terms, then averaging over all 
observations.  This is a large sample, so the sampling variabiity induced by the small Ti should be 
averaged away in the partial effects.  We find that the effects computed with the two estimators 
are very different. With only the incidental parameters to provide guidance, we would opt for the 
estimates computed from the conditional estimator. 
 
Table 2.14  Estimated Fixed Effects Logit Models 
+--------+-------------------------------+------------------------------+---------+ 
|        |     Unconditional Estimator   |     Conditional Estimator    |         | 
|        |     LogL  = -8506.164         |     LogL  = -5669.541        |         | 
|        |     LogLR = -17365.15         |                              |         | 
|        |     7293 Individuals          |                              |         | 
|        |     3289 Individuals Bypassed |                              |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|AGE     | -.1095  .0076  -14.405  .0000 | -.0881  .0068  -12.984  .0000| 43.5257 | 
|EDUC    |  .0090  .0835     .108  .9141 |  .0126  .0718     .176  .8604| 11.3206 | 
|INCOME  |  .6038  .1968    3.068  .0022 |  .4767  .1750    2.724  .0064|  .35208 | 
|MARRIED | -.1091  .1114    -.979  .3276 | -.0772  .0983    -.785  .4322|  .75862 | 
|KIDS    | -.0167  .0793    -.210  .8337 | -.0059  .0706    -.084  .9331|  .40273 | 
|        +        Partial Effects        |          Partial Effects     |         | 
|AGE     | -.0259  .0063   -4.102  .0000 | -.0012  .00009 -13.961  .0000| 43.5257 | 
|EDUC    |  .0021  .0193     .110  .9122 |  .0002  .0010     .176  .8605| 11.3206 | 
|INCOME  |  .1429  .0582    2.455  .0141 |  .0066  .0023    2.920  .0035|  .35208 | 
|MARRIED | -.0258  .0015  -17.531  .0000 | -.0011  .0014    -.789  .4303|  .75862 | 
|KIDS    | -.0039  .0008   -5.225  .0000 | -.00008 .0010    -.084  .9331|  .40273 | 
+--------+-------------------------------+------------------------------+---------+ 
 

2.10.3  Random Effects 
 
 A specification that has the same structure as the random effects linear regression model 
has been implemented by Butler and Moffitt (1982) and is now in widespread use.  Full details on 
estimation and inference may be found in Butler and Moffitt (1982) and Greene (2008a, Chapter 
23). The random effects model specifies 
 
 εit  =  vit + ui, 
 
where vit and ui are independent random variables with 
 

E[vit |X] = 0; Cov[vit, vjs |X] = Var[vit |X] = 1, if i = j and t = s; 0 otherwise, 
E[ui  |X] = 0; Cov[ui , uj |X] = 0 if i ≠ j, Var[ui |X] = σu

2, 
Cov[vit , uj |X] = 0 for all i, t, j, 

 
and X indicates all the exogenous data in the sample, xit for all i and t. Then,  
 
 Cov[εit,εis]  =  σu

2   
and 

 Corr[εit,εis]  =  ρ  =  
2

21
u

u

σ
σ+

. 
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The new free parameter is  
 
 σu

2 = ρ/(1 − ρ). 
 
The Pooled Estimator 
 
 The implied probit model, given the composition of the disturbance is 
 
 yit*  =  γ′xit  +  vit  +  ui, 
 yit    =  1(yit*  >  0). 
 
It follows that 
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If one pools the data and ignores the within group correlation, then the maximum likkelihood 
estimator provides a consistent estimator of γ*, not γ.  So, the estimator is inconsistent; it is biased 
toward zero – as an estimator of γ.  Since the observations are correlated (within the groups), the 
estimated asymptotic covariance matrix will also be inappropriate.  One would expect the cluster 
corrected covariance matrix estimator (see Section 2.10.1) to be an improvement.  The partial 
effects in the random effects probit model, once again based on the preceding formulation, are 
precisely 
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The implication is that although the pooled estimator does not estimate γ consistently, assuming 
the data, xit are well behaved, the pooled model does produce the appropriate estimator of the 
partial effects in the random effects probit model.  [Wooldridge (2002a) discusses this issue at 
some length.]  The upshot would be that this establishes a case for estimating the pooled model, 
with an appropriate correction to the estimator of the asymptotic covariance matrix. 
 
The Maximum Likelihood Estimator 
 
 The log likelihood for the random effects model is 
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where once again, xit contains a constant term, and wi = ui/σu.   Maximization of the log likelihood 
requires computation of the inner integrals, for which there is no closed form. Butler and Moffit’s 
method based on Gauss-Hermite quadrature is a very common approach.  The parameters may 
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also be estimated by maximum simulated likelihood.  Details on both methods may be found in 
Greene (2008a, Chapter 23).  This model is typically specified using the normal distribution 
(probit model) for both vit and ui.  Using the simulation based estimator, the logit model could be 
used for either or both terms, though it is difficult to see a clear motivation for doing so. 
 As shown in (2.53), the partial effects in the model involve the scaling parameter (1-ρ).  
Since the MLE estimates γ and ρ, it follows that the MLE estimates the structural parameters 
consistently, but not the partial effects. In order to estimate partial effects based on the MLE, it is 
necessary to compute (2.53) using the estimators of γ and ρ.  
 
GMM Estimation 
 

We have examined two approaches to estimation of a probit model with random effects. 
GMM estimation is another possibility. Avery, Hansen, and Hotz (1983), Bertschek and Lechner 
(1998), and Inkmann (2000) examine this approach; the latter two offer some comparison with 
the quadrature and simulation-based estimators considered here.  For the more general panel 
probit model examined in Section 2.14, the GMM approach offers some savings in computational 
effort by avoiding evaluation of multivariate normal probabilities.  For the random effects model 
considered here, the benefit is more limited, since the estimation requires only univariate normal 
integration. 
 
Heckman and Singer’s Semiparametric Approach 
 
 Heckman and Singer (1984a,b) argued that a fully parametric specification of the 
distribution of unobserved heterogeneity (in a duration model) could overspecify the model, and 
bias the estimation of the other parameters.  Their proposed alternative is based on a discrete 
approximation to the underlying distribution of the individual heterogeneity.  The Heckman and 
Singer model can be formulated as a latent class model.  The implied latent class binary choice 
model is 
 
 Prob(yit = 1 |xit, class = c)  =  F(αc + γ′xit),     (2.55) 
 Prob(class = c)  =  πc. 
 
(Note that we have isolated the constant term from the rest of the parameter vector.)  The class 
probabilities are specified nonparametrically.  The requirement that they be positive and sum to 
one can be imposed by a multinomial logit functional form 
 

 πc  =  
1

exp( ) ,  1,..., ,  0.
exp( )

c
CC

c c

c C
=

θ
= θ =

Σ θ
 

 
Note that this function does not impose any restrictions on the probabilities other than that they 
are positive and sum to one.  The C-1 parameters θc are unrestricted.   The log likelihood function 
for this model is 
 
 [ ]1 1 1

ln ln ( )iTn C
c it c iti c t

L F q
= = =

′= π α +∑ ∑ ∏ xγ .     (2.56) 
 
The log likelihood function is maximized with respect to the C-1 class probabilities, C constant 
terms and K parameters in γ. 
 Probabilities and partial effects for this model can be estimated in two ways.  An 
unconditional approach can be based directly on the MLEs of the model parameters.  Thus, 
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Alternatively, we can base an estimate of the class, ci, within which the individual resides as 
follows, using Bayes theorem: 
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The natural estimator of which is the appropriate class for individual i would be the class with the 
largest conditional probability.  Given this estimator of ci, the estimator of αc follows, then the 
probabilities and partial effects for individual i can be computed. 
 Table 2.15 presents estimates of a random effects model for Healthy.  The left panel 
shows the Butler and Moffitt (1982) results using Gauss-Hermite quadrature for the integration.  
The panel on the right shows the same model estimated by maximum simulated likelihood.  We 
used only 50 Halton draws for the simulation – one would typically use several hundred. 
Nonetheless, the estimates are surprisingly close.  The implied estimate of ρ in the simulation is 

2 2ˆ ˆ ˆ/(1 )u uρ = σ + σ  = 0.5412, which differs only trivially from the quadrature based estimate.   
 Table 2.16 shows the estimates of Heckman and Singer’s (1984a,b) semiparametric, 
latent class model.  We begin with a specification search.  There is no firm rule for determining 
the optimal number of classes.  The likelihood ratio is not valid because a model with fewer 
classes is not parametrically nested in a larger one.  In this specification, each class does require 
two additional parameters beyond the one lower.  However, for example, one cannot produce a 
four class model by restricting the parameters of one of the classes.  In principle, a four class 
model is produced from a five class model by forcing one of the αs to equal one of the other ones, 
but which one?  And, if so, is there any restriction needed on the corresponding probability?  As 
can be seen in the table, the log likelihood function does increase with the number of classes.  
However, there is no clear way to use this to formulate a search for the right number of classes.  
A common approach is to base the search on the lnAIC, which is lnAIC  =  (-2lnL + 2M)/n, where 
M is the number of model parameters.  By this rule, it appears that the five class model is 
preferred.  However, Heckman and Singer provide an additional suggestion which is useful here. 
They argue that if the model is fit with too many classes, the estimates will become unstable 
because the estimator (here) in an M dimensional parameter space is actually on a ridge in an M-2 
(smaller) space.  Note in Table 2.16, the estimate of α1 is 10.238 with an estimated standard error 
of 66,988 and that for α2 is -8.523 with standard error of 134,831.  These would seem to fit their 
description. Thus, we chose the four class model as our preferred specification.  The implied 
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mean and standard deviation for the discrete random variable in the four class model are 0.5933 
and 1.1197.  The standard deviation differs from the parametric estimate of 1.0862 by only about 
3.1%.  Though they are not directly comparable, it is striking that the log likelihood function for 
the four class latent class model is nearly identical to that for the parametric random effects model 
in Table 2.15. 
 
Table 2.15  Estimated Random Effects Probit Models 
+--------+-------------------------------+------------------------------+---------+ 
|        |     Quadrature Estimator      |     Simulation Estimator     |         | 
|        |     LogL  = -15424.40         |     LogL  = -15429.26        |         | 
|        |     LogL0 = -17365.76         |     LogL0 = -17365.76        |         | 
|        |     7293 Individuals          |     Simulation = 50 Halton   |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t      P   |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  .9459  .1116    8.473  .0000 | .9420  .0694   13.574  .0000 | 43.5257 | 
|AGE     | -.0365  .0015  -24.279  .0000 |-.0364  .0010  -37.801  .0000 | 43.5257 | 
|EDUC    |  .0817  .0073   11.230  .0000 | .0815  .0044   18.742  .0000 | 11.3206 | 
|INCOME  |  .3207  .0717    4.474  .0000 | .3225  .0547    5.899  .0000 |  .35208 | 
|MARRIED |  .0188  .0346     .544  .5863 | .0170  .0237     .716  .4741 |  .75862 | 
|KIDS    |  .0430  .0298    1.443  .1490 | .0442  .0216    2.049  .0405 |  .40273 | 
|Rho     |  .5404  .0100   53.842  .0000 |                              |         | 
|Sigma_u |                               |1.0862  .0129   84.119  .0000 |         | 
+--------+-------------------------------+------------------------------+---------+ 
 
Table 2.16a  Semiparametric Random Effects Probit Model* 
+-------------------+-----------------+----------------+---------------+---------------+ 
|         5         |       4         |       3        |      2        |      1        | 
+-------------------+-----------------+----------------+---------------+---------------+ 
|α1  10.238 (66988) |  2.3363 (.1573) | 2.2500 (.1400) | 1.6015 (.1014)| .4963  (.0589)| 
|α2  -8.523 (134831)| -1.7635 (1.0297)| -.3831 (.1273) | -.0309 (.0986)|               | 
|α3  .8291  (.1554) | -.1478  (.1660) |  .8882 (.1292) |               |               | 
|α4  -.2636 (.1426) | 1.0104  (.1436) |                |               |               | 
|α5  1.8971 (.1777) |                 |                |               |               | 
|π1     .0756       |     .2700       |    .3133       |    .5513      |     1.0000    | 
|π2     .0207       |     .0323       |    .2429       |    .4487      |               | 
|π3     .3758       |     .2772       |    .4437       |               |               | 
|π4     .2404       |     .4205       |                |               |               | 
|π5     .2876       |                 |                |               |               | 
|lnL  -15420.17     |  -15423.77      | -15431.74      |   -15552.89   |     -17365.76 | 
|AIC    1.12963     |    1.12975      |   1.13019      |     1.13891   |      1.27145  | 
+ ------------------+-----------------+----------------+---------------+---------------+ 
* Estimated standard errors for αc in parentheses 
 
 Table 2.16b  Estimated Parameters for 4 Class Latent Class Model 
+--------+--------------+----------+--------+--------+-------+ 
|Variable| Coefficient  | Standard |b/St.Er.|P[|Z|>z]| Mean  | 
|        |              | Error    |        |        | of X  | 
+--------+--------------+----------+--------+--------+-------+ 
|AGE     |   -.0367       .0015      -24.110   .0000  43.5257| 
|EDUC    |    .0795       .0076       10.426   .0000  11.3206| 
|INCOME  |    .3340       .0743        4.491   .0000   .35206| 
|MARRIED |    .0122       .0359         .340   .7341   .75862| 
|KIDS    |    .0485       .0304        1.596   .1104   .40273| 
+--------+--------------+----------+--------+--------+-------+ 

 
2.10.4  Mundlak’s Correction for the Probit and Logit Models 
 
 The incidental parameters problem is a compelling reason to be skeptical of the fixed 
effects estimator when Ti is small, as it is in our application.  However, the assumption that the 
common effect ui is uncorrelated with xit is a disadvantage of the random effects model.  An 
approach suggested by Mundlak (1978) and extended by Wooldridge (2002b) proposes a middle 
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ground between the two. We propose that the effects in the fixed effects model are projected on 
the means of the (time varying) regressors, 
 
 i i iw′α = +xθ .         (2.59) 
 
where wi is normally distributed with mean zero and standard deviation σw and is uncorrelated 
with ix  or with xit.  (Wooldridge proposes that αi be projected on all T vectors, xit rather than on 
just the means. The practical problem with this approach shows up in our application, in which 
there is an unbalanced panel.  Simply filling in the missing years with zeros is not a satisfactory 
solution; zero is not an appropraite value for the regressor vector in a given year.)  Inserting 
(2.59) into the fixed effects formulation in Section 2.10.2 produces the modified model 
 
 yit*  =  γ′xit  +  i′xθ   +  εit  +  wi,       (2.60) 
 
which is a random effects model. 
 
2.10.5  Testing for Heterogeneity  
 

As in the linear regression model, it is of some interest to test whether there is indeed 
heterogeneity. With homogeneity (αi =α), there is no unusual problem, and the model can be 
estimated, as usual, as a pooled probit or logit model.  The test is simple for the random effects 
model.  A simple Wald (t) test of the statistical significance of the estimate of ρ is appropriate.  
Alternatively, one can use a likelihood ratio test by comparing the log likelihoods of the random 
effects and pooled models.  The estimate of ρ in the estimated random effects model in Table 
2.15 is 0.5404 with an estimated standard error of 0.001037.  The implied t ratio of 53.8 is large 
enough to reject the hypothesis of homogeneity.  Alternatively, we can use the likelihood ratio 
test.  For the estimated random effects models, we have 

 
lnLPooled  =  -17365.76, 
lnLRE  =  -15424.40, 
lnLHeckman,Singer =  -15423.77. 

 
For testing in the parametric framework, the likelihood ratio statistic, with one degree of freedom, 
would be 2[(-15424.40) – (-17365.76)]  =  3,882.72.  This is far larger than the critical value of 
3.84, so once again, the hypothesis is rejected.  To use the semiparametric approach instead, we 
need to recalculate the degrees of freedom.  The number of additional parameters that are 
estimated to produce the improvement in the log likelihood is three for the additional constant 
terms plus three for the unrestricted probabilities – the fourth is constrained so that they sum to 
one.  The statistic is 2[(-15423.77) – (-17365.76)]  =  3,883.98 with 6 degrees of freedom.  The 
95% critical value is 12.59, so the hypothesis of homogeneity is once again rejected. 

Testing for heterogeneity in the fixed effects case is more difficult.   Consider first the 
conditional logit approach.  It is not possible to test the hypothesis using the likelihood ratio test 
because the two likelihoods are not comparable. The conditional likelihood is based on a 
restricted data set that excludes individuals for which yit is the same in every period.  Moreover, 
none of the usual tests of restrictions can be used because the individual effects are never actually 
estimated.    

Hausman’s (1978) specification test is a natural one to use here. Under the null 
hypothesis of homogeneity, both Chamberlain’s conditional maximum likelihood estimator 
(CMLE) and the usual maximum likelihood estimator are consistent, but Chamberlain’s is 
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inefficient. (It fails to use the information that αi = α, and it may not use all the data.)  Under the 
alternative hypothesis, the unconditional maximum likelihood estimator is inconsistent,  whereas 
Chamberlain’s estimator is consistent and efficient. The Hausman test can be based on the chi-
squared statistic 
 

( ) ( ) ( ) ( )12 ˆ ˆ ˆ ˆ ˆ ˆ. .CML ML CML ML CML MLAsyVar AsyVarχ
−′= − − −⎡ ⎤⎣ ⎦γ γ γ γ γ γ .  (2.61) 

 
The estimated covariance matrices are those computed for the two maximum likelihood 
estimators. For the unconditional maximum likelihood estimator, the row and column 
corresponding to the constant term are dropped. A large value will cast doubt on the hypothesis of 
homogeneity. (There are K degrees of freedom for the test.) It is possible that the covariance 
matrix for the maximum likelihood estimator will be larger than that for the conditional 
maximum likelihood estimator. If so, then the difference matrix in brackets is assumed to be a 
zero matrix, and the chi-squared statistic is therefore zero.  It might be tempting to eliminate from 
the sample at the outset groups of observations for which yit is always zero or Ti.  If so, then the 
samples used for the pooled estimator and the conditional MLE will be the same.  However, there 
is now a danger that the resulting subsample used for the pooled model is choice based – See 
Section 2.15 – so that the pooled estimator would no longer be consistent even under the null 
hypothesis of homogeneity. 

One cannot use this approach with the unconditional FE estimator.  The reason is that the 
unconditional MLE is inconsistent even when the fixed effects model is correctly specified, 
because of the incidental parameters (small T) problem.  Therefore, it would seem that there is a 
loose end in the econometric methodology; there is no appropriate for fixed effects vs. no effects 
for the probit model in the received literature. 

 
2.10.6  Testing for Fixed or Random Effects: A Variable Addition Test 

 
The usual approach of using the Hausman test to test for fixed vs. random effects in the 

linear model is unavailable here.  The fixed effects maximum likelihood estimator is inconsistent 
under both the null and alternative hypotheses.  The Wu (1973) variable addition test should be a 
viable alternative.  In the Mundlak specification considered in the section 2.10.4, if the random 
effects model is appropriate, then the coefficients on the group means should be zero.  If θ is not 
zero, this casts doubt on the random effects model, which suggests the fixed effects model as a 
preferable alternative.  Like all such specification tests, the power of this procedure is uncertain; 
the simple FE model is not the only alternative that could produce a significant result.  But, for 
these specific null and alternative hypotheses, the Wald and likelihood ratio tests should be 
usable.  Table 2.16 presents the random effects and Mundlak estimates for the probit model.  The 
coefficient estimates in the latter are noticeably different in the two models.   The Wald statistic 
of 45.27922 and the likelihood ratio statistic of 40.280 are both far larger than the critical chi 
squared with 5 degrees of freedom, 11.07.  This suggests that for these data, the fixed effects 
model is the preferred framework. 
 
2.11  Parameter Heterogeneity 
 
 The panel data analysis considered thus far has focused on modeling heterogeneity with 
the fixed and random effects specifications. Both assume that the heterogeneity is continuously 
distributed among individuals. We also examined a semiparametric approach based on a discrete 
distribution using Heckman and Singer’s (1984a,b) approach.  The random effects model is fully 
parametric, requiring a full specification of the likelihood for estimation. The fixed effects model 
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is essentially semiparametric. It requires no specific distributional assumption, however, it does 
require that the realizations of the latent heterogeneity be treated as parameters, either estimated 
in the unconditional fixed effects estimator or conditioned out of the likelihood function when 
possible. Heckman and Singer’s (1984b) model provides a less stringent model specification 
based on a discrete distribution of the latent heterogeneity.  
 
Table 2.17  Random Effects Model with Mundlak Correction 
+--------+-------------------------------+------------------------------+---------+ 
|        |     Random Effects Probit     |     Group Means Addition     |         | 
|        |     LogL  = -15424.40         |     LogL  = -15404.26        |         | 
|        |     LogL0 = -17365.76         |     LogL0 = -17365.76        |         | 
|        |     7293 Individuals          |                              |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  .9459  .1116    8.473  .0000 |  .6551  .1232    5.320  .0000| 43.5257 | 
|AGE     | -.0365  .0015  -24.279  .0000 | -.0521  .0036  -14.582  .0000| 43.5257 | 
|EDUC    |  .0817  .0073   11.230  .0000 |  .0031  .0421     .073  .9415| 11.3206 | 
|INCOME  |  .3207  .0717    4.474  .0000 |  .2937  .0959    3.064  .0022|  .35208 | 
|MARRIED |  .0188  .0346     .544  .5863 | -.0429  .0534    -.803  .4220|  .75862 | 
|KIDS    |  .0430  .0298    1.443  .1490 | -.0019  .0397    -.048  .9614|  .40273 | 
|AGEBAR  |                               |  .0193  .0039    4.895  .0000|         | 
|EDUCBAR |                               |  .0790  .0427    1.848  .0646|         | 
|INCMBAR |                               |  .3451  .1496    2.307  .0211|         | 
|MARRBAR |                               |  .0499  .0717     .695  .4871|         | 
|KIDSBAR |                               |  .0936  .0616    1.520  .1285|         | 
|Rho     |  .5404  .0100   53.842  .0000 |  .5389  .0100   53.822  .0000|         | 
+--------+-------------------------------+------------------------------+---------+ 
 

The preceding opens another possibility. The random effects model can be cast as a 
model with a random constant term; 
 
 yit* = αi + γ′xit + εit , i = 1, . . . , n, t = 1, . . . , Ti , 
 yit = 1 if yit*  > 0, and 0 otherwise, 
 
where αi = α + σwi . This is simply a reinterpretation of the model just analyzed. We might, 
however, now extend this formulation to the full parameter vector. The resulting structure is 
 
 yit* = αi + γi′xit + εit , i = 1, . . . , n, t = 1, . . . , Ti ,     (2.62) 
 yit = 1 if yit*  > 0, and 0 otherwise, 
 
where γi = γ + Σwi where Σ is a nonnegative definite diagonal matrix—some of its diagonal 
elements could be zero for nonrandom parameters. The method of maximum simulated likelihood 
is well suited to this model.  The simulated log-likelihood for the random parameters model is  
 

 ,1 1 1

1ln ln { [( ) ]}iTn R
S it i r iti r t

L F q
R= = =

′= +∑ ∑ ∏ w xγ Σ .    (2.63) 

 
The simulation now involves R draws from the multivariate distribution of u. Because the draws 
are uncorrelated - Σ is diagonal - this is essentially the same estimation problem as the random 
effects model considered previously.  The simulated log likelihood is maximized with respect to 
the elements of γ and Σ. An interesting, relatively straightforward extension is to relax the 
assumption that the random parameters are uncorrelated. This can be done by writing Σ = LL′ 
where L is a lower triangular matrix, then simply including the below diagonal elements of L 
among the parameters to be estimated.  A hierarchical model is obtained by allowing the 
parameter heterogeneity to be partly systematic, in terms of observed variables, as in 
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 γi = γ +  Δzi +  Σwi. 
 
where Δ is a matrix of parameters and zi is a vector of covariates.  The techniques are illustrated 
in the following example, in which the hierarchical model is specified to allow both random 
heterogeneity in the parameters and variation across genders.  
 An extension of the heterogeneity model to the latent class structure is a minor extension 
of the Heckman and Singer model of Section 2.10.3.  We can also produce a counterpart to the 
hierarchical model as shown in (2.64) and (2.65).  The model structure is 
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     (2.64) 
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′= π∑ ∑ ∏ xγ .     (2.65) 
 
Estimation of a fully specified latent class model is discussed in Section 8.2.5, and Greene 
(2008a).  Background material on latent class models may be found in Mcachlan and Peel (2000) 
and Greene (2008, Section 16.9.7). 
 We have reestimated the probit model for Healthy with the basic random parameters (RP) 
specification, 
 
 γik  =  γk  +  σkwik. 
 
The results are shown in Table 2.18 with the original (now fixed parameters) estimates. The 
estimated means of the RPs differ substantially from their fixed counterparts.  The differences can 
be seen in the first column of the table of partial effects in Table 2.19 as well.  A likelihood ratio 
test of the null hypothesis of the fixed parameters model gives a chi squared value of 2(-15407.51 
– (-17365.76)) = 3916.50 with six degrees of freedom. The hypothesis would be rejected, 
suggesting that the RP model is the preferred specification. 
 Partial effects in the RP model will vary both with the data and by the individual; 
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γ γ γ γ . 

 
This cannot be computed because it involves the unknown random term, wi.  The simplest way to 
remove the indeterminacy in the computation is to use the population mean, E[γi] = γ in the 
computation.  An alternative approach is to estimate γi for the individual – in principle this would 
also allow the computation of average partial effects.  Since wi is random and uncorrelated with 
the observed variables, it is not possible to estimate γi, itself.  It is possible to improve on E[γi], 
hwever.  Let yi = (yi1,…,yi,Ti) and let Xi denote the Ti observations on xit.  Then, using Bayes 
Theorem, 
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This is the conditional density of γi given the data on individual i.  This provides a method of 
estimating the expectation of γi or of ∂Prob(yit = 1|xit)/∂xit, 
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The conditional mean of the partial effect would be obtained likewise.  The integrals needed to 
obtain the result will not exist in closed form, but they can be simulated.  In (2.66), f(yi|γi,Xi) is 
the contribution of individual i to the likelihood function (not its log) and p(γi) is the marginal 
density of γi which we have assumed is normal with mean γ and variance Σ. Using the definition 
of the likelihood function in (2.9), then, the empirical counterpart to (2.66) is 
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Since even given the population values of γ and Σ, the integrals would not be directly 
computable, we will use simulation instead.  Inserting our estimates of the population population 
parameters, then, the estimator is 
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  (2.67) 

 
where LL̒ = Σ and wi,r is the rth simulated draw from the K-variate standard normal population.  
If the random parameters are uncorrelated, then L is the diagonal matrix of estimated standard 
deviations. This provides an individual specific estimate, though we emphasize, it is the 
conditional mean function, not a direct estimate of γi.  It is the minimum mean squared error 
predictor of γi given yi and Xi.  We have done this computation for our estimated random 
parameters model in Table 2.18.  A kernel density estimator for γINCOME based on the 7,293 
estimates is shown in Figure 2.8.  In order to simulate the partial effects, the initial term 

,
ˆˆ( )i r+ Lwγ in the numerator of (2.67) is replaced with , ,

ˆ ˆˆ ˆ[( ) ]( )i r it i rf ′+ +Lw x Lwγ γ .  These are 
the values shown in Table 2.19 for the two random parameters models. 
 The estimator in (2.67) is the counterpart to a Bayesian posterior mean.  [Suggestions that 
the Bayesian estimator provides individual parameter estimates, γi, as in Rossi and Allenby 
(1999) are in error; the Bayesian estimator also estimates the conditional mean function, 
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E[γi|Datai], not γi, itself.]  One difference between the classical estimator in (2.67) and the 
Bayesian estimator is that (2.67) treats the estimated structural parameters as if they were known.  
One could use (2.67) to estimate Var[γi,k|yi,Xi] by simulating an estimator of the expected square, 
then constructing a variance or standard deviation.  This could form the basis of a ‘confidence 
interval’ for γi,k, which would be somewhat too narrow because it would ignore the sampling 
variability in the estimators of the structural parameters, γ and Σ.  One possibility to reconcile this 
would be to bootstrap the interval over the estimated asymptotic distribution of the estimates of γ 
and Σ.  The narrower Bayesian HPD interval would follow from the fact that the Bayesian 
estimator is posterior only to the data in hand while the classical estimator with its asymptotic 
variance attempts to characterize the entire population. 
 
Table 2.18 Estimated Random Parameter Models 
+--------+-------------------------------+------------------------------+---------+ 
|        |     Random Parameters         |     Pooled                   |         | 
|        |     LogL  = -15407.51         |     LogL  = -17365.76        |         | 
|        |     LogLR = -17365.76         |     LogL0 = -18279.95        |         | 
|        |     7293 Individuals          |                              |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|        |                Mean Parameters in Probability                     
|Constant|  .5688  .0701    8.113  .0000 |  .4963  .0589    8.425  .0000|  1.0000 | 
|AGE     | -.0355  .0010  -37.027  .0000 | -.0232  .0008  -28.991  .0000| 43.5257 | 
|EDUC    |  .1103  .0046   23.839  .0000 |  .0573  .0037   15.467  .0000| 11.3206 | 
|INCOME  |  .3137  .0554    5.665  .0000 |  .3425  .0481    7.118  .0000|  .35208 | 
|MARRIED |  .0265  .0237    1.117  .2641 |  .0129  .0206     .627  .5307|  .75862 | 
|KIDS    |  .0560  .0219    2.563  .0104 |  .0666  .0186    3.581  .0003|  .40273 | 
|        +      Variance Parameters in Random Parameter Distribution    |         | 
|Constant|  .0474  .0091    5.223  .0000 |                              |  1.0000 | 
|AGE     |  .0144  .0002   60.817  .0000 |                              | 43.5257 | 
|EDUC    |  .0778  .0011   71.857  .0000 |                              | 11.3206 | 
|INCOME  |  .1934  .0240    8.068  .0000 |                              |  .35208 | 
|MARRIED |  .0205  .0106    1.939  .0525 |                              |  .75862 | 
|KIDS    |  .3771  .0153   24.645  .0000 |                              |  .40273 | 
+--------+-------------------------------+------------------------------+---------+ 

 
Table 2.19 Estimated Partial Effects 
+--------+-------------------------------+------------------------------+---------| 
|Variable|  Est.    S.E.     t       P   |  Est.    S.E.     t        P |Mean of X| 
+--------+-------------------------------+------------------------------+---------+ 
+--------+ Pooled                        | Random Effects               |         | 
|AGE     | -.0089  .0003  -29.012  .0000 |-.0133  .0003  -43.726  .0000 | 43.5257 | 
|EDUC    |  .0219  .0014   15.478  .0000 | .0297  .0023   12.957  .0000 | 11.3206 | 
|INCOME  |  .1309  .0184    7.118  .0000 | .1175  .0204    5.763  .0000 |  .35208 | 
|MARRIED |  .0049  .0079     .626  .5311 | .0062  .0087     .715  .4747 |  .75862 | 
|KIDS    |  .0254  .0071    3.589  .0003 | .0161  .0080    2.007  .0448 |  .40273 | 
+--------+ Uncorrelated Random Parameters| Correlated Random Parameters |         | 
|AGE     | -.0130  .0004  -34.711  .0000 |-.0134  .0004  -34.044  .0000 | 43.5257 | 
|EDUC    |  .0402  .0017   23.757  .0000 | .0390  .0018   21.443  .0000 | 11.3206 | 
|INCOME  |  .1144  .0202    5.670  .0000 | .1158  .0218    5.303  .0000 |  .35208 | 
|MARRIED |  .0097  .0087    1.115  .2648 | .0096  .0092    1.043  .2971 |  .75862 | 
|KIDS    |  .0204  .0079    2.588  .0097 | .0121  .0083    1.457  .1451 |  .40273 | 
+--------+-------------------------------+------------------------------+---------+ 
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Figure 2.8  Distribution of Conditional Means of Income Parameter  
 
2.12  Endogeneity of a RHS variable 
 
 The presence of endogenous right-hand-side variables in a binary choice model presents 
familiar problems for estimation. The problem is made worse in nonlinear models because even if 
one has an instrumental variable readily at hand, it may not be immediately clear what is to be 
done with it. The usual instrumental variable estimator is based on moments of the data, variances 
and covariances. In this binary choice setting, we are not using any form of least squares to 
estimate the parameters, so the IV method would appear not to apply. Consider the model 
 
 yi* = γ′xi + θhi + εi, 
 yi = 1(yi*  >  0), 
 E[εi |hi ] = g(hi ) ≠ 0. 
 
Thus, hi is endogenous in this model. The simple maximum likelihood estimators considered 
earlier will not consistently estimate (γ,θ ). [Without an additional specification that allows us to 
formalize Prob(yi = 1 | xi ,hi ), we cannot state what the MLE will, in fact, estimate.] Suppose that 
we have a “relevant” instrumental variable, zi such that 
 
 E[εi | zi , xi] = 0, 
 E[hi zi ] ≠ 0. 
 
A natural instrumental variable estimator would be based on the “moment” condition 
 

 ( )* .i
i i i

i

x
E y h

z
⎡ ⎤⎛ ⎞′− − θ =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
x 0γ  

 
However, yi* is not observed, yi is.  The “residual,” ( )*i i iy h′− − θxγ , would have no meaning 
even if the true parameters were known.  One approach that was used in Avery et al. (1983), 
Butler and Chatterjee (1997), and Bertschek and Lechner (1998) is to assume that the 
instrumental variable is orthogonal to the residual [ ( )( ) .i i iy h′− Φ + θxγ ]; that is, 
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This form of the moment equation, based on observables, can form the basis of a straightforward 
two-step GMM estimator.  
 The GMM estimator is not less parametric than the full information maximum likelihood 
estimator described below because the probit model based on the normal distribution is still 
invoked to specify the moment equation.  Nothing is gained in simplicity or robustness of this 
approach to full information maximum likelihood estimation, which we now consider. (As 
Bertschek and Lechner argue, however, the gains might come in terms of practical 
implementation and computation time. The same considerations motivated Avery et al.)  
 The maximum likelihood estimator requires a full specification of the model, including 
the assumption that underlies the endogeneity of hi. The model equations are 
 
 yi* = γ′xi + θhi + ε, yi = 1(yi*  >  0), 
 hi   = α′ci + ui,     

 2
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(We are assuming that there is a vector of instrumental variables, ci .) Probit estimation based on 
yi and (xi ,hi) will not consistently estimate (γ, θ ) because of the correlation between hi and εi 
induced by the correlation between ui and εi. Several methods have been proposed for estimation 
of this model. One possibility is to use the partial reduced form obtained by inserting the second 
equation in the first. This becomes a probit model with probability 
 
 Prob(yi=1|xi,ci) = Φ(γ*′xi + α*′ci). 
 
This will produce consistent estimators of 
 
 2 2* / 1 2u u= + θ σ + θρσγ γ  
and 
 2 2* / 1 2u u= θ + θ σ + θρσα α  
 
as the coefficients on xi and ci , respectively. (The procedure will estimate a mixture of γ* and α* 
for any variable that appears in both xi and ci.) In addition, linear regression of hi on ci produces 
estimates of α and σu

2, but there is no method of moments estimator of ρ or θ produced by this 
procedure, so this estimator is incomplete. Newey (1987) suggested a “minimum chi-squared” 
estimator that does estimate all parameters. A more direct, and actually simpler approach is full 
information maximum likelihood.  
 The log-likelihood is built up from the joint density of yi and hi , which we write as the 
product of the conditional and the marginal densities, 
 
 f (yi,hi ) = f (yi |hi) f (hi). 
 
To derive the conditional distribution, we use results for the bivariate normal, and write 
 
 εi|ui = [(ρσu)/σu

2]ui + vi, 
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where vi is normally distributed independently of ui with zero mean and Var[vi] = (1 − ρ2). 
Inserting this in the first equation, we have 
 
 yi*|hi = γ′xi + θhi + (ρ/σu)ui + vi. 
 
Therefore, 
 

 Prob(yi = 1|xi,hi) = 
2

( / ) .
1

i i u ih u⎡ ⎤′ + θ + ρ σ
Φ ⎢ ⎥

⎢ ⎥− ρ⎣ ⎦

xγ      (2.68) 

 
Inserting the expression for ui = (hi − α′ci), and using the normal density for the marginal 
distribution of hi in the second equation, we obtain the log-likelihood function for the sample, 
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(A built-in Stata procedure to compute this maximum likelihood estimator is unfortunately 
labeled “IVPROBIT” giving users the impression that it is using an instrumental variables 
estimator rather than the full information MLE.) 
 The case in which the endogenous variable in the main equation is, itself, a binary 
variable occupies a large segment of the literature.  Consider the model 
 
 yi* = γ′xi + θTi + ε,  
 yi = 1(yi*  >  0), 
 E[εi | Ti ] = 0, 
 
where Ti is a binary variable indicating some kind of program participation (e.g., graduating from 
high school or college, receiving some kind of job training, etc.). The model in this form (and 
several similar ones) is a treatment effects model. The main object of estimation is θ (at least 
superficially). In these settings, the observed outcome may be yi* (e.g., income or hours) or yi 
(e.g., labor force participation). The preceding analysis has suggested that problems of 
endogeneity will intervene in either case. 
 
2.13  Bivariate Probit Models 
 
 A natural extension of the probit model would be to allow more than one equation, with 
correlated disturbances, in the same spirit as the seemingly unrelated regressions model. The 
general specification for a two-equation model would be 
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There is no convenient formulation of the bivariate choice model based on the logistic 
distribution.  The bivariate probit (normal) specification is used with only rare exception in 
applications.  The bivariate normal cdf is 
 

 Prob(X1 < x1,  X2 < x2)  =  2 1  

2 1 2 1 2  
( , , ) ,

x x
z z dz dz

−∞ −∞
φ ρ∫ ∫  

 
which we denote Φ2(x1, x2,ρ).  The density is 
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To construct the log-likelihood, let qi1 = 2yi1 − 1 and qi2 = 2yi2 − 1. Thus, qij = +1 if yij = 1 and −1 
if yij = 0 for j = 1 and 2. Now let zij = γj′xij, wij = qij zij , j = 1, 2, and ρi*  = qi1qi2ρ. Note the 
notational convention. The subscript 2 is used to indicate the bivariate normal distribution in the 
density φ2 and cdf Φ2. In all other cases, the subscript 2 indicates the variables in the second 
equation. As before, φ(.) and Φ(.) without subscripts denote the univariate standard normal 
density and cdf. The probabilities that enter the likelihood function are 
 
 Prob(Yi1 = yi1, Yi2 = yi2|xi1,xi2)  =  Φ2(wi1.wi2,ρi*), 
 
which accounts for all the necessary sign changes needed to compute probabilities for y’s equal to 
zero and one. Thus, 
 
 lnL  =  

1

n

i=∑ ln Φ2(wi1.wi2,ρi*)       (2.72) 

        =  
1

n

i=∑ ln Φi2. 
 
The derivatives of the log-likelihood then reduce to 
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where 

 2 1
1 1 2
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1

i i
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w wg w
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,       (2.74) 

and the subscripts 1 and 2 in gi1 are reversed to obtain gi2. It is useful to note what becomes of the 
preceding if ρ = 0. For ∂lnL/∂γ1, if ρ = ρi*  = 0, then gi1 reduces to φ(wi1)Φ(wi2),  φ2 is φ(wi1)φ(wi2), 
and Φ2 is Φ(wi1)Φ(wi2). Inserting these results in the partial derivatives with qi1 and qi2 produces 
the results for the univariate probit model. Because both functions in ∂lnL/∂ρ factor into the 
product of the univariate functions, ∂lnL/∂ρ reduces to 
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The maximum likelihood estimates are obtained by simultaneously setting the three derivatives to 
zero.  Computation of the bivariate normal integrals needed for the log likelihood function can be 
done using quadrature methods.  Expressions for the second derivatives to use for computing an 
asymptotic covariance matix for the MLE are given in Greene (2008a, p. 819).  Given the 
complexity of the expressions, this seems like an opportune point to use the Berndt, Hall, Hall 
and Hausman estimator based on only the first derivatives. 
 
2.13.1   Tetrachoric Correlation 
 
 The tetrachoric correlation is the correlation coefficient computed for a pair of binary 
variables that are assumed to be derived by censoring two observations from an underlying 
continuous bivariate normal population.  This would be the bivariate probit model without 
independent variables. In this representation, the tetrachoric correlation is precisely the ρ in this 
model - it is the correlation that would be measured between the underlying continuous variables 
if they could be observed. This suggests an interpretation of the correlation coefficient in a 
bivariate probit model—as the conditional tetrachoric correlation. It also suggests a method of 
easily estimating the tetrachoric correlation coefficient using a program that is built into nearly all 
commercial software packages. We obtain an estimate of ρ simply by fitting a bivariate probit 
model with no covariates. 
 In the example below, we will analyze the variable Working in a bivariate probit model 
with Healthy.  (The analysis will be based on the 4,483 observations used in the previous 
examples.)  A cross tabulation for these two variables appears in Table 2.18.  The simple 
(Pearson) correlation between these two binary variables is 0.09288.  The tetrachoric correlation 
computed from a bivaraite probit model is 0.15159. 
 
Table 2.20  Cross Tabulation of Healthy and Working 
+----------------------------------------------------+ 
|Chi-squared[   1] =   38.76382  (Prob = 0.00000)    | 
+--------+-------------------------------------------+ 
|        |                 WORKING                   | 
+--------+----------------------------+--------------+ 
|HEALTHY |     0             1        |       Total  | 
+--------+----------------------------+--------------+ 
|       0|  678 (0.151)  1099 (0.245) | 1777 (0.396) | 
|       1|  791 (0.176)  1915 (0.428) | 2706 (0.604) | 
+--------+----------------------------+--------------+ 
|   Total| 1469 (0.327)  3014 (0.763) | 4483 (1.000) | 
+--------+----------------------------+--------------+  

 
2.13.2  Testing for Zero Correlation 
 
 The Wald and likelihood ratio tests are the usual devices for testing the hypothesis that ρ 
equals zero in the bivariate probit model.  For the Wald test, the square of the t statistic for 
ρ̂ presented with the standard output has a limiting chi squared distribution with one degree of 
freedom..  For the example in Table 2.21, ρ̂  = .0572 with a reported t statistic of 2.08.  The chi 
squared value is 4.3264, which leads us to reject the hypothesis for this specification.  The 
likelihood ratio test is carried out y comparing the log likelihood function for the bivariate probit 
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model to the sum of the seaprate log likelihoods for the univariate probits that are implied when ρ 
= 0.  The statistic is 
 
 LR  =  2[lnLBivariate – (lnL1 + lnL2)]. 
 
The statistic has one degree of freedom.  For the example, the result is  
 

LR = 2[-5294.053 – (-2890.288 + -2405.931)] = 4.332. 
 
The hypothesis is rejected once again.  Both of these statistics require estimation of the bivariate 
probit model.  The Lagrange multiplier test derived by Kiefer (1982) is based on only the single  
equation results.  The statistic is 
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For the data and single equation estimates (not shown) for the model in Table in 2.21, the statistic 
equals 4.0956.  As in the other two cases, we reject the hypothesis that ρ equals zero. 
 
2.13.3  Marginal Effects in a Bivariate Probit Model 
 
 There are several possible marginal effects one might want to evaluate in a bivariate 
probit model.  [See Greene (1996, 2008a) and Christofides et al. (1997, 2000).]  A natural first 
step would be the derivatives of Prob[y1 = 1, y2 = 1 | x1, x2] in (2.73). These can be deduced from 
∂lnL/∂γj  by multiplying by Φ2, removing the sign carrier, qij and differentiating with respect to xj 
rather than γj . The result is 
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The bivariate probability, albeit possibly of interest in its own right, is not a conditional mean 
function. As such, the preceding does not correspond to a regression coefficient or a slope of a 
conditional expectation. For convenience in evaluating the conditional mean and its partial 
effects, we will define a vector x = x1 ∪  x2 and let γ1′x1 = β1′x. Thus, β1 contains all the nonzero 
elements of γ1 and possibly some zeros in the positions of variables in x that appear only in the 
other equation; β2 is defined likewise. The bivariate probability is 
 
 Prob[y1 = 1, y2 = 1 | x] = Φ(β1′x, β2′x, ρ). 
 
Signs are changed appropriately if the probability of the zero outcome is desired in either case. 
The marginal effects of changes in x on this probability are given by 
 

 2
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where g1 and g2 were defined in (2.74). The familiar univariate cases will arise if ρ =0, and effects 
specific to one equation or the other will be produced by zeros in the corresponding position in 
one or the other parameter vector.  
 There are also some regression functions to consider. The unconditional mean functions 
are given by the univariate probabilities: 
 
 E[yj|x1,x2]  =  Φ(γj′xj), j = 1,2, 
 
which was analyzed in detail earlier.  One pair of conditional mean functions that might be of 
interest are 
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and similarly for E[y2 | y1 = 1, x]. The marginal effects for this function are given by 
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Finally, one might construct the nonlinear conditional mean function 
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The derivatives of this function are the same as those presented earlier, with sign changes in 
several places if y2 = 0 is the argument. 
 In each of these sets of partial effects, there is a direct and an indirect effect of a changing 
variable. The direct effect is the effect on E[y1…] of a variable that appears in x1.  The indirect 
effect is the effect of a variable that appears in x2.  When variables appear in both equations, the 
total effect will be the sum of the two effects.  In the example below, for example,  Age and Educ 
appear in both equations, so there is a decomposition of the partial effects for each of these. 
 We have added a second equation to the probit model for Healthy, 
 
 Prob(Workingi = 1|xi,Working)  =  F(Age, Educ, Female). 
 
Estimates of the bivariate probit model are shown in Table 2.21.  The conditional tetrachoric 
correlation between these two variables is statistically significant, but quite small. (Three tests of 
the significance are carried out in Section 2.13.2.)  The partial effects for 
Prob(Healthy=1|Working=1) are shown at the left of the table.   The partial effects can be 
decomposed into direct and indirect effects for variables that appear in both equations, Age and 
Educ.  
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Table 2.21   Estimated Bivariate Probit Model 
+--------+-------------------------------+------------------------------+---------+ 
|        |     HEALTHY                   |     WORKING                  |         | 
|        |     [lnL=-2890.288]           |     [lnL = -2405.931]        |         | 
|        |                 lnL = -5294.053  (n = 4483)                  |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  .4814  .1419   3.392  .0007  | 1.3418  .1550    8.658  .0000|  1.0000 | 
|AGE     | -.0203  .0020 -10.335  .0000  | -.0223  .0017  -12.867  .0000| 43.4401 | 
|EDUC    |  .0531  .0087   6.099  .0000  |  .0551  .0099    5.574  .0000| 11.4181 | 
|INCOME  |  .1602  .1280   1.251  .2109  |                              |  .34874 | 
|MARRIED | -.0282  .0506   -.557  .5776  |                              |  .75217 | 
|KIDS    |  .0831  .0465   1.786  .0741  |                              |  .37943 | 
|FEMALE  |                               | -.9856  .0430  -22.924  .0000|  .48405 | 
|RHO(1,2)|  .0572  .0275   2.080  .0375  |                              |         | 
+--------+-------------------------------+------------------------------+---------+ 
|        |Decomposition of Partial Effect|                              |         | 
|        |  Indirect   Direct     Total  |                              |         | 
+--------+-------------------------------+------------------------------+---------+ 
|AGE     |   .00025   -.00748   -.00723  |                              | 43.4401 | 
|EDUC    |  -.00061    .01965    .01904  |                              | 11.3206 | 
|INCOME  |             .06107    .06107  |                              |  .35208 | 
|MARRIED |            -.01075   -.01075  | (First difference: -.01072)  |  .75862 | 
|KIDS    |             .03170    .03170  | (First difference:  .03159)  |  .40273 | 
|FEMALE  |   .01095              .01095  | (First difference:  .01096)  |  .40273 | 
+--------+-------------------------------+------------------------------+---------+ 

 
2.13.4  Recursive Bivariate Probit Models 
 
 Burnett (1997) proposed the following bivariate probit model for the presence of a gender 
economics course in the curriculum of a liberal arts college: 
 
 Prob[y2 = 1 | x2 ]         =  Φ(γ2′x2) , 
 Prob[y1 = 1| y2  x1, x2] =  Φ2(γ1′x1 + θy2, qi2 γ2′x2, qi2ρ). 
 
The dependent variables in the model are 
 
 y1 = presence of a gender economics course, 
 y2 = presence of a women’s studies program on the campus. 
 
The independent variables in the model are: 
 
 z1 = constant term, 
 z2 = academic reputation of the college, coded 1 (best), 2, . . . to 141, 
 z3 = size of the full-time economics faculty, a count, 
 z4 = percentage of the economics faculty that are women, proportion (0 to 1), 
 z5 = religious affiliation of the college, 0 = no, 1 = yes, 
 z6 = percentage of the college faculty that are women, proportion (0 to 1), 
 z7 – z10 = regional dummy variables, South, Midwest, Northeast,West. 
 
The regressor vectors are 
 
 x1 = (z1, z2, z3, z4, z5)′, x2 = (z2, z6, z5, z7–z10)′. 
 
This model is qualitatively different from the bivariate probit model in that the second dependent 
variable, y2, appears on the right-hand side of the first equation. This model is a recursive, 
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simultaneous-equations model.  The model appears in Heckman (1978), Maddala (1983, p. 123),  
Greene (2008a, pp. 823-826 and in a spate of recent applications.    
 The four joint probabilities are 
  
 P11 = Φ2(γ1′x1 + θy2, γ2′x2, ρ),  
 P10 = Φ2(γ1′x1, −γ2′x2, −ρ),  
 P01 = Φ2[−(γ1′x1 + θy2), γ2′x2, −ρ],  
 P00 = Φ2(−γ1′x1, −γ2′x2, ρ). 
 
These terms are exactly those of the bivariate probit model that we obtain just by carrying y2 in 
the equation for y1 with no special attention to its endogeneity.  We can ignore the simultaneity in 
this model and we cannot in the linear regression model because, in this instance, we are 
maximizing the log-likelihood, whereas in the linear regression case, we are manipulating certain 
sample moments that do not converge to the necessary population parameters in the presence of 
simultaneity. 
 The marginal effects in this model are fairly involved, and as before, we can consider 
several different types. Consider, for example, z2, academic reputation. There is a direct effect 
produced by its presence in the first equation, but there is also an indirect effect. Academic 
reputation enters the women’s studies equation and, therefore, influences the probability that y2 
equals one. Because y2 appears in the first equation, this effect is transmitted back to y1. The total 
effect of academic reputation and, likewise, religious affiliation is the sum of these two parts. 
Consider first the gender economics variable, y1. The reduced form conditional mean is 
 
 E[y1 | x1, x2]   =  Prob[y2 = 1]E[y1 | y2 = 1, x1, x2] +  
       Prob[y2 = 0]E[y1 | y2 = 0, x1, x2] 
   =  Φ(γ2′x2)  [ Φ2(γ1′x1 + θ, γ2′x2,    ρ)/ Φ(γ2′x2)] +   (2.81) 
        Φ(−γ2′x2)[ Φ2(γ1′x1,     − γ2′x2, −ρ)/ Φ(− γ2′x2)] 
   =  Φ2(γ1′x1 + θ, γ2′x2, ρ) + Φ2(γ1′x1, − γ2′x2, − ρ). 
 
Derivatives can be computed using our earlier results for the bivariate normal cdf.  The particular 
feature of interest here is that there is an indirect and a direct effect on y1 of any variable that 
appears in both x1 and x2.  (The indirect effect is the latter.) 
 
2.13.5  A Sample Selection Model 
 
 Consider the model analyzed by Boyes, Hoffman and Lowe (1989), 
 
 yi1 =  1 if individual i defaults on a loan, 0 otherwise, 
 yi2 =  1 if the individual is granted a loan, 0 otherwise. 

Wynand and van Praag (1981) also used this framework to analyze consumer insurance purchases 
in the first application of the selection methodology in a nonlinear model.  Greene (1992) applied 
the same model to y1 = default on credit card loans, in which y2 denotes whether an application 
for the card was accepted or not. Mohanty (2002) used this model to analyze teen employment in 
California.)  For a given individual, y1 is not observed unless yi2 equals 1. Following the lead of 
the linear regression case, a natural approach might seem to be to fit the second (selection) 
equation using a univariate probit model, compute the inverse Mills ratio, λi, and add it to the first 
equation as an additional “control” variable to accommodate the selection effect.  [This is the 
approach used by Wynand and van Praag (1981).]  The problems with this control function 
approach are, first, it is unclear what in the model is being “controlled” and, second, assuming the 
first model is correct, the appropriate model conditioned on the sample selection, is unlikely to 
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contain an inverse Mills ratio anywhere in it.  That result is specific to the linear model, where it 
arises as E[εi|selection].  What would seem to be the apparent counterpart for this probit model, 
 
  Prob(yi1 = 1 | selection on yi2 = 1) = Φ(γ1′xi1 + θλi), 
 
is not, in fact, the appropriate conditional mean, or probability.   For this particular application, 
the appropriate conditional probability would be 
 

  Prob[yi1 = 1 | yi2 = 1,xi1,xi2]  =  1 1 2 2

2 2
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i i
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We would use this result to build up the likelihood function for the three observed outcomes, as 
follows:. The three types of observations in the sample, with their unconditional probabilities are 

  yi2 = 0: Prob(yi2 = 0            1 2| ,x xi i ) = 1 - 2 2( ),i′Φ xγ  
   yi1 = 0, yi2 = 1: Prob(yi1 = 0, yi2 = 1 1 2| ,x xi i ) = 1 1 2 2( , , ),i i2 ′ ′Φ − − ρx xγ γ   (2.83) 
    yi1 = 1, yi2 = 1: Prob(yi1 = 1, yi2 = 1 1 2| ,x xi i ) = 1 1 2 2( , , ).i i2 ′ ′Φ ρx xγ γ   

The log-likelihood function is based on these probabilities.  For further analysis of the response, 
note that  
 
 E[yi1 = 1 | yi2 = 1,xi1,xi2]  =  Prob[yi1 = 1 | yi2 = 1,xi1,xi2], 
 
so the interesting partial effects in the model are the partial derivatives of the conditional 
probability, 
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where gi1 and gi2 are defined in (2.74). 
 The possibility that choice of Public insurance influences the reported health satisfaction 
is considered in the sample selection model in Table 2.22.  The estimate of ρ is high, -.6981, but 
not statistically significant.  The negative estimate does suggest that unobserved factors that it 
make it more likely that the individual buys the insurance make it less likely that they would 
report that they are healthier than average, which seems appropriate. 
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Table 2.22  Estimated Sample Selection Model 
+--------+-------------------------------+------------------------------+---------+ 
|        |   HEALTHY                     |     PUBLIC                   |         | 
|        |   3911 Individuals Selected   |     4483 Individuals         |         | 
|        |   LogL = -3998.974            |                              |         | 
+--------+-------------------------------+------------------------------+---------+ 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |Mean of X| 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  .0056  .2708    .021  .9834  | 3.7196  .1784  20.849  .0000 |  1.0000 | 
|AGE     | -.0178  .0023  -7.799  .0000  |  .0005  .0026    .200  .8416 | 43.4401 | 
|EDUC    |  .0857  .0183   4.677  .0000  | -.1811  .0099 -18.367  .0000 | 11.4181 | 
|INCOME  |  .4236  .1659   2.553  .0107  | -1.120  .1486  -7.537  .0000 |  .34874 | 
|MARRIED | -.0245  .0505   -.486  .6269  |                              |  .75217 | 
|KIDS    |  .0962  .0478   2.012  .0442  | -.0146  .0553   -.264  .7920 |  .37943 | 
|RHO(1,2)| -.6981  .4139  -1.687  .0916  |                              |         | 
+--------+-------------------------------+------------------------------+---------+ 

 
2.14  The Multivariate Probit and Panel Probit Models 
 
 In principle, a multivariate probit model would simply extend the bivariate probit model 
to more than two outcome variables just by adding equations. The resulting equation system, 
again analogous to the seemingly unrelated regressions model, would be 
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The joint probabilities of the observed events, [yi1, yi2 . . . , yiM | xi1, xi2, . . . , xiM], i = 1, . . . , n  
that form the basis for the log-likelihood function are the M-variate normal probabilities, 
 
 1 1 1 2 2 2 1( , ,..., , )i M i i i i i M iML q q q′ ′ ′= Φ x x x Rγ γ γ , 
where 
 qim = 2yim − 1, 
 
 Rjm = qijqimρjm. 
 
The practical obstacle to this extension is the evaluation of the M-variate normal integrals and 
their derivatives. Some progress has been made on using quadrature for trivariate integration, but 
existing results are not sufficient to allow accurate and efficient evaluation for more than two 
variables in a sample of even moderate size. However, given the speed of modern computers, 
simulation-based integration using the GHK simulator or simulated likelihood methods do allow 
for estimation of relatively large models.  
 The multivariate probit model in another form presents a useful extension of the random 
effects probit model for panel data.  If the parameter vectors in all equations are constrained to be 
equal, we obtain what Bertschek and Lechner (1998) call the panel probit model, 
 
 yit*  =  γ′xit + εit, yit = 1(yit* > 0), 
 (εi1,εi2,…,εiT) ~ N[0,R]. 
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The Butler and Moffitt (1982) approach for this model (as a random effects model) has proved 
useful in many applications. But, their underlying assumption that Cov[εit,εis ] = ρ is a substantive 
restriction. By treating this structure as a multivariate probit model with the restriction that the 
coefficient vectors are the same in every period, one can obtain a model with free correlations 
across periods.  [Hyslop (1999), Bertschek and Lechner (1998), Greene (2004 and 2008a, 
Example 23.16), and Cappellari and Jenkins (2006) are applications.]  Applications that employ 
simulation techniques for evaluation of multivariate normal integrals are now fairly numerous as 
well. 
 
2.15 Endogenous Sampling and Case Control Studies 
 
 In some studies [e.g., Boyes, Hoffman, and Low (1989), Greene (1992)], the mix of ones 
and zeros in the observed sample of the dependent variable is deliberately skewed in favor of one 
outcome or the other to achieve a more balanced sample than random sampling would produce. 
The sampling is said to be choice based.  In the two studies noted, the dependent variable 
measured the occurrence of a loan default, which is a relatively uncommon occurrence. To enrich 
the sample, observations with yi = 1 (default) were oversampled. Intuition should suggest 
(correctly) that the bias in the sample should be transmitted to the parameter estimates, which will 
be estimated so as to mimic the sample, not the population, which is known to be different. 
Manski and Lerman (1977) derived the weighted endogenous sampling maximum likelihood 
(WESML) estimator for this situation. The estimator requires that the true population proportions, 
ω1 and ω0, be known. Let p1 and p0 be the sample proportions of ones and zeros. Then the 
estimator is obtained by maximizing a weighted log-likelihood, 
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where wi = yi(ω1/p1) + (1 − yi)(ω0/p0). Note that wi takes only two different values. The derivatives 
and the Hessian are likewise weighted. A final correction is needed after estimation; the 
appropriate estimator of the asymptotic covariance matrix is the sandwich estimator, H−1BH−1 in 
which H is the weighted second derivatives matrix and B is the weighted sum of outer products 
of the first derivatives.  (The weights are not squared in computing B.) 
 The assumption that the population proportions, ω0 and ω1 are known in advance is 
somewhat optimistic.  An alternative approach to the problem of choice based sampling is 
described by Johnson and Albert (1999, pp. 115-118) for the situation of a case-control study.  
Consider an analysis of the occurrence in a population of death from an uncommon disease such 
as lung cancer.  A random sample of individuals would have to be followed (at potentially great 
expense) for a long time to observe a sample of “responses” and even so, would produce a low 
proportion of responders in the sampled group.  A retrospective study might involve searching 
patient records at a hospital to identify a group of patients who had died from lung cancer along 
with a set of covariates.  Another set of patient records would serve as the controls.  The problem 
with the analysis that now follows is the same as the one in the previous paragraph.  The sample 
is unlikely to be representative of the population. 
 Let Si = 1 denote the event that an individual in the population is sampled.  (The authors 
are using the term “population” in a subtly different manner than we have to this point.  For the 
case control study described here, the “population” would be the full set of case histories at the 
hospital, not the full population of individuals in the country (state, world) that might or might not 
have the disease.  Some further assumptions would be needed to argue that what is learned from 
the population at that hospital could be extended to the (super?)population outside the hospital.)  
The probability that Si = 1 depends on yi.  The target model is 
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 Prob(yi = 1|xi)  =  F(γ′xi), 
 
however, the sample information provides only 
 
 Prob(yi = 1|Si = 1,xi), 
 
and these may be very different.  By Bayes Theorem, 
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Now, make two crucial assumptions to replace the Manski-Lerman assumption of known 
population proportions.  First, assume that the correct specification is a binary logit model and 
that γ contains a constant term, α.  Second, assume that the probability that a responder is 
sampled, Prob(Si = 1|yi = 1,xi) = λ1 and that the probability that a nonresponder is sampled is also 
a constant; Prob(Si = 1|yi = 0,xi) = λ0.   That is, the probability of an observation being selected 
into the sample is independent of the covariates, xi, in the model.  The two assumptions produce 
 
 Prob(Si=1|xi)  =  λ1 Prob(yi = 1|xi) + λ0 Prob(yi = 0|xi). 
 
It follows that  
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where τ = ln(λ1/λ0).  Therefore, estimation of the binary logit model by maximum likelihood, 
ignoring the sampling mechanism, produces the familiar consistent estimator of the slope 
parameters, but a biased estimator of the constant term.  The cost of the weaker assumptions in 
this instance is that the analyst will be unable to obtain predictions of probabilities or partial 
effects without the reliable estimator of α.  But, the benefit is that inference about the slope 
parameters, themselves, can proceed in spite of the nonrandom sampling mechanism. 
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3 

 
An Ordered Choice Model for  
Social Science Applications 

 
The ordered probit model in its modern form was proposed by McElvey and Zavoina 

(1969, 1971, 1975) for the analysis of ordered, categorical, nonquantitative choices, outcomes 
and responses.  Their application concerned Congressional preferences on a Medicaid bill.  [See, 
as well, the discussion of Gurland et al. (1960) in Section 4.5 which anticipates some aspects of 
the the social science application.]  Familiar recent examples include bond ratings, discrete 
opinion surveys such as those on political questions, obesity measures, preferences in 
consumption, and satisfaction and health status surveys such as those analyzed by Boes and 
Winkelmann (2006a, 2006b) and other applications mentioned in the introduction.  The model is 
used to describe the data generating process for a random outcome that takes one of a set of 
discrete, ordered outcomes.  The health satisfaction or opinion survey provide clear examples. 
 
3.1  A Latent Regression Model for a Continuous Measure 
 
 The model platform is an underlying random utility model or latent regression model, 
 
 yi* = β′xi + εi, i = 1,...,n,        (3.1) 
 
in which the continuous latent utility or ‘measure,’ yi* is observed in discrete form through a 
censoring mechansm; 
 
 yi   =  0  if    μ-1  <  yi* < μ0, 

 =  1  if    μ0  <  yi*  < μ1,       (3.2) 
 =  2  if    μ1  <   yi* < μ2 
 =  ... 
 =  J  if   μJ-1 <  yi*  < μJ. 
 

Note, for purposes of this introduction, that we have assumed that neither coefficients nor 
thresholds differ across individuals.  These strong assumptions will be reconsidered and relaxed 
as the analysis proceeds.  The vector xi is a set of K covariates that are assumed to be strictly 
independent of εi; β is a vector of K parameters that is the object of estimation and inference.  The 
n sample observations are labeled i = 1,...,n.  Long and Freese (2006, p. 183) caution that one 
ought to ensure that the model to be considered here really is appropriate for the variable of 
interest before embarking on the analysis.  In their case, the question is whether the measured 
outcome really is ordered.  They cite an application of ordering of occupations.  Indeed, it is easy 
to see the validity of their conclusion; the ranking based on, say, some prestige scale is likely to 
be completely different from a ranking of the same set of outcomes based on expected income. 
The interpretation of the ordered outcome as a censoring of an underlying continuously measured 
preference or other measure will provide a reliable guide as to the appropriateness of the model. 
The thrust of the model is that the observed outcome is not simply a set of discrete outcomes that 
by some criterion can be ordered; the observed outcome is a monotonic (many to one) 
transformation of a single continuous outcome that naturally must be ordered.  The further 
example that Long and Freese pursue, in which the response variable is one of  “Strongly 
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Disagree,” “Disagree,” “Agree,” and “Strongly Agree” is a clear example of a censoring of a 
naturally ordered underlying preference scale. 
 The model contains the unknown marginal utilities, β, as well as J+2 unknown threshold 
parameters, μj, all to be estimated using a sample of n observations, indexed by i = 1,...,n.  The 
data consist of the covariates, xi and the observed discrete outcome, yi = 0,1,...,J.  The assumption 
of the properties of the “disturbance,” εi, completes the model specification.  The conventional 
assumptions are that εi is a continuous random disturbance with conventional cumulative 
distribution function (cdf), F(εi|xi) = F(εi) with support equal to the real line, and that the density, 
f(εi) = F′(εi) is likewise defined over the real line.  The assumption of the distribution of εi 
includes independence from, or exogeneity of, xi. 
 The use of models for ordered outcomes arises in many literatures, as suggested in the 
introduction.  The literatures do have focal points at two centers, social sciences including 
sociology, political science, economics and psychology and in bioassay, as discussed at length 
below.  A reading of the literature in both places suggests that social scientists are broadly 
comfortable with the idea of the censoring mechanism as the data generating process behind  their 
samples of, usually, individual observations. Their counterparts in bioassay occasionally express 
some ambivalence about the underlying regression.  In Aitchison and Silvey’s (1957) canonical 
application, there is no clear regression-based data generating process at work; if anything the 
only stimulus in the model is the passage of time, and there are no “coefficients” or “responses” 
in the equation.  Nonetheless, there is a clear, if not perfect, correspondence between their 
analysis and the ordered choice model.  Snell (1964) in contrast, begins development of his model 
with “We assume there to be an underlying continuous scale of measurement along which the 
scale categories represent intervals.”  Once again, however, the analysis to follow has nothing to 
do with regression; the model relates to discovery of the threshold values in the presence of an 
individual “effect.”  But, the applications in the study clearly apply to continuous preference 
scales, in one case a taste test and in another an opinion survey with answers terrible, poor, fair, 
good, excellent. 
 The use of the latent regression to represent an underlying preference, or utility scale, and 
the translation of the utility into a discrete indicator has critics in many quarters.  A lengthy 
discussion of the relevance (or irrelevance) of economics to the formulations appears in 
Hammermesch (2004).  On the question, for example, of “how happy does your income make 
you?” – the question analyzed at some length by Boes and Winkelmann (2006b – see, esp., pp. 4-
5) and illustrated below –  Hammermesch asks whether it is meaningful to equate this 
“happiness” with utility.  We will then associate the measured outcomes with the supposed utility.  
[For example, see Groot and van den Bring (2002, 2003b).]  For better or worse, this is the 
position reached by many of the social science applications where the models of ordered choice 
are applied.  They rest crucially on the notion of the underlying regression and the censoring 
process that produces the measured outcome.  Ferrer-i-Carbonell and Frijters (2004) take the 
discussion yet another level deeper, and consider the underlying assumptions that must be at work 
in order to use satisfaction measures to reflect underlying welfare measures.  [See, as well, 
Winkelmann and Winkelmann (1998).] 
 McCullagh (1980) is widely regarded as a codiscoverer of the ordered choice model.  
[Curiously, he makes no mention of McElvey and Zavoina (1975).]  He states (on page 109) 
 

Motivation for the proposed models is provided by appeal to the existence of an 
underlying continuous and perhaps unobservable random variable.  In bioassay this latent 
variable usually corresponds to a “tolerance” which is assumed to have a continuous 
distribution in the population. Tolerances, themselves, are not directly observable but 
increasing tolerance as manifest through an increase in the probability of survival.  The 
categories are envisaged as contiguous intervals on the continuous scale.... Ordinality is 
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therefore an integral feature of such models and the imposition of an arbitrary scoring 
system for the categories is thereby avoided. 

 
At least to some extent, Anderson and Philips (1981, p. 22) seem unpersuaded; 
 

It is often possible to argue that an ordered categorical variable is a coarsely measured 
version of a continuous variable not itself observable.  Thus, it is reasonable to assume 
that the ordered categories correspond to non-overlapping and exhaustive intervals of the 
real line. ... Although the existence of a latent continuous variable is not crucial for our 
arguments, it makes interpretation easier and clearer. 

 
They do suggest that in at least one application, a method of predicting the values of the 
unobservable variable will be developed.  Nonetheless, the development of their model begins 
(on p. 23) with 
 

Suppose that individuals are grouped into k ordered groups which are identified by an 
ordered categorical variable y with arbitrarily assigned value s for the sth ordered group; s 
= 1,...,k.  The variable y is a convenient identifier for some of the arguments presented 
later.  The ordering of the groups is not, in general, based on any numerical 
measurement. (Emphasis added.) 

  
Anderson (1984, p. 1) in something of a tour de force on ordered outcomes, seems to move in 
both directions at once: 
 

Particular emphasis is placed on the case where y is an ordered categorical variable and 
the category with y = yi is taken to be “lower” than the category with y = yj if i < j.  ... In 
principle, there is a single unobservable, continuous variable related to this ordered scale, 
but in practice, the doctor making the assessment will use several pieces of information in 
making his judgment on the observed category. 

 
 The notions of the latent continuous variable and the existence of the latent regression are 
not mere semantics. At least this is the point behind some of the preceding discussion. 
Superficially, the same model will arise in any case.  However, the underlying platform turns out 
to be a crucial element of making sense of parameters that are estimated, and of interpretations of 
the empirical model once obtained from the data.  Consider, for example, also from Anderson 
(1984, p.2). 
 

The dimensionality of the regression relationship between y and x is determined by the 
number of linear functions required to describe the relationship.  If only one linear 
function is required, the relationship is one dimensional; otherwise it is multidimensional.  
For example, in predicting k categories of pain relief from predictors x, suppose that 
different functions β1′x and β2′x are required to distinguish between the pairs of 
categories (worse, same) and (same, better), respectively.  Then the relationship is 
neither one-dimensional nor ordered with respect to x.  (Emphasis added.) 

 
Essentially, the observation is about curve fitting and functional form.  One might ask in this 
instance, “what are the coefficients?”  For the current purpose, however, the question would seem 
to be “what if the simple regression model seems to be inadequate in terms of predicting (by an as 
yet unspecified procedure) the outcome?” However, the observation raises a vexing question.  
What if the outcomes, themselves, are manifestly ordered. Precisely what does the last sentence 
imply about the model that is generalized in such a way as to purposely be adequate to handle the 
full dimensionality of the outcome, as if it were not ordered at all?  We will return to this issue 
below in the context of one of the “generalized” ordered choice models. 
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3.2  Ordered Choice as an Outcome of Utility Maximization 
 
 The appearance of the ordered choice model in the transportation literature falls 
somewhere between a latent regression approach and a more formal discrete choice 
interpretation. Bhat and Pulugurta (1998) discuss a model for ‘ownership propensity,’ 
 
 Ci  =  k if and only if ψk-1 < Ci* < ψk, k = 0,1,...,K, ψ-1 = -∞, ψK = +∞,  (3.3) 
 
where Ci* represents the latent auto ownership propensity of household i.  The observable 
counterpart to Ci* is Ci, typically the number of vehicles owned.  [See, e.g., Hensher, Smith, 
Milthorpe and Bernard (1992). Agyemand-Duah and Hall (1997) apply the model to numbers of 
trips. Bhat (1997) models the number of non-work commute stops with work travel mode choice.]  
From here, the model can move in several possible directions:  A natural platform for the 
observed number of vehicles owned might seem to be the count data models (e.g., Poisson) 
detailed in, e.g., Cameron and Trivedi (1998, 2005) or even a choice model defined on a choice 
set of alternatives, 0,1,2,… [Hensher et al. (1992)].   
 The Poisson model for Ci would not follow from a model of utility maximization, though 
it would, perhaps, adequately describe the data generating process.  However, a looser 
interpretation of the vehicle ownership count as a reflection of the underlying preference intensity 
for ownership suggests an ordered choice model as a plausible alternative platform. Bhat and 
Pulugurta (1998) provide a utility maximization framework that produces an ordered choice 
model for the observed count.  Their model departs from a random utility framework that assigns 
separate utility values to different states, e.g., zero car ownership vs. some car ownership, less 
than or equal to one car owned vs. more than one, and so on (presumably up to the maximum 
observed in the sample).  A suitable set of assumptions about the ranking of utilities produces 
essentially an unordered choice model for the number of vehicles.  A further set of assumptions 
about the parameterization of the model makes it consistent with the latent regression model 
above. [See Bhat and Pulugurta (1998, page 64).] A wide literature in this area includes 
applications by Kitamura (1987, 1988), Golub and van Wissen (1988), Kitamura and Bunch 
(1989), Golob (1990), Bhat and Koppelmann (1993), Bhat (1996), Agyemara-Duan and Hall 
(1997), Bhat and Pulugurta (1998) and Bhat, Carini and Misra (1999).   
 One might question the strict ordering of the vehicle count.  For example, the vehicles 
might include different mixtures of cars, SUVs and trucks.  Though a somewhat fuzzy ordering 
might still seem natural, several authors have opted instead, to replace the ordered choice model 
with an unordered choice framework, the multinomial logit model and variants.  [See, again, Bhat 
and Pulugurta (1998) who suggest a different utility function for each observed level of vehicle 
ownership.  Applications include Bhat and Pulugurta (1998), Mannering and Winsten (1985), 
Train (1986), Bunch and Kitamura (1990), Hensher, et al. (1992), Purvis (1994) and Agostino, 
Bhat and Pas (1996).    Groot and van den Brink (2003a) encounter precisely the same issue in 
their analysis of job training sessions.  A count model for sessions seems natural, however the 
length and depth of sessions differs enough to suggest a simple count model will distort the 
underlying variable of interest, ‘training.’ 

While many applications appear on first consideration to have some ‘natural’ ordering, 
this is not necessarily the case when one recognizes that the ordering must have some meaning 
also in utility or satisfaction space (i.e., a naturally ordered underlying preference scale) if it 
assumed that the models are essentially driven by the behavioural rule of utility maximization. 
The number of cars owned is a good example: 0,1,2, >2  is a natural ordering in physical vehicle 
space, but it is not necessarily so in utility space. 

Ordered and unordered discrete outcome models have distinct conceptual and econometric 
properties.  An unordered model specification is more appropriate when the set of alternative 
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outcomes representing the dependent variable does not follow a natural ordinal ranking. In 
unordered models, the utility functions specified by the researcher may not be the same for each 
alternative. Different attributes may enter into one or more utility expressions, with a general 
constraint that no single attribute can appear in all utility expressions simultaneously [see 
Hensher et al. (2005)].  By contrast, the ordered choice model has a single utility expression with 
thresholds, such as in our example in the introduction. 
 The discussion to follow will focus on applications in which the underlying choice or 
intensity variable produces a naturally strictly ordered observable counterpart, such as a survey 
statement of the strength of ones preferences.  Save for a brief reconsideration in Section 5.1.2, 
we will not consider unordered choice models further in this review. [See Hensher, Rose and 
Greene (2005).] The use of the ordered choice model as a framework for analyzing counts, such 
as of vehicles owned, remains a possibility under the preceding interpretations.  However, once 
again in the interest of brevity, we will not consider this particular application apart from the 
general analysis of the model. 
 
3.3  The Observed Discrete Outcome 
 
 A typical social science application might begin from a measured outcome such as: 
 
 “Rate your feelings about the proposed legislation as 

0 Strongly disagree 
1 Mildly disagree 
2 Indifferent 
3 Mildly support 
4 Strongly support.” 

 
The latent regression model would describe an underlying continuous, albeit unobservable, 
preference for the legislation as yi*.  The surveyed individual, even if they could, does not 
provide yi*, but rather, a censoring of yi* into five different ranges, one of which is closest to their 
own true preferences.   By the laws of probability, the probabilities associated with the observed 
outcomes are 
 
 Prob[yi = j | xi]  =  Prob[εi <  μj - β′xi]  -  Prob[μj-1 - β′xi], j = 0,1,...,J.   (3.4) 
 
It is worth noting, as do many other discrete choice models, the ‘model’ describes probabilities of 
outcomes.  It does not directly describe the relationship between a yi and the covariates xi; there is 
no obvious regression relationship at work between the observed random variable and the 
covariates.  This calls into question the interpretation of β, an issue to which we will return at 
several points below.  Though yi is not described by a regression relationship with xi – i.e., yi is 
merely a label – one might consider examining the binary variables, 
 
 mij  =  1 if yi = j and 0 if not, 
or 
 Mij  =  1 if yi <  j and 0 if not, 
or 
 Mij'  =  1  if  yi > j and 0 if not. 
 
The second and third of these  as well as mi0 can be described by a simple binary choice (probit or 
logit) model, though these are usually not of interest.  However, in general, there is no obvious 
regression (conditional mean) relationship between the observed dependent variable(s), yi,  and xi. 
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Several normalizations are needed to identify the model parameters.  First, in order to 
preserve the positive signs of all of the probabilities, we require μj > μj-1.  Second, if the support is 
to be the entire real line, then μ-1 = -∞ and μJ = +∞.  Since the data contain no unconditional 
information on scaling of the underlying variable – if yi* is scaled by any positive value, then 
scaling the unknown μj and β by the same value preserves the observed outcomes – an 
unconditional, free variance parameter, Var[εi] = σε

2, is not identified (estimable).  It is 
convenient to make the identifying restriction σε = a constant, σ .  The usual approach to this 
normalization is to assume that Var[εi|xi] = 1 in the probit case and π2/3 in the logit model – in 
either case to eliminate the free structural scaling parameter.  (See Section 2.2.3 for this 
development ofr binary choice models.)  Finally, assuming (as we will) that xi contains a constant 
term, we will require μ0 = 0.  (If, with the other normalizations, and with a constant term present, 
this normalization is not imposed, then adding a constant to μ0 and the same constant to the 
intercept term in β will leave the probability unchanged.)  
 We note at this point a minor ambiguity in the received literature. Some treatments omit 
the overall constant term in β and, in turn, omit the now unnecessary normalization μ0 = 0.  The 
counterpart in these treatments is β0 = 0, where β0 is the overall constant term.  In related fashion, 
some treatments (e.g., the Stata and SAS software packages) translate the outcome variable to yi = 
1,2,...,J, which produces a different count of possible outcomes.  We have maintained the 
formulation above for two reasons.  First, most empirical applications in our experience are based 
on data that actually contain zero as the origin – e.g., the GSOEP data analyzed by Boes and 
Winkelmann (2006a, 2006b).  Second, as we have formulated the model, the familiar binary 
choice (probit and logit) models are useful parametric special cases that do not require a 
reformulation of the entire model.  This feature is noted elsewhere by some of the authors 
discussed below. 
 The standard treatment in the received literature completes the ordered choice model by 
assuming either a standard normal distribution for εi, producing the “ordered probit” model or a 
standardized logistic distribution (mean zero, variance π2/3), which produces the “ordered logit” 
model. Applications appear to be well divided between the two.  A compelling case for one 
distribution or the other remains to be put forth – historically, a preference for the logistic 
distribution has been based on mathematical convenience and because of its ready revelation of 
“odds ratios” in a convenient closed form. [But, see Berkson (1951) who “prefers logits to 
probits” in a direct response to Finney.  Unfortunately, Berkson’s arguments will not help to 
resolve the issue in the setting of this book.]  Contemporary software such as Stata and NLOGIT 
have automated menus of other distributional choices, for example, the asymmetric Gompertz and 
extreme value distributions. However the motivation for these distributions is even less 
persuasive than that for a preference for probits over logits.  These two overwhelmingly dominate 
the received applications; the others seem more than anything else to be gadgets that are 
straightforward to program in the software. [An exception is Han and Hausman (1986), who 
present a model in which an ordered extreme value model emerges naturally.  A similar example 
of duration modeling by Formisiano et al. (2001) is described by Simonoff (2003, pp. 435-448).] 
 
3.4  Probabilities and the Log Likelihood 
 
 With the full set of normalizations in place, the likelihood function for estimation of the 
model parameters is based on the implied probabilities, 
 
 Prob[yi = j | xi]  =  [F(μj - β′xi)  -  F(μj-1 - β′xi)]  > 0, j = 0,1,...,J.   (3.5) 
Figure 3.1 shows the probabilities for an ordered choice model with three outcomes, 
 
 Prob[yi = 0|xi]   =  F(0 - β̒xi)  -  F(-∞ - β̒xi)  =  F(-β̒xi) 
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 Prob[yi = 1|xi] =  F(-β̒xi) - F(μ1 - β̒xi)      (3.4) 
 Prob[yi = 2|xi]   =  F(-∞ - β̒xi) - F(μ1 - β̒xi)  =  1 - F(μ1 - β̒xi) 
 

 
Figure 3.1  Underlying Probabilities for an Ordered Choice Model 
 
 
3.5  Log Likelihood Function 
 
Estimation of the parameters is a straightforward problem in maximum likelihood estimation. 
[See, e.g., Pratt (1981) and Greene (2007a, 2008a).]  The log likelihood function is 
 
 logL  =  1 0 1log[ ( ) ( )]n J

i j ij j i j im F F= = −′ ′Σ Σ μ − − μ −x xβ β ,    (3.6) 
 
where mij = 1 if yi = j and 0 otherwise.  Maximization is done subject to the constraints μ-1 = -∞, 
μ0 = 0 and μJ = +∞.  The remaining constraints, μj-1 < μj can, in principle, be imposed by a 
reparameterization in terms of some underlying structural parameters, such as  
 
 μj  =  1 exp( )j

m m=Σ α ,  
 
however, this is typically unnecessary.  (It is necessary in the generalization suggested in Section 
8.3 below.)  Expressions for the derivatives of the log likelihood can be found in McElvey and 
Zavoina (1975), Maddala (1983), Long (1997), Stata (2008) and Econometric Software (2007). 
 The most recent literature (since 2005) includes several applications that use Bayesian 
methods to analyze ordered choices.  Being heavily parametric in nature, they have focused 
exclusively on the ordered probit model.  Some commentary on methods and methodology may 
be found in Koop and Tobias (2006).  Applications to the univariate ordered probit model include 
Kadam and Lenk (2008), Ando (2006), Zhang et al. (2007) and Tomoyuki and Akira (2006).  In 
the most basic cases, with diffuse priors, the “Bayesian” methods merely reproduce (with some 
sampling variability) the maximum likelihood estimator.  [See Train (2003) for discussion of the 
Bernstein – von Mises result.]  The MCMC methodology is often useful in settings which extend 
beyond the basic model.  We will describe below, for example, applications to a bivariate ordered 
probit model [Biswas and Das (2002)], a model with autocorrelation [Czado et al. (2005) and 

y=0 y=1 y=2 



Modeling Ordered Choices 

 90  

Girard and Parent (2001)] and a model that contains a set of endogenous dummy variables in the 
latent regression [Munkin and Trivedi (2008).] 
 
3.6  Analysis of Data on Ordered Choices 
 
 Analysis of ordered outcomes appears at many points in the literature since its (apparent) 
emergence with Aitchison and Silvey (1957).  As discussed below, what sets McElvey and 
Zavoina apart is their adaptation to social science applications – the analysis of individual data.  
The central focus of the applications in bioassay was, and is, on grouped data and the analysis of 
proportions.  The analysis of individual data, in a regression-like setting was relatively new at this 
point in the literature. Cox (1970), Finney (1971), Theil (1969, 1970, 1971) among others make 
mention of analysis of individual binary data, but McElvey and Zavoina (1975) seem to be the 
first the first to extend the ideas of the ordered choice analysis to a model that was closely akin to 
regression modeling in cross sections of social science data.  We will pursue this dichotomy in 
the next chapter, on the antecedents to the ordered probit (and logit) models. 
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4 
 

Antecedents and Contemporary Counterparts 
 

McElvey and Zavoina’s proposal is preceded by several earlier developments in the  
statistical literature.  The chronology to follow does suggest, however, that their development 
produced a discrete jump in the received body of techniques.  The obvious starting point was the 
early work on probit methods in toxicology, beginning with Bliss (1934a) and made famous by 
Finney’s (1947b) classic monograph on the subject.  The ordered choice model that we are 
interested in here appears in three clearly discernible steps in the literature, Aitchison and 
Silvey’s (1957) treatment of stages in the life cycle of a certain insect, Snell’s (1964) analysis of 
ordered outcomes (without a regression interpretation) and McElvey and Zavoina’s (1975) 
proposal of the modern form of the “ordered probit regression model.”  Some later papers, e.g., 
Anderson (1984) expanded on the basic models. 
 
4.1  The Origin of Probit Analysis: Bliss (1934), Finney (1947) 
 
 Bliss (1934a) tabulated graphically the results of a laboratory study of the effectiveness 
of an insecticide.  He plotted the relationship between the “Percent of Aphids Killed” on the 
ordinate and “Milligrams of Nicotine Per 100 ML of Spray” on the abscissa of a simple figure, 
reproduced here as Figure 4.1.  The figure loosely traces out the familiar sigmoid shape of the 
normal cdf, and in a natural fashion provides data on what kill rate can be expected for a given 
concentration of nicotine.  

 
 
 

 
           Figure 4.1  Insecticide Experiment 
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The inverse question – “what concentration is necessary to achieve a given kill rate?” – is  
answered by inverting the function in the figure.  Writing  
 
 pi  =  F(ci)         (4.1) 
 
for the former, Bliss suggested that the latter could be answered by analyzing  
 
 ci = F-1(pi).         (4.2) 
 
The “Method of Probits” is carried out simply by referring the percent kill, pi to a table to 
determine the value of ci of interest.  The question can also be answered from the figure by 
moving eastward from the kill rate of interest to the figure then downward to the concentration.  
A common application involved elicitation of the lethal dose needed to achieve a 50% kill rate, 
denoted LD50.  [See Finney (1944a,b1947a) or (1971), for examples.] 
 The obvious flaw in the method just described (by the authors, not by Bliss) is that 
different situations would provide different shaped curves, and the preceding provides no 
accommodation of that.  His search of the then current literature suggested to Bliss that analysts 
had used a variety of freehand drawing methods to accommodate this kind of heterogeneity, 
methods that were subject to errors and approximations.  Bliss (1934a, p. 38) goes on to suggest 
“It is believed that these and other difficulties can be minimized if percentage kill and dosage are 
transformed to units which may be plotted as straight lines on ordinary cross section paper and 
hence permit fitting by the customary technique of least squares or of the straight line regression 
equation.” 
 Superficially, Bliss suggests that (4.1) be modified to accommodate the heterogeneity: 
 
 pi  =  F(α + βci).         (4.3) 
 
What is needed for the “transformation to units…” is a definition of the specific function, F(.), for 
which he chose the normal distribution.  The inverse transformation is 
 
 α + βci  =  F-1(pi)  =  Φ-1(pi) = normit(pi)  =  yi.     (4.4) 
 
It being 1934, computation of the normits was another difficult hurdle.  Bliss relied on a table 
published by Pearson (1914, “Tables of the Normal Probability Integral” in Pearson’s Tables for 
Statisticians and Biometricians which is reproduced in Figure 4.2).  Dealing with negative 
numbers was a complication of some substance in 1934, so Bliss suggested the “probability unit” 
or “probit” 
 
 probit(pi) =  normit(pi) + 5.       (4.5) 
 
Probits for a number of values of pi are given in Bliss’s Table I reproduced below in Figure 4.2.   
 These are Bliss’s probits. Note that the value associated with 50% is 5.00, not 0.00.  A 
remaining problem is how to handle the extreme tail values. Bliss assigned the value 0.00 to 
0.01% and 10.00 to 99.99%.  The level of inaccuracy for the intervening values was taken as 
tolerable.  It is intriguing to note, the Pearson Tables (volumes of them) were themselves 
computed by hand (around 1910).  Indeed, though the accuracy of the figures in Bliss’s table is 
noteworthy given when and how they were computed, it is, in fact, quite lacking in absolute 
terms.  Figure 4.3 shows the percentage error in Bliss’s (Pearson’s) probits (computed using a 
modern computer and the INP(.) function in NLOGIT).  It is intriguing to see that the errors are 
quite large at the tails and clearly not random. An approximation was being used that 
systematically degrades as the probability moves away from 0.5 in either direction. 
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   Figure 4.2.  Table of Probits for Values of pi. 
 
 

 
 Figure 4.3  Percentage Errors in Pearson Table of Probability Integrals 
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 As the model is stated above, any two points suffice to determine α and β.  To 
accommodate the inevitable sampling variability, the (implied) model must be modified to 
 
 pi  =  Φ(α + βci + εi).        (4.6) 
 
No assumption about the distribution of εi is necessary; εi is just sampling variability.  A mean or 
median of zero would be a convenient normalization.  Bliss then suggests the method of least 
squares to estimate α and β, which might suggest that he relied (again implicitly) on symmetry of 
the random errors, εi.  This would be the evident origin of probit analysis.  Other authors had been 
doing similar analyses for years.  But, this was the first point at which the technique was 
formalized using the inverse probability function (and the normal distribution.)  [In Bliss (1934b), 
the author notes that two other researchers, Hemmingsen (1933) and Gaddum (1933) had used 
essentially the same method in a study of toxicity in mice.] 
 Bliss cites several advantages of his method: 
 
(1) It provides a test of normality (of ε).  (One could examine the variation of F-1(pi) around the 

fitted regression line.) 
(2)  It includes the ability to do the analysis using logarithms.  [See Greene, Knapp and Seaks 

(1993).]   (At least it makes it simpler.) 
(3) It suggests a method of determining whether organisms exposed to each dosage were  

equivalent and the amounts administered experimentally were uniformly proportional to the 
effective dosage over the range covered by the experiment.  (This is examined by exploring 
the regression relationship.) 

(4)  It allows the analyst to see “the disclosure of change in the mode of lethal action with certain 
poisons over different sections of the dosage range indicated by an abrupt change in the slope 
of the regression.” The figure that is shown for this case in the article (shown as Figure 4.4) is 
equivalent to the introduction of a linear spline in the function based on the log of the dosage, 
i.e., 

 
 pi  =  Φ{α + βlogDosagei + γ[1(logDosagei > 1.35) × (logDosagei – 1.35)] + εi }, 
 
      which is strikingly modern. [See Greene (2008a, pp. 111-112).] 
(5)  It allows a simple method of expressing in the slope of a straight line, the relative uniformity 
      or diversity between individuals in their susceptibility to a poison.  (This seems to relate to the 
      inherent variability of freehand methods used previously.) 
 
 In three editions of his celebrated book on the subject of probit analysis, Finney (1947b, 
1952, 1971) refined Bliss’s methods and applied them to a wide array of experiments.  A major 
practical development in the progression of this work was the advent of software and computers 
for maximum likelihood methods, including Finney’s own contribution to this market, a program 
that he named BLISS in recognition of his predecessor.  [See ISI (1982).] 
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     Figure 4.4.  Implied Spline Regression in Bliss’s Probit Model 
 
 
4.2  Social Science Data and Regression Analysis for Binary Outcomes 
 
 To this point, and in the studies noted below, the collection of methods is applied to 
sampling situations involving grouped data, that is proportions.  The samples involved in the 
analyses described here consisted of observations (ni,pi,xi), i = 1,...,n.  That is, a group size, a 
proportion of “responders” and a level of the stimulus.  The literature was into the 1970s before 
researchers began to extend the techniques to individual data.  See, for example, the “Frontiers” 
section of Theil (1971).  The formal treatment of individual data for ordered choices – the sort of 
data observed by social scientists – begins with Walker and Duncan (1967) in the bioassay 
literature and appeared first in the social sciences in 1971 and 1975 with McElvey and Zavoina’s 
work. 
 The development of the “minimum chi squared” approach to estimation, and the 
development of estimation methods as something closer than before to regression analysis might 
be seen as a bridge between these literatures.  Berkson (1944, 1953, 1955a,b, 1957, 1980) and 
Amemiya (1975, 1980, 1985) suggest an approach to estimation along the lines of 
 
 pi  =  F(α + βci)  +  εi.        (4.7) 
 
[Walker and Duncan (1967), drawing on Gurland and Dahm (1960), also took precisely this 
approach to modeling probabilities (see p. 169). However, they were concerned with individual 
data, not sample proportions.  We will examine Walker and Duncan’s analysis in Section 4.5. ]  
That is, the sampling variability in estimation is laid on the sample proportion, pi, as an estimator 
of the population quantity, F(α + βci).  Under this interpretation, the logit of pi, log pi/(1-pi), or 
normit transformation, Φ-1(pi) would seem to be less useful, since now the sampling variability is 
moved inside the function.  A two step or iterative application of weighted least squares, the 
minimum chi squared estimator provides an approach that accounts for the nonlinearity of the 
function and the heteroscedasticity in pi.  [See, e.g., Greene (2003, Section 21.4.6).] 
 The analysis of the population probability, F(α + βci), as the conditional mean in a 
regression relationship can be carried over to a setting of individual data.  This line of approach 
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comes to fruition in the class of “Generalized Linear Models,” [Nelder and Wedderburn (1972) 
and McCullagh and Nelder (1983).]  The GLIM approach to modeling binary data embodies the 
regression interpretation of the probability function and extends easily to the analysis of 
individual data. 
 
4.3  Analysis of Binary Choice 
 
 By 1975, analysis of binary data by social scientists, in grouped or individual form, using 
maximum likelihood, or minimum chi squared estimators had come to full bloom.  The GLIM 
approach [Grizzle et al. (1969), Nelder and Wedderburn (1972) and Wedderburn (1974), and, see, 
McCullagh and Nelder (1983) and Pregibon (1984)] had likewise appeared in bioassay.  Surveys 
of varying length of estimation involving binary choices are given in Cox (1970), Finney (1971), 
Amemiya (1981), Long (1997), Greene (2007a, 2008a) and dozens of other primers and 
introductions. 
 
4.4  Ordered Outcomes: Aitchison and Silvey (1957), Snell (1964),  
 
 Analysis of a dichotomous response (always in grouped form, however), is well 
developed by the 1940s.  Analysis of ordered responses that are of interest in this study, begins in 
1957 with an extension to Finney by Aitchison and Silvey (1957).  The other relevant antecedent 
is Snell’s (1964) parallel development of an (only apparently) different treatment of ordered 
outcomes.  In what follows, we will use the authors own notation, though contemporary 
treatments use a uniformly different flavor of notation. 
 The modeling exercise considered by Aitchison and Silvey (1957) is as follows:  Sample 
observations are made on a species of insect Petrobius Leash (Thysanura, Machilidae) that passes 
through s+1 stages in its life cycle.  A particular insect is necessarily observed in one stage at any 
point in time.  The last stage is always reached.   Observations are made at m different times, 
denoted xα, α = 1,…,m.  The amount of time spent by an insect in stage i, (i=1,…,s) is an 
observation on a nonnegative random variable, ξi.  Interest is in estimation of λi = E[ξi] = the 
average amount of time that will be spent in stage i.  The total time spent in stages 1,…,r is ηr = 

1
r
i i=Σ ξ , also a nonnegative random variable.  Interest might be in estimation of μr = E[ηr] as well.  

Since λi = μi – μi-1, λi is estimable from μi. 
 Total time spent in stages up to the observation, ηr, is a continuous random variable with 
Pr(ηr < x) = Gr(x).  Probabilities of observation of an insect in the s+1 stages at time x are 
 
 π1(x)   =  Pr(η1 > x)  =  1 – G1(x), 
 π2(x)   =  Pr(η1 < x and η2 > x)  
  =  Pr(η1 < x) – Pr(η1 < x and η2 < x) 
  =  Pr(η1 < x) – Pr(η2 < x) 
  =  G1(x) – G2(x). 
 
(This makes use of the result that if ηr < x, then ηr-1 < x.) 
 
 πs(x) =  Gs(x) – Gs-1(x), 
 πs+1(x)  =  Gs(x). 
 
The proportions of insects (subjects) observed in stage s at time x, ps(x) are moment estimators of 
πs(x).  Estimation of the means is based on the model assumption that the random variables ηr are 
normally distributed with mean μr and standard deviation θr, so 
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 Gr(x)   = Φ[(x – μr)/θr]. 
 
The authors consider method of moments estimation of μr and θr.  Let pαr denote the sample 
estimate of πr(xα).  That is, pαr is the proportion of subjects in stage r at time xα.  Then the  
relationship above suggests 
 
 Φ-1(pαr)  =  Yαr  =  xα/θr – μr/θr. 
 
They observe, then, “for given r a straight line fitted to the points (xα,Yαr) will cross the x-axis 
near the maximum likelihood estimate of μr, while the gradient will approximate to the 
maximum-likelihood estimate of –θr

-1.”  By this device, all the parameters of this model may be 
estimated.  Some obvious problems will arise with data sets in which pαr is near zero or one. 
Moreover, estimation of the scale parameters was complicated (this being 1955), so they 
considered model simplifications, arriving at θr

2 = σ2μr and then using, instead, maximum 
likelihood based on the method of scoring.  The authors, noting the connection to Finney’s work, 
label this a “generalized probit model.”  Although the preceding does not involve the same sort of 
estimation problem as Finney’s (in short, the coefficient on x in this model is 1/θr and we are, in 
principle, only estimating the threshold values), there is an obvious relationship.    They state (p. 
139) 

 
Clearly a situation might arise where in place of a simple dichotomy, [Finney’s case] 
subjects are divided into more than two classes by any dose of the stimulus.  
Accordingly, we envisage an experiment where random samples of subjects are subjected 
to m does xα (α = 1,2,…,m) of a stimulus and as a result of the application of the dose xα 
each subject is placed in one of s+1 classes.  A straightforward illustration of such an 
experiment is given by Tattersfield, Gimingham and Morris (1925) who classified insects 
subject to a poison as unaffected, slightly affected, moribund or dead.  The particular 
problem discussed above is another illustration if, in this case, time is regarded as the 
stimulus. 

 
Thus, Aitchison and Silvey have clearly laid the foundation for the ordered probit model 

as we now understand it, albeit, the application described does not resemble it very closely at all.  
They go on to suggest conditions that “must be satisfied in this general experiment in order that 
the method of analysis used in our particular case should be applicable” 
 

(i)   The classes must be ordered, mutually exclusive and exhaustive. 
(ii)  The reactions of a subject to increasing doses must be systematic in the sense that if 

dose x places a subject in the ith class, then a dose greater than x is required to place 
this subject in the jth class where j is greater than i. 

 
Point (i) is obvious – the model is designed for ordered outcomes.  The second point seems to 
relate to the latent regression interpretation of the modern view of the model. The authors discuss 
a “tolerance” for the given classes defined in the model, which the surrounding discussion 
associates with levels of a latent variable that is observed by the analyst only through the class 
observed.  Finally, the authors note that “if s = 1 then the present analysis becomes an ordinary 
probit analysis and it is in this sense that we have generalized probit analysis.” 
 Before leaving Aitcheson and Silvey, it is interesting to note that although their 
application did not actually generalize probit analysis, the speculation in the paragraph noted 
above, in fact, did.  The application that they pursued is extended by Feinberg (1980) in what he 
calls the continuation ratio model.  [See, as well, Long and Freese (2006, pp. 221-222).]  The 
model is a regression style model that is designed for sequential (so, by implication, ordered) 
outcomes.  The example given by Long and Freese is faculty rank, which would typically include 
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assistant, then associate, then full professor (and perhaps instructor at the left and chaired 
professor at the right).  The functional form is written for m stages in the progression in which the 
probability that an observed individual is in stage m given x is Pr(y = m|x) and the probability that 
they are in a higher stage is Pr(y > m|x).  Then, the “continuation model” for the log odds is 
 

 Pr( | )log
Pr( | ) m

y m x
y m x

⎡ ⎤= ′= θ −⎢ ⎥>⎣ ⎦
xβ . 

 
It is not obvious how the ordering aspect of the outcomes enters this model. The requirement in 
the model (and in university life) that for a given individual,  
 
 Pr(y < m|x)  <  Pr(y < m+1|x), 
 
is induced by the fact that m+1 means there are more ranks at or below m than m+1, not that the 
next rank has a higher order than the previous one.  For the scenario described, the flaw in the 
model would seem to be that it is a static model being used to describe a dynamic phenomenon.  
Although one must pass through the stages in order (though individuals have been known to skip 
stages), the probabilities in the model do not have any intrinsic relationship to the ordering of the 
stages, but rather arise the same way if we merely count ranks. 
 Snell (1964) considers specifically analyzing a set of scores for a ranked set of outcomes 
such as Excellent, Very Good, Good, Not Very Good, Poor, Very Poor, recorded, perhaps, 
6,5,4,3,2,1 or the like. Conventional analysis of such data (Aitchison and Silvey (1957) 
notwithstanding) was done using analysis of variance techniques, e.g., regression methods 
assuming (a) normally distributed disturbances and (b) homogeneous variances. 
 Their departure point is “[w]e assume there to be an underlying continuous scale of 
measurement along which the scale categories represent intervals.”  The scale is divided into 
intervals labeled k = 0,1,…,k  by k+2 points, x-1, x0, x1,…,xk.  Observations in the data, indexed by 
i, consist of group size, ni and proportions, pij, j = 0,1,…,k.  The underlying continuous 
distribution function is denoted Pi(xj).  It is unclear what continuous random outcome this is 
meant to refer to, in connection to the “i.”  However, it is clear from the context that in fact what 
is implied is that we describe the realization of a random variable, Xi which is the unobserved 
aforementioned “measurement.” Thus, by the construction above, the probability of observing an 
individual in group i will be in category sj is equal to 
 
 Pi(xj) – Pi(xj-1), i = 1,…,m; j = 0,…,k. 
 
Once again, the reference to “i” above refers to a group, so it can only be inferred that what the 
author has in mind is that group “i” consists of ni realizations of Xi, and the preceding gives the 
probabilities associated with each member of the group.  (Note that there is nothing so far in the 
data other than the observation subscript, i, to distinguish the groups, e.g., no stimulus xi.)  To 
continue, “We take the distribution function to be of the form” 
 
 Pi(xj) =  [1 + exp(-fij)]-1  =  Λ(fij)  (using a contemporary notation). 
 
Finally, fij is defined to be the “logit” of the “proportion” Pi(xj), 
 
 fij  =  log[Pi(xj)/(1- Pi(xj))] = ai + bixj. 
 
The model now has for each i, a location parameter ai and a spread parameter bi.  To impose 
homoscedasticity on the data, they assume bi = 1.  The log likelihood for the observed data is 
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 logL(a1,…,am,x-1,x0,…,xk)  =  1 0 1logm k

i i j ij ij i, jn p P P= = −⎡ ⎤Σ Σ −⎣ ⎦ . 

 
It is apparent that a normalization is required to use the entire real line, so x0 = -∞ and xk = +∞.  
He also notes “since the choice of origin is arbitrary, we take x1 = 0.”  (In fact, since there is no 
other invariant constant term in the model, this last normalization is not necessary – it now 
constitutes a substantive restriction.) The remainder of the analysis focuses on methods of 
estimating m fixed effects ai and k-2 threshold values, xj.   
 The parameters of the model can be loosely estimated by a method of moments type of 
calculation.  Approximate estimates of the threshold values xk are based on group size weighted 
averages of the group proportions.  Initial estimates of the fixed effects are computed using  
 
 1

k
i j ij ja p s== −Σ  

 
where sj = (xj – xj-1)/2, j = 2,3,…,k-1.  The two end points corresponding to the lower and upper 
tails are problematic, and a solution, ultimately, s1 = x1 -1 and sk = xk-1+1, is suggested.  Newton’s 
method is used to complete the estimation. 
 Snell’s model is functionally equivalent to Pi(xj)  =  Λ[xj - (-ai)] so that the log likelihood 
function is 
 
 logL(a1,…,am,x-1,x0,…,xk)  =   1 0 1log ( ) ( )m k

i i j ij j i j in p x a x a= = −⎡ ⎤Σ Σ Λ + − Λ +⎣ ⎦ . 

 
This corresponds to a modern form of the ordered choice model, though it should be noted that 
the assumption of a different “effect,” ai  for each cross section observation does not appear in the 
recent literature.  (It is estimable, perhaps counter to intuition, because there is more than a single 
observation for each i; there is a whole set of pijs for each i.) 
 It is worth noting as well, that the terms in the log likelihood function above are only 
positive if the xj terms are strictly ordered.  The initial, “approximate” values will certainly be, 
because they are functions of the cumulative group proportions.  But, the application of Newton’s 
method that follows makes no mention of this restriction, and could break down numerically. The 
method was only suggested in the text; the author used the approximate, method of moments 
estimators in the applications. 
 Some of the closing remarks in the paper are intriguing. 
 
 “The aim throughout this paper has been to present a method based upon a 

theoretical model and yet to keep the procedure as simple as possible.  For this 
reason, attention has been directed very much towards an approximate solution.”   

 
The method of solution is the method of moments; in principle it could have been done with a 
hand calculator. In 1964, Texas Instruments had just begun production of their first four function 
calculators, so that might have been optimistic.  However, IBMs 7090 series of mainframe 
computers was already well established and the 360 series was on the near horizon.  There would 
have been no shortage of computing power. A computing language, Fortran (Formula 
Translation), had been invented in the 1950s. Snell does note that the iterative method “can easily 
be carried out on a desk machine, and one iteration should be sufficient.” 
 

“The model upon which the method is based takes no account of the 
experimental design behind the data.”   
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We read this to state that there is no data generating process assumed to be at work here (though, 
in fact, there must be one in the background – the data arise through some kind of stochastic 
process; we have attached probabilities to the outcomes.)  In fact, the method is semiparametric – 
the fixed effects approach does stop short of regression. However, the choice of logistic 
distribution was not entirely innocent.  It was made for mathematical convenience, however the 
numerical results depend on it.  The same set of computations could have been done, at 
considerable cost in complexity, using the normal distribution. 
 

“Finally, there is no reason why the use of this technique should be restricted to 
subjective measurement.”   

 
Indeed, the recent history has demonstrated the versatility of the method. 
 
4.5  Minimum Chi Squared Estimation of an Ordered Response 
       Model: Gurland, Lee and Dahm (1960) 
 
 Gurland, Lee and Dahm (1960) considered the following analysis in bioassay (p. 383): 
[We will modify their notation slightly so that their model will fit more neatly into the discussion 
used herein.]   
 

Suppose N groups consisting of n1,…,nN houseflies are exposed to dosages x1,…,xN, 
respectively.  Out of the ni flies exposed at dosage xi, suppose that at the given time of 
observation,  
 
 ri1 are dead, ri2 are moribund, ri3 are alive.   
 
Write the observed proportions as 
 
 pi1 = ri1/ni, pi2 = ri2/ni, pi3 = ri3/ni = 1 – pi1 – pi2. 
 
Let 
 
 Pi1 = E[pi1], Pi2 = E[pi2], Pi3= 1 – Pi1 – Pi2 
 
be the corresponding expected proportions or true probabilities.  Then, … 
 
 Pi1  =  Φ(α1 + βxi)       (1) 
 Pi1 + Pi2  =  Φ(α2 + βxi), i = 1,…,     (2) 
 
where 
 
 β = 1/σ, α1 = -μ1/σ, α2 = -μ2/σ. 
 
… This assumes a normal tolerance distribution N[μ1,σ2] of lethal dosages and a 
normal tolerance distribution N[μ2,σ2] of moribund dosages.  Furthermore, μ1 > μ2.  
Since a fly becomes moribund before it dies, the expression in (2), which is the 
probability a fly is moribund or dead, must involve the same parameter, β as in (1).  If 
the β were not common, the two curves would cross, but this is obviously not 
permissible since Pi1 + Pi2 > Pi1. 
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Note, first, the interpretation of Pij as E[pij] implies pij = Pij + εij, precisely as in Section 4.2.  The 
authors propose a regression approach to estimation of the model parameters, as opposed to 
maximum likelihood estimation.  They proceed to develop a weighted least squares (minimum 
chi squared) estimator.  Second, presumably, the normal distributions assumed above apply to the 
distributions of tolerances across individual flies.  It follows from their analysis, then, that for any 
particular housefly, t = 1,…,ni, 
 
 Prob(deadi,t|xi)      =  Φ[-μ1/σ + (1/σ)xi] 
      =  Prob[T* < (1/σ)xi – μ1/σ], 
 
 Prob(deadit|xi) + Prob(moribundit|xi)   =  Φ[-μ2/σ + (1/σ)xi] 
      =  Prob[T* < (1/σ)xi – μ2/σ], 
 
where T* is the tolerance across flies in the experiment.  This would appear to be precisely the 
model ultimately analyzed by McElvey and Zavoina (1975).  There is a loose end in the 
preceding which makes the model an imperfect precursor, however.  The authors have avoided 
the latent regression – they make no mention of it.  They state specifically that there are different 
tolerance distributions with the same variance but different means.  But, they do force the same β 
to appear in both probabilities, arguing that without this restriction, we will be able, for some 
dosage, xi to have the probability of dead or moribund be less than that the probability of dead, 
which is a contradiction of the axioms of probability. It does follow, however, that there are 
different prior distributions for flies that will die after dosage xi.and flies that will be moribund – 
i.e., the different tolerance distributions.  Thus, there is an ambiguity in the formulation as to what 
random variable the assumed normal distributions are meant to describe.  By a reasonable 
construction, for example, we might infer that the distribution describes the observed flies only 
after the reaction to the dosage. 
 The ambiguities notwithstanding, Gurland et al. (1960) have laid the platform for analysis 
of ordered outcomes with something resembling a regression approach.  The approach is still, 
however, focused on the analysis of sample proportions.  The minimum chi squared (iterated 
weighted least squares) estimator that they develop is proposed because it “is simpler to apply.” 
 
4.6  Individual Data and Polychotomous Outcomes: Walker  
       and Duncan (1967) 
 
  Walker and Duncan (1967) were concerned with the problem of using a large number of 
covariates to analyze the probabilities of outcomes.  The experiment in the study involved four 
large surveys of individuals who were free of heart disease at entry to their study and who were 
examined long after for the presence of (1) myocardial infarction (MI), (2) angina pectoris (AP) 
and (3) no coronary heart disease ( CHD ).  After considering whether the first two categories 
might be unordered or ordered, the authors opted to build a model for the latter.  Previous 
analyses had studied cross-tabulated data based on one or two factors and by age and sex.  The 
use of numerous other factors – the application involved 8 in addition to age and sex – 
necessitated a different approach. 
 The three outcome model follows along the lines of Gurland et al. (1960) with two major 
exceptions.  First, the large number of factors compels analysis of the individual data, rather than 
the sample proportions.  Second, though only in passing, they note a natural characterization of 
the data generating process as “Considered jointly they involve the further assumption that the 
state of an individual described by the vector x, which is sufficient to entail the more severe form 
MI, is certainly sufficient to entail the less severe form AP.  If MI and AP are in reality grades of 
severity of coronary disease, this assumption will hold at least approximately.  If on the other 
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hand these are distinct, even though closely related diseases, it is not likely to hold.” [Emphasis 
added.]  (p. 173.)  Coupled with the assumption of the strict ordering of the outcomes, this does 
sound like the rudiments of an “underlying regression” interpretation.  If so, then the authors’ 
assumption of the logistic distribution as shown below completes the formulation of the ordered 
logit model.  Continuing, “The mathematical reflexion of this assumption is seen in the fact that 
P1 + P2 > P1, which holds if and only if the ‘slope’ coefficient β is identical in (6.1) and (6.2), as 
is easily shown.” (In fact, this is only the case if α2 > α1.  Otherwise, it is neither necessary nor 
sufficient.) 
 Their three outcome model (where, as before, we have changed their notation for clarity) 
is: 
 zi1     =  1 if MIi      and 0 otherwise, 
 zi2     =  1 if APi      and 0 otherwise, 
 zi3     =  1 if CHD i and 0 otherwise, 
 P1     =  E[zi1|xi],   
 P2     =  E[zi2|xi], 
 P3     =  1 – P1 – P2, 
 E[zi1|xi]   =  P1   =  Λ(α1 + β′xi),    
 E[zi1 + zi2|xi] =  P1 + P2   =  Λ(α2 + β′xi).  
 
To preserve the result P1 + P2 > P1, it must also be true that α2 > α1.  The implied model structure 
is 
 Prob(MIi|xi) = Λ(α1 + β′xi), 
 Prob(APi|xi) = Prob(Heart Disease|xi) – Prob(MIi|xi)  =  Λ(α2 + β′xi)  –  Λ(α1 + β′xi), 
 Prob( CHD i|xi) = 1 – Λ(α2 + β′ xi). 
 
Walker and Duncan are the first to pursue the analysis of ordered probabilities with individual 
data. In fact, the latent regression model is not necessary to reach their model formulation; we 
have superimposed our own interpretation on their model to obtain it.  They, in turn, did not 
appear quite ready to make the assumption.  Their model is only consistent with that 
specification.  Indeed, what they have proposed is a mathematical model of a set of probabilities 
that preserve the supposed (severity) ordering of the first and second outcomes.  No appeal to a 
latent regression is needed.  On the other hand, quite clearly, it is a small extension to broaden 
this model to include the formal ordered probit regression model proposed by McElvey and 
Zavoina (1975). 
 
4.7  McElvey and Zavoina (1975) 
 
 McElvey and Zavoina’s (1975) proposed model is described at length above.  Based on 
the preceding very short chronology, it would seem that their model was a significant jump 
forward, not an increment to the existing machinery.  In fact, neither Aitchison and Silvey (1957) 
nor Snell (1964) proposed anything resembling a regression approach to the analysis of ordered 
outcomes.  There is an obvious hint in this direction at the end of the former, but no direct 
modification of their proposed model would produce a regression style formulation.  Certainly, 
Walker and Duncan’s model can easily be made consistent with the structure of McElvey and 
Zavoina.  But, McElvey and Zavoina were the first to formalize the model in terms of an 
individual choice setting based on a theory of regression, and to develop an effective iterative 
method of estimation.  Walker and Duncan were in similar territory, but they relied on a weighted 
least squares procedure and an algorithm based on a Kalman filter [Kalman (1960)] that has not 
reappeared in the literature.  McElvey and Zavoina (1975) and Walker and Duncan (1967) were 
the also the first analysts to propose using individual data.  Their predecessors relied entirely on 



Modeling Ordered Choices 

 103  

grouped data (proportions), essentially on the method of moments (or maximum likelihood in a 
few cases).  
 
4.8  Developments Since McElvey and Zavoina 
 
 As noted earlier, McCullagh (1977, 1979, 1980) is credited with codiscovering the 
ordered choice model. The proposed model, shown below, is precisely a counterpart to the 
ordered probit model.  However, McCullagh stopped short of hanging the framework on a latent 
regression.  Though he departs from “Motivation for the proposed model is provided by appeal to 
the existence of an underlying continuous random variable,” he goes on to state (page 110) 
 

 
 
McCullagh seems to be holding back from a commitment to an underlying regression. As he 
notes, however, it will emerge ultimately that interpretation of the coefficients of the model 
without such an assumption becomes a bit ambiguous.   
 Though the idea of the ordered logit model shown below is sometimes attributed to 
McCullagh, elements of it appear earlier in Andrich (1979) and Plackett (1974), and McCullagh 
cites Plackett for some of his results.  The model proposed is based on a discrete random variable 
with “k ordered categories of the response” with probabilities π1(x), π2(x), ..., πk(x).  (“In the case 
of two groups, x is an indicator variable or two level factor indicating the appropriate group.”  
This appears to suggest a contingency table sort of analysis, for which the “ordering” would be 
superfluous.)  The response variable, Y, takes values y = 1,...,k with the listed probabilities.  
Define κj(x) to be the odds that Y <  j given x.  Then, the “proportional odds model” specifies that 
 
 κj(x)  =  κj × exp(-β′x), j = 1,...,k. 
 
The ratio of corresponding odds  is 
 
 κj(x1)/κj(x2)  =  exp[-β′(x1 – x2)], 
 
which is independent of j and depends only on the difference between the covariate vectors.  
Given the odds ratio stated as above and defining γj(x) = π1(x) + ... + πj(x), the proportional odds 
model becomes equivalent to 
 
 log[γj(x)/(1-γj(x))]  =  θj - β′x, j = 1,...,k. 
 
This is mathematically identical to the familiar ordered choice model discussed earlier.  Formally, 
using a more recent notation, 
 Prob[y <  j]  =  Λ(θj - β′x), 
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which is the ordered logit model.  As the author notes, no appeal to an underlying regression 
model is necessary to achieve this result.  Remaining to be determined is the mechanism by 
which the observed discrete random variable is assigned to k exhaustive, exclusive and ordered 
categories.   The model is meant to apply to proportions, as shown in a series of applications that 
follows.  The application that follows immediately, however, does fall naturally into the latent 
continuous measure framework, a study of tonsil sizes in a sample of 1,398 children [Holmes and 
Williams (1954)], shown in Figure 4.5. 
 

 
     Figure 4.5   McCullagh Application of Ordered Outcomes Model 
 
For the simple case shown above, interpretation of the β in the “regression” will be simple, as it 
will highlight the differences in the probabilities or odds for the outcomes in the two groups.  For 
more complicated kinds of regressors, for example, if age, height, or weight appeared in the data 
set above, then interpretation of the coefficients would be much more complicated without resort 
to a regression model of some sort, and a notion of “holding other things constant.”  In his 
analysis of this data set, Tutz (1990, 1991) argues that the higher outcomes (more to the right) can 
only be reached by passing through the lower ones.  This calls for a different approach, which he 
labels the sequential model.  The simplest case would be Agresti’s (1984) continuation ratio 
model, 
 
 Prob(y = r | y > r, x)  =  D(θr - β′x), 
 
where D(.) is a transformation of the index.  This yields the unconditional probabilities 
 
 [ ]1

1
Prob( | ) ( ) 1 ( )r

r ii
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′ ′= = θ − − θ −∏x x xβ β . 

 
A variety of extensions are suggested.  [For another survey of this and related models, see 
Barnhart and Sampson (1994).] 
 Anderson and Philips (1981) continue McCullagh’s development in two directions.  
Researchers in this area work back and forth around the assumption of the latent continuous 
variable and latent regression.  Second, they introduced some results related to functional form.  
As noted earlier, their departure point is “... an ordered categorical variable is a coarsely 
measured version of a continuous variable not itself observable.”  The model proposed is as 
follows:  “[I]ndividuals are grouped into k ordered groups which are identified by an ordered 
categorical variable y with arbitrarily assigned value s for the sth ordered group; s = 1,...,k.  ... The 
ordering of groups is not, in general, based on any numerical measurement.”  (The authors are 
holding back from the assumption. However, one might ask, on what basis is the ordering of 
groups assigned if not some underlying quantitative measure?)  A regressor vector, x, is defined.  
The Plackett (1974, 1981) and McCullagh (1980) functional form is 
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where θ1 < θ2  < ... < θk-1, θ0 = -∞, θk = +∞.  (The author uses weak inequalities, though in order 
to prevent zero probabilities for non-null events, strong inequalities are required.)  It follows, as 
we observed earlier, that 
 
 Prob(y = s|x) = Λ(θs - β′x) - Λ(θs-1 - β′x), 
 
which is the “logistic model.”  This is also labeled the “cumulative odds model” by McCullagh 
(1980).  The authors suggest, instead, that we write 
 
 Prob(y < s|x)  =  Ψ(θs - β′x), 
 
where Ψ(.) is a “completely specified cumulative distribution function.”  This is a generalized 
“linear” model, but “nonlinear” versions are possible and are referred to in the discussion.  The 
above models will be called “ordered regression models.”  (Emphasis added.  This is the first 
occurrence of the term that we have encountered in this literature search.) 
 The authors justify the model in terms of a latent unobservable, z, where, conditioned on 
x, z has a logistic distribution.  Although z is not observed, a related, grouped version of z, y, is 
observable.  Of course, this is precisely the interpretation that McElvey and Zavoina have 
provided for the model.  (Once again, however, there is no mention of McElvey and Zavoina or 
their model.)  We have on the suggested basis, 
 
 y  =  s  if θs-1 < z < θs (s = 1,...,k). 
 
Note that assumptions are made only about the conditional distribution of z given x and y given x.  
No assumption is made about the marginal distribution of x, which prompts the claim that these 
models make only moderate distributional assumptions. 
 “Other assumptions are possible for the form of the distribution of z given x. One obvious 
choice is that this should be the normal distribution, N(β′x,1), leading to the probit model, 
 
 Prob(y < s|x)  =  Φ(θs - β′x). 
 
Here, Φ(.) represents the usual probit function.  For practical purposes, the logistic and probit 
models are virtually indistinguishable, but the logistic model of (1) and (2) is often preferred for 
its computational convenience.”  [Anderson and Philips (1981).]  Thus, the ordered probit model 
is (re)born, here in 1981. 
 Aitchison and Bennett (1970) is occasionally cited as another antecedent to the ordered 
choice models considered here.   In fact, they were concerned with a different setting altogether, 
though it is intriguing to note that their formulation is precisely that used to motivate  
McFadden’s conditional logit model (1974).  Since they did not consider ordered outcomes, we 
will forego a detailed discussion of their results. 
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4.9  Other Related Models 
 
 Many authors have modified these models at various edges for different situations and 
types of data.  Some major references to examine for details are Agresti (1984, 1990), Clogg and 
Shihadeh (1994) and Greenwood and Farewell (1988).  Before closing this review, we note two 
that have particular relevance for our discussion. 
 
 
4.9.1  Known Thresholds 
 
 Stewart (1983), Terza (1985) and Bhat (1994) examine a setting in which essentially the 
conditions of the ordered probit model emerge, save that there is more information about the 
censoring than merely the categories.  An obvious example considered by these authors is given 
by bracketed income data.  When income data are censored into known ranges, the resulting data 
generating process is precisely that of the ordered choice model except that the threshold values 
are known.  Suppose, for example, that y* = log of income is normally distributed with mean μ = 
β′x and variance σ2, so 
 
 y*  =  β′x  +  ε, 
 
and the censoring mechanism is 
 
 y  =  j  if  Aj-1 < y* < Aj, 
 
where Aj-1 and Aj are known values.  Then, the log likelihood is built up from the probabilities for 
the observed outcomes; 
 

 Prob(y = j|x)  =  1j jA A −′ ′⎡ ⎤− −⎛ ⎞ ⎛ ⎞
Φ − Φ⎢ ⎥⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠⎣ ⎦

x xβ β
.    (4.8) 

 
For this model, the parameters β and σ are both identified (estimable).  The ordering of the 
outcomes is enforced a fortiori by the ordering of the known brackets.  This model is, in fact, not 
a discrete choice model in the spirit of the others that are considered here.  Rather, it is a less 
complicated censoring model more closely resembling the tobit model. [Tobin (1958), Amemiya 
(1985a, 1985b), Greene (2008a).]  There is a temptation to treat this model using linear regression 
analysis, substituting, e.g., the midpoints of the brackets for intermediate values and some 
reasonable value for the upper and lower ranges.  The temptation should be resisted, since (1) the 
likelihood for the data and the structural parameters is well defined (and the estimator is available 
as a preprogrammed procedure in modern software) and (2) least squares in this setting will be 
inconsistent.  The OLS estimator will suffer from truncation bias.  The overall result is that 
because there is variation in x that is not associated with variation in y, the OLS slopes will tend 
to be biased toward zero.  The maximum likelihood estimator, which does not display this 
feature, is easily obtained.  We do note, however, if, instead of midpoints, one uses for the 
substituted values 

 E[y*| Aj-1 < y* < Aj,x]  =  β′x + σ 1

1

[( ) / ] [( ) / ]
[( ) / ] [( ) / ]

j j

j j

A A
A A

−

−

′ ′⎡ ⎤φ − σ − φ − σ
⎢ ⎥′ ′Φ − σ − Φ − σ⎢ ⎥⎣ ⎦

x x
x x

β β

β β
,  (4.9) 
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then, with an appropriate iterate for σ as well as this implicit estimator for β, this is equivalent to 
the EM algorithm [see Dempster, Laird and Rubin (1977)], and is an effective, albeit inefficient  
way to compute the maximum likelihood estimators of σ and β.  (It will be slow to converge 
compared to other gradient methods such as Newton’s method.) 
 
4.9.2  Nonparallel Regressions 
 
 A second modification of the model, due to Anderson (1984) is of interest here.  He notes 
(p. 4) “The ordering of the categories, or subsets of them, with respect to the regression variables 
is open to question in some cases.  Hence, we start with the logistic regression model suitable for 
a qualitative, categorical response variable [Cox (1970), Anderson (1972)].”  This is 
 

 0

1 0

exp( )Prob( | )
exp( )

s s
s k

t t t

y y
=

′β −
= =

′Σ β −
xx

x
β

β
, 

 
where β0k = 0 and βk = 0 are introduced to simplify the notation.  In fact, the function listed is 
homogeneous of degree zero, and the “simplifications” are normalizations needed for 
identification.  This is precisely the multinomial logit model developed by McFadden, (1974) and 
Nerlove and Press (1972).  Characteristically (apparently), there is no connection across the 
branches of the literature.  (This being before the Internet, perhaps the lack of connection across 
disparate literatures is an understandable consequence of the difficulty of a detailed search.  We 
take that sort of thing for granted now.)  Anderson proposes this model for unordered categorical 
outcomes.  He notes, in passing, however, that this model often “gives a good fit” even when the 
βs are “restricted to be parallel.”  “This is particularly true when the categories are ordered.” That 
is to suggest, the ordered choice model considered thus far embodies the restriction that the βs 
are the same.  By a simple transformation of the ordered logit model, we find 
 
 logit(j)  =  log[Prob(y < j |x) / Pr(y > j |x )]  =  μj - β′x,    (4.10) 
 
which means that ∂logit(j)/∂x = β for all j.  This has come to be known as the “parallel 
regressions assumption.”  [See, e.g., Long (1997, p. 141).]  This feature of the model has 
motivated one form of the “generalized ordered logit” (and probit) model.  We will reconsider 
this generalization of the model in some detail below. 
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5 
 

Estimation, Inference and Analysis Using the 
Ordered Choice Model 

 
In this chapter, we will survey the elements of estimation, inference and analysis with the 

ordered choice model.  It will prove useful to develop an application as part of the discussion. 
 
5.1  Application of the Ordered Choice Model to Self Assessed Health 
       Status 
 
 Riphahn, Wambach and Million (RWM, 2003) analyzed individual data on health care 
utilization (doctor visits and hospital visits) using various models for counts.  The data set is a 
large panel extracted from the German Socioeconomic Panel (GSOEP).  [See RWM (2003) and 
Greene (2008a) for discussion of the data set in detail.]  The data set is an unbalanced panel  
including 7,293 German households observed from 1 to 7 times and a total of 27,326 
observations.  (We will visit the panel data aspects of the data and models later.)  Among the 
several interesting variables in this data set is HSAT, a self reported health assessment that is 
recorded with values 0,1,..,10 (so, J = 10).  Figure 5.1 shows the distribution of outcomes for the 
full sample:  The figure reports the variable NewHSAT, not the original variable.  Forty of the 
27,326 observations on HSAT in the original data were coded with noninteger values between 6.5 
and 6.95.  We have changed these 40 observations to 7s.  In order to construct a compact example 
that is sufficiently general to illustrate the technique, we will aggregate the categories shown as 
follows: (0-2)=0, (3-5)=1, (6-8)=2, (9)=3, (10)=4. [One might expect collapsing the data in this 
fashion to sacrifice some information and, in turn, produce a less efficient estimator of the model 
parameters.  See Murad et al. (2003) for some analysis of this issue.]  Figure 5.2 shows the result, 
once again for the full sample, stratified by gender.  The families were observed in 1984-1988, 
1991 and 1995.  For purposes of the application, to maintain as closely as possible the 
assumptions of the model, at this point, we have selected the most frequently observed year, 
1988, for which there are a total of 4,483 observations, 2,313 males and 2,170 females.  We will 
use the following variables in the regression part of the model, 
 
 x  = (constant, Age, Income, Education, Married, Kids). 
 
In the original data set, Income is HHNINC (household income) and Kids is HHKIDS (household 
kids).  Married and Kids are binary variables, the latter indicating whether or not there are 
children in the household.  Descriptive statistics for the data used in the application are shown in 
Table 2.1.  We have used the same independent variables with the new ordered dependent 
variable. 
 
5.2  Distributional Assumptions 
 
 As suggested earlier, one of the ambiguities in the set of procedures for ordered choice 
modeling is the distributional assumption.  There seems to be little to determine whether the logit, 
probit, or some other distribution is to be preferred. The logistic model has some mathematical 
features to recommend it, but any of these, such as the computation of odds ratios can be 
replicated under other assumptions, perhaps at some minor inconvenience (depending on one’s  
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software).  The deeper question of how the distributional assumption relates to the model 
structure remains unresolved. Stewart (2003) proposes, beyond the familiar choices a 
“seminonparametric generalized ordered probit” that is considerably more complicated than the 
logit and probit models examined here.   The model is automated in a Stata command however.  
Stewart’s and other semiparametric approaches are developed in Chapter 12.  We do note, the 
offered procedure produces coefficient estimates, but it is unclear how these can be translated into 
partial effects or other useful quantities.  It remains true in this (and all parametric and 
semiparametric forms) that the vector of partial effects is a scalar multiple of β.  On this basis, 
Stewart argues that ratios of coefficients are useful substitutes for partial effects. 
 
 

 
Figure 5.1  Self Reported Health Satisfaction  
 
  

 
 Figure 5.2  Health Satisfaction with Combined Categories 
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5.3  The Estimated Ordered Probit (Logit) Model 
 
 Table 5.1 presents estimates of the ordered probit and logit models for the 1988 data set.  
(Results from the computer program have been extracted and blended to display the estimates.  
All computations were carried out using NLOGIT4.  They can all be replicated with equal 
convenience with Stata and, perhaps with a bit more programming, with EViews, TSP, SAS and 
most other commercial programs.)  The tabulated results include diagnostic statistics such as the 
log likelihood function, a description of the observed data on the outcome, followed by standard 
presentations of the coefficients, standard errors, etc.  These will be examined in detail in the 
sections to follow. 
 The estimates for the probit model imply 
 
 y* = 1.97882 - .01806Age + .03556Educ + .25869Income  
          - .03100Married + .06065Kids + ε. 
 y  =  0  if  y*  <  0 
 y  =  1  if  0   <  y*  < 1.14835 
 y  =  2  if  1.14835  <  y*  <  2.54781 
 y  =  3  if  2.54781  <  y*  < 3.05639 
 y  =  4  if  y*  >  3.05639. 
 
Figure 5.3 shows the implied model for a person of average age (43.44 years), education (11.418 
years) and income (0.3487) who is married (1) with children (1).  The figure shows the implied 
probability distribution in the population for individuals with these characteristics.  As we will 
examine in the next section, the force of the regression model is that the probabilities change as 
the characteristics (x) change.  In terms of the figure, changes in the characteristics induce 
changes in the placement of the partitions in the distribution and, in turn, in the probabilities of 
the outcomes. 
 

 
Figure 5.3  Estimated Ordered Probit Model 
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Table 5.1  Estimated Ordered Choice Models: Probit and Logit 
+---------------------------------------------------------------------+ 
|      TABLE OF CELL FREQUENCIES FOR ORDERED PROBABILITY MODEL        | 
+---------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =   | 
|Outcome      Count    Percent   Count    Percent   Count    Percent  | 
|----------- ------- ---------  ------- ---------  ------- ---------  | 
|HEALTH=00       230    5.1305      230    5.1305     4483  100.0000  | 
|HEALTH=01      1113   24.8271     1343   29.9576     4253   94.8695  | 
|HEALTH=02      2226   49.6542     3569   79.6119     3140   70.0424  | 
|HEALTH=03       500   11.1532     4069   90.7651      914   20.3881  | 
|HEALTH=04       413    9.2349     4483  100.0000      414    9.2349  | 
+--------+--------------+----------------+--------+--------+----------+  
+--------+-------------------------------+------------------------------+---------+  
|        |             Logit             |           Probit             |         | 
|        |      LogL  = -5749.157        |     LogL  = -5752.985        |         | 
|        |      LogL0 = -5875.096        |     LogL0 = -5875.096        |         | 
|        |      Chisq =  251.8798        |     Chisq = 244.2238         |         | 
|        |  PseudoRsq =  .0214362        | PseudoRsq =  .0207847        |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  3.5179  .2038   17.260  .0000| 1.9788  .1162   17.034  .0000|  1.0000 | 
|AGE     |  -.0321  .0029  -11.178  .0000| -.0181  .0016  -11.166  .0000| 43.4401 | 
|EDUC    |   .0645  .0125    5.174  .0000|  .0356  .0071    4.986  .0000| 11.4181 | 
|INCOME  |   .4263  .1865    2.286  .0223|  .2587  .1039    2.490  .0128|  .34874 | 
|MARRIED |  -.0645  .0746    -.865  .3868| -.0310  .0420    -.737  .4608|  .75217 | 
|KIDS    |   .1148  .0669    1.717  .0861|  .0606  .0382    1.586  .1127|  .37943 | 
|Mu(1)   |  2.1213  .0371   57.249  .0000| 1.1484  .0212   54.274  .0000|         | 
|Mu(2)   |  4.4346  .0390  113.645  .0000| 2.5478  .0216  117.856  .0000|         | 
|Mu(3)   |  5.3771  .0520  103.421  .0000| 3.0564  .0267  115.500  .0000|         | 
+--------+-------------------------------+------------------------------+---------+ 
 

5.4  The Estimated Threshold Parameters 
 
 The sample proportions might provide a motivation to choose the underlying distribution 
to match the  histogram of the observed outcome variable.  But, the sample proportions in the 
ordered choice model do not provide a histogram of the underlying distribution.   For example, 
Figure 5.4a provides a histogram of the variable “Husband’s Occupation” according to the 
Hollingsworth scale (coded 1 – 6) in a sample of 6,366 observations.  [See Greene, 2008, 
Appendix Table F24.1.]  The data seem to suggest a leftward skew and might suggest a 
nonnormal distribution such as the complementary log log model were one to consider an ordered 
choice model for this variable.  However, there is nothing in the formulation that would suggest a 
nonnormal distribution for the underlying random utility model.  The threshold parameters adjust 
to allocate the mass of the distribution to mimic the sample,  For this example, if the model were 
simply 
 
 y*  =  α  +  ε 
 y  =  j  if  μj-1  <  y*  <  μj, j = 0,1,2,3,4,5, 
 
(we have subtracted one from the observed variable), then the only parameters estimated would 
be the constant term and the four thresholds.  The six sample proportions, the sample cumulative 
proportions, and implied values of the parameters are as follows: 
 
    y     0       1        2        3        4         5 
    p .0360    .2054    .0770    .3189    .2795     .0833 
    F .0360    .2414    .3184    .6373    .9167    1.0000 
Φ-1(F)   -α    μ1 - α   μ2 - α   μ3 - α    μ4 - α    
Value -1.80    -0.70    -0.47     0.35     1.38       +∞ 
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Figure 5.4a,b shows the partitioning of the underlying normal distribution that is consistent with 
these frequencies.  The thresholds will adjust so that the probabilities from the normal distribution 
will match the sample proportions.  Note that this allocation is fully consistent with the 
underlying normal distribution in spite of the somewhat non-normal appearance of the sample 
proportions. 
  

 
Figure 5.4a  Sample proportions 
 

 
Figure 5.4b  Implied Partitioning of Latent Normal Distribution 
 
 

    .0360           .2054     .0770  .3189    . 2795           .0833
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5.5   Interpretation of the Model – Partial Effects and Scaled Coefficients 
 
 Interpretation of the coefficients in the ordered probit model is more complicated than in 
the ordinary regression setting. [See, e.g., Daykin and Moffatt (2002).]  There is no natural 
conditional mean function in the model.  The outcome variable, y, is merely a label for the 
unordered, non-quantitative outcomes.  As such, there is no conditional mean function, E[y|x] to 
analyze.  (This is characteristic of discrete choice models.)  In order to attach meaning to the 
parameters, one typically refers to the probabilities themselves.  The partial effects in the ordered 
choice model are  
 

 1
Prob( | )( ) ( ) ( )i

j i j i j i
i

y j f f−

∂ = ′ ′⎡ ⎤= = μ − − μ −⎣ ⎦∂
xx x x

x
δ β β β .   (5.1) 

A moment’s inspection shows that neither the sign nor the magnitude of the coefficient is 
informative about the result above, so the direct interpretation of the coefficients is fundamentally 
ambiguous.  [A counterpart result for a dummy variable in the model would be obtained by using 
a difference of probabilities, rather than a derivative.  [See Boes and Winkelmann (2006a) and 
Greene (2007a, Chapter E22).]  That is, suppose D is a dummy variable in the model (such as 
Married) and γ is the coefficient on D.  We would measure the effect of a change in D from 0 to 1 
with all other variables held at the values of interest (perhaps their means) using 
 
 Δj(D)  =  1 1( ) ( ) ( ) ( )j i j i j i j iF F F F− −′ ′ ′ ′⎡ ⎤ ⎡ ⎤μ − + γ − μ − + γ − μ − − μ −⎣ ⎦ ⎣ ⎦x x x xβ β β β . 

 
(One might on occasion compute the partial effect for a dummy variable by differentiating as if it 
were a continuous variable.  The results will typically resemble the finite change computation, 
sometimes surprisingly closely – the finite change is a discrete approximation to the derivative.  
Nonetheless, the latter computation is the more appropriate one.)  The partial effects are shown in 
Table 5.2 
 The implication of the preceding result is that the effect of a change in one of the 
variables in the model depends on all the model parameters, the data, and which probability (cell) 
is of interest.  It can be negative or positive.  To illustrate, we consider a change in the education 
variable on the implied probabilities in Figure 5.3.  Since the changes in a probability model are 
typically “marginal” (small), we will exaggerate the effect a bit so that it will show up in a figure.  
Consider, then, the same individual shown in Figure 5.3, except now, with a Ph.D. (college plus 
four years of postgraduate work).  That is, 20 years of education, instead of the average 11.4 used 
earlier.  The effect of an additional 8.6 years of education is shown in Figure 5.5.  All five 
probabilities have changed.  The two at the right end of the distribution have increased while the 
three at the left have decreased.   
 The partial effects give the impacts on the specific probabilities per unit change in the 
stimulus or regressor.  For example, for continuous variable Educ, we find partial effects for the 
ordered probit model for the five cells of -.0034, -.00885, .00244, .00424, .00557, respectively, 
which give the expected change on the probabilities per additional year of education.  For the 
income variable, for the highest cell, the estimated partial effect is .04055. However, some care is 
needed in interpreting this in terms of a unit change. The income variable has a mean of 0.34874 
and a standard deviation of 0.1632.  A full unit change in income would put the average 
individual nearly six standard deviations above the mean.  Thus, for the marginal impact of 
income, one might want to measure a change in standard deviation units. Thus, an assessment of 
the impact of a change in income on the probability of the highest cell probability might be 
0.04055×0.1632 = 0.00662.  Precisely how this computation should be done will vary from one 
application to another. 

P2=.5091 
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Figure 5.5  Partial Effect in Ordered Probit Model 
 
 Neither the signs nor the magnitudes of the coefficients are directly interpretable in the 
ordered choice model.  It is necessary to compute partial effects of something similar to interpret 
the model meaningfully.  In this computation, the only certainties in the signs of the partial effects 
in this model are as follows, where we consider a variable with a positive coefficient: 
 
 •  Increases in that variable will increase the probability in the highest cell and  
     decrease the probability in the lowest cell. 
 •  The sum of all the changes will be zero.  (The new probabilities must still sum  
     to one.) 
 •  The effects will begin at Pr(0) with one or more negative values, then change 
     to a set of positive values; there will be one sign change.  (This is the “single 
     crossing” feature of the model.  We will reconsider this aspect in Section 6.2.1.) 
 
These are reversed for a variable with a negative coefficient. 
 One might also be interested in cumulative values of the partial effects, such as 

 [ ]10

Prob( | ) ( ) ( )ji
m i m im

i

y j f f−=

∂ ≤ ′ ′= μ − − μ −
∂ ∑x x x
x

β β β .   (5.3) 

See, e.g., Brewer et al. (2008).  (Note that the last term in this set is zero by construction.)  An 
example appears in Table 5.2. 
 Note in Table 5.1 there is a large difference in the coefficients obtained for the probit and 
logit models.  The logit coefficients are roughly 1.8 times as large (not uniformly).  This 
difference, which will always be observed, points up one of the risks in attempting to interpret 
directly the coefficients in the model.  This difference reflects an inherent difference in the 
scaling of the underlying variable and in the shape of the distributions.  The difference can be 
traced back (at least in part) to the different underlying variances in the two models. In the probit 
model, σε = 1; in the logit model σε = π/√3 = 1.81.  The models are roughly preserving the ratio 
β/σε  in the estimates.  Note that the difference is greatly diminished (though not quite eliminated) 
in the partial effects reported in Table 5.2.  That is the virtue of the scaling done to compute the 
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partial effects.  The inherent characteristics of the model are essentially the same for the two 
functional forms. 
 
Table 5.2  Estimated Partial Effects for Ordered Choice Models 
+--------+--------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model             | 
| Effects computed at means.  Effects for binary variables are          | 
| computed as differences of probabilities, other variables at means.   | 
+--------+------------------------------+-------------------------------+ 
|                       Probit          |               Logit           | 
|Outcome | Effect  dPy<=nn/dX dPy>=nn/dX|  Effect  dPy<=nn/dX dPy>=nn/dX| 
+--------+------------------------------+-------------------------------+ 
|        |            Continuous Variable AGE                           | 
|Y = 00  |  .00173     .00173    .00000 |  .00145     .00145     .00000 | 
|Y = 01  |  .00450     .00623   -.00173 |  .00521     .00666    -.00145 | 
|Y = 02  | -.00124     .00499   -.00623 | -.00166     .00500    -.00666 | 
|Y = 03  | -.00216     .00283   -.00499 | -.00250     .00250    -.00500 | 
|Y = 04  | -.00283     .00000   -.00283 | -.00250     .00000    -.00250 | 
+--------+------------------------------+-------------------------------+ 
|        |            Continuous Variable EDUC                          | 
|Y = 00  | -.00340    -.00340    .00000 | -.00291    -.00291     .00000 | 
|Y = 01  | -.00885    -.01225    .00340 | -.01046    -.01337     .00291 | 
|Y = 02  |  .00244    -.00982    .01225 |  .00333    -.01004     .01337 | 
|Y = 03  |  .00424    -.00557    .00982 |  .00502    -.00502     .01004 | 
|Y = 04  |  .00557     .00000    .00557 |  .00502     .00000     .00502 | 
+--------+------------------------------+-------------------------------+ 
|        |            Continuous Variable INCOME                        | 
|Y = 00  | -.02476    -.02476    .00000 | -.01922    -.01922     .00000 | 
|Y = 01  | -.06438    -.08914    .02476 | -.06908    -.08830     .01922 | 
|Y = 02  |  .01774    -.07141    .08914 |  .02197    -.06632     .08830 | 
|Y = 03  |  .03085    -.04055    .07141 |  .03315    -.03318     .06632 | 
|Y = 04  |  .04055     .00000    .04055 |  .03318     .00000     .03318 | 
+--------+------------------------------+-------------------------------+ 
|        |            Binary(0/1) Variable MARRIED                      | 
|Y = 00  |  .00293     .00293    .00000 |  .00287     .00287     .00000 | 
|Y = 01  |  .00771     .01064   -.00293 |  .01041     .01327    -.00287 | 
|Y = 02  | -.00202     .00861   -.01064 | -.00313     .01014    -.01327 | 
|Y = 03  | -.00370     .00491   -.00861 | -.00505     .00509    -.01014 | 
|Y = 04  | -.00491     .00000   -.00491 | -.00509     .00000    -.00509 | 
+--------+------------------------------+-------------------------------+ 
|        |            Binary(0/1) Variable KIDS                         | 
|Y = 00  | -.00574    -.00574    .00000 | -.00511    -.00511     .00000 | 
|Y = 01  | -.01508    -.02081    .00574 | -.01852    -.02363     .00511 | 
|Y = 02  |  .00397    -.01684    .02081 |  .00562    -.01801     .02363 | 
|Y = 03  |  .00724    -.00960    .01684 |  .00897    -.00904     .01801 | 
|Y = 04  |  .00960     .00000    .00960 |  .00904     .00000     .00904 | 
+--------+------------------------------+-------------------------------+ 
 
5.5.1  Nonlinearities in the Variables 
 
 In the computation of partial effects, it is assumed that the independent variables can vary 
independently.  When the model contains interactions of variables, or nonlinear functions of 
variables, the computation of partial effects becomes problematic, though more so in practice 
than in theory.  [See Norton and Ai (2003) for extensive analysis of this issue.]  Consider, for 
example, in our model if we added variables EducSq = Educ2 and Educ*Age.  The estimated 
model is shown in Table 5.3 with some of the partial effects.  Separate partial effects are shown 
for Educ, Age, EducSq and EducAge, as if they were independent variables.  In fact, in this 
model, the partial effect for education would be 
 

    δj(Educ) = ( )1
Prob( | ) ( ) ( ) 2j j Educ EducSq EducAge

y j f f Educ Age
Educ −

∂ = ′ ′⎡ ⎤= μ − − μ − β + β + β⎣ ⎦∂
x x xβ β . 
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As Norton and Ai argued, none of the widely used computer packages computes this sort of result 
automatically.  (It would be impossible for the software to anticipate every possible nonlinear 
function that might appear in the index function or recognize that function if it were implicit in a 
variable such as EducAge.)  The analyst would have to compute this for themself.  This can be 
computed using the results reported, as 
 

 Prob( | ) Prob( | ) Prob( | )( ) (2 )
" " " " " "j

y j y j y jEduc Educ Age
Educ EducSq EducAge

∂ = ∂ = ∂ =
δ = + +

∂ ∂ ∂
x x x . 

 
The derivatives shown for the zero cell in Table 5.3 are -.02028, .00057, .00004, respectively, and 
the means of Age and Education are 43.44 and 11.42, respectively.  Thus, the partial effect for the 
probability of a zero outcome is -.00552.  In our original model with the linear index function, the 
estimated effect was -.00340.   
 
Table 5.3  Estimated Expanded Ordered Probit Model 
+--------+-------------------------------+------------------------------+---------+  
|        |      Expanded Ordered Probit  |     Ordered Probit           |         | 
|        |      LogL  = -5749.664        |     LogL  = -5752.985        |         | 
|        |      LogLR = -5752.985        |     LogL0 = -5875.096        |         | 
|        |      Chisq =     6.642        |     Chisq =  244.2238        |         | 
|        |  PseudoRqq =  .0213499`        |  PseudoRsq=  .0207847       |         | 
|        |  Degrees of Freeedom 2        |  Degrees of Freedom 5        |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|   .7422  .5520    1.344  .1788| 1.9788  .1162   17.034  .0000|  1.0000 | 
|AGE     |  -.0127  .0076   -1.664  .0961| -.0181  .0016  -11.166  .0000| 43.4401 | 
|EDUC    |   .2124  .0709    2.995  .0027|  .0356  .0071    4.986  .0000| 11.4181 | 
|INCOME  |   .2583  .1044    2.474  .0134|  .2587  .1039    2.490  .0128|  .34874 | 
|MARRIED |  -.0325  .0421    -.772  .4404| -.0310  .0420    -.737  .4608|  .75217 | 
|KIDS    |   .0666  .0384    1.732  .0833|  .0606  .0382    1.586  .1127|  .37943 | 
|EDUCSQ  |  -.0060  .0023   -2.541  .0110|                              |135.9773 | 
|EDUCAGE |  -.0004  .0006    -.641  .5213|                              |491.7343 | 
|Mu(1)   |  1.1495  .0212   54.288  .0000| 1.1484  .0212   54.274  .0000|         | 
|Mu(2)   |  2.5501  .0216  117.914  .0000| 2.5478  .0216  117.856  .0000|         | 
|Mu(3)   |  3.0589  .0265  115.561  .0000| 3.0564  .0267  115.500  .0000|         | 
+--------+-------------------------------+------------------------------+---------+ 
|         Marginal Effects for Ordered Probit Model  | 
+--------+-------------------------------------------+ 
|Outcome |     AGE       EDUC     EDUCSQ    EDUCAGE  | 
|Y = 00  |  .00121    -.02028     .00057     .00004  | 
|Y = 01  |  .00316    -.05290     .00148     .00010  | 
|Y = 02  | -.00087     .01458    -.00041    -.00003  | 
|Y = 03  | -.00151     .02534    -.00071    -.00005  | 
|Y = 04  | -.00198     .03326    -.00093    -.00007  | 
+--------+-------------------------------------------+
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5.5.2  Average Partial Effects 
 
 In computing partial effects, we have evaluated the functions by inserting the sample 
means of the regressors.  That is, our computation for Educ, for example, is 
 

 1
Prob( | ) ( ) ( )j j Educ

y j f f
Educ −

∂ = ′ ′⎡ ⎤= μ − − μ − β⎣ ⎦∂
x x xβ β . 

 
The average partial effect, or APE, is computed instead by evaluating the partial effect for each 
individual and averaging the computed effects.  thus, 
 

 11

1( ) ( ) ( )n
j j i j i Educi

APE Educ f f
n −=

′ ′⎡ ⎤= μ − − μ − β⎣ ⎦∑ x xβ β . 

 
In practice, unless the sample size is very small or the data are highly skewed and affected by 
outliers, this will give a very similar result.  For the example suggested, the first computation 
gives ∂Prob(y=4)/∂Educ = 0.005557 (see Table 5.2 for the probit model) and the second gives 
0.005723, a difference of about 2.7%.  Further discussion of the computation of APEs and 
standard errors using the delta method appear in Greene (2008a, pp. 783-785). 
 
5.5.3  Interpreting the Threshold Parameters 
 
 In most treatments, the threshold parameters, μj are treated as nuisance parameters; 
necessary for the computations, but of no intrinsic interest on their own.  Daykin and Moffatt 
(2002,p. 162) argue that in psychology applications with attitude scales, “If the statement is one 
with which most people are either in strong agreement or strong disagreement, we would expect 
the cut points to be tightly bunched in the middle of the distribution. If, in contrast, the statement 
is one on which people are not keen to be seen expressing strong views, we would expect the cut 
points to be more widely dispersed.”   Thus, in the absence of other information, this suggests that 
the threshold parameters can reveal some information about the preferences of the respondents.  
[In contradiction, Anderson (1984, p. 4) states “The estimates of the θs are strongly related to the 
average proportion in the corresponding categories, as recourse to any specified functional form 
for F(.) indicates.  (See the example in Section 5.4.)  Hence, the θs parameters are not informative 
about the closeness of categories.  As noted above, the regression relationship is based on β′x and 
is firmly one dimensional.” 
 
5.5.4  The Underlying Regression 
 
 One would typically not be interested in the underlying regression.  The observed 
variable will always be the discrete, ordered outcome.  Nonetheless, the model does imply a set of 
partial changes for the latent regressand, 
 
 ∂E[y*|x]/∂x  =  β. 
 
This differs from more familiar cases in that the scaling of the dependent variable has been lost 
due to the censoring.  Thus, it is impossible to attach any meaning to the change in the mean.  
McElvey and Zavoina (1975) suggest that if one is going to base interpretation of the model on 
the latent regression, then the coefficients should be “standardized.”  That is, changes should be 
measured in standard deviation units.  A standardized regression coefficient for variable k would  
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be 
 βk*  =  β[skk  / sy*], 
 
where skk is the standard deviation of the regressor of interest and sy* is the standard deviation of 
y*.  Measurement of skk is straightforward based on the observed data.  For sy*, the authors 
suggest the computation be based on the implication of the regression; 
 
 y*  =  β′x  + ε 
so 
 Var[y*]  =  β′ Σxx β  +  σε

2.       (5.4) 
 
The two components are easily computed using the observed data and the normalized value of 
σε

2, 1.0 or π2/3.  For our ordered logit model in Table 5.1, the estimate of sy* is 1.03156.  The 
results of the computation are shown in Table 5.4 
 
 Table 5.4  Transformed Latent Regression Coefficients 
  Variable     β             β* 

Age            -.01808     -2.23279 
Educ            .03556       .19325 
Income          .25869       .00676 
Married        -.03100      -.00560 
Kids            .06065       .01385 

 
Some caution is needed when interpreting these.  The variable that is assumed to be changing is 
an underlying preference scale.  The notion of a unit or standard deviation change in utility or 
feeling is a bit dubious.  That is among the motivations for discrete choice analysis of this sort; it 
frees the analyst from having to attach units of measure to unmeasurable quantities while still 
enabling them to learn about important features of preferences. 
 
5.6  Inference 
 
 This section considers hypothesis tests about model components. 
 
5.6.1  Inference about Coefficients 
 
 The model has been fit by maximum likelihood.  The estimates are shown in Table 5.1.  
The assumptions underlying the regularity conditions for maximum likelihood estimation should 
be met, so inference can be based on conventional methods.  Standard errors for the estimated 
coefficients are computed by inverting an estimator of the negative of the expected second 
derivatives of the log likelihood.  This will either be based on the actual second derivatives,  
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or the sum of the outer products of the first derivatives (the BHHH or outer product of gradients, 
OPG, estimator), 
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Generally, two procedures, the Wald test and the likelihood ratio test are used for testing 
hypotheses.  A third, the LM test, is available, but rarely used because of its complexity compared 
to the other two. 
 Inference about a single coefficient is based on the standard “z” test.  The test of a simple 
null hypothesis: 
 
 H0: βk = βk

0
,, 

 
is tested by referring the Wald statistic, 
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,
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ˆ
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z
Est Std Err

β − β
=

β
, 

 
to a table of the standard normal distribution.  Estimated standard errors are obtained as the 
square roots of the diagonals of the matrix described in the previous paragraph.  For example, the 
conventional test against the null hypothesis H0:βk = 0 is reported as standard results when the 
model is estimated.  The test is carried out in the results shown in Table 5.1 for the estimated 
model, where we find that Age, Educ and Income are “significant” determinants of the 
probabilities while Married and Kids are not.   
 Inference about the threshold parameters would be meaningless, and is not generally 
carried out.  In the results below, we find a typical pattern; the threshold parameters have very 
small standard errors and are “highly significant.”  Note, however, that a test of the hypothesis 
that μ2 = 0, would not be useful because μ2 must be greater than μ1 and μ0, and μ0 = 0.  Without 
this ordering, the model becomes internally inconsistent – the probabilities can be negative. 
 A test about more than one coefficient can be carried out using a Wald test. For a null 
hypothesis of the form 
 
 H0: Rβ  = q, 
 
where R is a matrix of coefficients in the linear restrictions and q is a vector of constants, the 
statistic will be 

 ( ) [ ] ( )1ˆ ˆW −′ ′= − −R q RVR R qβ β , 

 



Modeling Ordered Choices 

 120  

where V is the estimated asymptotic covariance matrix of the coefficients.  The difficulty of this 
computation will vary from one program to another.  Both Stata and NLOGIT have built in  
“Wald ” commands that can be used to do the computation as well as matrix algebra routines that 
also allow the user to program the computation themselves.  For example, the following tests the 
null hypothesis that the coefficients on EducSq and EducAge in our expanded model in Table 5.3 
are simultaneously zero.  As noted, the statistic is treated as a chi squared statistic with degrees of 
freedom equal to the number of restrictions.  In the results below, for example, we see that we 
would reject the hypothesis that both are zero, evidently because of the significance of the first 
one. 
 
Ordered ; Lhs = Health  
  ; Rhs = one,age,educ,income,married,kids,educsq,educage $ 
Wald   ; fn1 = b_educsq ; fn2 = b_educag $ 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =      6.64372     | 
| Prob. from Chi-squared[ 2] =       .03609     | 
+-----------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
|Fncn(1) |    -.00596**        .00234587    -2.541   .0110 | 
|Fncn(2) |    -.00042          .00065479     -.641   .5213 | 
+--------+-------------------------------------------------+ 
 

The counterparts for this computation in Stata would be 
 
. oprobit health age educ income married kids educsq educage 
. test educsq educage 
( 1) [health]educsq = 0 
( 2) [health]educage = 0 
           chi2(  2) =   6.644 
         Prob > chi2 =   0.0361 
 

The computation can be programmed directly using matrix algebra, e.g., with NLOGIT as 
 
Matrix  ; b2=b(7:8);v22=varb(7:8,7:8) $ 
Matrix  ; list ; Wald = b2'<v22>b2 $ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|    6.64372 

 
or using the Mata package in Stata or PROC MATRIX in SAS.  In any case, using the built in 
procedure has the advantage of producing the “p-value” for the statistic as well as the statistic 
itself. 
 The likelihood ratio test will usually be simpler than the Wald test if the hypothesis is 
more involved than the simple zero restrictions shown above, though it does require estimation of 
both the null (restricted) and alternative (unrestricted) models.  The test statistic is simply twice 
the difference between the log likelihoods for the null and alternative models.  For the earlier 
example, the log likelihood for the (alternative) model that includes EducSq and EducAge is  
-5749.664 while, as seen earlier, the log likelihood for the (null) model that omits these variables 
is -5752.985.  The test statistic is 
 
 LR  =  2(-5749.664 – (-5752.985)) = 6.642. 
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This is nearly the same as the Wald statistic and produces the same conclusion.  The two tests 
could conflict for a particular significance level.  This is a finite sample result – asymptotically, 
the two statistics have the same characteristics when the assumptions of the model are met.  As a 
general occurrence (albeit not necessarily), the Wald statistic will usually be larger than the LR 
statistic.  Purely heuristically, because it uses more information – it is based on both models – we 
prefer the LR statistic. 
 A common test of the sort considered here is a “test of the model” in the spirit of the 
overall F statistic in the linear regression model that is used to test the null hypothesis that all 
coefficients in the model save the constant term are zero.  The counterpart for the ordered choice 
model would be likelihood ratio test against the null hypothesis that the model contains only a 
constant term and the threshold parameters.  This test statistic is routinely reported with the 
standard results for the estimated model by all commercial packages.  For the results in Table 5.3, 
we have a model chi squared of 244.2238 with five degrees of freedom. 

Note it is not necessary to estimate the null model to carry out this test.  The maximum 
likelihood estimates of the parameters of the model when it contains only a constant term are 
equivalent to method of moments estimators based on the following moment equations involving 
the raw sample proportions: 
 
 P0  =  Pr(y = 0) = F(-α) 
 P1  =  Pr(y < 1) = F(μ1 - α) 
 Pj  =  Pr(y  <  j) = F(μj - α) 
 and so on. 
 
These can be solved directly, in the logit case using a hand calculator (e.g., a = log(P0/(1-P0)).  
These (with β = 0) are the usual starting values for the iterations, so the log likelihood computed 
at entry to the iterative procedure provides the needed value for the null model. 
 
5.6.2  Testing for Structural Change or Homogeneity of Strata 
 
 The likelihood ratio test provides a more convenient approach for testing homogeneity of 
strata in the data.  For example, our data are separated by men and women in the introduction, 
and one might be interested in testing whether the same model should be used to describe the two 
groups.  The counterpart to a “Chow test” [Chow (1960), Greene (2008, p. 121)] in linear 
regression would be a test of group homogeneity in the choice model.  The test statistic is easily 
computed using 
 
 LR  =  2[Σg=groups logLg  -  logLpooled]. 
 
The statistic has a limiting chi squared distribution with degrees of freedom equal to G-1 times 
the number of parameters in the model (slopes and thresholds).  Our data are segmented by 
gender in the introduction. For a test of the null hypothesis that the same ordered choice model 
applies to the two groups, we find logLMale = -2952.05, logLFemale = -2798.03 and logLPooled =  
-5752.985.  Applying the preceding result gives a chi squared value of 5.83 with 9 degrees of 
freedom.  The p-value is 0.7569 (the 95% critical value is 16.92).  On this basis we conclude that 
is appropriate to pool these two subsamples.  (In RWM’s analysis, they maintained the sample 
division.  However, they were not analyzing the health satisfaction variable.) 
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5.6.3  Robust Covariance Matrix Estimation 
 
 There are two candidates available for the estimated asymptotic covariance matrix of the 
parameter estimators, -H-1 based on the Hessian and (G′G)-1 based on the first derivatives.  [See 
Section 5.6.1, (5.5) and (5.6).]  The implication of the Information Matrix Equality [see Greene 
(2008a, Ch. 16)] is that these two matrices estimate the same covariance matrix and are, for 
practical purposes, interchangeable.  A third matrix, the “robust” covariance matrix is often 
computed in recent applications, that being 
 
 VR  =  [-H-1] (G′G) [-H-1].       (5.7) 
 
The logic of the computation can be seen by assuming that Netwon’s method is used to estimate 
the parameters.  The maximum likelihood estimator at the maximum will produce 
 

 ( ) ( )10
1

ˆ ˆ / (1/ )n
MLE ii

n n n o n
−

=
⎡ ⎤− = − +⎣ ⎦ ∑H gθ θ , 

 
where θ0 is the vector of parameters that the MLE converges to and o(1/n) denotes a trailing term 
that converges to zero as n → ∞.  The asymptotic variance of the MLE is obtained by multiplying 
the limiting variance of the right hand side by 1/n.  The trailing terms will disappear.  The leading 
matrix in brackets converges (we assume) to its expectation – a constant matrix.  For the vector in 
parentheses, if the model assumptions are correct, then by the information matrix equality, its 
limiting variance will be –H/n.  Two occurrences of H will cancel and we are left with VH as the 
usual estimator.  But, ignoring the information matrix equality, whether it is met or not, the 
asymptotic variance of the MLE will be estimable by using (1/n)G′G as an estimator of the 
variance matrix of the quantity in parentheses.  Then, the “robust” covariance matrix estimator 
becomes the sandwich estimator given above. 
 This produces two cases:  If the model assumptions are correct, then the robust estimator 
is the same as either of the conventional estimators.  If the model assumptions are incorrect, then 
the robust estimator still produces the asymptotic covariance matrix for the MLE.  (A familiar 
application of this result is the “White” (1980) estimator for the asymptotic covariance matrix of 
the OLS estimator in the presence of heteroscedasticity.)  But, a new question arises in the second 
case.  If the model assumptions are not correct, then what is θ0?  In order for this computation to 
be useful, it must be the case that in spite of the failure of the model assumptions, ˆ

MLEθ  must still 
be a consistent estimator of  the parameters of interest, in the present case, (β′,μ′)′.  Once again, 
the case of OLS in the presence of heteroscedasticity provides a useful benchmark.  On the other 
hand, for the ordered probit model, any of the following will render the estimator of the 
parameters inconsistent: (i) omitted variables even if they are orthogonal to included variables, 
(ii) heteroscedasticity in ε, (iii) incorrect distributional assumption – e.g., using the logit model 
when the probit model is the correct one, (iv) endogeneity of any of the regressors, (v) omission 
of latent heterogeneity – this is equivalent to an omitted variable.  Indeed, it is difficult to produce 
a model failure that the estimator is robust to.  One possibility that seems unlikely in this cross 
section setting is correlation across observations.  The upshot is that either the “robust covariance 
matrix” estimator is the same as the other two already considered, or it is a “robust” covariance 
matrix for an inconsistent estimator of the parameters.  [Additional commentary on this result 
appears in Freedman (2006).] 
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5.6.4  Inference About Partial Effects 
 
 Partial effects are computed using either the derivatives or first differences for discrete 
variables; 
 

 1
Prob( | )( ) ( ) ( )i

j i j i j i
i

y j f f−

∂ = ′ ′⎡ ⎤= = μ − − μ −⎣ ⎦∂
xx x x

x
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Since these are functions of the estimated parameters, they are subject to sampling variability and 
one might desire to obtain appropriate asymptotic covariance matrices and/or confidence 
intervals.  For this purpose, the partial effects are typically computed at the sample means.  [See 
Greene (2008a, pp. 780-785) for analysis of this computation for average partial effects.]  The 
delta method is used to obtain the standard errors.  Let V denote the estimated asymptotic 

covariance matrix for the (K+J-2)×1 parameter vector ( )ˆ ˆ, ′′ ′β μ .  Then, the estimator of the 

asymptotic covariance matrix for each vector of partial effects is 
 
 Q  =  Ĉ V Ĉ ′, 
where 
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The appropriate row of Ĉ  is replaced with the derivatives of Δj(d, x ) when the effect is being 
computed for a discrete variable. 
 Patterns of statistical significance for the partial effects will usually echo those for the 
coefficients themselves.  This will follow from the fact that C is of the form  
 
 C  =  [aijI, 0]  +  [Cβ, Cμ], 
 
where aij is the bracketed scalar term in ˆ ( )j xδ .  The second matrix is typically much smaller than 

the first.  Thus, the estimated asymptotic covariance matrix for ˆ ( )j xδ  = aijβ typically resembles 
aij

2V.  The scale factor would cancel out of a “z value” leaving the typical result.  It is clearly 
visible in the results in Table 5.5.  This result does raise a vexing question.  It is conceivable for 
the significance tests of δj(xk) to conflict with each other, that is, with δm(xk) for an m ≠ j, and/or 
with a test about the associated coefficient, βk.  Since δj(xk) = aijβk, the tests would seem to be in 
direct contradiction.   The natural question for the practitioner, then, is where should the 
appropriate test of significance be carried out.  Opinions differ and there is no single answer.  It 
might logically be argued that the overall purpose of the regression analysis is to compute the 
partial effects, so that is where the tests should be carried out.  On the other hand, the meaning of 
the test with respect to the partial effects is ambiguous, since they are functions of all the 
parameters as well as the data.  The number of possible contradictions is large.  Our preference on 
the methodological basis is for the structural coefficients, not the partial effects. 
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Table 5.5  Estimated Partial Effects with Asymptotic Standard Errors 
+-------------------------------------------------------+ 
| Marginal effects for ordered probability model        | 
| M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0]     | 
| Names for dummy variables are marked by *.            | 
+--------+--------------+----------+-----------+--------+ 
|Variable| Coefficient  | Standard |b/St.Error |P[|Z|>z]|  
|        |              |   Error  |           |        | 
+--------+--------------+----------+-----------+--------+ 
|        |These are the effects on Prob[Y=00] at means. | 
|AGE     |     .00173      .000165    10.488     .0000  | 
|EDUC    |    -.00340      .000692    -4.919     .0000  | 
|INCOME  |    -.02476      .009973    -2.483     .0130  | 
|*MARRIED|     .00293      .003920      .747     .4551  | 
|*KIDS   |    -.00574      .003578    -1.603     .1089  | 
|        |These are the effects on Prob[Y=01] at means. | 
|AGE     |     .00450      .000403    11.161     .0000  | 
|EDUC    |    -.00885      .001775    -4.986     .0000  | 
|INCOME  |    -.06438      .025851    -2.490     .0128  | 
|*MARRIED|     .00771      .010440      .738     .4604  | 
|*KIDS   |    -.01508      .009494    -1.588     .1122  | 
|        |These are the effects on Prob[Y=02] at means. | 
|AGE     |    -.00124      .000170    -7.310     .0000  | 
|EDUC    |     .00244      .000549     4.438     .0000  | 
|INCOME  |     .01774      .007356     2.411     .0159  | 
|*MARRIED|    -.00202      .002611     -.774     .4387  | 
|*KIDS   |     .00397      .002419     1.641     .1009  | 
|        |These are the effects on Prob[Y=03] at means. | 
|AGE     |    -.00216      .000241    -8.958     .0000  | 
|EDUC    |     .00424      .000901     4.709     .0000  | 
|INCOME  |     .03085      .012559     2.457     .0140  | 
|*MARRIED|    -.00370      .005033     -.736     .4620  | 
|*KIDS   |     .00724      .004599     1.574     .1154  | 
|        |These are the effects on Prob[Y=04] at means. | 
|AGE     |    -.00283      .000271   -10.452     .0000  | 
|EDUC    |     .00557      .001130     4.931     .0000  | 
|INCOME  |     .04055      .016335     2.482     .0130  | 
|*MARRIED|    -.00491      .006733     -.729     .4657  | 
|*KIDS   |     .00960      .006120     1.569     .1166  | 
+--------+----------------------------------------------+ 
 

5.7  Prediction – Computing Probabilities 
 
 One might want to use the model for prediction as well as inference.  The natural 
predictor would seem to be ˆˆ *   y ′= xβ .  However, the underlying variable is typically 
unobservable, and often of no intrinsic interest in its own right.  (E.g., in the bioassay case, the 
“tolerance” of a particular insect would probably be of little interest.  In the preference scale case 
such as in our health satisfaction example, the underlying utility is inherently unmeasurable.)  The 
more natural exercise would be to predict the observed outcome.  Since it is discrete, the linear 
predictor is of little use.  The starting point would be the predicted probabilities.  The model 
provides predictors 
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If the sample is small enough and particular observations are of interest, a simple listing might be 
useful.  For our sample of 4,483 observations, this would probably not be helpful.    One might, 
instead, tabulate predicted probabilities against variables of interest.  For example, for reasons 
unknown to us, the presence of children in the household appears to have a substantial 
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(increasing) impact on whether one reports the lowest value of health satisfaction.  A set of 
results is shown in Table 5.6. 
 
Table 5.6  Mean Predicted Probabilities by Kids 
+----------------------------------------------+ 
|Variable     Mean  Std.Dev.  Minimum  Maximum | 
+----------------------------------------------+ 
|Stratum is KIDS = 0.000.  Nobs.=  2782.000    | 
+--------+-------------------------------------+ 
|P0      |  .059586  .028182  .009561  .125545 | 
|P1      |  .268398  .063415  .106526  .374712 | 
|P2      |  .489603  .024370  .419003  .515906 | 
|P3      |  .101163  .030157  .052589  .181065 | 
|P4      |  .081250  .041250  .028152  .237842 | 
+----------------------------------------------+ 
|Stratum is KIDS = 1.000.  Nobs.=  1701.000    | 
+--------+-------------------------------------+ 
|P0      |  .036392  .013926  .010954  .105794 | 
|P1      |  .217619  .039662  .115439  .354036 | 
|P2      |  .509830  .009048  .443130  .515906 | 
|P3      |  .125049  .019454  .061673  .176725 | 
|P4      |  .111111  .030413  .035368  .222307 | 
+----------------------------------------------+ 
|All 4483 observations in current sample       | 
+--------+-------------------------------------+ 
|P0      |  .050786  .026325  .009561  .125545 | 
|P1      |  .249130  .060821  .106526  .374712 | 
|P2      |  .497278  .022269  .419003  .515906 | 
|P3      |  .110226  .029021  .052589  .181065 | 
|P4      |  .092580  .040207  .028152  .237842 | 
+----------------------------------------------+ 

 
 Standard errors and confidence intervals can be computed using the delta method.  These 
are a bit simpler than for the partial effects, as there is no need to make a distinction between 
discrete and continuous variables.  The matrix of derivatives has a row for each outcome, 
containing 
 

 ( ) ( )1 1

ˆ ( ) ˆ ˆ ˆ ˆ( ) ( ) 0,..., , ,0,...ˆ ˆ( )
j i

j i j i i j j

P
f f f f− −

∂ ⎡ ⎤′= − −⎣ ⎦′ ′∂

x
x x x

β μ
.   (5.10) 

 
 For certain variables of interest, a plot of the predicted probabilities against the values of 
the variable might be useful.  In our application, Age seems to be an important determinant of self 
assessed health satisfaction.  A plot of the predicted probabilities for this model for the values of 
Age in the sample, 25 to 64, for a person who has average income and education, and is married 
with children appears in Figure 5.6. 
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Figure 5.6  Predicted Probabilities for Different Ages 

 
5.8  Measuring Fit 
 
 The search for a scalar measure of model fit for discrete choice models must be among 
the least satisfying of the exercises in the modeling effort.  Superficially, the search is for a 
counterpart to the R2 = “proportion of the variation in the dependent variable that is explained by 
variation in the independent variables.”  The search is frustrated in this (and other discrete choice 
models) for two reasons: 
 

•    There is no “dependent variable.”  In the ordered choice model, there are J+1 
explained variables that are defined by mij = 1 if yi = j and 0 otherwise and 
which satisfy the constraints mij = 0 or 1 and Σj mij = 1.  (This is true for the 
bioassay case as well; the observed proportions for each i consist of the 
sample means of mij for ni observations with a common xi.)  The observed 
variable yi is nothing more than a labeling convention for the regions of the 
real line defined by the partitioning in the model specification. 

 
•   There is no “variation” (around the mean) to be explained.  The outcome is 

not a measure of a quantity; it is a label.  There is no conditional mean, as 
such, either. 

 
For these reasons, one needs to exert a considerable amount of caution in computing and 
reporting “measures of fit” in this setting. 
 A “fit measure” that one computes can be used for two purposes: (i) to assess the fit of 
the predictions by the model to the observed data, compared to no model and (ii) to compare the 
model one estimates to a different model.  For the first of these, we (and a generation of others) 
have suggested the overall model chi squared, 
 
 χ2[K+J-2]  =  2[logLModel – logLNo Model]. 
 
A transformation of this statistic that is (very) often reported in the contemporary literature is 
McFadden’s (1977) “pseudo R2” which is computed as 
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 RPseudo

2  =  1  -  logLModel / logLNo Model. 
 
A degrees of freedom adjusted version is sometimes reported, 
 
 Adjusted RPseudo

2  =  1  - [logLNo Model –M] / logLModel. 
  
where M is the number of parameters in the model.  The pseudo R2 has the virtues that it is 
bounded by 0 and 1, and increases whenever the model increases in size – that is, the pseudo R2 is 
larger for any model compared to a model that is nested within it.  It is important to emphasize, as 
is clear from the definition, it is not a measure of model fit to the data and it is not a measure of 
the proportion of variation explained in any sense.  (It is also worth noting that it is not 
necessarily bounded by zero and one unless the model in question is a discrete choice model for 
which the log likelihood function is necessarily negative.  For example, it is a simple exercise to 
show that the log likelihood for a linear normal regression model can be positive or negative, 
depending on the value of σε, which could produce values outside the unit interval.)  Lastly, the 
Pseudo R2 cannot reach one, though it can equal zero. 
 The value of the Pseudo R2 in the model we have analyzed above can be found in Table 
5.1 for the basic model (0.0207847) and in Table 5.4 for the expanded model (0.02135).  The low 
values might seem a bit surprising given the several highly significant coefficient estimates in the 
reported results. However, as with the counterpart in linear regression, highly significant 
coefficients need not attend a high fit measure. 
 A second measure for the ordered choice model was suggested by McKelvey and 
Zavoina (1975).  The logic of their measure is based on predicting the underlying latent variable, 
y*.  The total variance in the underlying variable in the ordered choice model is 
 
 Var[y*]  =  β′ Σxx β  +  σε

2. 
 
where Σxx is the theoretical covariance matrix of xi. The first part of this is estimable using the 
maximum likelihood estimates of β and the sample covariance matrix for the data, and the second 
part is known to be 1.0 or π2/3 for the probit and logit models, respectively.  Thus, the authors 
suggested 

 RMZ
2   =  

2

2
1 ˆ ˆ

ε

ε

σ
−

′ σxxSβ β +
. 

 
They defined the “explained” part of this computation in terms of deviations from a prediction, 

ˆˆi ie y y= −  where ˆˆi iy ′= xβ , producing 
 

 RMZ
2   =  

2
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2
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With this computation, we obtain an improvement over the PseudoR2; for our model, RMZ

2 = 
0.06024. 
 Long and Freese (2006) list a variety of other measures that are computed for the ordered 
choice models.  (This set of results is produced by a Stata program called FitStat written by 
one of the authors. We mention it at this juncture to illustrate the problem of searching for a fit 
measure in a particular discrete choice model, not to recommend that analysts either do or do not 
use it or these results.  The formulas below do not appear in Long and Freese or in the 
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documentation for Stata; they are described in long detail by UCLA/ATS (2008) among others 
and, of course, piecemeal by the original designers.)  These include 
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In UCLA/ATS (2008), it is noted that “pseudo R-squareds” for categorical variables serve three 
functions: 
 
  Measures of explained variability, 
  Measures of improvement from null model to fitted model, 
  Square of the correlation. 
 
None of the already suggested fit measures bear any relation to the first and third of these.  All are 
connected to the improvement in the log likelihood by the addition of the variables in the model 
to a constants only model.  Of course, the log likelihood functions, themselves, do that, and what 
these statistics add to the two values is a transformation that is between zero and one.  It is worth 
noting, the measures are strictly between zero and one.  None can achieve one even if the model 
predicts perfectly (somehow – we have not defined what would be meant by “predict”).  
Nonetheless, what they do all share is that they increase as the model grows and they are bounded 
by zero and one.  (However, the “adjusted pseudo R2” can decline as variables are added, in the 
same fashion as 2R  for linear regression.) 
 UCLA/ATS (2008) observe (with reference to a binary logit model),  
 

When analyzing data with a logistic regression, an equivalent statistic to R-squared does 
not exist.  [Emphasis added.]  The model estimates from a logistic regression are 
maximum likelihood estimates arrived at through an iterative process.  They are not 
calculated to minimize variance, so the OLS approach to goodness-of-fit does not apply.  
However, to evaluate the goodness-of-fit of logistic models, several pseudo R-squareds 
have been developed.   These are "pseudo" R-squareds because they look like R-squared 
in the sense that they are on a similar scale, ranging from 0 to 1 (though some pseudo R-
squareds never achieve 0 or 1) with higher values indicating better model fit, but they 
cannot be interpreted as one would interpret an OLS R-squared and different pseudo R-
squareds can arrive at very different values 

 
The notion of “model fit” in this and elsewhere relates to the log likelihood for the model, not to 
an assessment of how well the model predicts the outcome variable, as it does in regression 
analysis. 
 It seems appropriate to add a fourth item to the list above; fit measures are used to 
compare models to each other, not only to baseline, “null” models.  For this purpose, a handful of 
other fit measures that are not normalized to the unit interval, but are based on the log likelihood 
function, are often used: 
 
 Log Akaike Information Criterion   =  AIC  =  [-2logL + 2M]/n,  (5.11) 
 



Modeling Ordered Choices 

 129  

 Finite Sample AIC                    =  AICFS   =  AIC + 2M(M+1)/(n – M – 1), 
 
 Bayes Information Criterion     =  BIC  =  [-2logL + M/logn]/n, 
 
 Hannan-Quinn IC  =  HQIC  =  [-2logL + 2 M loglog n]/n. 
 
The information measures are all created in the spirit of adjusted R2 – they reward a model for 
“fit” with few parameters and small samples.  A better model is one with a smaller information 
criterion.  (Long and Freese mention two others, “AIC used by Stata” and “BIC used by Stata.” 
We have been unable to decipher what these are.) 
 Long and Freese (p. 196) and UCAL/ATS (2008) mention two other measures that seem 
(to these authors) to have received far less attention than these likelihood based measures.  These 
are 

 Count R2  =  
Number of  Correct Predictions

n
 

and 

 Adjusted Count R2  =  j

j

Number of  Correct Predictions - n *
n - n *

. 

 
Where nj* is the count of the most frequent outcome.  The discussion is about binary choice 
models, so we have to extend the idea to our ordered choice model.  There is a long catalog of fit 
measures for binary choice models based on this sort of computation.  [See, e.g., Greene (2008a, 
pp. 790-793).]  The central feature is a fitting mechanism: Predict y  =  j if the model states that j 
is the most likely outcome.  In the binary choice case, the rule is to use as the prediction, the 
outcome which has probability exceeding 0.5.  For the ordered choice case, this would suggest 
using the rule 
 
 ˆ *   Prob( * | ) Pr( | )    *i i i i iy j such that estimated y j y j j j= = > = ∀ ≠x x . 
 
That is, put the predicted y in the cell with the highest probability.  This rule has an aesthetic 
appeal, and in the absence of priors (as in a Bayesian setting) we have not found a preferable 
approach. Nonetheless, this can lead to an unexpected outcome.  For our first example in Table 
5.1, this rule produces the results in Table 5.7. 
  
Table 5.7  Predicted vs. Actual Outcomes for Ordered Probit Model 
+----------------------------------------------+ 
| Cross tabulation of predictions.             | 
| Row is actual, column is predicted.          | 
| Model=Probit. Prediction=most likely cell.   | 
+-------+-----+-----+-----+-----+-----+--------+ 
| Actual|  0  |  1  |  2  |  3  |  4  |Row Sum | 
+-------+-----+-----+-----+-----+-----+--------+ 
|      0|    0|    0|  230|    0|    0|   220  | 
|      1|    0|    0| 1113|    0|    0|  1113  | 
|      2|    0|    0| 2226|    0|    0|  2226  | 
|      3|    0|    0|  500|    0|    0|   500  | 
|      4|    0|    0|  414|    0|    0|   414  | 
+-------+-----+-----+-----+-----+-----+--------+ 
|Col Sum|    0|    0| 4483|    0|    0|  4483  | 
+-------+-----+-----+-----+-----+-----+--------+ 

 
By this method, our model, with its highly significant overall fit and several highly significant 
variables seems, nonetheless, to fail utterly on this criterion.  It always predicts y = 2.  By the 
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Count R2 measure, our model achieves a fit of 0.4965, which looks like a substantial 
improvement over the Pseudo R2 of 0.020785.  Lest we become too enthusiastic about the result, 
however, note that the Adjusted Count R2 is zero!  The reason is that the model does not improve 
on the model free “always predict 2,” which happens to be the most frequent outcome. 
 The situation in which the model always predicts the same value is not uncommon.  It 
takes a high correlation (in some general sense) between the covariates and the outcome and a 
large amount of variation in the covariates within the sample to spread the predictions across the 
outcomes. Briefly, another example is provided by a standard data set used by the authors of Stata 
to demonstrate the ordered choice model in their documentation.  The “automobile data,”  
(http://www.stata-press.com/data/r8/fullauto.dta) is used in [R] oprobit to 
model the 1977 repair records of 66 foreign and domestic cars. The variable rep77 takes values 
poor, fair, average, good and excellent.  The explanatory variables in the model are foreign 
(origin of manufacture), length (a proxy for size) and mpg.  (The computations below were done 
with both Stata and NLOGIT, which obtained identical results.)  The predictions produced by this 
model are listed below in Table 5.8.   The McFadden Pseudo R2 is 0.1321.  The Count R2 is 
(1+0+21+7+1)/66 = 0.454.  The adjusted value is (30 – 27)/(66-27) = 0.077. 
 
Table 5.8  Predicted vs. Actual Outcomes for Automobile Data 
+----------------------------------------------+ 
| Cross tabulation of predictions.             | 
| Row is actual, column is predicted.          | 
| Model=Probit. Prediction=most likely cell.   | 
+-------+-----+-----+-----+-----+-----+--------+ 
| Actual|  0  |  1  |  2  |  3  |  4  |Row sum | 
+-------+-----+-----+-----+-----+-----+--------+ 
|      0|    1|    0|    2|    0|    0|    3   | 
|      1|    0|    0|    9|    2|    0|   11   | 
|      2|    0|    1|   21|    5|    0|   27   | 
|      3|    0|    0|   11|    7|    2|   20   | 
|      4|    0|    0|    2|    2|    1|    5   | 
+-------+-----+-----+-----+-----+-----+--------+ 
|Col Sum|    1|    1|   45|   16|    3|   66   | 
+-------+-----+-----+-----+-----+-----+--------+ 

 
 This survey does not conclude with a proposal for the appropriate or optimal fit measure.  
The search for a scalar counterpart to the R2 in a linear regression does seem unproductive.  Fit 
measures based on the log likelihood can be used for comparing models.  For this purpose, the 
log likelihood itself or one of the information criteria seems sensible; the AIC dominates the 
received applications.  For assessing the predictions of the model, it would seem that the scalar 
measures based on the log likelihood would be useless.  The maximum likelihood estimator is not 
computed so as to maximise the number of correction predictions – in the linear normal 
regression model, the MLE of β is computed to maximize R2, but that is coincidental; minimizing 
e′e does maximize R2.  Indeed, there may be (as yet not proposed) other estimators that improve 
on the MLE for predicting the outcome variable, as the Maximum Score Estimator [see Manski 
(1975, 1985, 1986, 1988)] improves on the MLE of the logit or probit model for binary choice.  
In any event, it does seem appropriate, if one seeks a “measure of fit” one should first decide 
upon a procedure (rule) for producing the predictions, then assess, against a benchmark, how well 
that method does.  The Count R2 measures shown above seem better suited to that specific 
purpose than pseudo R2 measures based on the log likelihood. 
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5.9  Estimation Issues 
 
 McKelvey and Zavoina (1975) provide expressions for the first and second derivatives of 
the log likelihood function for the ordered probit model, and suggest Newton’s method as an 
algorithm for estimation.  They do conjecture, however, about the possible problem of multiple 
roots of the log likelihood.  Pratt (1981), was able to show that the ordered probit model was a 
member of a class of discrete choice models in which the log likelihood functions are globally 
concave.  Thus, estimation of the model can be counted on to converge (when it does at all), to 
the single root of the log likelihood function.  We note at this point a few other aspects of 
estimation of the ordered choice model. 
 
5.9.1  Grouped Data 
 
 Grouped data arise when groups or sets of individuals have the same xi and the observed 
outcome consists of a set of proportions over the choices.  For example, in a taste test for a soft 
drink, xi might consist of a specific configuration of (sweetness,color,temperature).  A group of ni 
individuals are presented with xi, and proportions pi0, pi1,…,piJ of the ni individuals choose 
outcome i.  Thus, the frequency of individuals in group i reporting outcome j is ni×pij.  In the 
boiassay experiments discussed in Chapter 4, xi would the the dosage of insecticide administered 
to a group of ni pests, and proportions pi0, pi1 and pi2 are found to respond to the dosage by 
surviving, becoming moribund, or dying, respectively. 
 The adaptation of the maximum likelihood estimator to the grouped data treatment is a 
trivial modification.  The log likelihood for a sample in which the stimulus, xi is repeated ni times 
is 
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Mechanically, in the log likelihood for a cross section of individual data, the terms mij are 
replaced with the group proportions, pij, and the observations in the log likelihood and its 
derivatives are weighted by the group size. 
 
5.9.2  Perfect Prediction 
 
 A problem of nonconvergence can be caused by a condition in the data that Long and 
Freese (2006, p. 192) label “Predicting Perfectly.”  If a variable in the data set predicts perfectly 
one of the implicit dependent variables, that is, mij = 1 if and only if yi = j, then it will not be 
possible to fit the coefficients of the model – in this instance, the corresponding threshold 
parameter becomes inestimable.  The suggested case is a dummy variable that takes only one 
value within a particular cell – it may also take that value in other cells.  Within our example, 
suppose married people (Married = 1) always responded with Health = 4; i.e., married people 
always report the highest health satisfaction.  Then, knowing someone is married allows a perfect 
prediction of Health = 4 for them.  In such as case, it is necessary to drop such observations from 
the sample.  Stata detects this condition automatically and reports a diagnostic “Note: nn 
observations completely determined. Standard errors are questionable.”  
As it is, the diagnostic is correct. But, it is incomplete.  Because the offending variable enjoys 
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such a relationship with the outcome variable, it is almost certainly endogenous in the model, and 
not only are the standard errors questionable, the parameter estimates themselves are as well.  In a 
vague way, this is a cousin to a problem of sample selection.  The observations that have been 
discarded have not been done so randomly.  They have been discarded by a criterion that is 
specifically related to the dependent variable.  This particular feature of the model is as of this 
writing an obscure corner of the model development, but there would seem to be scope for further 
analysis of the issue. 
 It is tempting in this instance just to drop the offending variable.  Whether this is 
advisable or not is unclear. If one is certain that but for the (perhaps unexpected) data problem the 
variable is an important feature of the data generating process, then the resulting model when the 
variable is dropped now has an omitted regressor. One problem has been traded for another. On 
the other hand, if the problem considered here involves more than just a handful of observations, 
one might question the overall structure of the model.  Treating such a variable as if it were 
exogenous might be inappropriate. 
 
5.9.3  Different Normalizations 
 
 We have noted at a few points that the normalization of the thresholds is a crucial feature 
of the model.  However, it is not the case that different normalizations produce different results. 
Whether one assumes μ0 = 0 and includes an overall constant in the model, or allows μ0 to be a 
free parameter and drops the constant, will have no implications for the log likelihood, the other 
parameters, or the predictions of the model. An example to illustrate the point is useful.  
Consider, once again, the car repair data discussed in the previous section.  We have fit the model 
using NLOGIT, which uses the first normalization and Stata which uses the second.  The two sets 
of results are given in Table 5.9.  Note that the log likelihoods and estimates of the coefficients in 
β are identical.  (The differences in the standard errors result from Stata’s use of the Hessian for 
the standard errors vs. NLOGIT’s use of the outer products estimator.)  The first “cut point” in the 
Stata results is precisely the negative of NLOGIT’s overall constant.  For the remaining threshold 
parameters, we can see that “cut point j” equals NLOGIT’s (μj – α).  As expected, then, the results 
are identical. 
  
5.9.4  Censoring of the Dependent Variable 
 
 In some applications, there can be a second layer of censoring of the variable of interest 
in the ordered choice model. (The first level of censoring is the translation of yi* to yi by 
measuring only the interval in which yi* appears.)   Consider a model of educational attainment in 
which the variable of interest is “education” and in which the recorded value is only 0 for primary 
school, 1 for secondary school (high school), 2 for college, 3 for masters and 4 for Ph.D.  If an 
observation is recorded as “at least high school,” for example, then values 2, 3 and 4 are 
censored.   This case is easily handled using the laws of probability.  The appropriate log 
likelihood for the ordered choice model is 
 
 , 11 0

log log( )n J
ij ij i ji j

L m P P −= =
= −∑ ∑ ,      (5.13) 

 
where heretofore mij indicated the one cell that applies to observation i, and now indicates all of 
the cells that apply. For the example given, we would have mi0 = 0 and mij= 1 for j = 1,2,3,4.  The 
change in the computations of the model parameters is trivial.  It should be noted, one must know 
the upper bound, J, and for an observation, of course, it must be known that it is or is not 
censored.  Censoring of the dependent variable in an ordered choice context has appeared in  
models of schooling attainment by Lillard and King (1987), Glewwe (1997) and Glewwe and 
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Jacoby (1994, 1995) and in duration models, where the observed outcome is the length of time 
between transitions, sometimes coded as “short,” medium or long, or similarly.  See, e.g., Tsay 
(2005), Han and Hausman (1988) and Buckle and Carlson (2000). 
 
Table 5.9   Stata and NLOGIT Estimates of an Ordered Probit Model 
. oprobit rep77 foreign length mpg 
Iteration 0:   log likelihood = -89.895098 
Iteration 1:   log likelihood = -78.141221 
Iteration 2:   log likelihood = -78.020314 
Iteration 3:   log likelihood = -78.020025 
Ordered probit regression                         Number of obs   =         66 
                                                  LR chi2(3)      =      23.75 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -78.020025                       Pseudo R2       =     0.1321 
------------------------------------------------------------------------------ 
       rep77 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     foreign |   1.704861   .4246786     4.01   0.000     .8725057    2.537215 
      length |   .0468675    .012648     3.71   0.000      .022078    .0716571 
         mpg |   .1304559   .0378627     3.45   0.001     .0562464    .2046654 
-------------+---------------------------------------------------------------- 
       /cut1 |    10.1589   3.076749                      4.128586    16.18922 
       /cut2 |   11.21003   3.107522                      5.119399    17.30066 
       /cut3 |   12.54561   3.155228                      6.361476    18.72974 
       /cut4 |   13.98059   3.218786                      7.671888     20.2893 
------------------------------------------------------------------------------ 
Skip $ (The data on rep77 contain 8 missing observations) 
Ordered Probit ; Lhs = rep77 ; Rhs=one,foreign,length,mpg $ 
+---------------------------------------------+ 
| Ordered Probability Model                   | 
| Dependent variable                REP77     | 
| Number of observations               66     | 
| Log likelihood function       -78.02002     | 
| Number of parameters                  7     | 
| Info. Criterion: AIC =          2.57636     | 
| Restricted log likelihood     -89.89510     | 
| McFadden Pseudo R-squared      .1320992     | 
| Chi squared                    23.75015     | 
| Degrees of freedom                    3     | 
| Prob[ChiSqd > value] =         .2816655E-04 | 
| Underlying probabilities based on Normal    | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Index function for probability 
 Constant|   -10.1589039      3.03379286    -3.349   .0008 
 FOREIGN |    1.70486053       .41520516     4.106   .0000    .31818182 
 LENGTH  |     .04686753       .01228262     3.816   .0001   189.121212 
 MPG     |     .13045591       .03696460     3.529   .0004   21.3333333 
---------+Threshold parameters for index 
 Mu(1)   |    1.05112609       .18720281     5.615   .0000 
 Mu(2)   |    2.38670648       .18420739    12.957   .0000 
 Mu(3)   |    3.82169002       .28935433    13.208   .0000 
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5.9.5  Maximum Likelihood Estimation of the Ordered Choice Model 
 
 The log likelihood function for the basic ordered choice model is 
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where  
 ni = the group size in the grouped data (typical bioassay) case or  
 ni = 1 in the individual data case,  
and 
 wij = pij  = the proportion of group i that responds with outcome j, or  
 wij = mij = 1 if individual i chooses outcome j in the individual data case. 
 
F(t) is the functional form in use, typically Λ(t) for the ordered logit model or Φ(t) for the ordered 
probit model.  For the moment, we will leave the functional form indeterminate. For obtaining the 
log likelihood and its derivatives, only the term logPi,j is of consequence.  The relevant 
derivatives are 
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where fi,j is the density corresponding to Fi,j.  For the moment, we are carrying μ-1, μ0 and μJ as if 
they were unconstrained.  The constraints are imposed later.  Thus, the parameter vector contains 
β and μ, which has J+2 elements only J-1 of which are free to vary.  The derivative vector 
∂logPi,j/∂μ has J+2 elements, but only two are nonzero.  The second derivatives are as follows: 
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The Hessian has a nonzero 2×2 block within the full (J+2)×(J+2) submatrix for μ.  The relevant 
constraints on the terms for the fixed elements of μ are 
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 μ-1  = -∞,  μ0  =   0,    μJ  = ∞, 
 Fi,-1 = 0,   fi,-1 =   0,   fi,-1′ =  0, 
 Fi,J   =  1,   fi,J  =  0,  fi,J′   =  0. 
 
Finally, for the two most commonly used functional forms, 
 
 logit: F(t) = Λ(t),  
  f(t) = Λ(t)[(1 - Λ(t)],  
  f ′(t) = Λ(t)[(1 - Λ(t)] [1 - 2Λ(t)], 

(5.17) 
 probit: F(t) = Φ(t),  
  f(t) = φ(t),  
   f ′(t) = -t φ(t). 
 
 As Pratt (1981) showed, the second derivatives matrix is negative definite, so common 
gradient methods such as Newton or BFGS should be effective for maximizing the log likelihood 
function.   Occasionally (rarely in our experience, however), the threshold parameters can become 
unordered during optimization.  This points to the utility of a line search and a careful iteration.  It 
is possible to force the threshold parameters to be ordered by reparameterizing them.  For the 
model proposed in Section 8.3, we used the formulation 
 
 μj  =  μj-1  +  exp(αj). 
 
starting with μ0= 0. 
 
5.9.6  Bayesian (MCMC) Estimation of Ordered Choice Models 
 
 Bayesian estimation of ordered choice models builds on the method pioneered by Albert 
and Chib (1993).  The Gibbs sampler is constructed using a crucial device labeled “data 
augmentation.” [See Tanner and Wong (1987).]  The binary choice case departs from 
 
 yi*  =  β′xi + εi,  εi ~  with mean 0 and known variance, 1 (probit) or π2/3 (logit), 
 
 yi    =  1  if yi* > 0. 
 
Let the prior for β be denoted p(β).  Then, the posterior density for the probit or logit (symmetric 
distribution) models is 
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where we use y and X (and later, y*) to denote the full set of n observations.  [See (2.25).] 
Estimation of the posterior mean is done by setting up a Gibbs sampler in which the unknown 
values yi* are treated as nuisance parameters to be estimated.  For convenience at this point, we 
will assume the probit model is of interest.  Conditioned on β and xi, yi* has a normal distribution 
with mean β′xi and variance 1.  However, when conditioned on yi (observed), as well, the sign of 
yi* is known; 
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 p(yi* | β,y, X)  =  normal with mean β′xi and variance 1, truncated at zero; 
     truncated from below if yi = 1 and from above if yi = 0. 
 
Using basic results for Bayesian analysis of the linear model with known disturbance [see Greene 
(2008a, p. 605)] and a diffuse prior, the posterior for β conditioned on y*, y and X would be 
 
 p(β| y*,y,X)  =  NK[b,(X′X)-1] where b = (X′X)-1X′y*. 
 
If, instead, the prior for β is normal with mean β0 and covariance matrix, Σ, then the posterior 
density is normal with mean 
 
 E[β|y*,y,X]  =  [Σ-1 + (X′X)]-1 (Σ-1 β0  +  X′y*) 
and 
 Var[β|y*,y,X]  =  [Σ-1 + (X′X)]-1. 
 
This sets up a strikingly simple Gibbs sampler for drawing from the joint posterior, p(β,y*|y,X).  
It is customary to use a diffuse prior for β.  Then, compute initially, (X′X)-1 and the lower 
triangular Cholesky matrix, L such that LL′ = (X′X)-1.  (The matrix L needs only to be computed 
only once at the outset for the informative prior as well.)  To initialize the iterations, any 
reasonable value of β may be used.  Albert and Chib suggest the classical MLE.  The iterations 
are then given by 
 
1.  Compute the N draws from p(y*|β,y,X).   
     Draws from the appropriate truncated normal can be obtained using  
 
     yi*(r) = β′xi + Φ-1[Φ(-β′xi) + U(1-Φ(-β′xi))] if yi= 1 and  

(5.19) 
     yi*“(r) = β′xi + Φ-1[U Φ(-β′xi)] if yi = 0, 
 
     where U is a single draw from a standard uniform population. 
2.  Draw an observation on β from the posterior p(β|y*,y,X) by first computing the mean 
 
     b“(r) =  (X′X)X′y*®.   
 
      Use a draw, v, from the K-variate standard normal, then compute β“(r) = b“(r) + Lv. 
 
(We have used “(r)” to denote the rth cycle of the iteration.)  The iteration cycles between steps 1 
and 2 until a satisfactory number of draws is obtained (and a burn-in number are discarded), then 
the retained observations on β are analyzed.  With an informative prior, the draws at step 2 
involving the prior mean and variance are slightly more  time consuming. The matrix L is only 
computed at the outset, but the computation of the mean adds a matrix multiplication and 
addition. 
 The extension to J+1 ordered outcomes is now straightforward.  We maintain the probit 
model, as is common. The model is, now,  
 
 yi*  =  β′xi + εi,  εi ~  N[0, 1], 
 
 yi    =  j  if  μj-1  <  yi*  <  μj. 
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Diffuse priors are assumed for β and μ, with the usual constraints on μ-1, μ0 and μJ.  Based on the 
same results as before, we still have 
 
 p(β | y*, μ, y, X)  =  NK[b, (X′X)-1]. 

(5.20) 
 p(yi* | μ, β, y, X)  =  N(β′xi,1) truncated in both tails by μj-1 and μj. 
 
We will note below how to do the simulation for yi*.  Finally, the authors provide the posterior 
for μj (j = 1,...,J-1), conditioned on the other threshold parameters,; 
 

    p(μj | β, y*, μ(j) , y,X) ∝ 1
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where the density is the posterior for μj given the other threshold parameters, denoted μ(j), and the 
other parameters.  The steps in the Gibbs sampler consist of initializing β and μ as before, now 
with the MLE of the ordered probit model, then, in order,  
 
1.  Sample μj from a uniform distribution with limits 
 
 Lower =  maxi{max(yi*|yi = j), μj-1}  (i.e., the maximum over the n observations), 
 
 Upper =  mini{min(yi*|yi = j+1),μj+1}  . 
 
      Sampling from this uniform distribution is easily done by scaling a draw from U(0,1) by  
      1/(Upper – Lower). 
 
2.  Sample yi* from the truncated normal distribution where the underlying variable has mean β′xi 

and standard deviation 1 and the truncation limits are μj-1 and μj for the corresponding 
observation on yi =  j.  The necessary result for this step is given in Greene (2008a, p. 575).  
To sample a draw from this distribution, define PL = Φ(μj-1  - β′xi)  and PU = Φ(μj - β′xi).  
Note that PL = 0 if yi = 0, and PU = 1 if yi = J.  Then, let U denote a draw from the U(0,1) 
population – a single uniform draw.  Then, the draw for yi* is 

 
 yi*|yi,μ,β,xi  =  β′xi  + Φ-1 [PL + U × (PU – PL)]. 
 
3.  Sample β from the multivariate normal population as shown earlier for the binary probit case.  

The only change is the data used to compute b, now using the results of the doubly truncated 
sample in step 2 immediately above. 

 
We then cycle through steps 1 – 3 for a large number of iterations (say tens of thousands). After 
discarding the first several thousand draws, the remaining draws on β and μ constitute a sample 
from the joint posterior.  The posterior mean is estimated by the average of the draws. 
 A convenient aspect of the MCMC approach to estimation is that often the estimator for a 
more complex model is easily obtained by adding layers to a simpler one.  Consider the bivariate 
ordered probit model analyzed by Biswas and Das (2002).  The model is a direct extension of the 
univariate model: 
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yi1*  =  β1′xi1 + εi1,  εi1 ~  N[0, 1], 

 yi1    =  j  if  μj-1  <  yi1*  <  μj 

 yi2*  =  β2′xi2 + εi2,  εi2 ~  N[0, 1], 

 yi2    =  k  if  γk-1  <  yi2*  <  γk. 

 Corr(εi1,εi2) = ρ. 
 
Each ordered probit is handled as before. The draws from the posterior of (β1,β2) are obtained by 
a two equation GLS regression; conditioned on the other parameters, the two latent regressions 
are a seemingly unrelated regressions system.  The draws for (μj,γk) are drawn jointly from a 
rectangle, with each dimension handled as in the univariate case.  The draws on yi1* and yi2* are 
drawn from a truncated bivariate normal population.  (Biswas and Das suggest to do this draw by 
a rejection method. It can be done in a “one draw” manner using a bivariate truncated normal 
analog to the method shown above.  [See, e.g., Geweke (1991).])  The remaining detail is 
sampling from the posterior of ρ.  Biswas and Das handle this by defining Σ to be an unrestricted 
2×2 covariance matrix of the two disturbances. The prior for Σ is assumed to be proportional to 
|Σ|-3/2.  This produces a conditional posterior for Σ that is an inverse Wishart population.  [See 
Train (2003) for sampling from this population.]  Note that they have introduced two new free 
parameters, σ11 and σ22 and are now estimating σ12 = ρσ1σ2. 
 There is a peculiar loose end in the Biswas and Das (2002) study.  In the ordered choice  
model, the scale parameters of the disturbances, σm

2 = Var[εim] are not identified and are 
normalized to 1.0.  (In an alternative normalization of the model, one of the slopes is normalized 
at 1.0, which “identifies” the scale parameter – though not actually if that scale parameter is 
meant to be interpreted as the variation of ε.  It merely moves the normalization off one of the 
parameters. See Chapter 12 for applications.)  Biswas and Das treated these variances as free 
parameters, and did not normalize one of the other parameters.  As such, the model they purport 
to estimate is not identified.  The evidence is in the reported values of the posterior means of σ1

2 
= 22.62 and σ2

2 = 13.33. These values are far outside the reasonable range for a choice model of 
this sort; they are supposed to be normalized at 1.0.  (One might surmise that they are “identified” 
purely by the prior; there is no sample information about them.) This application points up a note 
of caution needed in MCMC estimation.  The log likelihood function developed in Section 10.2 
cannot be maximized it if is formulated in terms of an unrestricted Σ as used above.  Ultimately, 
the derivatives will be collinear and the Hessian will be singular – that is the impact of a model 
that contains unidentified parameters.  There is no counterpart control when using the Gibbs 
sampler.  The signal that something has gone awry will arrive when the chain fails to converge, or 
when it arrives at a very different vector of posterior means from one run to another. It is 
necessary to check these failures – one run of the Gibbs sampler, regardless of how long it is, will 
not reveal this condition.  (Redemption of the model would be obtained by formulating it in terms 
of a prior over ρ to begin with, and imposing the necessary normalizations on σ1 and σ2.) 
 As noted earlier, the Bayesian segment of this literature is relatively compact and quite 
recent.  Methodological contributions are offered by Albert and Chib (1993), Koop and Tobias 
(2006) and Imai et al. (2003) who have developed an “R” routine for some of the computations.  
Applications include Girard and Parent (2001), Biswas and Das (2002), Czado, Heyn and Müller 
(2005), Tomoyuki et al. (2006), Ando (2006), Zhang et al. (2007), Kadam and Lenk (2008) and 
Munkin and Trivedi (2008) and a handful of others.  Doubtless there are more to come.  
Nonetheless, as of this writing, Bayesian analysis of ordered choice data is a small niche in the 
literature. There are, of course, a cornucopia of applications to binary data. 
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5.9.7  Software For Estimation of Ordered Choice Models 
 
 There are numerous commercial packages that can be used to estimate basic ordered 
choice models. (We mention the packages only by name here. Each of them is described in detail 
on their own respective website, listed in Table 5.10, so we will forego any detailed descriptions.)  
The primary ones in current use are SAS, Stata, LIMDEP, NLOGIT and SPSS.  In addition, Latent 
Gold and a few other programs less oriented to cross section and panel data, such as RATS, 
Eviews and TSP, also contain built-in estimators for the essential model. For Bayesians, there are 
routines in R provided in ZELIG by Imai et al. (2008).   WinBugs also contains a routine for 
discrete choice models.  The log likelihood is not particularly complicated, and Gauss and Matlab 
programs are also widely circulated. 
 For more advanced, exotic or obscure variants of the model, the choices are much more 
limited.  These can, of course, be programmed by the user in the low level languages such as 
Matlab, or in many cases, even in the higher level matrix languages of the integrated packages 
such as Stata.  For prepackaged routines, Stata and NLOGIT/LIMDEP contain optional features, 
such as heteroscedasticity and individual specific thresholds.  Models with random coefficients 
can be fit with PROC MIXED in SAS, GLAMM in Stata, and with several of the routines in 
NLOGIT.  To our knowledge, only Latent Gold and NLOGIT/LIMDEP have built in latent class 
treatments for ordered choice models.  For panel data applications, the random effects model 
(Butler and Moffitt) is quite common as well and appears in all the familiar packages.  Random 
effects models are “random constants” models. So any random parameters module can also 
handle random effects in a panel.  That we are aware of, the fixed effects model with essentially 
unlimited numbers of effects (beyond the capacity to just add the dummy variables to the model) 
is available only in NLOGIT and LIMDEP. 
 The following is a list of the websites of the packages mentioned above. This is far from 
a complete list of software used in econometrics and statistics.  For a lengthy guide that comes 
close to one, the econometric software resource  
 
 Econometrics http://www.oswego.edu/~economic/econsoftware.htm 
 
is a useful reference point.  The widely used packages are listed in Table 5.10: 
 
 Table 5.10   Software Used for Ordered Choice Modeling 
 Eviews  http://www.eviews.com 
 Gauss  http://www.aptech.com 
 Latent Gold   http://www.statisticalinnovations.com/ 
 LIMDEP http://www.limdep.com 
 Matlab  http://www.mathworks.com 
 NLOGIT http://www.nlogit.com 
 RATS  http://www.estima.com 
 SAS  http://www.sas.com 
 SPSS  http://www.spss.com 
 Stata  http://www.stata.com 
 TSP  http://www.tspintl.com 
 WinBugs           http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml 
 ZELIG  http://gking.harvard.edu/zelig/ 
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6 
 

Specification Issues and Generalized Models 
 
Anderson (1984, p. 2) discusses the inadequacy of the ordered choice model we have examined 
thus far.  “We argue here that the class of regression models currently available for ordered 
categorical response variables is not wide enough to cover the range of problems that arise in 
practice.  Factors affecting the kind of regression model required are (i) the type of ordered 
categorical variable, (ii) the observer error process and (iii) the “dimensionality” of the regression 
relationship.  These factors relate to the processes giving rise to the observations and have been 
rather neglected in the literature.”  Generalizations of the model, e.g., Williams (2006), have been 
predicated on Anderson’s observations, as well as some observed peculiarities in data being 
analyzed. 
 It is useful to distinguish between two directions of the contemporary development of the 
ordered choice model.  Although it hints at some subtle aspects of the model (underlying data 
generating process), Anderson’s arguments, it will emerge, direct attention to the functional form 
of the model and its inadequacy in certain situations. Beginning with Terza (1985), a number of 
authors have focused, instead, on the fact that the model does not account adequately for 
individual heterogeneity that is likely to be present in micro- level data.   A series of themes are 
addressed in this chapter as we build up to the most general ordered choice model. 
 
6.1  Functional Form Issues and the Generalized Ordered Choice Model (1) 
 
 Once again, referring to Anderson (1984, p. 2), “The dimensionality of the regression 
relationship between y and x is determined by the number of linear functions required to describe 
the relationship.  If only one linear function is required, the relationship is one-dimensional; 
otherwise it is multi-dimensional.  For example, in predicting k categories of pain relief from 
predictors x, suppose that different functions β1′x and β2′x are required to distinguish between the 
pairs of categories (worse, same) and (same, better), respectively.  Then, the relationship is 
neither one-dimensional nor ordered with respect to x.”  The fundamental flaw in the argument is 
in its opening premise.  There is no regression relationship between y and x.  The observed 
variable is merely a set of labels.  What follows is curve fitting – suggesting that two equations 
might better fit two binary choices than a single one. (It remains to determine by what criterion 
different functions are required.)  On the other hand, the author’s earlier (also p. 2) analysis of the 
data generating process puts a better face on the argument.  
 

For example, Anderson and Philips (1981) refer to the “extent of pain relief after 
treatment:” worse, same, slight improvement, moderate improvement, marked 
improvement or complete relief.  In principle, there is a single, unobservable, continuous 
variable related to this ordered scale, [emphasis added] but in practice, the doctor 
making the assessment will use several pieces of information in making his judgment on 
the observed category.  For example, he might use severity of pain, kind of pain, 
consistency in the time and degree of disability.  We will refer to variables of the second 
type as “assessed” ordered categorical variables and argue that, in general, a different 
approach to modeling regression relationships is appropriate for the two types. Assessed 
ordered variables occur frequently in the biomedical, social and other social sciences. 

 
Thus, he argues that, at least in some situations, the dependent variable is not really ordered, or 
might not be.  In such a case, he argues, essentially, that it makes sense to partition the outcomes, 
and treat them as a set of binary choices, or at least not as a single ordered choice.  For the 
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specific application considered, the issue depends crucially on whose assessment is being 
recorded, the doctor’s (not necessarily cleanly ordered as measured against some objective 
yardstick) or the patient’s (one would assume, necessarily ordered).  The upshot is that, at least as 
argued here, increasng the “dimensionality” of the fitting problem follows from the nature of the 
data generating process, not (evidently) from a need to accommodate curvature in the data. 
 
6.1.1  Parallel Regressions 
 
 Anderson departs from the familiar ordered choice model that we have examined so far; 
 
 Prob(y < ys | x)  =  F(θs - β′x), s = 1,...,k. 
 
Continuing the line of argument suggested earlier, he then suggests his “new” model, 
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This is the multinomial logit model proposed by Nerlove and Press (1972) for k unordered 
choices.  Later, it is observed “Model (5) [the model immediately above] often gives a good fit to 
real data, even when the βs are restricted to be parallel. This is particularly true when the 
categories are ordered.”  [Emphasis added.]  Thus appears (apparently) the first occurrence of the 
“parallel regressions” notion in this literature.  Note the implication is that the model is not 
intended for ordered data; but it seems to work well when applied to ordered outcomes. By 
“parallel,” the author states the restriction βs = -φsβ where φk ≡ 0.  [Note that the last φs is a 
parameter that is not identified under either the null or the alternative hypothesis because the 
corresponding βs = 0.  See Andrews and Ploberger (1994).]  A further identifying normalization 
(no longer merely for convenience) is φ1 ≡ 1.  The resulting model, 
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is labeled the “Stereotype Ordered Regression Model.”  As stated, the name is a misnomer, as the 
model does not enforce the ordering of the outcome; it is simply a parametric restriction on a 
model for unordered outcomes. [See Theil (1970).]  Indeed, no linear restriction on the 
parameters of this model can enforce the ordering of the dependent variable, that is, the sequence 
 
 Pr(y < ys|x) < Pr(y < ys+1|x). 
  
As he notes, the model “often gives a good fit to real data.”  However, the ordering aspect of it 
would depend on the data.  It is not a feature of the model.  We should note, the underlying 
structure has been lost in this process.  It is not possible to discern what underlying data 
generating process would give rise to such a functional form for a strictly ordered outcome that 
arises from an underlying continuous measure. 
 Anderson follows with a prescription for enforcing the ordering of the outcomes.  “The 
next step is to order the βs to obtain a regression relationship.  This is achieved by ordering the φs, 
 
 1  =  φ1 > φ2 > ... > φk = 0.  [10]. 
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“The ordered regression model [8] subject to constraints [10] will be termed the stereotype 
model.”  This form is prescribed for ordered data.  Unfortunately, the model is still not out of 
difficulty.  The implied probabilities still do not enforce the ordering rule unless the constant 
terms are monotonically increasing; β01 < β02 < ... < β0k.  Thus, Anderson’s remedy for the 
“parallel regressions” restriction, if we enforce the ordering of the probabilities, is a progressive 
scaling of the parameter vector by the constants φs, but it is not an internally consistent model for 
ordered choices without the constraint on the constant terms. 
 Long (1997) departs from our (now) familiar formulation of the ordered choice model. 
 
 Prob(y <  j | xi) = F(μj - β′xi). 
 
Differentiating these functions, we have 
 
 ∂Prob[yi <  j | xi]/∂xi  =  -f(μj - β′xi) β.      (6.3) 
 
This defines a set of binary choice models with different constants but common slope vector, β.  
If we then fix the probability at, say P = P* for any outcome, it must follow (by monotonicity of 
the cdf) that  f(μj - β′xi) is fixed at f*. It follows that for a particular choice of probability, we 
have  
 
 ∂Prob[yi <  j | xi]/∂xi  =  f* β = ∂Prob[yi <  m | xi]/∂x, m = 0,...,J.   (6.4) 
 
where f* is the same for all j, that is, a multiple of the same β.  This is the feature of the model 
that has been labeled the “parallel regression assumption.” [See, e.g., Long (1997, p. 141).]  This 
is an intrinsic feature of the ordered choice model.  There is no obvious implication of the 
restriction for the underlying behavioral assumption – we will examine this issue in the next 
section.  Note that the restriction cannot hold for a particular individual, since it requires the 
thresholds to adjust to equality.  (I.e., we cannot fix all the probabilities to equal the chosen value 
at the same time.  Rather, the “restriction” states that if P1 equals P*, then the derivative is the 
same as if P2 equals the same P*.) 
 
6.1.2  Testing the Parallel Regressions Assumption – The Brant (1990) Test 
 
 Brant (1990), approaches the parallel regressions issue, but couches it in different terms.  
Defining  
 
 γj  =  Prob(y <  j | x) = F(μj - β′x), 
 
the logit form of the model implies (as well) that 
 

 log
1

j
j

j

⎛ ⎞γ
′= μ −⎜ ⎟⎜ ⎟− γ⎝ ⎠
xβ ,        (6.5) 

 
a “restriction” labeled the “proportional odds” restriction, or the “proportional odds model.” 
[McCullagh (1980)]  Brant notes, this is a testable restriction, as we explore shortly. One is left to 
wonder, what feature of the model, or of the behavior underlying it, has been revealed when the 
null “hypothesis” of parallel regressions is rejected statistically, as it frequently is.  Other than the 
purely mechanical observation that in a “model” with different coefficient vectors for each 
choice, the parallel regressions restriction is that those coefficients are the same, it is unclear in 
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modeling terms, what the assumption means. Brant raised the same question. Before we 
reconsider that question, we will examine the proposed test procedure. 
 Several approaches to examining the parallel regressions feature have been developed.  
All center on the set of implied binary choice “models” for the probit and logit cases, 
 
 Prob(y >  j | x) = F( β′x- μj), j = 1,...,J-1.      (6.6) 
 
Thus, one can, in principle, fit J-1 such models separately.  Each should produce its own constant 
term and a consistent estimator of the common β.  An “informal” examination of the differences 
[see Clogg and Shihadeh (1994, pp. 159-160)] should be revealing.  A Lagrange multiplier test of 
the hypothesis is presented by SAS Institute (2008).  A much more straightforward (and intuitive) 
test is Brant’s (1990) Wald test which directly examines the restrictions 
 
 β1 = β2 = ... = βJ-1. 
 
The Brant (1990) test of this hypothesis for the ordered logit model follows from the implication 
of the model, 
 
 Prob[yi >  j | xi]  =  Λ(β0j + βj′xi),      (6.7) 
 
where β0j  = β0 - μj and Λ(t) is the logistic cdf, 1/(1+exp(-t)).  The slope vector βj should be the 
same in every equation.  Thus, the specification implies J-1 binary choice “models” that can be 
estimated one at a time, each with its own constant term and (by assumption) the same slope 
vector.   
 Expressions for the mechanics of the test appear in Long (1997, pp. 144-145.)  The null 
hypothesis is equivalent to 
 
 H0: βq - β1  =  0, q = 2,...,J-1, 
 
which can be summarized as 
 
 H0: Rβ* = 0 
where 
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The Wald statistic will be 
 

 χ2[(J-1)K]  =  ( ) ( )1ˆ ˆ ˆ* * *
−′ ⎡ ⎤⎡ ⎤ ′× ×⎣ ⎦⎣ ⎦R R Asy.Var R Rβ β β ,    (6.9) 

 
where ˆ *β  is obtained by stacking the individual binary logit estimates of β (without the constant 
terms).  The remaining complication in (6.9) is the asymptotic covariance matrix, which is 
computed as follows (using Brant’s results): 
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and ( )0

ˆ ˆˆ
ij j j i′Λ = Λ β + xβ .  The test can be carried out for specific coefficients by removing all but 

the desired rows of R in the computation of the statistic. 
 There are some loose ends in the computation.  If the probabilities in the covariance 
matrix are based on the individual binary logit models, then the ordering of the probabilities is not 
preserved, and Λij - Λi,j-1 < 0 is a possibility even though the theory rules it out.  Brant suggests 
using the parameters of the restricted (basic ordered choice) model instead.  Even with this 
practical fix, it remains true that the parameter estimates used in the test, each of which does have 
its own constant term, do not preserve the ordering of the probabilities in the model. 
 Table 6.1 displays the results of the Brant test for our ordered logit model of health 
satisfaction.  The proportional odds restriction is clearly rejected.  Loosely, it appears that the 
income coefficient displays the greatest variation across the cells.  Both education and income 
appear to fail the test when it is applied individually. 
 
Table 6.1  Brant Test for Parameter Homogeneity 
+------------------------------------------------+ 
| Brant specification test for equal coefficient | 
| vectors in the ordered logit model. The model  | 
| implies that logit[Prob(y>j|x)]=beta(j)*x – mj | 
| for all j = 0,..., 3. The chi squared test is  | 
| H0:beta(0) = beta(1) = ... beta( 3)            | 
| Chi squared test statistic =     71.76435      | (78.76988 based on the 
| Degrees of freedom         =     15            | normal distribution) 
| P value                    =       .00000      | 
+------------------------------------------------+ 
+------------------------------------------------------------------------+ 
|Specification Tests for Individual Coefficients in Ordered Logit Model  | 
|Degrees of freedom for each of these tests is  3                        | 
+--------+-----------------+-------+-------+-------+-------+-------------+ 
|        |   Brant Test    | Coefficients in implied model Prob(y > j).  | 
|Variable| Chi-sq  P value |   0   |   1   |   2   |   3   |             | 
+--------+-----------------+-------+-------+-------+-------+-------------+ 
|AGE     |   6.28   .09864 | -.0398| -.0292| -.0328| -.0248|             | 
|EDUC    |  19.89   .00018 |  .1212|  .0786|  .0630| -.0044|             | 
|INCOME  |  13.32   .00398 | 1.9576|  .4959|  .1790| -.0206|             | 
|MARRIED |   1.87   .59962 |  .0674| -.0228| -.1486| -.0896|             | 
|KIDS    |   7.24   .06476 |  .3218|  .2158|  .0189| -.1231|             | 
+--------+-----------------+-------+-------+-------+-------+-------------+ 

 
 This naturally leads to some question of the model specification.  For reasons we 
examine in more detail below, the non-proportional odds formulation is not a valid specification 
for the ordered logit model.  Among the obvious reasons, the probabilities in the non-proportional 
odds model do not sum to one.  If all the parameters can vary freely, as they do above, then each 
of the J binary choice models has been treated separately, and with no connection, there is no 
restriction on the sum of the probabilities. Moreover, there is no parametric restriction other than 
the one we seek to avoid that will preserve the ordering of the probabilities for all values of the 
data – that it does so for some data sets, or is a good “approximation” still leaves open the 
question of what specification failure makes sense to explain the finding, such as ours above. 



Modeling Ordered Choices 

 145  

 Brant speculates at length about what model failures might lead to rejection of the 
hypothesis.  The possibilities he lists include: 
 
 (1) Misspecification of the latent regression, β′x, 
 (2) Heteroscedasticity of ε - “nonhomogeneous dispersion of the latent variable with 
                   varying x.” 
 (3) Misspecification of the distributional form for the latent variable, i.e., “nonlogistic 
                   link function.” 
 
He also considers a type of measurement error, such as the problem of “differential 
misclassification in the y observations.”  Brant expresses little optimism that the test will likely 
uncover failures (1) or (2), reasoning that if the index or the variance are misspecified in the 
structural model, the misspecification will distort the estimators in the binary choice models 
similarly.  For the distributional assumption, however, he shows that if some other distribution 
applies, such as the extreme value distribution, then the appropriate model should echo something 
similar to Anderson’s (1984) stereotype model, that is, with j-specific parameter vectors, (θj,φjβ).  
In this case, rejection of the common β form in favor of the more general form would be 
expected.  Note, though that even under this assumption, this does not suggest that one should 
expect to find completely separate βjs.  The differential multiple follows from the fact that even 
under the alternative distribution, the function is still parameterized in terms of a single index 
function.  The scale factor is being induced by the different (from the logit) shape of the cdf with 
that same index function as its argument. 
 A more direct approach to testing against the distributional assumption is proposed by 
Johnson (1996) and Glewwe (1997).  For this purpose, the null model is the ordered probit model 
based on the normal distribution.  The Lagrange multiplier test is constructed by nesting the 
normal distribution within the broader Pearson family of distributions then testing against the null 
hypothesis of certain values of the parameters in the general form. [See Johnson, Kotz and 
Balakrishnan (1994).]  It is noteworthy, at the end of the analysis, Glewwe (1997, p. 12) comes to 
the same juncture we have here.  “A final question is what an applied econometrician should do 
when an ordered probit model does not pass the specification test.”  Like all specification tests, 
the “alternative” is not well defined.  Glewwe surmises that the test might be picking up an 
altogether different failure, such as an incorrect functional form.  He does suggest some 
alternative strategies, and ultimately suggests that if the failure of the LM test persists, perhaps an 
ordered logit might be preferable. 
 The Brant test is easily transported to the ordered probit model. Using the usual 
approximation, each maximum likelihood binary choice estimator converges to 
 
 1ˆ (1/ )j j j j o n−= + +H gβ β , 
 
where Hj

-1 is the inverse of the information matrix and gj is the gradient of the log likelihood. 
Relying on the information matrix equality and the results of Berndt, Hall, Hall and Hausman 
(1974), we can estimate the matrix using the outer product of gradients and estimate the 
covariances of the derivatives with the sum of cross products.  For the binary probit models, 
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where qij = 1(yi > j).  The estimators of the submatrices needed for the test are 
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Evidently this is not the explanation for the finding in Table 6.1.  When we repeated the 
computations in Table 6.1 based on the ordered probit model, the chi squared statistic rose to 
78.77.) 
 An intriguing point of the argument here is that it is not suggested that rejection of the 
supposed null hypothesis argues in favor of the non-proportional odds model as the alternative 
model.  That model is not a viable alternative model, which leaves unanswered the fundamental 
question, what failure of the model does the Brant test reveal?  Brant dwells on this question in 
his conclusion,  
 

As previously mentioned, assessment of the proportionality assumption can also be based 
on fitting the augmented models (2.1) [the non-proportional odds model], as in Hutchison 
(1985) and Ekholm and Palmgren (1989).  Similarly, a more directed approach can be 
based on fitting (3.2) [Anderson’s (1984) stereotype model]. The augmented model 
approach is attractive in that it provides a more standard theoretical framework for 
developing tests.  One drawback, however, is that specialized algorithms must be 
developed to fit the augmented models. A more serious problem is inherent in the models 
themselves.  For example, if one wishes to extend the use of model (2.1) beyond the 
values of x’s actually observed, the βj’s must be constrained to ensure monotonicity of 
the extrapolated γj’s.  Similar difficulties pertain to (3.2).  Depending on the range of 
admissable values of x, this can lead to technical difficulties in fitting and the need for 
nonstandard likelihood theory to allow for the possibility of estimates falling on the 
boundary of the parameter space.  It may be best then to view (2.1) and (3.2) not as 
scientifically meaningful models, but as directional alternatives helpful in validating the 
simpler proportional odds model. [Emphasis added.] 
 

We conclude that the Brant test is useful for supporting or for casting doubt on the basic model.  
It does not seem to be useful for pointing toward what might appear superficially to be an 
alternative specification based on freeing the parameter vectors in γj. 
 We note, finally, the response of some analysts to the failure of the base model (the 
ordered choice model), say as evidenced by the Brant test, is to switch to the unordered 
multinomial logit model as an alternative.  Williams (2006, p. 5) dismisses this approach because 
the alternative proliferates parameters and is difficult to interpret.  In fact, switching to the 
multinomial logit model as an alternative to the ordered choice model, assuming that some 
ordered choice model was appropriate to begin with, substitutes a manifestly misspecified model 
for one that was merely suspect and, probably, in need of refinement.  The multinomial logit 
model for unordered choices is applicable to a different situation entirely.  It produces 
coefficients, but it would be arduous at best to translate them into something meaningful to 
describe the behavior of an ordered random variable, such as the outcome of an attitude survey.  
So, following Williams, we will eschew further consideration of the multinomial logit model for 
unordered choices in this review. 
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6.1.3  Generalized Ordered Logit Model (1) 
 
 Quednau (1988), Clogg and Shihadeh (1994), Fahrmeir and Tutz (1994), McCullagh and 
Nelder (1989) have proposed versions of the ordered choice models based essentially on the 
“non-proportional odds” form given above.  Fu (1998) and Williams (2006) have recently 
provided working papers and a Stata program (GOLogit and GOLogit2) that implement and 
refine the model.  Williams (2006) suggests that his development is an extension of Fu’s so we 
focus on the latter.  Motivated by the frequent rejection of the null hypothesis by Brant’s (1990) 
test [see Williams (2006, p. 3)], a suggested alternative model derives from the core specification 
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where, now, xi does not contain a constant term.  (Note that this is the form used by Brant to 
motivate his analysis.)  The implication is 
 
 Prob(yi = 0|xi)  =  1 – F(α0 + β0′xi), 
 Prob(yi = 1|xi)  =  F(α0 + β0′xi)  - F(α1 + β1′xi), 
 Prob(yi = j|xi)   =  F(αj-1 + βj-1′xi)  - F(αj + βj′xi), 
 Prob(yi = J|xi)  =   F(αJ-1 + βJ-1′xi). 
 
We label this the “(1)” form of the generalized ordered choice model. We will examine two other 
forms, with (unfortunately) the same name.  The “(1)” does not indicate first chronologically; that 
would be Terza’s (1985) formulation.  It is simply the first one presented in this review.  This 
model is related to, but is not quite the same as the implied alternative in Brant’s analysis.  In fact, 
Brant’s alternative model, which is equivalent to logit(γij) = αj + βj′xi, treats each of the J+1 
outcomes of yi as a separate event – the probabilities vary completely independently and need not 
even sum to one or a number less than one.  As he notes, it should not be viewed as a valid model 
as it stands. In the model suggested above, the ordering aspect of the observed variable is 
preserved somewhat, in that the formulation implies a connection between the events yi = j and yi 
= j-1. On the other hand, with no constraints imposed on the parameters of the model, although 
the probabilities sum to one by construction, there is no assurance that they are positive.  Brant 
anticipated this uncomfortable feature of the model in the conclusion related at the end of Section 
6.1.2.  Long and Freese (2006, p. 221) observe this as well, but note that “To ensure that the 
Pr(y=j|x) is between 0 and 1, the condition (τj - βj′x) > (τj-1 - βj-1′x) must hold.” (The inequality 
must actually be strong if the probabilities are to be nonzero as well.)  Rewrite the restriction as 
(τj - τj-1) > (βj - βj-1)′x.  The only way to ensure that this is true for every possible configuration of 
x is to have τj > τj-1 and βj = βj-1, which is where we began. 
 The problem of negative probabilities was raised much earlier.  Williams (2006) invoking 
McCullagh and Nelder (1989, p. 155) observes 
 

“The usefulness of non-parallel regression models is limited to some extent by the fact 
that the lines must eventually intersect. Negative fitted values are then unavoidable for 
some values of x, though perhaps not in the observed range. If such intersections occur in 
a sufficiently remote region of the x-space, this flaw in the model need not be serious.”  
 
This seems to be a fairly rare occurrence, and when it does occur there are often other 
problems with the model, e.g. the model is overly complicated and/or there are very small 
Ns for some categories of the dependent variable. gologit2 will give a warning message 
whenever any in-sample predicted probabilities are negative. If it is just a few cases, it 
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may not be worth worrying about, but if there are many cases you may wish to modify 
your model, data, or sample, or use a different statistical technique altogether. 

 
The prescription relates to fitting the function to the data, but not to the underlying model.  I.e., 
the “flaw” in the model is not that it sometimes produces negative fitted probabilities; it is that it 
does not impose the positivity of the fitted probabilities in the structure to begin with.  In practical 
terms, as Williams (2006) suggests, the model is usually estimable, and the problem does not 
arise.  If one begins the iterations with starting values obtained from the “constrained” ordered 
logit model, then at least at the starting values, one is assured that all probabilities are positive. As 
the iterations move away from the starting values, as any probability associated with an observed 
outcome moves toward zero, it will impose a large penalty on the log likelihood – in principle if a 
probability for an observation becomes negative, it exerts an infinite penalty.  The practical 
upshot is that it seems reasonable that, in spite of its potential for internal inconsistency, this 
model is likely to be estimable.  Table 6.2 shows the results for our ordered choice example.  
(Williams (2006) has published a Stata program  (GOLogit2) for this purpose.  We used the 
MAXIMIZE command in NLOGIT.)  The estimates in Table 6.2 have been reordered so that 
coefficients associated with specific independent variables are grouped contiguously, rather than 
coefficients associated with specific outcomes.  Inspection of the sets of estimates certainly 
suggests that the coefficients differ substantially across j.  A likelihood ratio test would be based 
on  
 χ2[15] = 2(-5713.579 – (-5752.985)) = 78.812.   
 
The 95% critical value from the table is 24.996.  Thus, the hypothesis of the restricted model is 
decisively rejected. 
 A peculiarity of this “generalization” of the ordered logit model is that it does not appear 
to define a random variable.  The specification states that “If yi = j, then the probability that yi 
equals j is as follows:  “In spite of its appearance, the model does not state that the probability 
that a well defined random variable is equal to the given value is equal to the function.  There is 
no underlying continuous variable that can be structured so as to produce the observed outcome. 
The latent regression approach is not available to motivate the outcome variable; “y* = αj + βj′x + 
ε then y* = j under some condition,” since in order to generate y*, one would need to know the 
appropriate j in advance.  Consider, for example, that it is not possible to simulate the values of 
the random variable, y, defined in the probability statement. In order to assign a probability to the 
outcome we would first have to know what the outcome is.  No data generating process produces 
the random variable described in the probability statement.  This model, as stated, has the 
uncomfortable feature that it does not define what the “random variable “y” is; it defines y in 
terms of itself.  Ultimately, the problem is the ordered nature of the observed response.  The 
ordering is incompatible with that much free parameter variation in the statement of the 
probabilities.  If a model of an ordered random variable is to be complete and internally 
consistent, then ultimately the observed response must be derived as a classification of a set of  
underlying events.  The early writers on this model, Aitchison, McCullagh, Snell, etc., returned 
repeatedly to the theme of the underlying continuous variable for this reason. 
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Table 6.2  Estimated Ordered Logit and Generalized Ordered Logit (1) 
+---------------------------------------------+ 
| Ordered Probability Model                   | 
| Underlying probabilities based on Logit     | 
| Dependent variable               HEALTH     | 
| Log likelihood function       -5749.187     | 
| Restricted log likelihood     -5875.096     | 
| Chi squared                    251.8798     | 
| Degrees of freedom                    5     | 
| Prob[ChiSqd > value] =         .0000000     | 
+---------------------------------------------+ 
+--------+--------------+--------+-------+--------+ 
|Variable| Coefficient  |Standard|b/St.Er|P[|Z|>z]| 
|        |              |Error   |       |        | 
+--------+--------------+----------------+--------+ 
+--------+Index function for probability          | 
|Constant|    3.5179     .2038    17.260    .0000| 
|AGE     |    -.0321     .0029   -11.178    .0000| 
|EDUC    |     .0645     .0125     5.174    .0000| 
|INCOME  |     .4263     .1865     2.286    .0223| 
|MARRIED |    -.0645     .0746     -.865    .3868| 
|KIDS    |     .1148     .0669     1.717    .0861| 
+--------+Threshold parameters for index         | 
|Mu(1)   |    2.1213     .0371    57.249    .0000| 
|Mu(2)   |    4.4346     .0390   113.645    .0000| 
|Mu(3)   |    5.3771     .0520   103.421    .0000| 
+--------+---------------------------------------+ 
+-----------------------------------------+ 
| User Defined Optimization               | Generalized Ordered Logit 
| Maximum Likelihood Estimates            | Logit Model (1) 
| Log likelihood function       -5713.579 | 
+-----------------------------------------+ 
+--------+--------------+-----------+--------+--------+ 
|Variable| Coefficient  | Standard  |b/St.Er.|P[|Z|>z]|  
|        |              | Error     |        |        | Ordered Logit 
+--------+--------------+-----------+--------+--------+ Estimates 
|Constant|    2.69537       .606874    4.441   .0000  | α    = 3.51646 
|        |    1.04676       .251309    4.165   .0000  | α-μ1 = 1.39503 
|        |    -.67133       .253798   -2.645   .0082  | α-μ2 = -.91697 
|        |   -1.09368       .368911   -2.965   .0030  | α-μ3 =-1.86024 
+--------+--------------------------------------------+ 
|AGE     |    -.04080       .007651   -5.332   .0000  | AGE 
|        |    -.02925       .003426   -8.538   .0000  | -0.03213 
|        |    -.03261       .003758   -8.677   .0000  | 
|        |    -.02427       .004968   -4.885   .0000  | 
+--------+--------------------------------------------+ 
|EDUC    |     .12009       .038709    3.102   .0019  | EDUC 
|        |     .07635       .015527    4.917   .0000  | 0.06467 
|        |     .06222       .015730    3.956   .0001  | 
|        |    -.00252       .023385    -.108   .9141  | 
+--------+--------------------------------------------+ 
|INCOME  |    1.98158       .452708    4.377   .0000  | INCOME 
|        |     .51201       .214586    2.386   .0170  | 0.42434 
|        |     .18838       .233611     .806   .4200  | 
|        |    -.11631       .285676    -.407   .6839  | 
+--------+--------------------------------------------+ 
|MARRIED |     .05870       .171015     .343   .7314  | MARRIED 
|        |    -.02514       .086290    -.291   .7708  | -.06451 
|        |    -.15166       .096590   -1.570   .1164  | 
|        |    -.07179       .129624    -.554   .5797  | 
+--------+--------------------------------------------+ 
|KIDS    |     .34731       .184095    1.887   .0592  | KIDS 
|        |     .21913       .081866    2.677   .0074  | 0.11452 
|        |     .01939       .088280     .220   .8261  | 
|        |    -.11322       .121602    -.931   .3518  | 
+--------+--------------------------------------------+ 
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 In our application, we began the computations by collapsing several categories of the 
dependent variable, for example, combining categories 0,1,2 into the observed “0.”  Likewise, 
Boes and Winkelmann (2006a) combined the lowest three categories of their observed 
satisfaction measure.  The implication of the generalized ordered probability model (1) would be 
either that in the collapsed model, the coefficient vector associated with the zero outcome is an 
ambiguous mixture of the original three coefficient vectors, or in the original model, the lowest 
three categories have the same coefficient vector – that would legitimize the aggregation of the 
three cells.  It is a matter of interpretation.  The implication, however, is that the population 
parameters (αj,βj) exists only as a function of the way that the analyst codes the dependent 
variable.  More to the point, the model parameters, e.g., the data generating mechanism, cannot 
consistently exist apart from the observed data themselves.  This returns to the characteristic that 
it is not possible to simulate a well defined random variable that obeys the probability laws 
defined for this model.  This might seem to be true in the base case model, since the “cut points” 
are identified with the outcomes.  However, it is not the case there, since μj exists (in theory) as 
an unknown location on the real line, independently of the random variable that drives the model, 
y*  =  β′x + ε.  There is no counterpart to y* in the Generalized Ordered Logit Model (1). 
 All this said, it remains true that the “parameters” of the model can be computed, as we 
have done in Table 6.2.  The least favorable view is that this is just curve fitting.  However, if so, 
and if the ordered logit model (same β) really is appropriate, then one should replicate, at least 
approximately the original “constrained” model.  To some degrees, as evident in Table 6.2, that is 
what occurs; this could be viewed as a (numerically) inefficient estimator of the original model. 
But, in the same spirit as the Brant test, the same question emerges. To the extent that this 
procedure does not mimic the original model – the separate parameter vectors really do differ, as 
ours do in Table 6.2 – then what has it found? Since the model, such as it is, is not a valid 
probability model, the same loose end emerges. It must be picking up some failure of the original 
model.  One might guess that Brant’s speculations about a set of explanations for rejection of the 
null hypothesis by his test would be helpful here as well. 
 We have labeled the model discussed here the “Generalized Ordered Choice Model (1).”  
Forms “(2)” and “(3)” are discussed below.  The preceding is an orthodox interpretation of the 
model specification. Later, in Section 7.3, we will find that with a straightforward reinterpretation 
of what is ultimately the same model structure, an internally consistent specification of a random 
variable does emerge.  Since the models are only superficially different, we will label the 
threshold models in Section 7.3 the “(2)” forms of the Generalized Ordered Choice Model.” 
 
6.2  Model Implications for Partial Effects 

 Superficially, it seems that the ordered choice model is using a single index function, 
β′xi, to describe the determination of J+1 outcomes, y = j.  Even though in fact, there is only a 
single outcome, yi, = T(yi*), it remains interesting to examine the particular values that yi attains.  
For example, the analyst is often specifically in the highest or lowest cell.  Brewer et al. (2008) 
were interested in the top several cells in the distribution.  As we noted earlier, since there is no 
single natural conditional mean function, the typical analysis describes the probabilities 
individually with the partial effects described in Chapter 5.  Because the model is a ‘single index’ 
specification – there is only one β′xi in the model – a large number of constraints are imposed on 
the partial effects.. 
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6.2.1  The Single Crossing Feature of the Ordered Choice Model 
 
 The partial effects shown in the preceding examples vary with the data and the 
parameters.  Since the probabilities must sum to one, the partial effects for each variable must 
sum to zero across the probabilities.  It can also be shown that for the probit and logit models, this 
set of partial derivatives will change sign exactly once in the sequence from 0 to J, a property that 
Boes and Winkelmann (2006b) label the single crossing characteristic. [Crawford, Pollak and 
Vella (1988) explore this feature of the model at length.]  For a positive coefficient, βk, the signs 
moving from 0 to J will begin with negative and switch once to positive at some point in the 
sequence.  The following Table 6.3 is extracted from Table 4 in Boes and Winkelmann (2006b, 
page 22).  (The “0-2” bracket is obtained by grouping the relatively low number of observations 
with the three lowest values in the original data.)  Partial effects are shown with estimated 
standard errors in parentheses. 
 
      Table 6.3   Boes and Winkelmann Estimated Partial Effects 

Response   0-2     3      4      5      6      7      8      9     10 
Men 
OProbit  -0.016 -0.014 -0.016 -0.037 -0.020  0.003  0.059  0.027  0.014 
         (0.003)(0.001)(0.001)(0.003)(0.009)(0.003)(0.009)(0.005)(0.005) 
GOProbit -0.020 -0.022 -0.014 -0.027 -0.037 -0.005  0.088  0.039 -0.002 
         (0.007)(0.006)(0.004)(0.005)(0.006)(0.007)(0.033)(0.109)(0.089) 
Women 
OProbit  -0.004 -0.005 -0.005 -0.016 -0.008 -0.003  0.020  0.012  0.008 
         (0.002)(0.001)(0.001)(0.005)(0.012)(0.003)(0.011)(0.004)(0.006) 
GOProbit -0.009  0.005 -0.011 -0.036 -0.040  0.038  0.064 -0.008 -0.003 
         (0.008)(0.016)(0.020)(0.015)(0.013)(0.029)(0.116)(0.125)(0.027) 

 
The same effect can be seen in Table 5.2 for our application. 
 The “GOProbit” results – a probit version of Williams’s (2006) GOLogit approach –  
show the effect of relaxing the single crossing restriction. However, for men, the model seems to 
be preserving the restriction on its own – the second crossing at y = 10, produces a marginal 
effect that differs only trivially from zero, with a “z-value” of only 0.022.  For women, however, 
one is in the uncomfortable position of now explaining four crossings which make the model 
seem somewhat unstable.  None of the estimated effects are statistically significant, in contrast to 
the ordered probit model, and in fact, two of the crossings rest on what looks like a maverick 
finite sample outcome at y=3. One the other hand, the results that remain force the analyst into a 
counterintuitive position of arguing that higher incomes are associated with lowered probabilities 
of reporting a high subjective well being – perhaps a widespread Richard Cory effect.  The 
authors’ description of the results (from their pages 12 and 13) suggests the appeal of a less sharp 
statement about specific outcomes; the right tail result is suggested to reflect a zero effect, which 
of course removes the remaining extra crossing: 
 

 Table 4 summarizes the marginal probability effects of income by gender. 
Consider, for example, the results for men and take the ceteris paribus effect of increasing 
logarithmic household income by a small amount on the probability of responding a 
SWB level of “8”. Table 4 shows a value of 0.059 for the standard model. This means 
that the probability of a response of “8” increases by 0.059 percentage points if we 
increase logarithmic income by 0.01, which corresponds approximately to a one-percent 
increase in level income. A doubling of income, i.e., a change in logarithmic income by 
0.693, increases the probability of response “8” by about 0.059×0.693×100, or about 4.09 
percentage points, ceteris paribus. 
 Comparing the MPE’s among the three different models and over all possible 
outcomes, we obtain the following main results. For men all models suggest that more 
income significantly reduces the probability of low SWB (0-5), and significantly 
increases the probability of response “8”. For high SWB responses (9-10), the standard 
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model predicts a strong positive relationship between income and SWB, whereas the 
generalized model and also the binary models do not find a significant effect. Since the 
restricted OProbit is clearly rejected, we conclude that income has no effect on positive 
well-being. Our preferred specification supports the asymmetry hypothesis for men: 
higher income decreases the probability of negative well-being (low SWB), but it does not 
affect the probability of positive well-being (high SWB). [Emphasis added.] For women 
the relationship between income and SWB is relatively weak. While the standard model 
finds small but significant effects for low and high SWB responses, the generalized 
model predicts a significant negative effect only on the probability of responses “5” and 
“6”. [Emphasis added.]  The gender difference might be explained by social norms that 
assign the role of primary income earner to men and therefore make income a relatively 
more important determinant of male well-being (see also Lalive and Stutzer 2004). 

 
Figure 6.1 shows graphically the values in Table 6.3.  The ordered probit and generalized ordered 
probit models do not seem to be giving different accounts.  The latter does seem to be 
exaggerating the outcome at choice 8, or perhaps suggesting a significant spike associated with 
that outcome, that needs some explanation.   The force of the model extension seems to be to 
produce a much more pronounced effect in the middle of the distribution.  The fact that the 
heightened impact is negative for y = 6 and positive for y = 8, followed for both genders by a 
sharp return to zero at y = 9, seems a bit counterintuitive. 
 The shortcoming of the ordered choice model that produces the single crossing result is 
the linearity of the single index formulation.  One can achieve the same result as above without 
resort to the generalized model simply by building the desired curvature into the index function 
itself.  In the figure below, we have re-estimated our original model based not on using “Health” 
coded 0 to 4, but the original Health Satisfaction variable, coded 0 to 10, the same as in Boes and 
Winkelmann’s study.  (They are subsets of the same data base.)  Income is included in linear, 
squared and cubed form, so that the marginal effect of income on any outcome is 
 
 δINCOME(j)  =  [f(μj-1 - β′x) – f(μj - β′x)] × 
  (βINCOME + 2βINCOME-SQ INCOME + 3βINCOME-CUBE INCOME2). 
 
We have evaluated this at the means of all the variables in the model.  The results are shown in 
Figure 6.2 along with the results from the original model.  While the effects still only cross zero 
once, the formulation does not force this – we will accept the data’s word for it that the partial 
effect of income does indeed (at least seem to) start negative and become positive, conforming to 
intuition that greater income is broadly associated with greater health satisfaction.  It is interesting 
as well that the linear index model produces essentially the same results. 
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Figure 6.1  Estimated Partial Effects in Boes and Winkelmann (2006b) Models  
 

  
Figure 6.2  Estimated Partial Effects for Linear and Nonlinear Index Functions 
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6.2.2  Choice Invariant Ratios of Partial Effects 
 
 Boes and Winkelmann (2006a) note that for any two continuous covariates, xik and xil 
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which is independent of the outcomes.  This is a feature of the assumed underlying utility 
function, the same as in any regression model.  Any single index function model that is of the 
form 
 Prob(yi = j|x) = Gj (β′xi),  
 
will have this feature; it is a consequence of the chain rule of the calculus.  It is unclear what the 
behavioral implications will be; that would be specific to the application.  Boes and Winkelmann 
(2006a) develop this theme in some detail.   In their application to subjective well being,  
 
 SWB  =  α  +  βINCOMEINCOME + βUNEMPLOYMENTUNEMPLOYED + ... + ε, 
 
the authors are interested in the notion of “compensating variation.”  For their purpose, “what is 
the income increase required to offset the negative well-being effect of unemployment?”  (They 
finesse the binary nature of the unemployment variable by considering the issue from the point of 
view of the population unemployment rate.)  By equating the total differential of Prob(y = j|x) to 
zero, they find that the interesting “tradeoff ratio” is the negative of the ratio of the partial effects, 
as shown above.  The implication of the standard model is that the tradeoff ratios are the same for 
all outcomes. 
 In the semiparametric models developed in Chapter 12, in which it is not possible to 
compute the CDF or the density – the semiparametric aspect of the model is to dispense with the 
assumption of a specific density – ratios of coefficients become important outputs of the 
estimation process.  Stewart (2003, 2005) develops this idea at some length. 
 The common feature of this and the extensions preceding it are that the functional form is 
built around the outcomes.  The single index models considered thus far do not provide sufficient 
curvature to accommodate what Anderson (1984) called the “dimensionality” of the problem.   
The greater fit achieved by the expanded model may have less to do with describing the 
underlying data generating process than with matching the fitted function to the pattern in the 
observed data.  The modifications of the ordered choice model described in the next several 
chapters also achieve some of this increased “fit” but do so within the structure of the original 
behavioral model. 
 
6.3  Methodological Issues 
 
 The various generalizations of the model suggested above do deal with the problems of 
parallel regressions and single crossing, but potentially create new ones.  The heterogeneity in the 
parameter vector is an artifact of the coding of the dependent variable, not a manifestation of 
underlying heterogeneity in the dependent variable induced by behavioral differences.  It is 
unclear what it means for the marginal utility parameters to be structured in this way.  To put a 
better face on it, we might better interpret this as a semiparametric approach to modeling what is 
apparently underlying heterogeneity, however, again, it is not clear why this should be manifest 
in parameter variation across the outcomes instead of across the individuals in the sample.  One 
would assume that the failure of the Brant test to support the model with parameter homogeneity 
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is, indeed, signalling some failure of the model.  But, it is unclear what that failure is.  The more 
difficult problem of this generalization of the model is that the probabilities in this model need 
not be positive, and there is no parametric restriction (other than the restrictive model one we 
started with) that could achieve this.  The restrictions would have to be functions of the data. (The 
problem is noted by Williams (2006), but dismissed as a minor issue.  Boes and Winkelmann 
suggest that the problem could be handled through a “nonlinear specification.”) 
 One might still argue that there are differences across the individuals at the “low” end vs. 
the “high” end of the distribution.  The excerpt from Boes and Winkelmann above would suggest 
this.  In fact, the single crossing aspect of the model accommodates this feature. Still, something 
more akin to a latent class structure would seem to apply under this interpretation.  In such a 
setting, one is likely to find that the high outcomes are more likely for some classes then others.  
The advantage of this approach would be that the class structure can be assumed to be exogenous.  
One is not forced to make the model structure endogenous to the observed outcomes. 
 
6.4  Specification Tests for Ordered Choice Models 
 
 The ordered probit model is a conventional model by the standards of maximum 
likelihood estimation.  Under the assumptions that the model is correctly specified and the data on 
yi and xi are “well behaved,” [see Greene (2008a, chapter 4)], the familiar asymptotics and testing 
procedures used in Section 5.6 apply.  That is, we can use the familiar apparatus, namely Wald, 
Lagrange multiplier and likelihood ratio procedures to test against null hypotheses that are nested 
within the essential parametric model, 
 
 Prob(yi = j | xi)  =  F(μj - β′xi)  -  F(μj-1 - β′xi)  > 0, j = 0,1,...,J.   (6.13) 
 
Since the asymptotic theory relies on central limit theorems, and not on the specific distribution 
of εi, the same devices will apply for logit and probit models.  Procedures for “exact” inference 
based specifically on the distribution assumed [see, e.g., Mehta and Patel (1995)] have not been 
developed for ordered choice models. 
 In this section, we consider “specification tests.”  That is, tests against the null 
specification of the model, for which often there is no clearly defined alternative.  For example, a 
test of the appropriateness of the assumption that εi is normally distributed is considered against 
the alternative that it is not.  Specification tests for the ordered choice model have been obtained 
essentially for two issues, functional form and distribution.  The functional form question relates 
to the assumption about the basic model specification, 
 
 Prob(yi > j | xi)  =  F(β′xi - μj), j = 0,...,J-1.     (6.14) 
 
The linearity of the index function is the main issue, though it will be clear shortly that, because 
the alternative hypothesis is not clearly stated, a test against this null might pick up a variety of 
other failures of the model assumption.  The distributional tests are specifically directed to the 
question of whether normality (or logisticality) is appropriate.  Once again, the alternative 
hypothesis is unclear.  For example, it seems reasonable to suggest that a test against normality 
might be picking up the influence of an omitted variable – perhaps one with a skewed 
distribution.  Recognizing the essential ambiguity of the nature of these tests, we can nonetheless 
usefully divide them into these two broad groupings. 
 We note in passing, a third type of specification test that has been considered.  Section 
9.3 discusses a counterpart to the Hausman (1978) test for random vs. fixed effects in a panel data 
model.  Since the test is considered in detail there, we will not reconsider it in this section. 
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6.4.1  Model Specifications – Missing Variables and Heteroscedasticity 
 
 A number of studies have considered the null specification of the ordered choice models 
against specific alternatives.  These tests involve three particular features of the model, missing 
variables, heteroscedasticity and the distribution of εi.  Murphy (1994, 1996), for example, 
examines the ordered logit model as a special case of the more general model 
 
 yi*  =  β′xi  +  γ′zi  +  σi εi, 

 yi    =  j  if  μj-1  <  yi*  <  μj, 
 
where  

 (1) zi is a set of omitted variables that are believed to be appropriate to be in the model;  

 (2) σi
2 = (π2/3)[exp(α′hi)]2;  

 (3) F(εi)  =  [1 + exp(-εi)]-δ.  (This is an asymmetric distribution.) 
 
Murphy’s extended ordered logit model encompasses the familiar ordered logit model; the null 
hypothesis of the restricted model would be γ = 0, α = 0, δ = 1.  In principle, the alternative 
model can be fit by full information maximum likelihood.  If so, then the tests of the three 
specifications can be done one at a time or jointly, using Wald or Likelihood ratio tests.  Murphy 
proposes Lagrange multiplier tests for the three hypotheses that involve only estimating the 
restricted, basic model.  We will consider the missing variables and heteroscedasticity tests here, 
and return to the distribution in the next section. 
 For the moment, we revert to the simpler distribution with δ = 1, and examine the LM test 
for missing variables and heteroscedasticity.  Without the special consideration of the shape of 
the distribution (δ), the testing procedures are the same for the probit and logit models, so they are 
given generically below.  In this context, it is worth noting, since zi is observed, not much is 
gained by using an LM test for missing variables; one can just as easily fit the full model and use 
the LM or Wald test of the null hypothesis that γ = 0.  The test for heteroscedasticity is likewise 
straightforward if one is able to fit the full model with this form of heteroscedasticity.  [The LM 
tests proposed by Murphy (1994, 1996) and Weiss (1997) actually apply to any form of 
heteroscedsticity such that σi

2 = σ0
2w(γ, hi) such that w(0,hi) = 1. [See Breusch and Pagan 

(1979).]  Harvey’s (1976) model has been the form usually used in the received applications. 
 Consider, first, an LM test for missing variables.  The log likelihood function is 
 
 logL  =  11 0

log ( ) ( )n J
ij j i i j i ii j

m F F −= =
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The LM test is carried out by estimating the model under the null hypothesis that γ = 0, then 
obtaining the statistic, 
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(We have reversed the usual order of γ and μ for convenience.)  The test statistic is used to test 
the hypothesis that the gradient is zero at the restricted parameter vector.  When the restricted 
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model is fit by maximum likelihood, the derivatives with respect to β and μ evaluated at the 
MLEs are numerically zero, so the sample estimator of the statistic is 
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The practical application of the test requires computation of the derivatives of the log likelihood 
with respect to γ, evaluated at γ = 0, and an estimator of the asymptotic covariance matrix, which 
we consider below.  For the derivatives,  
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It remains to obtain the appropriate asymptotic covariance matrix.  A convenient estimator is the 
sum of the outer products of the individual gradients, H-1 = [Σi gigi′]-1.  (However, Davidson and 
MacKinnon (1983, 1984), MacKinnon (1992), Godfrey (1988), and Weiss (1997) present 
evidence that the finite sample properties of the LM statistic are inferior to those when it is based 
on the second derivatives matrix or, when possible, the expected second derivatives matrix.) 
Precise expressions for the second derivatives matrix appear in various places, including 
McElvey and Zavoina (1975), Maddala (1983) and in (5.16) in Section 5.9.5.  Write the second 
derivatives matrix in the partitioned form 
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Then, from the form of the first derivatives, it can be seen that the LM statistic equals the first 
derivatives vector times the lower right submatrix of H-1.  Collecting terms and using the 
partitioned inverse form [Greene (2008a, result A-74)], this will be 
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 Weiss (1997) notes an interesting interpretation of the LM test for omitted variables.  The 
gradient, (∂logL/∂γ)|γ=0 given earlier can be written 
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That is, the test is based on the covariance between the (unobserved) disturbance and the omitted 
variables.  This is precisely the approach used in the linear regression model, where εi is 
estimated directly with the residual, ei.  In this case, the estimator is a “generalized residual.”  
[See Chesher and Irish (1987) and Gourieroux et al. (1987).] 
 An LM test for heteroscedasticity is essentially the same, save for the considerably more 
complicated first and second derivatives.  The model with heteroscedasticity (and no missing 
variables) has 
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The first derivative vector is 
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The remaining computations are analogous to those done for the missing variables test. Note that 
under the null hypothesis, σi = 1, which considerably simplifies computing (albeit not deriving) 
the first and second derivatives. 
 In many cases, test statistics such as the LM statistic are computable using “artificial 
regressions.”  For many of the common applications, we may write the LM statistic in the form 
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where θ is the full parameter vector being analyzed.  In this case, the LM statistic is equal to the 
explained sum of squares in the regression of the variable wi(θ) on the “pseudo-regressors,” gi(θ).  
[See MacKinnon (1992) and Orme (1990).]  Consider the narrower case in which gi(θ) is the full 
gradient, wi(θ) = 1, and the outer product of gradients (OPG) estimator of the covariance matrix is 
used to complete the statistic.  Then, the “dependent variable” in this regression is 1 for all i, the 
total uncentered sum of squares is n, and LM = nR2 in the artificial regression.  [See Davidson and 
MacKinnon (1984).]  With the extensive matrix manipulation routines in contemporary software 
such as Stata (Mata), SAS (Proc MATRIX), NLOGIT (Matrix), Gauss and Matlab, the appeal of 
the artificial regression interpretation is now largely confined to the analytics that precede 
computation. 
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6.4.2  Testing Against the Logistic and Normal Distributions 
 
 Murphy (1994, 1996) proposes an alternative distribution for ε in the ordered logit model,  
 

 
1( )

[1 exp( )]
F δε =

+ −ε
. 

 
This distribution of εi is asymmetric; called a Burr type II distribution.  This has been labeled the 
“scobit model” (skewed logit) elsewhere and has been suggested as an alternative to the normal 
and logistic distributions for binary choice models.  [See Murphy (1994), Smith (1989), Lechner   
(1991), Nagler (1994) and Stata (2008) or Econometric Software (2007).]  The density is 
 

 
exp( )( )

1 exp( ) [1 exp( )]
f δ

⎛ ⎞−ε δ
ε = ⎜ ⎟+ −ε + −ε⎝ ⎠

. 

 
For δ = 1, the model reverts to the familiar logit form.  Since this is fully parameterized, the 
alternative model can be fit directly and a Wald or likelihood ratio test can be used to test the null 
hypothesis that δ = 1.  Murphy proposes a Lagrange multiplier test that is based entirely on 
computations from the ordered logit model (δ = 1). 
 The scobit model has not been widely used in the ordered choice literature; tests about 
the distribution generally revolve around alternatives to the normal.  Tests of the normality 
assumption build on the approach developed by Bera, Jarque and Lee (1984) for limited 
dependent variable models.  A parametric alternative to the normal distribution is the Pearson 
family of distributions, 
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The relationship between the moments of the random variable and the three constants is 
 
 c0 = (4τ4 – 3τ3

2) / (10τ4 – 12τ3
2 – 18), 

 c1 = τ3 (τ4 + 3) / (10τ4 – 12τ3
2 – 18), 

 c2 = (2τ4 – 3τ3
2 – 6) / (10τ4 – 12τ3

2 – 18). 
 
[See Weiss (1997).]  (We are avoiding a potentially confusing conflict in notation by using τ 
rather than the conventional μ to denote the moments of the distribution.)  For the standard 
normal distribution, τ3 = 0 and τ4= 3. It follows that c0 = 1, c1= 0 and c2 = 0.  (It also follows that 
the functional form is that of the standard normal.)  Bera et al. (1984) developed an LM test for 
this restriction for the censored regression model.  The corresponding result for the ordered probit 
model is given in Johnson (1996), Glewwe (1997) and Weiss (1997).   
 The test is based on the generalized residuals.  For the normal distribution, we are tesing 
against the hypothesis that the third and fourth moments of ε are τ3 = 0 and τ4 = 3.  As before, we 
cannot observe ε, so the test is based on the generalized residuals, 
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The full derivative vector including c1 and c2 evaluated at c1 = c2= 0 is 
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where aj is a (J-1)×1 vector that has a 1 in position j and a -1 in position j -1 save for j = 1, when 
the j-1 position is absent.  To complete the computation of the test statistic, an estimator of the 
covariance matrix of the gradient is needed.  Notwithstanding its less than ideal finite sample 
properties, the usual choice is the outer products matrix, 
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Using the maximum likelihood estimates from the ordered probit model, the first two parts of the 
derivative vector will be numerically zero.  This, the final result for the LM statistic is 
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where 

1 2

1
,c c

−V  denotes the southeast 2×2 submatrix of V-1. 
 Glewwe (1997) discusses other methods of testing for normality (actually symmetry, τ3= 
0, and mesokurtosis, τ4= 3) without a full parameterization of the alternative hypothesis, by using 
conditional moment tests.  Newey (1985), Tauchen (1985) and Pagan and Vella (1989) provide 
details.  As Glewwe shows, the LM test is essentially the same test.  The use of the generalized 
residuals above suggests why this should be expected.  Even though the LM test is structured 
around the Pearson alternative, in the end, it is a test of the values of the third and moments.  The 
use of conditional moment tests is also pursued by Mora and Moro-Egido (2008).  For J of the 
J+1 outcomes (because one is redundant), the model implies a set of moment conditions,  
 
 E[mij – Pij(θ)] = 0, 
 
based on the additional assumptions of the model that produces the precise form of the 
probabilities.  The authors examine the effect of different choices of the estimator of the 
covariance matrix for the Wald tests, and different formulations of the density of ε. 
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6.4.3   Unspecified Alternatives 
 
 The Brant (1990) test developed in Section 6.1.2 is ostensibly a test against the null 
hypothesis,  
 
 H0: β0 = β1 = ... βJ-1, 
 
in the model  
 
 Prob(yi > j | xi)  =  F(βj′xi - μj), j = 0,...,J-1. 
 
The apparently natural alternative hypothesis is the generalized ordered choice model (1).  
However, that model is not an internally consistent model for the probabilities associated with the 
outcomes.  The presumed alternative does not prevent negative probabilities.  One might 
conclude that the alternative is the “generalized” model when all x’s are such that the 
probabilities are positive – that is, in a certain range of x.  However, that range also depends on β 
and μ.  So, the suggestion amounts to concluding that the model is internally consistent when it is 
internally consistent.  There is no other way to delineate when the model is internally consistent, 
other than it is when it is.  On the other hand, it is persuasive that that Brant test, when it rejects 
the “null” hypothesis, is picking up some failure of the assumptions of the model.  We have 
examined a variety of generalizations of the ordered choice model; it seems reasonable to 
conclude that the Brant test might well be finding any of them as an alternative to the base case.  
Thus, the Brant test might reasonably be considered in the same light as other conditional 
moment tests.  That is, under the null hypothesis, certain features should be observed (within 
sampling variability).  The alternative is, essentially, “not the null.” 
 Butler and Chatterjee (1995, 1997) have reconsidered estimation of the ordered probit 
model using the generalized method of moments.  The null model implies a set of orthogonality 
conditions based on the definition of the model, 
 
 E[mij  - (F(μj - β′xi)  -  F(μj-1 - β′xi))]  =  0,   
 
where mij  =  1 if yi = j and 0 otherwise.  This provides a set of orthogonality conditions, 
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In principle, this implies (J+1)K moment conditions, but one, the last, is redundant.   The implied 
sample moments are, then, 
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The GMM estimator is then obtained by two steps: (1) Obtain a consistent estimator of β and μ, 
say the MLE. then compute an estimator of Asy.Var[ ( , )g β μ ], such as 
 



Modeling Ordered Choices 

 162  

 
1

1 1 ( , ) ( , )N
i iin n =

⎡ ⎤′= ⎢ ⎥⎣ ⎦
∑V g gβ μ β μ  

 
(2) minimize the GMM criterion 
 
 nq  =  N ( , )g β μ ′ V-1 ( , )g β μ . 
 
The minimized value has a limiting chi squared distribution with degrees of freedom equal to the 
number of overidentifying restrictions. In this case, the number of moment conditions is J×K and 
the number of parameters is K+J-1.  The number of overidentifying restrictions is (J-1)(K-1).  
The authors go on to explore the corresponding computations for a bivariate ordered probit 
model. This proliferates moment conditions, as there is a K-order condition for each pairing of yi1 
and yi2 – though the paucity of observations in some cells might suggest dropping some of the 
moments.  In all cases, it is uncertain what the alternative hypothesis should be if nq is 
significant.  [It is not in the application studied in their paper – see Butler and Chatterjee (1995).]  
Two suggestions are exogeneity of the independent variabilities and, of course, the distributional 
assumption. 
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7 
 

Accommodating Individual Heterogeneity 
 
The presence or absence of individual heterogeneity not contained explicitly in the model is likely 
to be the most fundamental difference between the bioassay and social science applications of 
ordered choice models.  In the analysis of a population of fruit flies or aphids, the analyst is 
probably safe in assuming that the population is homogeneous enough to treat with a zero mean, 
homoscedastic disturbance in the latent tolerance equation and single parameter, and 
homogeneous thresholds in the observation mechanism. The analysis of a population of 
congressional representatives or heads of households responding to a survey about health 
satisfaction or subjective well being will be far from that situation.  Consider, as well, the 
fundamental difference in the underlying equation.  For a simple insecticide experiment, the 
implied underlying regression will be 
 
 Toleranceir*  =  α + β Treatmentir  +   εir, 
 
where i indicates a group (treatment level) and r indicates a member of that group.  The entire 
“behavioral” aspect of the model is embedded in the random term, the “tolerance” to the 
treatment.  The ordered “choice” is 
 
 yir  =   0  if  (Toleranceir – α - β Treatmentir)  <  α1  (dead),  

  1  if (α1 <  Toleranceir  - α - β Treatmentir  <  α2)  (moribund), 

  2  if (α2 <  Toleranceir  - α - β Treatmentir)  (alive). 
 
It seems safe to assume that the individual observations are sufficiently homogeneous in 
dimensions that one could hope to measure that the simple, canonical model above is an adequate 
description of the outcome variable that we will ultimately observe.  In contrast, for the subjective 
well being (SWB) application, the right hand side of the behavioral equation will include 
variables such as Income, Education, Marital Status, Children, Working Status, Health, and a 
host of other measurable and unmeasurable, and measured and unmeasured variables.  In 
individual level behavioral models, such as 
 
 SWBit  =  β′xit  +  εit, 
 
the relevant question is whether a zero mean, homoscedastic εit, can be expected to satisfactorily 
accommodate the likely amount of heterogeneity in the underlying data, and whether it is 
reasonable to assume that the same thresholds should aply to each individual. 
 Beginning with Terza (1985), analysts have questioned the adequacy of the ordered 
choice model from this perspective.  As shown below, many of the proposed extensions of the 
model, such as heteroscedasticity, parameter heterogeneity, etc., parallel developments in other 
modeling contexts (such as binary choice modeling and modeling counts such as number of 
doctor visits or hospital visits).  The regression based ordered choice model analyzed here does 
have a unique feature, that the thresholds are part of the behavioral specification.  This aspect of 
the specifiction has been considered as well. 
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7.1  Threshold Models – The Generalized Ordered Probit Model (2) 
 
 The model analyzed thus far assumes that the thresholds μj are the same for every 
individual in the sample.  Terza (1985), Pudney and Shields (2000), Boes and Winkelmann 
(2006a), Greene, Harris, Hollingsworth and Maitra (2008) and Greene and Hensher (2009), all 
present cases that suggest individual variation in the set of thresholds is a degree of heterogeneity 
that is likely to be present in the data, but is not accommodated in the model.  A precursor to this 
literature is Farewell (1982), who proposes an ordered Weibull model, 
 
 Prob(yi > j | xi)  =  exp(-exp(θij – β′xi)). 
 
To accommodate the possibility of latent heterogeneity, he suggests 
 
 θij  =  θj*  + ηi, 
 
with θi0 = 0, so that the spacing between thresholds is preserved, but the location of the set of 
thresholds varies across individuals.  The extreme value functional form is unique.  However, the 
shift of the thresholds points toward the later generalizations of the model, beginning with Terza 
(1985). 
 Terza’s (1985) generalization of the model is equivalent to 
 
 μij  =  μj  +  δ′zi.         (7.1) 
 
This is the special case of the generalized model  used in his application – his fully general case 
allows δ to differ across outcomes.  The model is reformulated later to assume that the zi in the 
equation for the thresholds is the same as the xi in the regression. For the moment, it is convenient 
to remove the constant term from xi. In Terza’s application, in which there were three outcomes,  
 
 yi*  =    α + β′xi  +  εi, 
and 

 yi    =   0  if yi*  <  0, 

  1  if  0  <  yi*  <  μ  +  δ′xi,      (7.2) 

  2  if  yi* >  μ +  δ′xi. 
 
There is an ambiguity in the model as specified.  In principle, the model for three outcomes has 
two thresholds, μ0 and μ1.  It is always necessary to normalize the first, μ0= 0.  Therefore, the 
model implies the following probabilities: 

(7.3) 
 Prob(y = 0|x)  =  Φ(-α - β′x)    =  1 - Φ(α0 + β0′x), 

 Prob(y = 1|x)  =  Φ(μ  +  δ′xi - α - β′x) - Φ(-α - β′x)   =  Φ(α0 + β0′x)  - Φ(α1 + β1′x) , 

 Prob(y = 2|x)  =  Φ(α + β′x - μ - δ′x)   =  Φ(α1 + β1′x), 

where α0 = α, β0 = β, α1 = α - μ, β1 = (β - δ).  This is precisely Williams’s (2006) “Generalized 
Ordered Probit Model.”  That is, at this juncture, Terza’s heterogeneous thresholds model and the 
generalized ordered probit model are indistinguishable.  For direct applications of Terza’s 
approach, see, e.g., Kerkhofs and Lindeboom (1995), Groot and van den Brink (1999) and 
Lindeboom and van Doorslayer (2003). 
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 The result carries over generically to the generalized ordered logit and probit models 
examined earlier.  The motivation in these earlier instances, was to work around the parallel 
regressions assumption.  The model specified is 
 
 Prob(yi = j | xi) = F(μj – βj′xi) – F(μj-1 - βj-1′xi).     (7.4)) 
 
Ostensibly, the generalization is to allow a different parameter vector for each outcome.  Boes 
and Winkelmann (2006a, 2006b) proposed the same model, motivated by the single crossing 
feature of the restricted model.  But, when the regressor vector is the same in each cell, the 
implied “generalized threshold model”  
 
 μij  =  μj  +  γj′xi.        (7.5) 
 
is also indistinguishable from the model with an outcome specific parameter vector;  
 
 βj  =   γj - β.         (7.6) 
 
 We can deduce a comparison of the two models from Terza’s results.  Terza reports 
results for a model with five regressors, x = (CFIE,LTIA,NIIA,TA,CVIA).  The numerical results 
in Table 7.1 are reported in the article (reported estimated standard errors are omitted): 
 
 Table 7.1  Estimated Generalized Ordered Probit Models from Terza (1985) 
      Ordered Probit   Generalized   Sample 
       Ordered Probit Mean 
      β     β  δ  
 Constant -2.779  -17.862   -28.617  1.000 
 x1   0.604    1.305      2.831  3.069 
 x2   3.642   17.788     11.007  0.447 
 x3  16.079  124.518   167.130  0.056 
 x4  0.0012   0.0007     0.0009   1490.762 
 x5   2.865    3.893     10.282  0.176 
 [μ]  [1.955]   [2.419] 

 
The estimated value of μ is not reported, but we should be able to approximate it.  The sample 
consists of 222 observations in which the sample counts are 39, 100, 83, so the proportions are P0 
= 0.176, P1 = 0.450, P2 = 0.374, respectively.  For the middle cell, at least approximately, at the 
means of the data, we should have,  
 
 1 [ ( )] [ ( )]P a a′ ′≈ Φ μ − + − Φ − +b x b x . 
 
The index function evaluated at the means is approximately 2.026.  Using 0.45 for P1 and the 
inverse normal function, we obtain a value of μ of approximately 1.955.  The log likelihood 
values are not reported, so it is not possible to compare the two models directly.  In the 
generalized model, the index function evaluated at the means is 2.796.  Note that the coefficients 
have changed wildly; the second has increased by a factor of 4 and the third by a factor of 10.  
However, when we compute these at the sample means of the data, we find the index function is 
2.796 compared to 2.026 previously, and the implied threshold value is 2.419 compared to 1.955.  
Thus, the changes in the model are fairly moderate.  The three predicted probabilities evaluated at 
the means are (.021382,.450315,.528302) for the first model, and (.002587,.340501,.646909) for 
the second.  (The model would not impose that these mimic the sample, even at the means, as it 
would in a multinomial (unordered) logit model, so these differences from the sample proportions 
are to be expected.)  The very large swings in the parameter estimates attest to the need to use 
partial effects to scale them for comparisons across models. 
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 Terza notes (on p. 6) that the model formulation does not impose an ordering on the 
threshold coefficients.  He suggests an inequality constrained maximization of the log likelihood, 
which is likely to be extremely difficult if there are many variables in x.  As a “less rigorous but 
apparently effective remedy,” he proposes to drop from the model variables in the threshold 
equations that are insignificant in the initial (unconstrained) model. 
 The analysis of this model continues with Pudney and Shields’s (2000) “Generalized 
Ordered Probit Model,” [also “ Generalized Model (2)”] whose motivation, like Terza’s was to 
accommodate observable individual heterogeneity in the threshold parameters as well as in the 
mean of the regression.  (Pudney and Shields studied an example in the context of job promotion 
in which the steps on the promotion ladder for nurses are somewhat individual specific.   In their 
setting, in contrast to Terza’s, at least some of the variables in the threshold equations are 
explicitly different from those in the regression.    Their model (using primarily their notation and 
their equation numbering in brackets) is a latent regression for career potential 
 
 yi*  =  xiα + εi,     [1] 
 
where xi is a vector of personal attributes and εi|xi ~ N[0,1].  Waiting time until promotion, ti, is 
affected by career interruptions and potential, yi*.  Thus, for the observed rank, 
 
 yi = g if  Cg-1(yi*,qi) <  ti  < Cg(yi*,qi)  [2] 
 
where qi is a set of variables that shift the promotion thresholds.  Cg(yi*,qi) are the required 
waiting times with C0 = 0 and Cm (the top level) = +∞.  Since (it is argued) waiting time is 
monotonic in yi*,  
 
 yi = g if  Cg-1(ti,qi) <  yi*  < Cg(ti,qi)  [3] 
 
“The quantities are a nondecreasing sequence of thresholds from which the grade probabilities 
can be constructed as follows: 
 
 Pr(yi = g|xi,qi,ti)  =  Φ(Cg – xiα) – Φ(Cg-1 – xiα).  [4] 
 
(p. 371).  Note that “nondecreasing” above must actually be “increasing” in order to prevent 
attaching zero probabilities to nonnull events.  They then conclude, “observe from equation (4) 
that, if a variable influences both the promotion thresholds and latent potential yi*, then these two 
influences cannot, in general, be separated.”  But, this is not true in general; it is true when both  
yi* and Cg are linear functions of ti and qi.  We pursue this in the next section.  The effect of 
waiting time, ti is entered into the model by adding linear and quadratic terms in ψ(ti) = 
min(1,1/ti). 
 The authors then construct the generalized model and a test of “threshold constancy” by 
redefining qi to be a constant term and those variables that are unique to the threshold model in 
(2).  Variables that are common to both the original qi and xi are moved in the specification to the 
regression equation, and the model is reparameterized as 
 
 Pr(yi = g|xi,qi,ti)  =  Φ[qiβg  -  xi(α + δg)] -  Φ[qiβg-1  -  xi(α + δg-1)].  (7.7) 
 
The resulting equation is now a hybrid of Terza’s and Williams’s generalized models, with 
outcome varying parameters in both thresholds and in the regression. [See (7.6) earlier.]  The test 
of threshold constancy is then carried out simply by testing (using an LM test) the null hypothesis 
that δg = 0 for all g.  (A normalization, δ0 = δm = 0,  is imposed at the outset.) 



Modeling Ordered Choices 

 167  

 Pudney and Shields’ treatment underscores the mathematical equivalence of the varying 
thresholds model and the “nonparallel regressions” model.   Two features of their model to be 
noted are: First, the probabilities in their revised log likelihood [their equation (8)], are not 
constrained to be positive.  This is obvious from (7.7)  Second, the thresholds, qiβg, are not 
constrained to be ordered.  No restriction on βg will ensure that qiβg > qiβg-1 for all data vectors qi.    
 The equivalence of the Terza and Williams models is only a mathematical means to the 
end of estimation of the model. The Pudney and Shields model, itself, has constant parameters in 
the regression model and outcome varying parameters in the thresholds.  They do note, however, 
(using a more generic notation) a deeper problem of identification).  However it is originally 
formulated, the model implies that  
 
 Prob[yi <  j | xi,zi]  =  F(μj + δ′zi - β′xi) = F[μj - (δ*′zi + β′xi)], δ* = -δ.  (7.8) 
 
In their specification, they had a well defined distinction between the variables, zi that should 
appear only in the thresholds and xi that should appear in the regression.  More generally, it is less 
than obvious whether the variables zi are actually in the threshold or in the mean of the 
regression. Either interpretation is consistent with the estimable model.   Pudney and Shields 
argue that the distinction is of no substantive consequence for their analysis.  The consequence is 
at the theoretical end, not in the implementation.  But, this entire development is necessitated by 
the linear specification of the thresholds.  Absent that, most of the preceding construction is of 
limited relevance.  A more general nonlinear model is discussed in the next section.  
 
7.2  Nonlinear Specifications – A Hierarchical Ordered Probit (HOPIT) Model 
 
 The linearity of the regression specification has presented two significant obstacles to 
building the model. It has rendered indistinguishable the heterogeneous thresholds case and the 
“generalized” model that has heterogeneous parameter vectors.  Second, it has produced a model 
that will be internally inconsistent at least for some data vectors; that is, it cannot ensure that the 
probabilities are always positive.  One might consider modifying the thresholds directly.  Greene 
(2007a), Eluru, Bhat and Hensher (2008) and Greene and Hensher (2009) propose a “Hierarchical 
Ordered Probit” or HOPIT Model, 
 
 yi*  =  β′xi  +  εi, 

 yi    =  j  if  μi,j-1  < yi* <  μij, 

 μ0   = 0, 

 μi,j    =  exp(λj  +  γ′zi)   [Case 1],      (7.9) 

or μi,j    =  exp(λj  +  γj′zi) [Case 2]. 
 
[The choice of the term “Hierarchical” model might be unfortunate, as it conflicts with a large 
literature on random parameter models such as the one discussed in Section 8.1, which is a 
“Hierarchical” model in the sense used in that literature.  See, e.g., Raudenbush and Bryk (2002).] 
Note that case 2 is the Terza(1985) and Pudney and Shields (2000) model with the exponential 
rather than linear function for the thresholds.  It is, however, strongly distinct from Williams’s 
model.  This formulation addresses two problems; (i) the thresholds are mathematically distinct 
from the regression; (ii) by this construction, the threshold parameters must be positive.  With a 
slight modification, to be pursued later, the ordering of the thresholds can also be assured.  For 
the first case,  
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 μi,j  =  [exp(λ1) + exp(λ2) + ... + exp(λj)] × exp(γ′zi),    (7.10) 
 
and, for the second, 
 
 μi,j  =  μi,j-1  +  exp(λj  +  γj′zi).       (7.11) 
 
In practical terms, the model can now be fit with the constraint that all predicted probabilities are 
greater than zero.  This is a numerical solution to the problem of ordering the thresholds for all 
data vectors. 
 This extension of the ordered choice model shows a case of identification through 
functional form.  The model parameters [λj,γj,β] would not be separately identified if all functions 
were linear. The contemporary literature views, with some skepticism, models that are 
unidentified without a change in functional form, such as shown above.  [See, e.g., King et al. 
(2004, p. 299).]  On the other hand, while this is true, it is also true that the underlying theory of 
the model does not insist on linearity of the thresholds (or the regression model, for that matter), 
but it does insist on the ordering of the thresholds, and one might equally criticize the original 
model for being unidentified because the model builder insists on a linear form.  That is, there is 
no obvious reason that the threshold parameters must be linear functions of the variables, or that 
linearity enjoys some claim to first precedence in the regression function.  Of course, this is a 
methodological issue that cannot be resolved here.  [In a similar connection, much of the 
discussion in Cameron and Heckman (1998), Carniero, Hansen and Heckman (2003), Heckman 
and Navarro (2005, 2007) and Cunha, Heckman and Navarro (2007) focuses on questions of 
identification in ordered choice models with random thresholds of the form cs(Qs,ηs) = cs(Qs) + ηs 
where ηs is the random term (their notation).  The reason given at the outset that the thresholds 
must be additive in the random term is to “preserve the separability of the classical ordered choice 
model.” There are cases cited by the authors, such as the role of the tax brackets in a model of 
labor supply, that might mandate separability.  But, as a general rule, this seems like an 
unnecessary straightjacket.  The nonlinearity of the preceding specification, or others that might 
resemble it, provides the benefit of a simple way to achieve other fundamental results listed by 
the same authors, e.g., coherency of the model (all positive probabilities). 
 The partial effects in this model are more involved than have been considered thus far.  
The Case 2 model implies 
 
 Prob(y = j|x,z)  =  F(μj - β′x) - F(μj-1 - β′x).  
Thus, 
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   (7.12) 

 
(An obvious restriction is imposed if Case 1 applies.)  If a variable appears in both x and z, then 
the two effects are added. It is clear on inspection, that this formulation has also circumvented the 
parallel regressions restriction, the single crossing feature and, with separate δ vectors, the 
restriction that ratios of partial effects be the same for all outcomes.  We conclude that at least as 
regards the question of functional form, the assumption of linearity has imposed a heavy cost on 
the construction of the model. 
 Numerically, the formulation shares the problem that its predecessors have. Without  
constraints or the modification suggested earlier, it does not impose the ordering of the threshold 
parameters.  Thus, in the general form, unordered thresholds remain a possibility.  We have found 
that the problem seems not to arise very often.  As before, starting the iterations at the basic 
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ordered probit or logit model estimates begins the process with a model in which all probabilities 
are positive.  (At the starting values, λj = log μj from the simple model.)  As the iterations move 
the parameters away from the starting values, estimates that move the probabilities toward the 
proscribed regions begin to impose a heavy penalty on the log likelihood.  As before, this appears 
generally to characterize the optimization process – it is, of course, not a prescription for how to 
carry it out.  We do note, it places a large value on a search method with a sensitive line search – 
a crude method such as Newton’s method (which uses none) is likely to fail early on. 
 Table 7.2 presents estimates of the ordered probit models using the same formulation as 
we used earlier.  We have modeled the thresholds in terms of INCOME, AGE and HANDDUM, 
the latter being a dummy variable that indicates whether the individual reports a physical 
handicap.  The table at the top of the listing shows that each succesive generalization of the model 
brings a significant improvement in the log likelihood – the hypothesis of the restrictions of the 
preceding model is decisively rejected in all three cases (even if the significance level is adjusted 
for the sequential testing procedure).  This seems consistent with the results found earlier for the 
Generalized (1) model.  There is also a sizable increase (50%) in the Pseudo-R2, which we will 
explore in Table 7.4.  The estimated coefficients in the index function seem to be relatively 
stable, save for the coefficient on INCOME, which increases substantially as the restrictions of 
the model are relaxed.  This is consistent with the findings reported by Boes and Winkelmann 
(2006a).  It is a bit less surprising when we recall that our data are drawn from the same data 
base, the GSOEP, as theirs. We may well be examining some of the same individuals. 
 Table 7.3 displays the partial effects for the three estimated models.  Partial effects for 
the two binary variables that are marked with “*” are computed by discrete changes in the 
probabilities with other variables held at their means.  The effects are strikingly stable in spite of 
the changes in the coefficients from one model to the next.  Table 7.4 suggests the payoff to the 
generalization.  The prediction is the most probable cell computed at the individual observation. 
The counts of correct predictions for each model are shown in boldface/underline in the table.  
The effect of the generalization as one moves from left to right is to predict fewer values with y = 
2 correctly, but more with y = 1, and the difference is more than compensated.  This would not 
predict the increase in the pseudo R2 seen in Table 7.2, but it is consistent with it. 
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Table 7.2   Estimated Hierarchical Ordered Probit Models 
+---------------------------------------------------------------------------------+ 
|                           No Model  Ordered Probit HO-Case 1 HO-Case 2          | 
| Log likelihood function  -5875.096   -5752.985    -5690.804  -5665.088          | 
| Degrees of Freedom                           5            3          6          | 
| Chi squared test of restr.       0     244.222      124.362     51.342          | 
| Info. Criterion: AIC       2.62284     2.57059      2.54419    2.53540          | 
| McFadden Pseudo R-squared  0.00000    .0207847     .0313684   .0357455          | 
+--------+-------------------------------+------------------------------+---------+ 
|        |  HOPIT Case 1 Model           |  HOPIT Case 2 Model          |Ordered  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |Probit   | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  2.0300  .1591    12.760 .0000| 1.9365  .1869   10.363  .0000|  1.9788 | 
|AGE     |  -.0218  .0025    -8.570 .0000| -.0212  .0031   -6.795  .0000|  -.0181 | 
|EDUC    |   .0344  .0074     4.656 .0000|  .0340  .0074    4.599  .0000|   .0356 | 
|INCOME  |   .7349  .1501     4.897 .0000|  .9432  .1734    5.440  .0000|   .2587 | 
|MARRIED |  -.0435  .0408    -1.066 .2863| -.0458  .0410   -1.117  .2640|  -.0310 | 
|KIDS    |   .0545  .0389     1.402 .1608|  .0509  .0390    1.306  .1915|   .0606 | 
+--------+-------------------------------+------------------------------+---------+ 
|        | μ(j)=exp[λ(j)+δ*z]             |  μ(j)=exp[λ(j)+γ(j)*z]       |         | 
|AGE     |  -.0039  .0011    -3.602 .0003| -.0057  .0025   -2.287  .0222|         | 
|INCOME  |   .2830  .0572     4.952 .0000|  .5487  .1222    4.492  .0000|         | 
|HANDDUM |   .3248  .0235    13.817 .0000|  .5058  .0421   12.007  .0000|         | 
|AGE     |                               | -.0022  .0013   -1.649  .0992|         | 
|INCOME  |                               |  .3152  .0685    4.599  .0000|         | 
|HANDDUM |                               |  .2578  .0350    7.366  .0000|         | 
|AGE     |                               | -.0045  .0012   -3.817  .0001|         | 
|INCOME  |                               |  .3353  .0573    5.851  .0000|         | 
|HANDDUM |                               |  .1805  .0407    4.440  .0000|         | 
+--------+-------------------------------+------------------------------+---------+ 
|        | λ(j) in μ(j)=exp(λ(j)+γ′z)     |λ(j) in μ(j)=exp(λ(j)+γ(j)’*z  |         | 
|   λ (1)|   .1950  .0619     3.151 .0016|  .1512  .1296    1.167  .2432|  1.1484 | 
|   λ (2)|   .9905  .0551    17.989 .0000|  .9100  .0678   13.431  .0000|  2.5478 | 
|   λ (3)|  1.1723  .0542    21.634 .0000| 1.1837  .0589   20.098  .0000|  3.0564 | 
+--------+-------------------------------+------------------------------+---------+ 
 
 
Table 7.3.  Estimated Partial Effects for Ordered Probit Models 
+---------------------------------------------------+ 
|Variable     Y=00    Y=01    Y=02    Y=03    Y=04  | 
+---------------------------------------------------+ 
|Ordered Probit Model                               | 
|AGE         .0017   .0045  -.0012  -.0022  -.0028  | 
|EDUC       -.0034  -.0089   .0024   .0042   .0056  | 
|INCOME     -.0248  -.0644   .0177   .0309   .0406  | 
|*MARRIED    .0029   .0077  -.0020  -.0037  -.0049  | 
|*KIDS      -.0057  -.0151   .0040   .0072   .0096  | 
+---------------------------------------------------+ 
|Hierarchical Ordered Probit Model: Case 1          | 
|AGE         .0020   .0055  -.0016  -.0026  -.0032  | 
|EDUC       -.0031  -.0087   .0026   .0042   .0051  | 
|INCOME     -.0669  -.1860   .0548   .0888   .1093  | 
|*MARRIED    .0039   .0110  -.0030  -.0053  -.0066  | 
|*KIDS      -.0049  -.0138   .0039   .0066   .0082  | 
+---------------------------------------------------+ 
|Hierarchical Ordered Probit Model: Case 1          | 
|AGE         .0019   .0053  -.0015  -.0024  -.0034  | 
|EDUC       -.0031  -.0085   .0024   .0038   .0054  | 
|INCOME     -.0861  -.2363   .0666   .1065   .1493  | 
|*MARRIED    .0041   .0115  -.0030  -.0052  -.0074  | 
|*KIDS      -.0046  -.0127   .0035   .0058   .0081  | 
+---------------------------------------------------+ 
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Table 7.4  Predicted Outcomes from Ordered Probit Models 
+-------------------------------------------------------------------------+ 
|   Cross tabulation of predictions. Row is actual, column is predicted.  | 
|   Predicted Outcome is the one with the largest probability.            | 
+-------+-------+--------+------------+-----------------+--------+--------+ 
|     Model     |0  1  1 |0    1   2  |  0     1     2  |0  1  2 |0  1  2 | 
| Actual|Row Sum|  y=0   |    y=1     |       y=2       |  y=3   |  y=4   | 
+-------+-------+--------+------------+-----------------+--------+--------+ 
|      0|    230|0  0  0 |0   60  107 | 230   170   123 |0  0  0 |0  0  0 | 
|      1|   1113|0  0  0 |0  112  215 |1113  1001   898 |0  0  0 |0  0  0 | 
|      2|   2226|0  0  0 |0   84  149 |2226  2142  2077 |0  0  0 |0  0  0 | 
|      3|    500|0  0  0 |0    2   10 | 500   498   490 |0  0  0 |0  0  0 | 
|      4|    414|0  0  0 |0    5   10 | 414   409   404 |0  0  0 |0  0  0 | 
+-------+-------+--------+------------+-----------------+--------+--------+ 
|Col Sum|   4483|0  0  0 |0  263  491 |4483  4220  3992 |0  0  0 |0  0  0 | 
+-------+-------+--------+------------+-----------------+--------+--------+ 

 
7.3  Thresholds and Heterogeneity – Anchoring Vignettes 
 
 The introduction of observed heterogeneity into the threshold parameters attempts to deal 
with a fundamental assumption of the ordered choice model. Save for the effect of observable 
heterogeneity just considered, survey respondents view the survey questions essentially the same 
way. King, Murray, Salomon and Tandon (KMST, 2004) identify two very basic features of 
survey data that will make this problematic; first, they often measure concepts that are definable 
only with reference to examples, such as freedom, health, satisfaction, etc.  Second, individuals 
do, in fact, often understand survey questions very differently, particularly with respect to 
answers at the extremes.  A widely used term for this interpersonal incomparability is differential 
item functioning (DIF).  Kapteyn, Smith and Van Soest (KSV, 2007) [and Van Soest, Delaney, 
Harmon, Kapteyn and Smith (VDHKS, 2007)] suggest the results in Figure 7.1 to describe the 
implications of DIF.  The figure shows the distribution of Health (or drinking behavior in the 
latter study) in two hypothetical countries.  The density for country A is to the left of that for 
country B implying that on average, those in country A are less healthy than those in country B.  
But, the people in the two countries use very different response scales if asked to report their 
health on a five point scale as shown.  In the figure, those in country A have a much more 
positive view of a given health status than those in country B.  A person in country A with health 
status indicated by the dotted line would  report that they are in “Very Good” health while a 
person in country B with the same health status would report only “Fair.”    A simple frequency 
of the distribution of self-assessments of health status in the two countries would suggest that 
people in country A are much healthier than those in country B when, in fact, the opposite is true.  
Correcting for the influences of DIF in such a situation would be essential to obtaining a 
meaningful comparison of the two countries.  The impact of DIF is an accepted feature of the 
model within a population, but could be strongly distortionary when comparing very disparate 
groups, such as across countries, as in KMST (2004, political groups), Murray, Tandon, Mathers 
and Sudana (2002, health outcomes), Tandon et al. (2004), KSV (2007, work disability), Sirven, 
Santos-Egglmann and Spagnoli (2008) and Gupta, Kristensena and Possoli (2008, health), all of 
whom used the ordered probit model to make cross group comparisons.  Other recent applications 
include Angelina et al. (2008, life satisfaction), Kristensen and Johansson (2008) and Bago d’Uva 
et al. (2008). 
 KMST proposed the use of anchoring vignettes to resolve this difference in perceptions 
across groups.  The essential approach is to use a series of examples, the same for all respondents, 
to estimate each respondent’s DIF and correct for it.  [The idea of using vignettes to anchor 
perceptions in survey questions is not itself new; KMST cite a number of earlier uses. The 
innovation here is their method for incorporating the approach in a formal model for the ordered 
choices.]  Consider their example.  The self assessment is of political efficacy;  “How much say 
do you have in getting the government to address issues that interest you?”   A set of  
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Figure 7.1  Differential Item Functioning in Ordered Choices 
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ordinal response categories is offered: (1) None, (2) Little, (3) Some, (4) A lot, (5) Unlimited.  A 
set of vignettes, is posed with the same responses: 
 

1.  [Allison] lacks clean drinking water.  She and her neighbors are supporting 
an opposition candidate in the forthcoming elections that has promised to 
address the issue. It appears that so many people in her area feel the same 
way that the opposition candidate will defeat the incumbent representative. 

2.   [Imelda] lacks clean drinking water.  She and her neighbors are drawing 
attention to the issue by collecting signatures on a petition.  They plan to 
present the petition to each of the political parties before the upcoming 
election.  

3.  [Jane] lacks clean drinking water because the government is pursuing an 
industrial development plan.  In the campaign for an upcoming election, an 
opposition party has promised to  address the issue, but she feels it will be 
futile to vote for the opposition party since the government is certain to win. 

4.  [Toshiro] lacks clean drinking water.  There is a group of local leaders who 
could do something about the problem, but they have said that inductrial 
development is the most important policy right now instead of clean water. 

5.  [Moses] lacks clean drinking water.  He would like to change this but he can’t 
vote and feels that no one in the government cares about this issue. So he 
suffers in silence, hoping that something will be done in the future. 

 
The vignettes fall on an ordered scale from most to least efficacy.  The same question as the self- 
assessment is asked with respect to the person in each vignette.  The vignette questions address a 
specific dimension of political efficacy.  The analysis assumes that the self assessment addresses 
the same (whatever) concept of political efficacy as the vignettes. KMST suggest that the self-
assessment be asked first, followed by the vignettes randomly ordered and suitably renamed to 
match culture and gender where possible. 
 Three issues now seem pertinent: 
 
(1)  Where does the analyst obtain the vignettes?  There is a thriving literature on vignettes.  
Three rich sources are King and Wand (2007), Hopkins and King (2008) and King (2008).  For 
another example, KSV (2007, p. 465, fn 6) provide a URL for the vignettes used in their study.  
King (2009) lists many additional sources in a large number of fields within the social sciences. 
 
(2)  What assumptions are needed to make this a viable approach to handling DIF?  The authors 
list two key assumptions: 
 

Vignette equivalence is the assumption that the level of the variable represented 
by a particular vignette is perceived by all respondents in the same way and on 
the same scale apart from random measurement error. (This is what makes them 
anchoring vignettes.)  Differences across individuals are assumed to be random 
with respect to the characteristic being measured.  (The cross country difference 
shown in the example in Figure 7.1 violates this assumption.) 

 
Response consistency is the assumption that each individual uses the response 
categories for a particular survey question in the same way when providing a 
self-assessment as when assessing each of the hypothetical people in the 
vignettes.  There can be heterogeneity (DIF) across individuals, and across 
different questions (with their vignettes) within a survey. But, it is assumed that 
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there is no DIF within the the group of items defined by a single question with its 
vignettes for a particular person 

 
The model formulation developed by KMST and others embodies parametric restrictions that 
correspond to these two assumptions. 
 
 (3)  How does the analyst use the information?  KMST propose a nonparametric approach that 
shows visually how the use of anchoring vignettes can calibrate the responses to a common base.  
They then develop a formal extension of the ordered probit model, which we will describe in 
detail.  [See, also, Tandon et al. (2004).]  Software for estimation of the model include routines in 
Stata and NLOGIT, and packages described by King and Wand (2007) and Wand, King and Lau 
(2007). 
 
7.3.1  Using Anchoring Vignettes in the Ordered Probit Model  
 
 The specification that incorporates the anchoring vignettes consists of two ordered choice 
models, the self assessment component and the vignette component.  The sample data and 
notation used for them are as follows:  
 
 Self-assessment:   
  There are N individuals surveyed denoted i = 1,...,N.  
  The self assessment consists of S questions, indexed s = 1,...,S. 
  Each question is answered with J possibilities, j = 1,...,J.  These may vary 

across questions, however, for simplicity, we will assume not. 
 Vignettes: 
  There are Q individuals posed the vignette questions. These need not be the 
  same individuals posed the self-assessment questions, and Q need not equal N. 
  Individuals posed the vignettes are indexed q = 1,...,Q. 
  There are M vignette questions, m = 1,...,M. 
  Each vignette is answered with J1 possibilities, j = 1,...,J1, the same 
  responses as for the first self-assessment. 
 
Self Assessment Component 
 

We begin by assuming that S = 1; a single self-assessment question is posed. The case of 
multiple self assessment questions is treated below.  The self assessment component begins with 
the usual latent regression; 
 
 yi*  = β0 + β′xi  +  εi, εi  ~  N[0,1].      (7.13) 
  
The heterogeneity and the ordering of the thresholds are imposed as follows: 
 
 μi,0 = -∞, μi,J = +∞ 
 μi,1 =  λ1 + γ1′zi , 
 μi,j  =  μi,j-1  +  exp(λj + γj′zi), j = 2,...,J-1,      (7.14) 
 
(KMST assume that there is no overall constant term in the latent regression.  We have added one 
here to maintain consistency with the model in Section 7.2.  We have also isolated the constant 
terms in the thresholds.   We will reconcile the two formulations shortly.)  The question is 
answered on a J point scale, j = 1,...,J.  The measurement 
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equation is 
 
 yi  =  j  if  μi,j-1  <  yi*  <  μi,j, j = 1,…,J.      (7.15) 
 
The assumptions about  μi,0, μi,J and σε2 are the usual location and scaling restrictions.    

As shown in the Appendix to this chapter, this model is mathematically identical to the 
HOPIT model in Section 7.2, Case 2  in (7.9) earlier;  
 
 yi*  = β0 + β′xi – (λ0 + γ0′zi) + εi 
 τi,-1  =  -∞, τ i,0   =  0, τi,J   =  +∞.       (7.16) 
 τi,j   =  τi,j-1  +  exp(λj + γj′zi), j = 1,...J-1 
 yi  =  j  if  τi,j-1  <  yi*  <  τi,j, j = 0,…,J. 
 
(The accommodation of our earlier observation scheme, yi = 0,1,...,J, rather than from 1 to J, now 
requires only a trivial change in notation.)  The self assessment model thus accommodates the 
individual heterogeneity in the thresholds by introducing zi in τi,j. 
 The reconstruction of (7.13 and 7.14) as (7.16) highlights a now familiar problem of 
identification – because the first threshold in the KMST model is specified linearly, if xi and zi 
have variables in common, then the respective parts of β and γ0 cannot be separately estimated.  
This is true of the constant term as well.  KMST (p. 299) note: “Response category DIF appears 
in the model as threshold variation (τij and τlj varying over respondents i and l) and requires at 
least one vignette for strong identification.  We can see the essential role of vignettes by what 
happens if we try to estimate the self-assessment component separately and, also, set the 
explanatory variables X affecting the actual level to be the same as those V affecting the 
thresholds.  In this case, β (the effect of X) and γ (the effect of V) would be dubiously identified 
only from the nonlinearities in the threshold model (5).”  Once again, we note that nonlinearity is 
deemed dubious, while linearity is not.  However, in fact, the parts of β and γ0 that correspond to 
variables that are in both xi and zi are not separately identified at all in the absence of the 
vignettes.  This shows up in the constant term as well.  The result is unrelated to the nonlinearities 
in τi,j.  However, it is true that only the nonlinearity of  τi,j identifies (λj,γj) for j > 1 when xi = zi. 
 The model parameters to be estimated are the same as in the model in Section 7.2, 
(β0,β,λ0,γ0),λ1,γ1,...,λJ-1,γJ-1) subject to the indeterminacies such as the constant term, α0 =  
(β0 – λ0).  The contribution of the self assessment component to the log likelihood is precisely that 
of case (2) of the hierarchical ordered probit model in Section 7.2; 
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where τi,j is defined in (7.16) and Bij equals 1 if yi = j and 0 otherwise.  Again, it is clear that as it 
stands, the likelihood function does not produce separate estimates of β0 and λ0 nor of any 
components of β and γ0 for which the corresponding variables are the same.  These would be 
estimated as α0 = (β0 – λ0) and αk = (βk – γ0,k), respectively.  Looking ahead, this lack of 
identifiability is resolved by a cross equation restriction between the assessment and the vignette 
models.  The remaining parameters, (λj,γj,j=1,…,J-1) are, as noted by KMST, identified through 
the nonlinearity of τi,j. 
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Vignette Component 
 
 The vignette component of the model is formulated as follows:  Denote the actual level 
for the hypothetical person described in vignette m as θm, m = 1,...,M.  The assumption of vignette 
equivalence is imposed by assuming that θm is the same for all individuals.  Then, for the sample 
of people asked the vignettes the latent regression is  
 
 wm,q*  =  θm  +  σemq  where emq ~ N[0,1].      (7.18) 
 
The vignette is assumed to have the same set of responses as the first self-assessment question.  
Responses to the vignette question are formed by 
  
 wm,q*  =  θm – (λ0 + γ0′zm) +  σemq, 
 τ-1,q   =  -∞,  τ0,q   =  0, τJ,q   =  +∞,      (7.19) 
 τj,q   =  τj-1,q  +  exp(λj + γj′zq), j = 1,...J-1 
 wm,q  =  j  if  τj-1,q < wm,q* < τj,q, j = 0,…,J. 
 
The thresholds are restricted to match those for the first self-assessment.  The anchoring aspect of 
the vignette questions is obtained by the constraint that the same (λj,γj) appears in the vignette 
model and the self-assessment model.  (We have gone directly to the reparameterization 
consistent with the HOPIT model of Section 7.2.) 
 The contribution of the vignettes sample to the log likelihood is 
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The new parameters to be estimated are (θ1,...,θM,σ).  No new parameters are introduced 

by the thresholds in the vignette component; they are the same as appear in the self-assessment 
model.  In cases considered thus far, it was not possible to estimate a scale parameter in the 
ordered choice model.  The parameter σ is identified in the vignette model because there are 
numerous other restrictions.  The threshold parameters are the same in all M equations.  With two 
or more vignettes, it is possible to estimate an unrestricted σ.  This is essentially the same form of 
identification that allows estimation of a variance parameter in the random effects model in 
Section 9.2. 

KSV (2007) suggest a refinement of the model by introducing covariates in the latent 
regression in (7.17).  In their application, they are interested in work disability, and propose to 
add gender (FEMALE) to the model.  The vignette model, with all components becomes 
 
 wm,q*  =  θm  +  δm̒aq  – (λ0 + γ0′zm) +  σemq 
 τ-1,m   =  -∞,  τ0,m   =  0, τJ,m   =  +∞, 
 τj,m   =  τj-1,m,q  +  exp(λj,m + γj,m′zq), j = 1,...J-1 
 wm,q  =  j  if  τj-1,m < wm,q* < τj,m, j = 0,…,J. 
 
where δm is the new parameter vector and aq is the vector of covariates. 

In their study of drinking behavior, VDHKS have used the same model as KSV  with a 
sex dummy variable and a dummy variable for whether the respondent was shown a definition of 
a drink before the interview.  They treated the multiple vignettes as “repeated measures,” and 
added a common random effect, uq, to each of the vignette regressions.  
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7.3.2  Log Likelihood and Model Identification Through the Anchoring Vignettes 
 

The log likelihood for the vignette equations could be maximized separately from the log 
likelihood function for the self-asssessment.  The same identification issue as before would seem 
to arises with respect to the constant terms, αm = (θm – λ0). However, there are cross equation 
constraints that the same (λj,γj, j=0,…,J-1) appears in both the self-assessment and vignette log 
likelihoods.  This is the anchoring vignette restriction.  Thus, the substantive restriction of the 
model is embodied in this equality restriction for the parameter vector (λj,γj, j=0,…,J-1).  We can 
now see the point of KMST’s observation about identification.  The parameter vector is (apart 
from the constant terms, which appear in the form ηm = (θm-λ0)), identified by the vignette 
equations.  This means that with at least one vignette, γ0 is estimable, which implies that β is also.  
(Once again, this argument falls apart if the threshold parameters are all specified as linear 
functions.)   The crucial result is that each vignette, by itself, produces identification of the first 
threshold parameters, (γ0).  With more than one vignette, the parameters are, in fact, 
overidentified.  However, as long as β0 is nonzero, λ0 is never estimable. (Or, vice versa.) 
 To use all the information in the sample, the log likelihood function is the sum of the two 
parts, with the restriction on the common threshold parameters, 
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The issue of scaling in the vignette equations is a nontrivial loose end in this strand of 

literature.  KMST note (2004, p. 198), for example, “Although we avoid complicating the 
notation here, we often let σ2 vary over vignettes, since their estimates are convenient indicators 
of how well each vignette is understood.”  As long as there are sufficient restrictions implied by 
the common threshold parameters, it will be possible to estimate separate scaling parameters by 
the vignette model.  KSV (2007) specify a self-assessment specific variance, σs

2 and a common 
vignette variance, σ2, but ultimately normalize all at one with “… can be identified (up to the 
usual normalization of scale and location).”  With sufficient difference between xi and zi, and 
with at least one vignette, the parameters of the model are overidentified.  This will allow 
separate estimation of vignette specific variances. The log likelihood for KMST’s model would 
be 
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 (7.22). 

 
Recent applications, including VDHKS (2007), KSV. (2007) and Gupta, Kristensen and Pozzoli 
(2008) have not extended the model in this direction.  In spite of the mathematical degree of 
freedom, it would seem that homoscedasticity of the vignette equations would be a desirable 
feature of the model. 
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7.3.3  Testing the Assumptions of the Model 
 
 As noted, there are two fundamental assumptions underlying the model, vignette 
equivalence and response consistency.  No formal test is suggested for the first of these.  KMST 
(p. 199) suggest that an informal test for vignette equivalence is suggested by the vignette 
equations.  Under the equivalence assumption, in the original model (7.18), the θm values should 
be ordered.  However, they offer a number of other explanations for a finding that the estimates 
are not ranked.  This approach is only suggestive.  Moreover, this “test” loses it’s appeal if there 
are covariates in the vignette equations, as in KSV (2007). 
 Response consistency is imposed by assuming that all the threshold parameters, are 
common to the two models and across vignettes.  This is not a directly testable restriction.  GKR 
assert “In order to identify separate thresholds in the subjective self-reports and the vignette 
evaluations, we need more information – with the subjective self-reports and the vignette 
evaluations alone, identification requires the maintained assumption of response consistency.”  
Their formal test is constructed by adding a third, “objective” measure of the concept measured 
by the subjective self-assessment,  
 
 Oi*  = β0

O + βO′xi + εi,o 
 μ-1  =  -∞, μ0   =  0, μJ   =  +∞. 
 μj   =  μj-1  +  exp(χj), j = 1,...J-1       (7.23) 
 Oi  =  j  if  μj-1  <  Oi*  <  μj, j = 0,…,J. 
 
In VDHKS’s (2007) application, the subjective measure of student drinking behavior was “How 
would you describe your own drinking patterns over the course of the last year?” Mild, 
Moderate, Some Cause for Concern, Excessive/Extreme.  The objective measure quantified the 
actual number of drinks consumed on a day that the student was drinking.   In Gupta, et al.’s 
study of health measured across several European countries, the objective assessment was a 
measure of hand grip strength. 

The “one factor” assumption is  (β0
O,βO)  =  (β0,β).  The objective assessment adds an 

equation to the model.  Under null hypothesis of the one factor model, the restriction will serve to 
identify (β0,β) in the self-assessment model, and the response consistency assumption is no longer 
needed.  One can then relax the response consistency assumption – the vignettes and subjective 
self assessments will identify their threshold parameters and the mean parameters in the threshold 
latent regressions.  The mean parameters in the subjective self-assessment equation, β0 and β that 
were previously mixed with λ0 and γ0 are now separately identified by the objective assessment 
equation, leaving λ0 and γ0 separately identified in the mean of the self-assessment equation.  The 
authors explore several approaches to testing different aspects of the model. 
 
7.3.4  Application 
 
 Figure 7.2 is Figure 2 from KMST (2004).  The authors describe two assessments of 
political efficacy based on surveys of individuals in Mexico and China.  The left panel shows the 
raw tallies, and suggests, counter to intuition,  that individuals in China have a substantially 
greater assessment of their political effiicacy than people in Mexico.  The right panel shows a 
nonparametric approach to the modeling described here that strikingly reverses the conclusion.  
Figure 7.3 shows their estimates of an ordered probit model for self-assessed efficacy with 
vignettes.  The ordered probit results in the center are consistent with the left panel in Figure 7.2.  
Of particular interest is the coefficient on the “China” dummy variable that suggests that Chinese 
individuals are much more likely to answer with the highest level than Mexican citizens are.  The 
rightmost two columns report estimates of their “CHOPIT” model that reverses the conclusion.  
(KMST provide an extensive analysis of the empirical results in their study.) 
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Figure 7.2  KMST Comparison of Political Efficacy 
 

 
Figure 7.3  KMST Estimated Vignette Model 
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7.3.5 Multiple Self-Assessment Equations 
 

If more than one self assessment question is posed, then the self assessment component 
of KMST’s model takes the form of the random effects model developed in Section 9.2.  For the 
sth self-assessment, 
 
 yi,s*  = (β0- λ0) +  β′xi - γ0′zi + εi,s  +  ui, 
 τ-1,s   =  -∞, τ0,s   =  0, τJ,   =  +∞, 
 τj,s   =  τj-1,s  +  exp(λj,s + γj,s′zi), j = 1,...J-1,     (7.24) 
 yi,s  =  j  if  τi,j-1,s  <  yi,s*  <  τi,j,s,  j = 0,…,J. 
 
The log likelihood for this expanded form of the model will be  
 

( )
( )

, , 0 0 0

, ,1 01
, 1, 0 0 0

1
, ,1 0 0

, ,1 1 0

  (( ) ( ))
log log ( )

(( ) ( ))

  ( )
              log

i j s i i iSN J
i j s i ii js

i j s i i i

q j m qQ M J
q j mq m j

c
L B c dc

c

B

∞

= ==−∞
−

σ

= = =

⎧ ⎫⎡ ⎤′ ′Φ τ − β − λ + − σ −⎪ ⎪⎢ ⎥= φ⎨ ⎬
⎢ ⎥′ ′Φ τ − β − λ + − σ⎪ ⎪⎣ ⎦⎩ ⎭

′⎡ ⎤Φ τ − θ − λ −⎣
+

∑ ∑∏∫

∑ ∑ ∑

x v

x v

z

 β − γ

β − γ

γ{ }
{ }1

, 1,1 0 0

                 (7.25)
( )q j m q−σ

⎧ ⎫⎡ ⎤−⎦⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥′⎡ ⎤Φ μ − θ − λ −⎪ ⎪⎢ ⎣ ⎦ ⎥⎣ ⎦⎩ ⎭
zγ

 
Further details on computation of a random effects ordered probit model appear in Section 9.2. 
 There is some nontrivial disagreement in the received applications over the treatment of 
the random effects.  In KMST’s placement of the heterogeneity, ui (above), it appears as a 
random effect only in the self-assessment component of the model.  Later treatments, e.g., KSV. 
(2007), Van Soest et al. (2007), Gupta et al. (2008), have placed the common effect in the first 
threshold.  In the original parameterization, they write 
 
 μi,0 = -∞, μi,J = +∞ 
 μi,1  =  λ1 + γ1′zi  + ui 
 μi,j  =  μi,j-1  +  exp(λj + γj′zi), j = 2,...,J-1,. 
 
Since the thresholds are common to all of the equations, the presence of ui in both parts of the 
model would imply that the log likelihood is not separable as in (7.25).  It also implies, in contrast 
to KMST that the vignette questions and the self-assessment questions must be posed to the same 
sample of individuals.  The appropriate log likelihood by this construction would be formed as 
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The difference is more than mathematical.  KMST include ui as a random effect in the mean of 
the latent regression for the self-assessment equation. KSV state, instead, “The term ui introduces 
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an unobserved individual effect in the response scale. It implies that evaluations of different 
vignettes are correlated with each other and with the self-reports (conditional on xi), since some 
respondents will tend to use high thresholds and others will use low thresholds in all their 
evaluations.”  The observation seems appropriate, however, one might question whether the 
variance within the set of vignettes or the correlation across them should be identical to that 
across the self-assessments.  A form of heteroscedasticity,  
 

σu,i
2  =  σ2×exp(1 + κVi)         (7.27) 

 
where Vi is a dummy variable for whether the question is a vignette or a self-assessment, would 
seem a natural extension of the model. 
 
7.4  Heterogeneous Scaling (Heteroscedasticity) of Random Utility 
 
 Considerably less attention has been focused on specification of the conditional variance 
in the regression model than on the conditional mean and the thresholds.  In microeconomic data, 
scaling of the underlying preferences is surely as important a source of heterogeneity as 
displacement of the mean, perhaps even more so.  One would expect the problem of 
heterogeneity of the variance to be a persistent feature of individual level data.  Researchers 
questioned its implications as early as Cox (1970).  [See, also, Cox (1995).]  Nonetheless, formal 
treatment of the issue is a relatively recent extension of the model. 
 A heteroscedastic ordered choice model is a minor extension of the basic model;  the 
following form of the model based on Harvey (1976) appears in earlier versions of LIMDEP 
[Econometric Software (1997)], Stata [Stata, Version 8] and in Bhat (1999) as a natural extension 
of the binary probit and logit models.  The ordered choice model with heteroscedasticity would be 
 
 yi*  = β′xi + εi, 

 yi   =  0  if    μ-1  <  yi* < μ0, 

 =  1  if    μ0  <  yi*  < μ1, 

 =  2  if    μ1  <   yi* < μ2       (7,28) 

 =  ... 

 =  J  if   μJ-1 <  yi*  < μJ, 

 Var[εi|hi]  ∝  [exp(γ′hi)]2. 
 
The model is also discussed in some detail in Williams (2006) and is a feature of GOLogit and 
GOProbit.  A search of the literature will turn up hundreds of recent applications of binary and 
ordered choice models with this form of heteroscedasticity [e.g., Hensher (2006)].  The binary 
probit and logit models with this form of heteroscedasticity are obvious extensions of the basic 
probit model, and appear much earlier, e.g., in Greene (1990) and Allison (1999). 
 Recall, at the outset of the discussion, it emerged that the lack of information on scaling 
of ε and therefore y* is a signature feature of the ordered choice model.  This same result will 
have major implications for building heteroscedasticity into the model.  Consider the formulation 
of the model used in Chen and Khan (2003), 
 
 yi*  =   β′xi + [exp(γ′hi)]εi,       (7.29) 
 
where εi is still N[0,1].  It follows that the observation mechanism is now 



Modeling Ordered Choices 

 182  

 

 1Prob( | , )
exp( ) exp( )

j i j i
i i i

i i

y j F F −′ ′μ − μ −⎛ ⎞ ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

x x
x h

h h
β β

γ γ
.    (7.30) 

 
This straightforward extension of the model should bring a substantive improvement in the 
correspondence of the model to the underlying data.  Greene (2007a) proposes to blend this 
model with the hierarchical model of the Section 7.2.  The resulting functional form, 
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should be intricate enough to overcome the parallel regressions, single crossing and constant 
ratios features of the basic model. 
 Unlike the linear regression case, unaccounted for heteroscedasticity is potentially 
disastrous for estimation of the parameters in the ordered choice model.  In the presence of latent 
heteroscedasticity that involves the variables that are in the model, or variables that are correlated 
with the variables in the model, the maximum likelihood estimator will be inconsistent, 
potentially seriously so.  It is easy to see why in the formulation above.  Unlike the linear 
regression model, in which latent heteroscedasticity will merely taint the standard errors, in the 
ordered (and binary) choice model, it will masquerade as a change in the functional form.  
Consider the model above, which can be written in equivalent form 
 
 yi**  =  β′xi/[exp(γ′hi)]  +  εi, 
 
 yi      =  j  if  μi,j  <  yi**  <  μi,j,       (7.32) 
 
where  εi       ~ N[0,1], 
 
but μi,j     =  μj/[exp(γ′hi)]. 
 
That is, the equivalent form of the model is one with a highly nonlinear conditional mean 
function and heterogeneous thresholds.  Recall, the data contain no independent information on 
scaling of the underlying variable – any such information is determined from the conditional 
means and the functional form adopted for the variance.  Estimating the model as if the 
disturbance were homoscedastic ignores both of these facts. Note that computing a “robust” 
covariance matrix for the estimator does nothing to redeem it.  The estimator is inconsistent, so 
the robust covariance matrix estimator is a moot point.  Keele and Park (2005) have examined 
this model and its implications for bias in estimation.  Chen and Khan (2003) have reconsidered 
the estimation of this model using robust methods that allow estimation of β even in the presence 
of heteroscedasticity.  But, estimation of β solves only part of the model builder’s problem. If the 
measured outcome takes more than three values, then partial effects will be required to make 
much sense of the estimates.  Without information about the underlying variance, or the 
underlying distribution, the scaling needed for the transformation is not computable. 
 As in other cases, the modification of the model alters the partial effects.  For this case 
(omitting the hierarchical probit effects), the marginal effects are 
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For a variable that appears in both xi and hi, the two parts are added.  In such a case, the 
interpretation of the element of β associated with a particular variable becomes even more 
ambiguous than before. 
 Table 7.5 displays the estimates of the heteroscedastic ordered probit model using our 
earlier specification but adding INCOME, AGE and gender (FEMALE) to the variance equation.  
The basic slope parameters are quite similar to the earlier model (shown in the right panel of 
Table 7.5 for convenience)  But, the evidence of heteroscedasticity with respect to age and 
income is statistically significant, both individually and using the likelihood ratio test for the 
larger model.  (The value of chi squared with 3 degrees of freedom is 2(5752.985-5741.624) = 
22.722.  The tabled critical value is 7.814, so on this basis and based on the individual tests, the 
hypothesis of homoscedasticity would be rejected.  It seems likely that this is yet another possible 
explanation for the finding of the Brant test carried out earlier. 
 
Table 7.5  Estimated Heteroscedastic Ordered Probit Model 
+---------------------------------------------+ 
| Ordered Probability Model                   | 
| Dependent variable               HEALTH     | 
| Log likelihood function:  Hetero.    Homosk.| 
|                        -5741.624  -5752.985 | 
| Info. Criterion: AIC:    2.56686   2.57059  | 
+---------------------------------------------+ 
+--------+-------------------------------+------------------------------+---------+  
|        | Heteroscedastic Ordered Probit|     Ordered Probit           |         | 
|        |      LogL  = -5741.624        |     LogL  = -5752.985        |         | 
|        |      LogLR = -5752.985        |     LogL0 = -5875.096        |         | 
|        |      Chisq =    22.722        |     Chisq =  244.2238        |         | 
|        |  Degrees of Freeedom 3        |  Degrees of Freedom 5        |         | 
|        |  PseudoRqq =  .0227183        |  PseudoRsq=  .0217845        |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  2.1935  .1778    12.337 .0000| 1.9788  .1162   17.034  .0000|  1.0000 | 
|AGE     |  -.0199  .0021    -9.398 .0000| -.0181  .0016  -11.166  .0000| 43.4401 | 
|EDUC    |   .0390  .0080     4.869 .0000|  .0356  .0071    4.986  .0000| 11.4181 | 
|INCOME  |   .2499  .0863     2.895 .0038|  .2587  .1039    2.490  .0128|  .34874 | 
|MARRIED |  -.0306  .0444     -.688 .4916| -.0310  .0420    -.737  .4608|  .75217 | 
|KIDS    |   .0698  .0417     1.674 .0942|  .0606  .0382    1.586  .1127|  .37943 | 
+--------+ Variance Function             |                              +---------+ 
|INCOME  |  -.2359  .0607   -3.883  .0001|                              |  .34874 | 
|FEMALE  |   .0168  .0249     .673  .5009|                              |  .48404 | 
|AGE     |   .0037  .0011    3.337  .0008|                              | 43.4401 | 
+--------+ Threshold Parameters          |                              +---------+ 
|Mu(1)   |  1.2817  .0811    15.795 .0000| 1.1484  .0212   54.274  .0000|         | 
|Mu(2)   |  2.8019  .1592    17.605 .0000| 2.5478  .0216  117.856  .0000|         | 
|Mu(3)   |  3.3507  .1874    17.881 .0000| 3.0564  .0267  115.500  .0000|         | 
+--------+-------------------------------+------------------------------+---------+ 

 
Table 7.6 displays the partial effects from both the restricted model and the heteroscedastic 
model.  The latter are decomposed into the mean effects (∂P(.)/∂x), the variance effects, 
(∂P(.)/∂h) and the total equal to the sum of the two.  The parts are marked; the total effects are 
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shown in boldface. The partial effects from the restricted (homoscedastic) model are shown in 
parentheses for comparison.  In contrast to the raw coefficients, the partial effects have shown 
some fairly substantial changes.  The effects of AGE and INCOME are quite different (and 
changes sign twice), while the partial effects for EDUC , MARRIED  and KIDS are quite similar 
to their earlier values . 
 
Table 7.6  Partial Effects in Heteroscedastic Ordered Probit Model 
+-----------------------------------------------------------------+ 
| Marginal Effects for Ordered Probit                             | 
+----------+----------+----------+----------+---------------------+ 
| Variable | HEALTH=0 | HEALTH=1 | HEALTH=2 | HEALTH=3 | HEALTH=4 | 
+----------+----------+----------+----------+----------+----------+ 
| AGE      |   .00169 |   .00463 |  -.00128 |  -.00216 |  -.00288 | Mean 
| AGE      |   .00618 |   .00103 |  -.01647 |   .00086 |   .00839 | Variance 
| AGE      |   .00787 |   .00566 |  -.01775 |  -.00130 |   .00551 | Total 
|(AGE)     | ( .0017) | ( .0045) | (-.0012) | (-.0022) | (-.0028) | Restricted 
+-----------------------------------------------------------------| 
| EDUC     |  -.00332 |  -.00906 |   .00251 |   .00423 |   .00564 | Total 
|(EDUC)    | (-.0034) | (-.0089) | ( .0024) | ( .0042) | ( .0056) | restricted 
+-----------------------------------------------------------------| 
| INCOME   |  -.02122 |  -.05800 |   .01607 |   .02704 |   .03611 | Mean 
| INCOME   |   .34732 |   .05785 |  -.92501 |   .04858 |   .47126 | Variance 
| INCOME   |   .32610 |  -.00015 |  -.90894 |   .07562 |   .50737 | Total 
|(INCOME)  | (-.0248) | (-.0644) | ( .0177) | ( .0309 )| ( .0406) | Restricted 
+-----------------------------------------------------------------| 
| MARRIED  |   .00260 |   .00709 |  -.00197 |  -.00331 |  -.00442 | Total 
|(MARRIED) | ( .0029) | ( .0077) | (-.0020) | (-.0037) | (-.0049) | Restricted 
+-----------------------------------------------------------------| 
| KIDS     |  -.00593 |  -.01620 |   .00449 |   .00755 |   .01008 | Total 
|(KIDS)    | (-.0057) | (-.0151) ) ( .0040) | ( .0072) | ( .0096) | Restricted 
+-----------------------------------------------------------------| 
| Pure Variance Effect                                            | 
| FEMALE   |  -.00316 |  -.00053 |   .00840 |  -.00044 |  -.00428 | Total 
+----------+----------+----------+----------+----------+----------+ 

 
7.5  Individually Heterogeneous Marginal Utilities 
 
 Greene (2002, 2008a) argues that the fixed parameter version of the ordered choice 
model (and more generally, many microeconometric specifications) do not adequately account for 
the underlying heterogeneity likely to be present in observed data.  Further extensions of the 
ordered choice model presented there include full random parameters treatments and discrete 
approximations under the form of latent class, or finite mixture models.  These two specific 
extensions are also listed by Boes and Winkelmann (2006a). 
 The preceding lists the received “generalizations” of the ordered choice model.  (The 
many other modified ordered choice models, such as bivariate ordered choice models, models 
with sample selection, and zero inflation models, that appear elsewhere have not been mentioned, 
as they are proposed to deal with features of the data other than heterogeneity.  We will describe 
some of them in the chapters to follow.) In what follows, we will propose a formulation of the 
ordered choice model that relaxes the restrictions listed above but treats heterogeneity in a 
unified, internally consistent fashion.  The model contains three points at which individual 
heterogeneity can substantively appear, in the random utility model (the marginal utilities), in the 
threshold parameters, and in the scaling (variance) of the random components.  As argued above, 
this form of treatment seems more likely to capture the salient features of the data generating 
mechanism than the received “generalized ordered logit model.” 
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Appendix:  Equivalence of the Vignette and HOPIT Models 
 
 KMST’s (2004) model formulation for the self-assessment component is 
 
 yi*   = β0 + β′xi  +  εi,  εi  ~  N[0,1]. 
 μi,0  = -∞, μi,J = +∞ 
 μi,1   =  λ1 + γ1′zi , 
 μi,j   =  μi,j-1  +  exp(λj + γj′zi), j = 2,...,J-1,  
 yi   =  j  if  μi,j-1  <  yi*  <  μi,j, j = 1,…,J. 
 
The authors assume that there is no overall constant term in the latent regression. We have added 
β1 to maintain consistency with the earlier model.  We have also isolated the constant terms in the 
thresholds, λj – they do include constants in τi,j implicitly in the definitions.  The definition of μi,1 
and the last (the observation) equation imply 
 
 yi  =  1  if   -∞  < β0 + β′xi  +  εi  <  μi,1, 
 yi  =  2  if   μi,1 < β0 + β′xi  +  εi  < μi,1 + exp(λ2 + γ2′zi),  
 yi  =  j   if   μi,1 + exp(λ2 + γ2′zi)  ... + exp(λj-1 + γj-1′zi)  < β0 + β′xi + εi  <  
                               μi,1 + exp(λ2 + γ2′zi)  ... + exp(λj + γj′zi), 
 yi  =  J  if    μi,1 + exp(λ2 + γ2′zi)  ... +  exp(λJ-1 + γJ-1′zi) < β0 + β′xi + εi  <  +∞. 
 
Note that μi,1 = λ1 + γ1′zi appears linearly in every threshold.  By subtracting   
(λ1 + γ1′zi) from each finite term, we obtain the equivalent model, 
 
 yi  =  1  if  -∞   < β0 + β′xi - λ1 - γ1′z +  εi  <  0 
 yi  =  2  if  0     < β0 + β′xi - λ1 - γ1′z +  εi   <  exp(λ2 +γ2′zi)  
 yi  =  j  if    exp(λ2 + γ2′zi) ... + exp(λj-1 + γj-1′zi) < β0 + β′xi - λ1 -  γ1′z  +  εi  <   
                             exp(λ2 + γ2′zi) ... + exp(λj + γj′zi) 
 yi  =  J  if   exp(λ2 + γ2′zi) ... + exp(λJ-1 + γJ-1′zi) < β0 + β′xi - λ1 + γ1′z +  εi  <  +∞. 
 
This implies the underlying structure 
 
 yi*   = (β0 - λ1) + β′xi - γ1′zi + εi, εi ~ N[0,1], 
 τi,0   =  -∞, τ i,1   =  0, τi,J   =  +∞., 
 τi,j    =  τi,j-1  +  exp(λj + γj′zi), j = 2,...J-1 
 yi   =  j  if  τi,j-1  <  yi*  <  τi,j, j = 1,…,J. 
 
This is identical to the model in Section 7.2 (subject to some identification problems for the 
constant term and coefficients in β and γ1 that multiply the same variables).   Accommodating the 
coding convention yi = 0,1,…,J rather than 1 to J is done with a trivial change in notation in the 
model above.  The “j” subscriptes on λj, γj and τi,j are reduced by one, and j = 0,1,…,J. 
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8 
 

Parameter Variation and a 
Generalized Ordered Choice Model 

 
Formal modeling of heterogeneity in the parameters as representing a feature of the underlying 
data, appears in Greene (2002) (version 8.0), Bhat (1999), Bhat and Zhao (2002) and Boes and 
Winkelmann (2006). These treatments suggest a full random parameters (RP) approach to the 
model.  In Boes and Winkelmann, however, it is noted that the nature of an RP specification 
induces heteroscedasticity, and could simply be modeled as such.   
 
8.1  Random Parameters Models 
  
 In the same fashion as Swamy’s (1970,1971) treatment of random parameters in the 
linear regression model, one approach to accommodating random parameters is to construct the 
reduced form of the basic model.  This produces a model with heteroscedasticity.  We briefly 
examine this approach, then turn to the structural approach that characterizes the contemporary 
methods. 
 
8.1.1  Implied Heteroscedasticity 
 
 Boes and Winkelmann’s (2006) treatment of a zero constant term and a full set of 
threshold parameters will prove less convenient than including a constant in xi and setting μ0 = 0, 
instead.  We will maintain the latter formulation.  The model would appear as follows: 
 
 βi  =  β  +  ui, 
 
where ui ~ N[0,Ω].  Inserting the expression for βi in the latent regression model, we obtain 
 
 yi*   =  βi′xi  +  εi 

  =  β′xi  +  εi  +  xi′ui. 
 
The observation mechanism is the same as earlier.  The result is an ordered probit model in which 
the disturbance has variance Var[εi  +  xi′ui.] = 1 + xi′Ωxi; that is, a heteroscedastic ordered probit 
model.   The resulting model has 
 

 Prob[yi  <  j | xi ]  =  Prob[εi + ui′xi < μj - β′xi]   =  
1

j i

i i

F
⎛ ⎞′μ −
⎜ ⎟⎜ ⎟′+⎝ ⎠

x
x x
β

Ω
,  (8.1) 

 
which, it is suggested, can be estimated by ordinary means, albeit with a new source of 
nonlinearity – the elements of Ω must now be estimated as well.  (The authors’ suggestion that 
this could be handled semiparametrically without specifying a distribution for ui is incorrect, 
because the resulting heteroscedastic ordered choice model as written above only preserves the 
standard normal form assumed if ui is normally distributed as well as εi.)  They did not pursue 
this approach.  This computation will present a series of difficulties owing to the need to force Ω 
to be a positive definite matrix.  One cannot simply insert the function above into the log 
likelihood and be optimistic that the estimated unconstrained matrix will, indeed, stay positive 
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definite.  At worst, it will become indefinite and it will become impossible to compute the log 
likelihood.  A standard remedy is to use a Cholesky decomposition of Ω.  Write Ω  =  LD2L′ 
where D is a diagonal matrix with strictly positive elements and L is a lower triangular matrix 
with ones on the diagonal.  The log likelihood is then maximized with respect to the elements of 
L and D in addition to β and μ1,...,μJ-1..  This will preserve the positive definiteness of the implied 
covariance matrix.  Elements of Ω can be deduced after estimation. 
 Partial effects in this model can be obtained by differentiating the probabilities as if the 
parts in the numerators and denominators are functions of different variables, then adding them.  
An expression for this result is given in Boes and Winkelmann (2006a).  An application in their 
study was done under the assumption that Ω is diagonal (L = I in our formulation), which then 
requires only that the variances of the random parameters be positive.   
 
8.1.2  Maximum Simulated Likelihood Estimation 
 
 Greene (2002, 2007a, 2008a,b) analyzes the same model, but estimates the parameters by 
maximum simulated likelihood.  First, write the random parameters as  
 
 βi  =  β  + Δzi  + LDwi,        (8.2) 
 
where wi has a multivariate standard normal distribution, and LD2L′  =  Ω.  The Cholesky matrix, 
L, is lower triangular with ones on the diagonal.  The below diagonal elements of L, λmn, produce 
the nonzero correlations across parameters.  The diagonal matrix, D, provides the scale factors, 
δm, i.e., the standard deviations of the random parameters. The end result is that L(Dwi) is a 
mixture, Lwi* of random variables, wim* which have variances δm

2.  This is a two level 
‘hierarchical’ model (in the more widely used sense).  The probability for an observation is 
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In order to maximize the log likelihood, we must first integrate out the elements of the 
unobserved wi.  Thus, the contribution to the unconditional log likelihood for observation i is 
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The log likelihood for the sample is then the sum over the observations.  Computing the integrals 
is an obstacle that must now be overcome.  It has been simplified considerably already by 
decomposing Ω explicitly in the log likelihood, so that F(wi) is the multivariate standard normal 
density.  The Stata routine, GLAMM [Rabe-Hesketh, Skrondal and Pickles (2005)] that is used for 
some discrete choice models does the computation using a form of Hermite quadrature. An 
alternative, generally substantially faster method of maximizing the log likelhood is maximum 
simulated likelihood.  The integration is replaced with a simulation over R draws from the 
multivariate standard normal population.  The simulated log likelihood is 
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The simulations are speeded up considerably by using Halton draws [see Halton (1970) for the 
general principle, and Bhat (2001, 2003) and Train (2003) for applications in the estimation of 
‘mixed logit models’] rather than random draws.  Further details on this method of estimation are 
also given in Greene (2007b, 2008a).  Partial effects and predicted probabilities must be 
simulated as well.  For the partial effects, 
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we use simulation to compute 
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 Table 8.1 gives the estimates of the random parameters model for our familiar 
specification.  The estimator produces estimates of L and D.  The implied estimate of Ω is given 
in Table 8.2 with the estimates of the square roots of the diagonal elements of Ω and the implied 
correlation matrix obtained by 1 1ˆˆ ˆ− −Σ ΩΣ  where Σ̂  is a diagonal matrix containing the estimated 
standard deviations from Ω̂ .  The estimates of the partial effects are shown in Table 8.3 with 
their counterparts from the basic model.  A likelihood ratio test of the null hypothesis that the 
basic model applies against the alternative of this generalization is based on a chi squared statistic 
of 2(5752.985 – 5705.592) = 94.786 with 20 degrees of freedom.  The null hypothesis of the 
model with nonrandom parameters would be rejected. 
 
8.1.3  Variance Heterogeneity 
 
 An extension of the model that allows for heterogeneity in the variances of βi as well as 
the means (in the form of Δzi) is obtained by parameterizing the elements δm in D.  The model 
with heteroscedasticity is obtained by 
 
 Dim  =  diag[δm × exp(ηm′ai)],       (8.8) 
 
where  ai is a vector of covariates specified to act on the variances of the random parameters, 
rather than the means.  This model [implemented in Greene (2002, 2007)] has the potential to 
proliferate parameters, particularly if there is a nonzero Δ in the model.  One would typically 
restrict many of the structural parameters to equal zero.  In the application in Bhat and Zhao 
(2002), they use L = I (no correlation across parameters), Δ = 0 (no heterogeneity in the means of  
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Table 8.1  Estimated Random Parameters Ordered Probit Model 
+---------------------------------------------+ 
| Random Coefficients  Ordered Probit Model   | 
| Number of observations             4483     | 
| Log likelihood function       -5705.592     | 
| Simulation based on  25 Halton draws        | 
+---------------------------------------------+ 
+--------+------------+---------+--------+--------+ 
|Variable| Coefficient| Standard|b/St.Er.|P[|Z|>z]| 
|         |           | Error   |        |        | 
+--------+--------------+-------+--------+--------+ 
+--------+Means for random parameters             | 
|Constant|    3.2142    .1366      23.527   .0000 | 
|AGE     |    -.0298    .0018     -16.379   .0000 | 
|EDUC    |     .0599    .0077       7.760   .0000 | 
|INCOME  |     .5584    .1163       4.800   .0000 | 
|MARRIED |    -.1140    .0461      -2.476   .0133 | 
|KIDS    |     .1167    .0419       2.785   .0053 | 
+--------+Threshold parameters for probabilities  | 
|MU(1)   |    1.9283    .0519      37.157   .0000 | 
|MU(2)   |    4.1843    .0676      61.928   .0000 | 
|MU(3)   |    5.0018    .0742      67.351   .0000 | 
+--------+----------------------------------------+ 
 
Table 8.2  Implied Estimates of Parameter Matrices* 
+-----------------------------------------------------------------+ 
|         Constant       AGE     EDUC    INCOME   MARRIED     KIDS| 
|Cholesky Matrix L with D on Diagonal                             | 
|Constant   1.5902         0        0         0         0        0| 
|AGE         .0081     .0002        0         0         0        0| 
|EDUC       -.0264    -.0203    .0031         0         0        0| 
|INCOME    -1.5621   -1.3753    .9964     .5257         0        0| 
|MARRIED    -.2130    1.2528    .4322     .5738     .1829        0| 
|KIDS       -.7280     .3384  -1.0681    -.6322    -.1446    .2507| 
|LD2L’ = W = Implied covariance matrix of random parameters        | 
|Constant   2.5287                                                | 
|AGE        0.0129    6.55609e-005                                | 
|EDUC      -0.0420   -0.0002   0.0011                             | 
|INCOME    -2.4841   -0.0129   0.0724    5.6009                   | 
|MARRIED   -0.3387   -0.0015  -0.0185   -0.6580    2.1642         | 
|KIDS      -1.1576   -0.0058   0.0090   -0.7249   -0.2718   2.2689| 
|Square roots of diagonal elements                                | 
|           1.5902    0.0081   0.0335    2.3666    1.4711   1.5063| 
|Implied correlation matrix of random parameters                  | 
|Constant   1.0000                                                | 
|AGE        0.9997    1.0000                                      | 
|EDUC      -0.7888   -0.8039   1.0000                             | 
|INCOME    -0.6601   -0.6746   0.9128    1.0000                   | 
|MARRIED   -0.1448   -0.1232  -0.3760   -0.1890    1.0000         | 
|KIDS      -0.4833   -0.4774   0.1789   -0.2033   -0.1227  1.0000 | 
+-----------------------------------------------------------------+ 
* Estimated standard errors omitted. 
 
 
Table 8.3  Estimated Partial Effects from Random Parameters Model 
+--------+----------------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Models                          | 
| Effects computed at means.  Effects for binary variables are                        | 
| computed as differences of probabilities, other variables at means.                 | 
+--------+--------------------------------------+-------------------------------------+ 
|        |         Ordered Probit               |   Random Parameters Ordered Probit  | 
+--------+--------------------------------------+-------------------------------------+ 
|Outcome |  AGE     EDUC  INCOME  MARRIED   KIDS|   AGE   EDUC   INCOME  MARRIED  KIDS| 
|Y = 00  | .0003  -.0005  -.0050   .0017  -.0010| .0017 -.0034  -.0248   .0029  -.0057| 
|Y = 01  | .0081  -.0164  -.1528   .0305  -.0316| .0045 -.0089  -.0644   .0077  -.0151| 
|Y = 02  |-.0041   .0083   .0770  -.0143   .0154|-.0012  .0024   .0177  -.0020   .0040| 
|Y = 03  |-.0033   .0067   .0627  -.0132   .0133|-.0022  .0042   .0308  -.0037   .0072| 
|Y = 04  |-.0010   .0019   .0180  -.0039   .0039|-.0028  .0056   .0406  -.0049   .0096| 
+--------+--------------------------------------+-------------------------------------+ 
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the random parameters) and specify only one heteroscedastic random parameter, the constant 
term.  This greatly reduces the complexity of the model. 
 
8.1.4  Conditional Mean Estimation in the Random Parameters Model 
 
 The random parameters model is couched in terms of (βi,μ1,...,μJ-1), specific to the 
individual.  Recall in the structure, 
 
 βi  =  β  +  ui. 
 
It would be useful to estimate βi rather than the population parameters, β, if that were possible.  It 
is not, as that would require estimation of ui which is “noise.”  However, in the same spirit as its 
Bayesian counterpart, one can compute an estimate of E[βi|yi,xi], which will contain more 
information than the natural, unconditional estimator, β.  The approach proceeds as follows:  The 
density of yi|xi,βi is 
 
 P(yi|xi,βi) = ( ) ( )1Prob( = | ) .i i i j i i j i iy j −

⎡ ⎤′ ′= Φ μ − − Φ μ −⎣ ⎦x , x xβ β β    (8.9) 

 
The marginal density of βi assuming ui ~ N[0,Ω] is N[β,Ω].  The joint density of yi and βi is 
 
 P(yi,βi|xi)  =  Prob(yi = j |xi,βi) P(βi). 
 
Using Bayes Theorem, then, 
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The conditional mean is then, 
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The integrals must be computed by simulation.  The result is easily obtained as a byproduct of the 
estimation process.  To see how, first insert the components of the probabilities, and replace the 
integration with simulation, as we did in computing the log likelihood.  Then, 
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where mij = 1(yi = j).  The terms in square brackets are the simulated probabilities that enter the 
log likelihood.  The draws on βir are obtained during the simulation; they are 
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 βir  =  β  +  LDwir. 
 
That is, the same simulation that was done to maximize the log likelihood.  It is illuminating to 
write this in a different form.  Write this, using our final estimates of the model parameters, 
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where 
 
 ˆ ˆ ˆ ˆ

ir ir= + LDwβ β . 
 
Then, our estimator is 
 

  1
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Est E y a
R =

= ∑xβ β .      (8.14) 

 
Other functions of the parameters, such as partial effects or probabilities for individual 
observations, could be simulated in the same way, just by replacing βi with the desired function of 
βi in the simulation. 
 This is not a direct estimator of βi; it is an estimator of the mean of the conditional 
distribution from which βi is drawn.  In the classical framework we are using here, this is as well 
as we can do, in terms of using the sample information, to estimate βi.  This estimator is a 
counterpart to the Bayesian posterior mean, which would estimate the same parameters in the 
same way.  A difference would be that the Bayesian posterior variance would be smaller than the 
variance of the conditional distribution if we computed it above. The reason is that our classical 
estimator uses the asymptotic distribution of the estimator while the Bayesian posterior mean is 
conditioned only on (is posterior to) the observed sample.  There is a degree of imprecision in the 
classical estimator that is absent from the posterior mean, because the simulations plug in the 
estimates of the parameters as if they were known, while the Bayesian counterpart is based on the 
exact, finite sample distribution of the estimators conditioned on the data in hand.  This latter 
difference is likely to be extremely small in a sample as large as the one in use here.  Figure 8.1 
shows a kernel density estimator for the distribution of estimates of E[βINCOME|yi.,xi] across the 
sample. 
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Figure 8.1  Kernel Density for Estimate of the Distribution of Means of Income Coefficient 
 
 
8.2  Latent Class and Finite Mixture Modeling 
 
 Latent class modeling [see McLachlan and Peel (2000)] provides an alternative approach 
to accommodating heterogeneity.  [Applications include Everitt (1988) and Uebersax (1999).] 
The natural approach assumes that parameter vectors, βi are distributed among individuals with a 
discrete distribution, rather than the continuous distribution of the previous section.  Thus, it is 
assumed that the population consists of a finite number, Q, of groups of individuals.  The groups 
are heterogeneous, with common parameters, γq = (βq,μq) for the members of the group, but the 
groups themselves are different from one another.  The analyst does not know from the data 
which observation is in which class.  (Hence the term latent classes.)   
 The model assumes that individuals are distributed heterogeneously with a discrete 
distribution in a population.  Two other interpretations of the model are useful.  The latent class 
model can also be viewed as a discrete approximation to the continuous distribution.  This 
follows the development of Heckman and Singer (1984) who used this approach to modeling 
heterogeneity in a study of duration [see Section 12.6.1].  Alternatively, the finite mixture model 
may be used as a technique to model the distribution in its own right.  This technique is often 
used to mix normal distributions to obtain a non-normal mixture distribution. 
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8.2.1  The Latent Class Ordered Choice Model 
 
 Class membership is distributed with discrete distribution,  
 
 Prob(individual i is a member of class = q) = πiq  =  πq.    (8.15) 
 
This statement needs its own interpretation.  It can be given a long run frequency interpretation in 
that the probability that an individual drawn at random from the full population is a member of 
the particular class.  Alternatively, it reflects the priors of the analyst over the same random 
outcome.  Under either interpretation, then 
 
 Prob(yi = j | xi)  =  Σq Prob(yi = j | xi,class = q)Prob(class = q).   (8.16) 
 
Combining terms from earlier, then, a latent class ordered probit model would be 
 
 ( ) ( ), 1,1

Prob( = | )   Q
i i q j q q i j q q iq

y j −=
⎡ ⎤′ ′= π Φ μ − − Φ μ −⎣ ⎦∑x x xβ β .   (8.17) 

 
(We will use the probit formulation for this discussion.  A logit model is obtained trivially by 
changing the assumed cdf and density – it will be a simple change of notation.)  By this 
construction, the implied estimator of the cell probabilities would be a mixture of the class 
specific probabilities, using the estimated class probabilities, πq for the mixture.  Likewise, the 
partial effects would be 
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that is, the same weighted mixture of the class specific partial effects. 
 
8.2.2  Estimation by Maximum Likelihood  
 
 The estimation problem now includes estimation of (βq,μq,πq),q = 1,...,Q.  The class 
probabilities are estimated with the other parameters.  It is necessary to force the class 
probabilities to be between zero and one and to sum to one.  A convenient way to do so is to use a 
multinomial logit parameterization of the class probabilities. 
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Assembling the parts, then, the full log likelihood for the parameters, given the observed data  is 
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where  
 mij = 1 if yi = j and 0 otherwise, j = 0,...,J; i = 1,...,N, 
 
and the full vector of parameters to be estimated is 
 
 Θ  =  (β1,μ1,...,βQ,μQ,θ1,...,θQ), 
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with several constraints, μ-1,q = -∞, μ0,q = 0, μJ,q = +∞, q = 1,...,Q and θQ = 0. 
 We have assumed to this point that the number of classes, Q, is known.  This will rarely 
be the case, so a question naturally arises, how can the analyst determine Q?  Since Q is not a free 
parameter, a likelihood ratio test is not appropriate, though, in fact, logL will increase when Q 
increases.  Researchers typically use an information criterion, such as AIC, to guide them toward 
the appropriate value.  [See Bhat (1996a) and Section 12.6.1.]  Heckman and Singer (1984) note a 
practical guidepost.  If the model is fit with too many classes, then estimates will become 
imprecise, even varying wildly.  Signature features of a model that has been overfit will be 
exceedingly small estimates of the class probabilities (see below), wild values of the structural 
parameters and huge estimated standard errors.  An application that illustrates this possibility 
appears in Section 2.11. 
 Statistical inference about the parameters can be done in the familiar fashion.  The Wald 
test or likelihood ratio tests will probably be more convenient.  Hypothesis tests across classes are 
unlikely to be meaningful.  For example, suppose we fit a three class model.  Tests about the 
equality of some of the coefficients in one class to those in another would probably be 
ambiguous, because the classes, themselves are indeterminate.  It is rare that one can even put a 
name on the classes, other than, “1,” “2,” etc.  Likewise, testing about the number of classes is an 
uncertain exercise.  Consider our two class example below.  If the parameters of the two classes 
are identical, it would seem that there is a single class.   The number of restrictions would seem to 
be the number of model parameters.  However, there remain two class probabilities, π1 and π2.  If 
the parameter vectors are the same, then regardless of the values of π1 and π2, there is only one 
class.  Thus, the degrees of freedom for this test are ambiguous.  The same log likelihood will 
emerge for any pair of probabilities that sum to one. 
 The log likelihood can be maximized using conventional gradient methods.  [See 
Econometric Software (2007).]  An alternative method, the EM algorithm [Dempster, Laird and 
Rubin (1977)], is particularly well suited to latent class modeling.  Though generally slower than 
gradient methods such as Broyden, Fletcher, Goldfarb and Shanno [see Greene (2008a)], the EM 
method does have the advantage of great stability.   
 The EM algorithm is most effective in estimating the parameters of “missing data 
models.”  In the model we are examining, the missing data are 
 
 diq  =  1 if individual i is a member of class q and 0 if not. 
 
If diq were observed, then the “complete data” log likelihood could be written 
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 (8.21) 

 
(In the second line, we have only reversed the order of the summations.)  That is, if diq were 
known, then we could partition the log likelihood into separate log likelihoods for the Q classes 
and maximize each one separately.  Maximization of this log likelihood would be done by 
separating the observations into the Q known groups and estimating a separate ordered choice 
model for each group of Nq observations.   
 Since diq is not observed, we must maximize the earlier log likelihood instead. The E 
(expectation) step of the EM algorithm requires derivation of the expectation of logL|d given the 
observed data, yi,xi, i=1,...,N and the parameters of the class specific models, βq and μq.  This, in 
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turn requires deriving E[diq|yi,xi,βq,μq].  Unconditionally, E[diq] = πq.  However, there is more 
information in the sample.  The conditional mean function, E[diq|yi,xi,βq,μq] (which is the 
expectation conditioned on mij,xi and the parameters βq,μq) is found as follows:  the joint density 
of yi and diq is 
 
 P(yi,diq|xi,βq,μq)  =  P(yi|diq,xi,βq,μq)P(diq) 
 
   =  Prob(yi = j | class = q,xi,βq,μq) × πq. 
 
Using Bayes Theorem,  
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The conditional mean is, then, 
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(There is only one nonzero term in the summation in the first line.)  The M (maximization) step of 
the EM algorithm consists of maximizing E[logL|d] by replacing diq with the expectations derived 
above.  (Note, we are conditioning on an existing (previous) value of (βq,μq), so ˆ iqw  is not a 
function of the parameters in the expected log likelihood.)  Thus, the M step consists of 
maximizing 
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Since the weights, ˆ iqw , are now known, this maximand can be partitioned into Q separate 
weighted log likelihoods that can be maximized separately; 
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⎡ ⎤′ ′= Φ μ − − Φ μ −⎣ ⎦∑ ∑ x xβ β , q = 1,...,Q. (8.23) 

 
 To assemble the parts, then, the EM algorithm for latent class modeling as a general 
template that we can use for our ordered choice model is  
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 (1)  Obtain starting values for βq,μq, q = 1,...,Q. 
 (2)  Compute weights ˆ iqw , i = 1,...,N based on each of the q parameter vectors. 
 (3)  Using the weights obtained in step (2), compute Q new sets of parameters by 
        maximizing Q separate weighted log likelihoods. 
 (4)  Return to step (2) if the new estimates are not sufficiently close to the previous ones. 
        Otherwise, exit the iterations. 
 
As noted earlier, this algorithm can take many iterations.  However, each iteration is simple.  
Adding weights to the log likelihood we have been manipulating all along, is a trivial 
modification.  Moreover, as shown by Dempster et al. (1977), the log likelihood increases with 
every iteration – that is the stability aspect that is not necessarily achieved by other gradient 
methods. 
 We note a few practical points:  (1)  It would be tempting to obtain the starting values by 
using, for each class, the single class estimates obtained by maximizing the log likelihood for the 
sample without the latent class structure.  Unfortunately, this leads to a frustrating result.  If the 
parameters in the classes are the same, then the sets of weights for the classes will also be the 
same, which means that the next set of parameter estimates will again be the same.  The end 
result is that these starting values will prevent the iterations from ever reaching the solution.  A 
practical expedient is a small, different perturbation of the original estimates for each class.  (2)  
The EM algorithm finds the maximizer of the log likelihood function, but unlike other gradient 
methods, it does not automatically produce an estimate of the asymptotic covariance matrix of the 
estimator.  That must be obtained separately after the estimation is done.  Note that the second 
derivatives matrix (or an approximation to it) computed from the weighted log likelihood 
function is not an appropriate estimator of the asymptotic covariance matrix of the class specific 
parameter vector.  (3)  To this point, we have not obtained an estimator of πq.  The appropriate 
estimator, perhaps not surprisingly, is 
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8.2.4  Estimating the Class Assignments 
 
 There is a secondary estimation problem in the latent class setting, known as the 
“classification problem.”  Ex post, it would be useful to be able to assign observations to classes.  
If we could do this, then the classes would not be latent, and the model would be superfluous.  
However, one’s best guess of the class from which observation i is drawn would be based on the 
posterior, 
 
 Prob(individual i is in class q|yi,xi,βq,μq)  =  ˆ iqw , 
 
as computed earlier.  Thus, the EM algorithm provides the sample estimator for the classification 
problem automatically.  If the EM algorithm has not been used, it is still possible to compute ˆ iqw  
using the estimated parameters, simply using the definition given earlier.  The end result would 
be to estimate the class membership for individual i as that q associated with the maximum value 
of ˆ iqw  for q = 1,...,Q. 
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8.2.5  A Latent Class Model Extension 
 
 The latent class interpretation of the model suggests a useful estension of the class 
probabilities model.  Thus far, the specification provides no prior information about the class 
membership.  That is, the prior class probabilities are constants, 
 
 Prob(class = q)  =  πq. 
 
If there were useful, though not definitive, sample information (in which case, the classes would 
not be latent) for determining class membership, then we might write 
 
 Prob(class = q | zi)  =  πq(zi). 
 
where presumably, zi does not appear in the main model.  For example, in our ordered probit 
model, it might be suspected that gender or working status has an influence on the class 
probabilities for health satisfaction.  This is straightforward to build into the multinomial logit 
model, in the form 
 

1

exp( )
,  1,..., ,  0,  .

exp( )
q q i

iq Q qQ
q q q

q Q
=

′θ +
π = = θ = =

′Σ θ +

z
0

z
δ

δ
δ

    (8.25) 

 
Estimation is also only slightly more complicated.  The log likelihood for the full model would 
now be 
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The EM algorithm would require a slight modification.  We would add a step (2a) that would be 
estimation of the logit parameters, (θq,δq),q=1,...,Q-1 (with θQ = 0 and δQ = 0).  This (sub)step is 
done by fitting a multinomial logit model to the weights, ˆ iqw  based on proportions, rather than 
individual data.  The implied log likelihood function is 
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The solution to this estimation is also straightforward using Newton’s method.  The first order 
conditions are revealing of the structure of the problem; 
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The first of the equations would imply Σi ( ˆ iqw  - Λiq).  If there were no covariates, zi in the 
equation, this would return the original solution for ˆ qπ that was shown earlier.  Thus, we find (as  
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Table 8.4 Estimated Two Class Latent Class Ordered Probit Model 
+-------------------------------------------+ 
| Latent Class / Ordered Probit Model       | 
| Number of observations             4483   | 
| Log likelihood function       -5716.627    -5683.202   | 
| Info. Criterion: AIC =          2.55883    2.54526 | 
+-------------------------------------------+ 
+--------+---------+------+-------+------+--------+------+-------+-------+--------+ 
|Variable|Estimate |S.E.  |b/s.e. | Prob |Estimate|S.E.  |b/s.e. | Prob  |OrdPrbt.| 
+--------+---------+------+-------+------+--------+------+-------+-------+--------+ 
|                Parameters for Latent Class 1                           |        | 
+--------+-------------------------------+-------------------------------+--------+ 
|Constant|  2.9502  .4131   7.142  .0000 | 2.6740   .9877   2.707  .0068 | 1.9788 | 
|AGE     |  -.0112  .0036  -3.302  .0010 | -.0168   .0031  -5.491  .0000 | -.0181 | 
|EDUC    |   .0066  .0200    .330  .7415 |  .0565   .0141   4.018  .0001 |  .0356 | 
|INCOME  |  -.8932  .3211  -2.782  .0054 | -.0722   .2054   -.352  .7251 |  .2587 | 
|MARRIED |  -.0038  .0841   -.046  .9635 | -.1250   .0714  -1.751  .0800 | -.0310 | 
|KIDS    |  -.0601  .0859   -.699  .4844 |  .0585   .0695    .841  .4001 |  .0606 | 
|MU(1)   |  1.0594  .2089   5.072  .0000 |  1.2427  .7287   1.705  .0881 | 1.1483 | 
|MU(2)   |  2.9914  .2411  12.406  .0000 |  3.1004  .9753   3.179  .0015 | 2.5478 | 
|MU(3)   |  3.2639  .1974  16.535  .0000 |  3.8124  1.045   3.648  .0003 | 3.0564 | 
+--------+-------------------------------+-------------------------------+--------+ 
|                Parameters for Latent Class 2                           |        | 
+--------+-------------------------------+-------------------------------+        | 
|Constant|  1.3384  .3151   4.247  .0000 | 1.7882   .3586   4.987  .0000 |        | 
|AGE     |  -.0314  .0049  -6.403  .0000 | -.0222   .0050  -4.428  .0000 |        | 
|EDUC    |   .0760  .0214   3.551  .0004 |  .0063   .0298    .210  .8335 |        | 
|INCOME  |  1.8767  .4844   3.874  .0001 |  .4473   .3481   1.285  .1988 |        | 
|MARRIED |  -.1106  .0962  -1.150  .2503 | -.0611   .1142   -.535  .5924 |        | 
|KIDS    |   .2182  .1014   2.151  .0315 |  .1243   .1110   1.120  .2627 |        | 
|MU(1)   |  1.5400  .1661   9.273  .0000 | 1.4529   .3011   4.826  .0000 |        | 
|MU(2)   |  2.4763  .1642  15.085  .0000 | 2.3938   .3921   6.105  .0000 |        | 
|MU(3)   |  3.7191  .3423  10.865  .0000 | 2.3938   .3077   7.781  .0000 |        | 
+--------+-------------------------------+-------------------------------+        | 
+        |        Multinomial Logit Model for Class Probabilities        |        | 
+--------+-------------------------------+-------------------------------+        | 
|ONE_1   |                               |   .7383   .7621    .969  .3327|        | 
|FEMALE_1|                               |  -.0431   .1278   -.337  .7362|        | 
|HANDDU_1|                               |  -1.223   .2389  -5.120  .0000|        | 
|WORKIN_1|                               |   .4096   .1512   2.710  .0067|        | 
|ONE_2   |                               |   .0000   ..(Fixed Parameter) |        | 
|FEMALE_2|                               |   .0000   ..(Fixed Parameter) |        | 
|HANDDU_2|                               |   .0000   ..(Fixed Parameter) |        | 
|WORKIN_2|                               |   .0000   ..(Fixed Parameter) |        | 
+--------+-------------------------------+-------------------------------+--------+ 
+        |        Prior probabilities for class membership               |        | 
|Class 1 |            .57532             |               .87182          | 1.00000| 
|Class 2 |            .42468             |               .29818          | 0.00000|  
+--------+-------------------------------------------------+----------------------+ 

 
Table 8.5  Estimated Partial Effects from Latent Class Models 
+-------------------------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Models                          | 
| Effects computed at means.  Effects for binary variables are                        | 
| computed as differences of probabilities, other variables at means.                 | 
+--------+--------------------------------------+-------------------------------------+ 
|        |         Latent Class Model           |   Expanded Latent Class Model       | 
+--------+--------------------------------------+-------------------------------------+ 
|Outcome |  AGE     EDUC  INCOME  MARRIED   KIDS|   AGE   EDUC   INCOME  MARRIED  KIDS| 
|Y = 00  | .0014  -.0024  -.0192   .0033  -.0039| .0092 -.0033   .0058   .0069  -.0030| 
|Y = 01  | .0053  -.0094  -.0741   .0128  -.0152| .0020 -.0073   .0128   .0157  -.0069| 
|Y = 02  |-.0012   .0022   .0770  -.0027   .0334| .0013 -.0047   .0082   .0109  -.0043| 
|Y = 03  |-.0031   .0055   .0172  -.0076   .0089|-.0012  .0045  -.0078  -.0094   .0041| 
|Y = 04  |-.0023   .0042   .0327  -.0058   .0068|-.0030  .0109  -.0190  -.0240   .0100| 
+--------+--------------------------------------+-------------------------------------+ 
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expected) that the ordinary methods and the EM method find the same maximizer of the log 
likelihood. 
 
8.2.6  Application 
 
 Table 8.4 presents estimates of a two class latent class model using our base 
specification.  The single class estimates are presented for comparison.  The estimates for the two 
class model, as expected, bracket the one class estimates.  Although the log likelihood has 
increased substantially (from -5752.985 to -5716.627), the class definition does not appear to 
have greatly changed the results.  The estimated prior class probabilities are near 50%.  In Table 
8.4, we have also listed estimates of an extended model in which gender (FEMALE), handicapped 
(HANDDUM) and work status (WORKING) enter the class probabilities.  This modification does 
appear to add significantly to the class segregation.  Evidently HANDDUM and WORKING, 
though not FEMALE, are significant determinants.  The log likelihood for the extended model 
jumps to -5683.202.  The chi squared for the extension is 2(5716.627 – 5683.202) = 66.85 with 3 
degrees of freedom, which is also highly significant.   Partial effects for the two models are 
shown in Table 8.5. 
 
8.2.7 Endogenous Class Assignment and A Generalized Ordered Choice Model 
 
 Greene, Harris, Hollingsworth and Maitra (2008) analyzed obesity in a sample of 12,601 
men and 15,259  women in the U.S. National Health Interview Survey from 2005.  The central 
feature of their model is a three outcome ordered choice model for weight class defined as 
normal, overweight and obese. Obesity is measured by the World Health Organization’s standard 
body mass index, or BMI.  BMI is computed as the weight in Kg divided the square of the height 
in meters.  Values under 18.5 are classified by WHO as underweight. The 2% of their sample in 
this class was deleted.  The remaining three classes are normal (18.5,25], overweight (25,30] and 
obese, (30,∞).  There are great differences across individuals in body fat and conditioning, and 
the BMI classification is at best only a loose categorization of the desired health level indicated.  
The authors reasoned that the latent regression model with known thresholds that might seem 
superficially to apply, 
 
 BMIi*  =  β′xi  +  εi,  εi  ~  N[0,σ2], 
 BMIi    =  0  if  BMIi*  <  25, 
     1  if  25  <  BMIi*  <  30, 
     2  if  BMIi*  > 30, 
 
would be too narrow, and would neglect several sources of heterogeneity.  They opted instead for  
an ordered “choice” model, defined as 
 
 BMIi*  =   β′xi  +  εi, εi  ~  N[0,1], 
 WTi      =  0  if  BMIi*  <  0, 
       1  if    0  <  BMIi* <  μ, 
       2  if  BMIi*  >  μ. 
 
A recent study in Science [Herbert, Gerry and McQueen (2006)] suggests that an obesity 
predisposing genotype is present in 10% of individuals.  In the sample, roughly 25% of the 
sample is categorized as obese.  This suggests that a latent class model might be appropriate and 
that the class division depends on more than just this (unobserved) geno-type.  The study used a 
two class model, with 
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 classi*  =   α′wi  +  ui, ui ~ N[0,1], 
 classi    =   0  if  classi*  <  0, 
       1  if  classi*  > 0.     
 
The rigidity of the BMI classification, itself, might have produced erroneous classifications.  For 
examples, athletes with high BMI levels due to high percentages of muscle mass, rather than fat, 
could be misclassified.  To accommodate this sort of heterogeneity, the authors specified a 
heterogeneous threshold model, 
 
 μi  =  exp(θ  +  δ′ri). 
 
Finally, reasoning that the BMI outcome and the latent class assignment would likely depend on 
common features, both observed (in xi and wi) and unobserved (in ε and u), they specified a joint 
normal distribution for εi and ui with correlation ρ.  (This is the first application of this model 
extension that we have seen.  Since this is a cross section analysis, the natural extension is 
straightforward to build into the specification.  If the sample were a panel, it would make sense to 
build a time invariant random effect into the main equation and allow that to be correlated with ui 
in the class assignment.  Some more elaborate specification would be necessary of the model 
specified more than two classes. 
 
 Combining all of the components, we have 
 
 Outcome Model: 
 (BMIi*|class = c)  =  βc′xi  +  εic, εic  ~  N[0,1], 
 WTi|class=c          =  0  if  BMIi*|class = c  <  0, 
             1  if    0  <  BMIi*|class = c  <  μic, 
            2  if  BMIi*|class = c  >  μic, 
 Thresholdi|class=c:   μic  =   exp(θc + δc′ri). 
 
 Class Assignment: 
 ci*      =   α′wi  +  ui, ui ~ N[0,1], 
 ci        =   0  if  ci*  <  0, 
              1  if  ci*  > 0., 
 
 Endogenous Class Assignment: 
 (εic,ui)    ~  N2[(0,0),(1,ρc,1)].     
 
Formation of the probabilities for the observed outcomes is a bit more complicated than 
previously due to the correlation between the class assignment and the BMI outcome.  
Generically, 
 
 Prob[WTi = j | class = c]  =  Prob[WTi = j, class = c] / Prob(class = c). 
 
To form the likelihood, we require the joint probabilites, not the conditional; 
 
 logL  =  1

1 0
log Prob( )Prob( | )N

ii class
class c WT j class c

= =
⎡ ⎤= = =⎣ ⎦∑ ∑ . 
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The joint probability is a bivariate normal probability.  (See Section 9.1.)   To reach the 
components of the log likelihood and the probabilities to analyze for the partial effects, we begin 
with 
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Combining all terms, then, 
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where mij = j if WTi = j, j = 0,1,2, μi,-1,c = -∞, μi,0,c = 0, μi,1,c = exp(θc + δc′ri), μi,2,c = +∞. 
 In order to simplify the derivation of the partial effects, assume for the present that xi, zi 
and ri all contain the same variables, labeled wi.  The partial effects will contain three terms, for 
the latent regression, the class assignment and the threshold model.  For variables that appear in 
more than one part, the partial effect will be obtained by adding the terms.  For convenience, we 
will drop the observation subscript.  Partial effects will typically be computed at the means of the 
variables, or by averaging the partial effects over all observations  Define the quantities 
 
 Ajic   =  μj,c  -  βc′wi, 
 Bic   =  (2c-1)α′wi, 
 τc     =  (2c-1)ρc. 
 
Then,  
 1

2 , 2 1,0
Prob( | ) [ , , ] [ , , ]i j ic ic c j ic ic cc

WT j A B A B−=
= = Φ τ − Φ τ∑w . 

 
The partial effects are 
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8.3  Generalized Ordered Choice Model with Random Thresholds (3) 
 
 Cunha, Heckman and Navarro (2007) present a variety of settings in which an optimizing 
economic agent chooses an outcome along a continuum by revealing the discrete choice of an 
interval along the support of the underlying random variable.  This would be consistent with our 
latent regression interpretation, though these authors present a much more abstract, economic 
theory based motivation.  They cite a variety of applications including when to fell a tree and how 
many years of education to accomplish as examples, and argue that the general class of models is 
consistent with an ordered choice model.  Some of these suggest an ordered choice model with 
random thresholds, an idea first suggested by Cameron and Heckman (1998) and later developed 
by Carniero, Hansen and Heckman (2001, 2003).  The theoretical underpinnings of an ordered 
choice model with random thresholds are further developed by Heckman and Navarro (2007) and 
Vytlacil (2006). 
 In this section, we combine the features of the preceding generalized models in a single 
internally consistent model framework.  The model contains random parameters, heterogeneous 
thresholds and heteroscedasticity.  We depart from the base case, 
 
 Prob[yi = j | xi]  =  F(μi,j - βi′xi)  -  F(μi,j-1 - βi′xi)  > 0, j = 0,1,...,J.   (8.29) 
 
The intrinsic heterogeneity across individuals is captured by writing 
 
 βi  =  β  +  Δzi  + Γvi,        (8.30) 
 
where Γ is a lower triangular matrix and vi ~ N[0,I].  Thus, βi is normally distributed across 
individuals with conditional mean,  
 
 E[βi|xi,zi]  =  β  +  Δzi, 
 
and conditional variance, 
 
 Var[βi|xi,zi]  =  ΓIΓ′  =  Ω. 
 
This is a random parameters formulation that appears elsewhere, e.g., Greene (2002, 2005) and 
Jones and Hensher (2004).  It is the same as the random parameters model developed in the 
previous section. 
 The thresholds are modeled as 
 
 μi,j  =  μi,j-1 +  exp(αj + δ′ri + σjwij), μ0= 0, μ-1 = -∞, μJ = +∞, wij ~ N[0,1].  (8.31) 
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Integrating the difference equation, we obtain 
 
 μi,1  =   exp(α1 + δ′ri + σ1wj1)   
        =   exp(δ′ri) exp(α1  + σ1wj1), 

 μi,2  =  exp(δ′ri) [exp(α1  + σ1wj1) + exp(α2  + σ2wj2)],    (8.32) 

 μi,j  =  exp(δ′ri) ( )1 exp( )j
m m m imw=Σ α + σ , 

 μi,J  =  +∞  is imposed by αJ = +∞ and σJ = 0. 
 
An extension of the model along the lines suggested by King et al. (2004) for the vignettes model 
in Section 7.3 would be to allow each threshold parameter to have its own parameter vector.  
Then, 
 
 μi,j  =  μi,j-1 +  exp(αj + δj′ri + σjwij), μ0= 0, μ-1 = -∞, μJ = +∞, wij ~ N[0,1]. (8.33) 
So 
 μi,j  =  exp(δ′ri) 1

exp( )j
m m i m imm

w
=

′α + + σ∑ rδ . 

For simplicity in what follows, we will maintain the simpler model with a common slope vector 
in the thresholds. 
 This model preserves the ordering of the thresholds and incorporates the necessary 
normalizations.  Note that the thresholds, like the regression itself, are shifted by both observable 
(ri) and unobservable (wij) heterogeneity.  The model is fully consistent in that probabilities are 
all positive and sum to one by construction.  Finally, the disturbance variance is allowed to be 
heteroscedastic, as before, randomly as well as deterministically; thus, 
 
 Var[εi|hi]  =  [exp(γ′hi + τei)]2,       (8.34) 
 
where ei ~ N[0,1].   
 Let vi = (vi1,...,viK)′ and wi = (wi1,...,wi,J-1)′.  Combining terms, the conditional probability 
of outcome j is 

 Prob[yi = j | xi,zi,hi,ri,vi,wi,ei]  =  , 1

exp( ) exp( )
ij i i i j i i

i i i i

F F
e e
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x x
h h

β β

γ γ
. (8.35) 

 
The term that enters the log likelihood function is unconditioned on the unobservables.  Thus, 
after integrating out the unobservable heterogeneity, we have 
 
 Prob[yi = j | xi,zi,hi,ri]  = 

                     , 1
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 (8.36) 

where 
 βi  =  β  +  Δzi  + LDvi, 
and 
 μij  =  exp(δ′ri) ( )1 exp( )j

m m m imw=Σ α + σ , j = 1,..., J-1. 

 
The model is estimated by maximum simulated likelihood.  The simulated log likelihood function 
is 
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 logLS(β,Δ,α,δ,γ,L,D,σ,τ)= 
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This is the model in its full generality.  Whether a particular data set is rich enough to support this 
much parameterization, particularly the elements of the covariances of the unobservables in Γ, is 
an empirical question that will depend on the application.  In estimation of a very similar model, 
Eluru, Bhat and Hensher (2008) found that a large number of zero restrictions on the various 
parameters was necessary to estimate the model.  The extended model in (8.33) will likewise 
require a rich data set. 
 The model contains three points at which changes in the observed variables can induce 
changes in the probabilities of the outcomes, in the thresholds, in the utility function, and in the 
variance.  The, probability of interest is 
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        μij  =  exp(δ′ri) ( )1 exp( )j
m m m imw=Σ α + σ , j = 1,..., J-1.      (8.38) 

 
The set of partial effects is 
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Effects for particular variables that appear in more than one part of the model are added from the 
corresponding parts. 
 Development of a generalized model along these lines appears in Eluru, Bhat and 
Hensher (2008).  An application appears in  Greene and Hensher (2009).  The former is a study of 
extent of injuries in traffic accidents.  In the latter, the authors examine the information 
processing strategies in commuter choices of travel routes.  Table 8.6 below shows an application 
of the model (with some of its features) to our health satisfaction example.  
 



Modeling Ordered Choices 

 206  

Table 8.6  Estimated Generalized Random Thresholds Ordered Logit Model 
+-----------------------------------------------+ 
| Random Thresholds Ordered Choice Model        | 
| Dependent variable               HEALTH       | 
| Number of observations             4483       | 
| Log likelihood function       -5725.181       | 
| Info. Criterion: AIC =          2.56310       | 
| Underlying probabilities based on Logistic    | 
+--------+-----------+--------+-----------------+ 
|Variable|Coefficient|Standard|b/St.Er.|P[|Z|>z]| 
|        |           |Error   |        |        |  
+--------+-----------+--------+--------+--------+ 
+--------+Latent Regression Equation            | 
|Constant|   11.7009   1.4905   7.850   .0000   | 
|AGE     |    -.1330    .0205  -6.496   .0000   | 
|EDUC    |     .3236    .0667   4.853   .0000   | 
|INCOME  |    2.2877    .7782   2.940   .0033   | 
|MARRIED |    -.3397    .3095  -1.097   .2724   | 
|KIDS    |     .6054    .3061   1.978   .0479   | 
+--------+Intercept Terms in Random Thresholds  | 
|Alpha-01|    1.7060    .1429  11.936   .0000   | 
|Alpha-02|    2.2777    .1571  14.501   .0000   | 
|Alpha-03|    1.8926   4.8200    .393   .6946   | 
+--------+Standard Devs. of Random Thresholds   | 
|Alpha-01|     .5195    .1721   3.019   .0025   | 
|Alpha-02|     .1995    .0616   3.239   .0012   | 
|Alpha-03|    4.2325  16.2463    .261   .7945   | 
+--------+Standard Devs. of Random Regr. Params.| 
|Constant|    2.5004   1.0499   2.382   .0172   | 
|AGE     |     .0407    .0135   3.027   .0025   | 
|EDUC    |     .0050    .0626    .080   .9362   | 
|INCOME  |     .6391   1.5347    .416   .6771   | 
|MARRIED |     .5556    .3146   1.766   .0773   | 
|KIDS    |     .1233    .5756    .214    8304   | 
+--------+Heteroscedasticity in Regr. Equation  | 
|FEMALE  |     .0020    .0532    .038   .9698   | 
+--------+Latent Heterogeneity in Var. of Eps.  | 
|Tau(v)  |     .3073    .1503   2.045   .0409   | 
+--------+--------------------------------------+ 
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9 
 

Ordered Choice Modeling with Panel and  
Time Series Data 

 
Development of models for panel data parallel those in other modeling settings.  The departure 
point is the familiar fixed and random effects approaches.  We then consider other types of 
applications including extensions of the random parameters and latent classes formulations,  
dynamic models and some special treatments that accommodate features peculiar to the ordered 
choice models. 
 
9.1  Ordered Choice Models with Fixed Effects 
 
 An ordered choice model with fixed effects formulated in the most familiar fashion 
would be 
 
 Prob[yit = j | xi]  =  F(μj – αi – β′xit)  -  F(μj-1 – αi –  β′xit)  > 0, j = 0,1,...,J.  (9.1) 
 
At the outset, there are two problems that this model shares with other nonlinear fixed effects 
models.  First, regardless of how estimation and analysis are approached, time invariant variables 
are precluded.  Since social science applications typically include demographic variables such as 
gender and, for some at least, education level, that are time invariant, this is likely to be a 
significant obstacle. (Several of the variables in the GSOEP analyzed by Boes and Winkelmann 
(2006b) and others are time invariant.)  Second, there is no sufficient statistic available to 
condition the fixed effects out of the model.  That would imply that in order to estimate the model 
as stated, one must maximize the full log likelihood, 
 

 ( ) ( )( ){ }11 01
log log iTN J

ijt j i it j i ii jt
L m −= ==

⎡ ⎤′ ′= Φ μ − α − Φ μ − α⎣ ⎦∑ ∑∏ x x− β − β . (9.2) 

 
If the sample is small enough, of course, one may simply insert the individual group dummy 
variables and treat the entire pooled sample as a cross section.  See, e.g., Mora (2006) for a cross-
country application in banking that includes separate country dummy variables.  We are 
interested, instead, in the longitudinal data case in which this would not be feasible. The data set 
from which our sample used in the preceding examples is extracted comes from an unbalanced 
panel of 7,293 households, observed from 1 to 7 times each. 
 The full ordered probit model with fixed effects, including the individual specific 
constants, can be estimated by unconditional maximum likelihood using the results in Greene 
(2004a,b and 2008a, Section 16.9.6.c). The likelihood function is globally concave [see Pratt 
(1981)], so despite its superficial complexity, the estimation is straightforward.  In another 
application, based on the full panel data set [see Greene (2008a, pp. 838-840), estimation of the 
full model required roughly five seconds of computation on an ordinary desktop computer.  
 The larger methodological problem with this approach would be at least the potential for 
the incidental parameters problem that has been widely documented for the binary choice case.  
[See, e.g., Lancaster (2000).]  That is the small T bias in the estimated parameters when the full 
MLE is applied in panel data.  For T = 2 in the binary logit model, it has been shown analytically 
[Abrevaya (1997)] that the full MLE converges to 2β. [See, as well, Hsiao (1986, 2003).]  No 
corresponding results have been obtained for larger T or for other models.  However, Monte 



Modeling Ordered Choices 

 208  

Carlo results have strongly suggested that the small sample bias persists for larger T as well, 
though as might be expected, it diminishes with increasing T. 
 No theoretical counterpart to the Hsiao (1986, 2003) and Abrevaya (1997) result on the 
small T bias (incidental parameters problem) of the MLE in the presence of fixed effects has been 
derived for the ordered probit model. The Monte Carlo results in Greene (2004b) reproduced 
below in Figure 9.1 suggest that biases comparable to those in the binary choice models persist in 
the ordered probit model as well. (In the first, third and fifth rows that correspond to estimation of 
coefficients, the true coefficients being estimated both equal one.) 
 

 
Figure 9.1  Monte Carlo Analysis of Biases in Fixed Effects MLE in Discrete Choice Models 
 
 The preceding bode ill for unconditional fixed effects models for ordered choice.  So far, 
the approach has little to recommend it other than the theoretical robustness of fixed effects as an 
alternative to random effects.  Recent proposals for “bias reduction” estimators for binary choice 
models, including Fernandez-Val and Vella (2007), Fernandez-Val (2008), Carro (2007), Hahn 
and Newey (2004) and Hahn and Kuersteiner (2003) suggest some directions for further research.  
However, no counterparts for the ordered choice models have yet been developed.  We would 
note, for this model, the estimation of β which is the focus of these estimators, is only a means to 
the end.  As seen earlier, in order to make meaningful statements about the implications of the 
model for behavior, it will be necessary to compute probabilities and derivatives. These, in turn, 
will require estimation of the constants, or some surrogates.  The problem remains to be solved. 
 In their application to the GSOEP panel data set, Boes and Winkelmann (2006b) further 
modify the heterogeneous thresholds model.  Their model is a fixed effects model, 
 
 Prob[yit = j | xi1, xi2,...,xiT]  =  F(μij - βj′xit) – F(μi,j-1 - βj-1′xi),   (9.3) 
where 
 μij = μj + αi. 
 
Seeking to avoid the incidental parameters problem, they use Mundlak’s (1978) and 
Chamberlain’s (1980) device to model the fixed effect.  Projecting the fixed effects on the group 
means of the regressors,  
 
 αi  =  j i iv′ + σxγ ,        (9.4) 
 
they obtain an equivalent random effects model, 
 
 Prob[yit = j | xi1, xi2,...,xiT]  =  F(μij - βj′xit) – F(μi,j-1 - βj-1′xi), 
Where           (9.5) 
 μij =  μj + j i iv′ + σxγ , vi ~ N[0,1],  
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and σ is a new parameter to be estimated.  This model is estimated by using quadrature to 
integrate vi out of the log likelihood.  [See the next section and Butler and Moffitt (1982) for the 
methodology.]  As observed at several earlier points, the placement of the heterogeneity in the 
thresholds is not substantive; it can be moved to the mean of the regression with no change in the 
interpretation of the model. As usual, the placement of the fixed effects in this linear specification 
is not consequential.  Thus, their model is functionally equivalent to a more conventional random 
effects model with the group means added as covariates; 
 
  Prob[yit = j | xi1, xi2,...,xiT]  =  F[μj – (βj′xit+ * j i iv′ + σxγ )] – F[μ,j-1 – (βj-1′xi+ * 1j i iv−′ + σxγ )].  (9.6) 
 
 The underlying logic of the Brant test suggests an alternative approach to estimation 
proposed by Das and van Soest (2000).  Consider the base case ordered logit model with fixed 
effects.  The model assumptions imply that 
 
 Prob[yit > j | xit]   =  Λ(αi + β′xit – μj)     (9.7) 
    =  Λ[(αi-μj) + β′xit]. 
 
Now, define a binary variable wit,j  =  1[yit > j], j = 0,1,…,J-1.  It follows that 
 
 Prob[yit > j | xit]   =  Λ[(αi-μj) + β′xit] 
      =  Λ[ λi + β′xit]      (9.8) 
    =  Prob(witj = 1 | xit). 
 
The “ j ” specific part of the constant is the same for all individuals so it is absorbed in λi . Thus, a 
fixed effects binary logit model applies to each of the J − 1 binary random variables, wit,j . The 
method of Rasch (1960), Andersen (1970) and Chamberlain (1980) can be applied to each of 
these binary choice models to obtain an estimator of β without having to estimate the constant 
terms.  [See also Greene (2008a, pp. 800-806).] This provides J −1 estimators of the parameter 
vector β (but no estimator of the threshold parameters). The authors propose to reconcile these 
different estimators by using a minimum distance estimator of the common true β. The minimum 
distance estimator at the second step is chosen to minimize 
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-1V  is the l,m block of the inverse of the (J − 1)K × (J − 1)K partitioned matrix, V, that 

contains ( )ˆ ˆ. ,l mAsy Cov β β . The appropriate form of this matrix for a set of cross-section 

estimators is given in Brant (1990).  Since Das and van Soest (2000) used the counterpart for 
Chamberlain’s fixed effects estimator, this would be inappropriate.  They used, instead, a 
counterpart to the BHHH estimator.  The l,m block of V (before inversion) is computed using 
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where logLi,m is the contribution of individual i to the log likelihood for βl.  The diagonal blocks 
of the matrix are the BHHH estimators for the asymptotic covariance matrices for the j specific 
estimators. 
 As in the binary choice case, the complication of the fixed effects model is the small T 
bias, not the computation. The Das and van Soest approach finesses this problem—their estimator 
is consistent—but at the cost of losing the information needed to compute partial effects or 
predicted probabilities.  
 Winkelmann and Winkelmann (1998) analyzed data on well being from the German 
Socioeconomic Panel (GSOEP).  The central question under the analysis is “How satisfied are 
you at present with your life as a whole?”  which was answered on a discrete scale from 0 to 10.   
(See Section 2.1 for discussion of the methodological aspects of this analysis.) The natural 
approach to the analysis would be an ordered choice – the authors were interested in the effect of 
unemployment on the response.  A fixed effects ordered choice (logit) model is the starting point 
for the specification..  Since there is no sufficient statistic available to use to condition the fixed 
effects out of the log likelihood, and fitting the fixed effects model by brute force by including the 
dummy variables in the model (assuming it could be done) would induce the biases of the 
incidental parameters problem, the authors opted for a simpler strategy.  They divided the 
responses (0 to 10) into “dissatisfied” and “satisfied” and recoded the former 0 and the latter 1, 
producing a binary choice model.  The structure, then, is equivalent to 
 
 yit*  =  β′xit  +  αi  +  εit, 

 yit    =  j  if μj-1 <  yit*  <  μj, j = 0,1,…,10, i = 1,…,N, t = 1,…,Ti,   (9.11) 

 zit    =  1  if  yit > 7. 
 
(The average response on the observed yit in the sample was between 7 and 8.)  The 
transformation is equivalent to the 8th of the 10 possible binary choice models in the Das and van 
Soest (2000) formulation; 
 
 Prob(yit > 7 | xit)  =  Λ(αi + β′xit – μ7). 
 
Once again, the constant μ7 is absorbed in the individual specific constant term, to produce, as 
before, 
 
 Prob[zit = 1 | xit]  =  Λ[λi + β′xit].       (9.12) 
  
The model was then fit using the same Rasch/Andersen/Chamberlain method noted earlier. 
 Ferrer-i-Carbonell and Frijters (2004) built on this approach in developing an alternative 
estimator.  In their study, the response variable of interest, from the same GSOEP data set, was 
“General Satisfaction.”  One of the shortcomings of the fixed effect binary choice model (whether 
it is estimated conditionally as suggested above) or unconditionally by computing the full set of 
coefficients including αi) is that groups that do not change outcomes in the Ti periods fall out of 
the sample.  For the conditional model,  
 
 Prob(zi1=1,zi2=1,…,ziT=1 | Σtzit = T) = 1,      (9.13) 
 
so the contribution of this observation group i to the log likelihood is zero if zit is always equal to 
1.  (The same occurs if zit equals zero in every period.)   For the brute force approach, the 
likelihood equation for estimation if αi for a group in which zit is the same in every period is 
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 ∂logL/∂αi  =  Σt    f(αi + β′xit)    =  0  if zit = 1 in every period,   (9.14) 

 ∂logL/∂αi  =  Σt –f[-(αi + β′xit]  =  0  if zit = 0 in every period. 
 
The first order condition for estimation of αi cannot be met with a finite αi if zit is always one or 
always zero in every period.  For ordered choice data, this is likely to be a frequent occurrence, 
particularly at the two ends of the distribution. The implication is that the samples used for 
possibly many of the of the binary choice equations in the Das and van Soest (2000) or the 
Winkelmann and Winkelmann (1998) estimator will lose many observations. 
 Ferrer-i-Carbonell and Frijters (2004) [and Frijters, Haisken-DeNew and Shields (2004)] 
modified the Winkelmann and Winkelmann (1998) approach.  Initially, the approach is 
essentially the same, though it begins with a fixed effect and individual specific thresholds; 
 
 yit* = αi  +  β′xit  +  εit, 

 yit   =  j  if μi,j-1  <  yit*  <  μi,j, j = 0,…,J; i = 1,…,N; t = 1,…,Ti.   (9.15) 
 
The ordered logit form is assumed.  For each individual, i, in the sample, once again, 
 
 Prob[zit = 1 | xit]  =  Λ[λi + β′xit].       (9.16) 
 
The difference here is that zit is defined with respect to an individual specific ji*, so 
 
 zit  =  1 if yit  >  ji*  and  0  otherwise. 
 
(In Winkelmann and Winkelmann’s method, ji* = 7 for all i.)  The algorithm for choosing ji* 
efficiently for each individual is given in the paper.  (The technical Appendix that describes their 
method can be downloaded from the website for the Royal Economic Society at 
http://www.res.org.uk/economic/ta/pdfs/ecoj_235_app.pdf. It is not contained in 
the paper, itself.)  The resulting contribution to the likelihood for individual i is 
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  (9.17) 

 
Where ci = Σt zit = the number of times yit is greater than the chosen threshold.  The threshold ji* is 
chosen so that ci is not equal to 0 or Ti. S(ji*,ci) is the set of all possible vectors, (z1,z2,…,zTi), 
whose elements are all zero or one and sum to ci; that is, the set of vectors corresponding to sets 
of outcomes yiy such that ci of them are greater than ji*.  The denominator of the probability is the 
sum over all possible arrangements of Ti z’s such that the sum is ci.  [See Krailo and Pike (1984) 
for the computations involved.] 
 
9.2  Ordered Choice Models with Random Effects 
 
 Save for an ambiguity about the mixture of distributions in an ordered logit model, a 
random effects version of the ordered choice model is a straightforward extension of the binary 
choice case developed by Butler and Moffitt (1982).  An interesting application which appears to 
replicate, but not connect to Butler and Moffitt is Jansen (1990).  Jansen estimates the equivalent 
of the Butler and Moffitt model with an ordered probit model, using an iterated MLE with 
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quadrature used between iterations.  Following Jansen’s lead, Crouchley (1995) also designed the 
equivalent of the common random effects model, but embeds it in a complementary log-log form 
that allows, at least for his two period model, a closed form expression for the probabilities after 
the random effect is integrated out.  Characteristically, this strand of the iterature emerged 
completely apart from the social science counterpart, which had, by then, integrated the random 
effects, panel data model into a variety of single index specifications such as this one.  
 Crouchley’s formulation of the “random-effects ordered response model” is 
 
 yij  =  β0 + β′xij + bi′zij + eij, 
 
where bi is a vector of individual specific random effects, xij is a known design matrix, and eij is 
the stochastic disturbance.  The model is immediately simplified to a single random effect, bi′zij = 
ei, which leaves 
 
 yij  =  β0  +  β′xij  +  ei + eij, i = 1,...,N, j = 1,...Ti.     (9.18) 
 
The remainder of the treatment is an ordered complementary log-log model with random effects, 
which is very similar to the model we have considered so far.  The difference from this point 
forward is in the functional form of the distributions of both ei and eij, neither of which is assumed 
to be normal.  Crouchley notes, the simplified dimensions can be relaxed 
 The structure of the random effects ordered choice model is 
 
 yit*  =  β′xit  +  ui  +  εit, 
 yit    =  j  if  μj-1  <  yit*  <  μit, 
 εit    ~  f (.) with mean zero and constant variance 1 or π2/3  (probit or logit), 
 ui    ~  g (.) with mean zero and constant variance, σ2, independent of εit for all t. 
 
If we maintain the ordered probit form and assume as well that ui is normally distributed, then, at 
least superficially, we can see the implications for the estimator of ignoring the heterogeneity.  
Using the usual approach,  
 
 Prob(yit  =  j|xit)  =  Prob(β′xit  +  ui  +  εit < μj)  -  Prob(β′xit  +  ui  +  εit < μj-1) 
 

    =  1

2 2 2 21 1 1 1
j jit it−μ μ⎛ ⎞ ⎛ ⎞′ ′

Φ − − Φ −⎜ ⎟ ⎜ ⎟
+ σ + σ + σ + σ⎝ ⎠ ⎝ ⎠

x xβ β   (9.19) 

 
    =  Φ(τj - γ′xit) - Φ(τj-1 - γ′xit). 
 
Unconditionally, then, the result is an ordered probit in the scaled threshold values and scaled 
coefficients.  Evidently, this is what is estimated if the data are pooled and the heterogeneity is 
ignored.  (See Wooldridge (2002).  Note that a “robust” covariance matrix estimator does not 
redeem the estimator.) 
 The likelihood function for a sample can be estimated using the method of Butler and 
Moffitt.  It is convenient to write ui = σvi where vi is the standardized variable – for the moment, 
N(0,1).  Then, conditioned on vi, the observations on yit, t = 1,...,Ti are independent, so the 
contribution to the conditional likelihood for individual i would be the joint probability, 
 
Prob(yi1 = j1,yi2 = j2,...,yiT = jT|Xi,vi) = ( ) ( )11

iT
j it i j it it

v v−=
⎡ ⎤′ ′Φ μ − − σ − Φ μ − − σ⎣ ⎦∏ x xβ β .  (9.20) 
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The unconditional probability would be, then, 
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(where we have defined a shorthand for the joint probability).  The unconditional log likelihood is 
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The remaining complication is how to compute the integral.  Two methods are available.  The 
method of Gauss-Hermite quadrature developed by Butler and Moffitt (1982) uses an 
approximation to the integrals; 
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where WTm and Nm are the weights and nodes, respectively, for the quadrature.  [See, e.g., 
Abramovitz and Stegun (1971).]  The accuracy of the approximation is a function of M, the 
number of quadrature points.  Greater accuracy is achieved with increased M, but at the cost of 
greater computation time.  [See, e.g., Rabe-Hesketh, Skrondal and Pickles (2005).]  An 
alternative approach to the estimation would be maximum simulated likelihood.  The integral in 
the log likelihood is  
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which can be approximated using simulation.  The simulated log likelihood to be maximized is 
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where vir, r = 1,...,R is a set of random draws from the standard normal population (the same set, 
reused every time the function is calculated for individual i). [See Train (2003) and Greene 
(2008a, Chapter 17) for details on simulation based estimation.]  Neither method of computation 
has an obvious advantage in this one dimensional integration problem.  (In terms of 
computational time, the advantage shifts significantly in favor of simulation when the number of 
dimensions (the order of the integration) increases past two.) 
 The random effects model extends naturally to the ordered probit model if the 
heterogeneity is viewed as the sum of small influences – a central limit theorem could be invoked 
to justify the layering of the normally distributed heterogeneity, ui, on the normally distributed 
disturbance, εit.  That does raise an ambiguity in the specification of the ordered logit model. The 
appeal of the logistic distribution is largely its mathematical convenience, though the slightly 
thicker tails might lend it some additional utility.  However, the mixture of a logistic disturbance 
with a normally distributed random effect is a bit unnatural.  The Butler and Moffitt method does 
not extend readily to integrating the logistic distribution.  However, the simulation method can 
easily be so adapted.  The simulated ordered logit model is obtained by using the logistic cdf, Λ(.) 
rather then the normal, Φ(.) in the function.  Draws from the desired distribution are simply 
obtained by the appropriate transformation of draws, Uir, from the standard uniform, U(0,1);  
Φ-1(Uir) for simulation from the normal, or log[Uir/(1-Uir)] for the logistic.  The optimization 
process is the same for the two cases.  The deeper question would seem to be whether the 
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logistic/logistic model is a reasonable one in the abstract, compared to the more commonly used 
normal/normal. 
 
9.3  Testing for Random or Fixed Effects: A Variable Addition Test 
 
 A natural question is whether there is a test one can use to determine whether fixed or 
random effects should be the preferred model.  Since the models are not nested, no simple test 
based on the likelihood function is available.  A counterpart to the Hausman (1978) test for the 
linear model seems desirable, however, unlike the linear case, the fixed effects estimator for this 
nonlinear model is inconsistent even when it is the appropriate estimator (due to the incidental 
parameters problem).  If one is going to base any test on the estimator of the fixed effects model, 
it would appear to be necessary to use one of the modified approaches, by Das and van Soest 
(2000) or Frijters et al. (2004), or any of the individual implied binary choice models, any of 
which will produce a consistent estimator of β under the hypothesis that the fixed effects model is 
appropriate.  As such, this will force the fixed effects benchmark in the test to rely on the ordered 
logit model estimates, say ,

ˆ
FE logitβ .  Frijters et al. (2004) argue that the alternative estimator based 

on a random effects probit specification should estimate a multiple of the same coefficient vector, 
so the working hypothesis would be ,

ˆ
FE logitβ   =  ,

ˆ
RE probitαβ .  They then propose a type of 

likelihood ratio test based on computation of the log likelihood functions for the two models.  
There are a number of problems with this approach, not least of which is that if the working 
hypothesis is true, it is necessary to estimate α.  However, the models are not nested, the 
parameters must necessarily be based on different sized samples and it is unclear what one should 
use for the degrees of freedom of the test if it were valid – the authors suggest K, the number of 
parameters in the model, but neither log likelihood forces K constraints on the other; the degrees 
of freedom for the LR test is the reduction in the number of dimensions of the parameter space.  
In this instance, the parameter space has K dimensions under both null and alternative.  D’Addio, 
Eriksson and Frijters (2007) estimated a fixed effects ordered logit model and a random effects 
ordered probit model for “job satisfaction”  for data from the European Community Household 
Panel and found that the fixed effects model was the preferred specification. 
 No other clearly appropriate procedure has been proposed.  This problem is common to 
other nonlinear models.  One strategy does suggest itself, based on the logic of the variable 
addition test [Wu (1973) and Baltagi (2007)].  In the random effects model to which we added the 
group means of the variables, the ostensible purpose of the variable addition was to account for 
correlation between the common effect, ui, and the regressors.  With that correlation present, the 
appropriate approach is fixed effects.  Without that correlation, the random effects model is 
appropriate. Thus, while conceding that the power of the test is completely unknown at this point, 
we propose a simple likelihood ratio – variable addition test of the joint significance of the group 
means in the expanded random effects model.   
 Estimates of the fixed and random effects models are shown in Tables 9.1-9.3.  For our 
estimated models we have logL = -32656.89 for the random effects model (Table 9.2) and -32588 
for the RE model  with the group means added (Table 9.3).  The likelihood ratio statistic for the 
hypothesis that the coefficients on the means are all zero is twice the difference, or 137.00, with 5 
degrees of freedom.  The hypothesis is decisively rejected, so we conclude that the fixed effects 
model is the preferred specification.  Unfortunately, this now raises the question of how to fit the 
model.  The average group size is less than 5. The results in Figure 8.1 suggest that the bias in the 
full MLE is as much as 30%.  The results in Table 9.3 may be the appropriate ones. 
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Table 9.1  Fixed Effects Ordered Logit Models 
+---------------------------------------+-------------------------------------+ 
|Ordered Probability Model              |FIXED EFFECTS Ordered Probit Model   | 
|Number of observations            27326|Number of observations          27326| 
|Log likelihood function       -35853.13|Log likelihood function     -28818.86| 
|Number of paameters                   9|Number of parameters             5264| 
|Info. Criterion: AIC =          2.62476|Info. Criterion: AIC =        2.49454| 
|Restricted log likelihood     -36734.32|Unbalanced panel has 7293 individuals| 
|Underlying probabilities based on Logit|2037 groups with inestimable a(i)    | 
+---------------------------------------+----------------------------+--------+ 
|Pooled Estimates                       |Full Maximum Likelihood Fixed Effects| 
+--------+-----------+--------+-------+------+-------+--------+--------+------+ 
|Variable|Coeff.     |Standard|b/St.Er|Prob. |Coeff. |Standard|b/St.Er.|Prob. | 
|        |           |Error   |       |      |       |Error   |        |      | 
+--------+-----------+--------+-------+------+-------+--------+--------+------+ 
|Constant|    3.6715    .0825   44.526  .0000|                                | 
|AGE     |    -.0355    .0011  -30.868  .0000| -.1283   .0057  -22.688  .0000 | 
|EDUC    |     .0625    .0051   12.325  .0000|  .0182   .0539     .337  .7360 | 
|INCOME  |     .4592    .0672    6.838  .0000|  .4902   .1442    3.400  .0007 | 
|MARRIED |     .0359    .0298    1.207  .2274|  .1085   .0823    1.318  .1876 | 
|KIDS    |     .0971    .0265    3.662  .0003| -.1549   .0577   -2.686  .0072 | 
|Mu(1)   |    2.1671    .0149  145.689  .0000| 3.5586   .0490   72.568  .0000 | 
|Mu(2)   |    4.3514    .0151  289.916  .0000| 7.1596   .0602  118.857  .0000 | 
|Mu(3)   |    5.1812    .0190  272.983  .0000| 8.5189   .0646  131.820  .0000 | 
+--------+-----------------------------------+--------------------------------+ 
|Conditional Fixed Effects Logit, Healthy=1[Health>2]; Mean=.2288, S.D.=.4200 | 
+--------+-----------------------------------+--------------------------------+ 
|AGE     |    -.1720    .0086  -19.977  .0000|                                | 
|EDUC    |     .0213    .0752     .283  .7773|                                | 
|INCOME  |     .4931    .2090    2.360  .0183|                                | 
|MARRIED |     .1806    .1147    1.574  .1155|                                | 
|KIDS    |    -.0584    .0817    -.714  .4751|                                | 
+--------+-----------------------------------+--------------------------------+ 
 
Table 9.2  Random Effects Ordered Logit Models – Quadrature and Simulation 
+-------------------------------------+---------------------------------------+  
|Random Effects Ordered Prob. Model   |Random Coefficients OrdProbs Model     | 
|Number of observations          27326|Number of observations          27326  | 
|Log likelihood function     -32656.89|Log likelihood function     -32669.96  | 
|Info. Criterion: AIC =        2.39090|Info. Criterion: AIC =        2.39186  | 
|Unbalanced panel has 7293 individuals|Unbalanced panel has 7293 individuals  | 
+-------------------------------------+---------------------------------------+ 
|Quadrature based estimation          |Max. Sim. Likelihood; 100 Halton draws | 
+--------+--------+--------+-------+------+-------+--------+--------+---------+ 
|Variable|Coeff.  |Standard|b/St.Er|Prob. |Coeff. |Standard|b/St.Er.|Prob.    | 
|        |        |Error   |       |      |       |Error   |        |         | 
+--------+--------+--------+-------+------+-------+--------+--------+---------+ 
|Constant| 5.8248   .1690    34.460  .0000| 5.7869   .0939   61.617   .0000   | 
|AGE     | -.0602   .0021   -28.660  .0000| -.0594   .0012  -48.162   .0000   | 
|EDUC    |  .0830   .0113     7.355  .0000|  .0838   .0054   15.478   .0000   | 
|INCOME  |  .2664   .0950     2.803  .0051|  .2545   .0694    3.673   .0002   | 
|MARRIED |  .1288   .0473     2.721  .0065|  .1225   .0305    4.018   .0001   | 
|KIDS    |  .0147   .0396      .372  .7097|  .0158   .0274     .576   .5648   | 
|Mu(01)  | 3.0227   .0358    84.522  .0000| 3.0155   .0328   91.954   .0000   | 
|Mu(02)  | 6.2878   .0447   140.610  .0000| 6.2824   .0405  154.953   .0000   | 
|Mu(03)  | 7.4514   .0473   157.460  .0000| 7.4447   .0430  173.220   .0000   | 
|Sigma   | 1.7935   .0242    74.016  .0000| 1.8112   .0153  118.407   .0000   | 
+--------+--------------------------------+-----------------------------------+ 
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9.4  Extending Parameter Heterogeneity Models to Ordered Choices 
 
 Based on the results of the previous sections, the extension of the models with parameter 
heterogeneity involves only a minor change in the log likelihood and essentially none in the 
interpretation of the model.  For example, in the random parameters model, the heterogeneity in 
the parameters is the same as in the random effect – it is useful to view the random effects model 
as a random parameters model in which only the constant term is random.  The more general 
model is 
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(9.25) 
 
The log likelihood for the sample is once again the sum over the N joint observations.  The 
integration can now be replaced with a simulation over R draws from the multivariate standard 
normal population.  The simulated log likelihood is, then 

(9.26) 
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The generalized ordered choice model (3) and the latent class model are handled similarly.  For 
the first, 
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As before, the structure assumes that the heterogeneity is constant through time.  Bhat (1999) 
applied a variant of this model to the number of stops on the evening commute in a survey of San 
Francisco Bay area commuters.  The model in this application combined the random effects 
model (with a heteroscedastic random effect) and the random parameters specification.  The 
model is, thus, the one above with Δ = 0,  and L = I (the parameters were uncorrelated). 
 For the latent class model, the appropriate log likelihood function is 

(9.28) 
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The counterpart to the assumption of time invariant heterogeneity is the assumption that the class 
membership is the same in every period. 
 Random parameters and latent class estimates for the health care model are shown in 
Tables 9.4-9.6.  The latent class model is fit with the full panel data set in Table 9.5, then with the 
cross section used previously (4,483 observations) in Table 9.6.  The estimates are relatively 
stable across the two samples.  However, the benefit from the larger sample is clearly visible in 
the much smaller standard errors in Table 9.5. 
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Table 9.3  Random Effects Ordered Probit Model with Mundlak Correction 
+---------------------------------------------+ 
| Random Effects Ordered Probability Model    | 
| Log likelihood function       -32588.39     | -32656.89 
| Info. Criterion: AIC =          2.38625     | 2.39090 
+---------------------------------------------+ 
+--------+-----------+--------+-------+------+-------+--------+--------+------+ 
|Variable|Coeff.     |Standard|b/St.Er|Prob. |Coeff. |Standard|b/St.Er.|Prob. | 
|        |           |Error   |       |      |       |Error   |        |      | 
+--------+-----------+--------+-------+------+-------+--------+--------+------+ 
|Constant|   5.0109    .1890    26.514  .0000| 5.8248  .1690     34.460  .0000| 
|AGE     |   -.1057    .0047   -22.587  .0000| -.0602  .0021    -28.660  .0000| 
|EDUC    |    .0204    .0548      .373  .7095|  .0830  .0113      7.355  .0000| 
|INCOME  |    .3893    .1212     3.213  .0013|  .2664  .0950      2.803  .0051| 
|MARRIED |    .0995    .0706     1.408  .1591|  .1288  .0473      2.721  .0065| 
|KIDS    |   -.1249    .0507    -2.465  .0137|  .0147  .0396       .372  .7097| 
|AGEBAR  |    .0591    .0053    11.140  .0000|                                | 
|EDUCBAR |    .0630    .0559     1.127  .2596|                                | 
|INCBAR  |    .6255    .2030     3.082  .0021|                                | 
|MARRBAR |   -.1175    .0989    -1.188  .2348|                                | 
|KIDSBAR |    .3559    .0871     4.087  .0000|                                | 
|Mu(01)  |   3.0262    .0357    84.767  .0000| 3.0227  .0358     84.522  .0000| 
|Mu(02)  |   6.3001    .0448   140.742  .0000| 6.2878  .0447    140.610  .0000| 
|Mu(03)  |   7.4699    .0475   157.343  .0000| 7.4514  .0473    157.460  .0000| 
|Sigma   |   1.7909    .0241    74.220  .0000| 1.7935  .0242     74.016  .0000| 
+--------+-----------------------------------+--------------------------------+ 
 
Table 9.4  Random Parameters Ordered Logit Model 
+--------------------------------------------+--------------------------------+ 
|                         Ordered LOGIT probability model                     | 
| Number of observations            27326    |Nonrandom Parameters Model      | 
| Log likelihood function       -32895.56    |Log likelihood = -35853.13      | 
| Info. Criterion: AIC =          2.40874    |                                | 
| Unbalanced panel has    7293 individuals.  |                                | 
| Simulation based on  50 Halton draws       |                                | 
+--------+-----------+--------+-------+------+-------+--------+--------+------+ 
|Variable|Coeff.     |Standard|b/St.Er|Prob. |Coeff. |Standard|b/St.Er.|Prob. | 
|        |           |Error   |       |      |       |Error   |        |      | 
+--------+-----------+--------+-------+------+-------+--------+--------+------+ 
+--------+Means for random parameters        |Fixed Parameters                | 
|Constant|   5.4942   .0884    62.127   .0000| 3.6715   .0825   44.526   .0000| 
|AGE     |   -.0577   .0012   -48.892   .0000| -.0355   .0011  -30.868   .0000| 
|EDUC    |    .0980   .0053    18.491   .0000|  .0625   .0051   12.325   .0000| 
|INCOME  |    .2042   .0675     3.027   .0025|  .4592   .0672    6.838   .0000| 
|MARRIED |    .1582   .0290     5.461   .0000|  .0359   .0298    1.207   .2274| 
|KIDS    |   -.0010   .0267     -.036   .9717|  .0971   .0265    3.662   .0003| 
+--------+Std. Devs. of random parameters    |                                | 
|Constant|    .0392   .0123     3.197   .0014|                                | 
|AGE     |    .0256   .0003    89.092   .0000|                                | 
|EDUC    |    .1045   .0012    90.135   .0000|                                | 
|INCOME  |    .0425   .0292     1.453   .1463|                                | 
|MARRIED |    .2892   .0132    21.861   .0000|                                | 
|KIDS    |    .5574   .0183    30.525   .0000|                                | 
+--------+Threshold parameters               |                                | 
|MU(1)   |   2.9688   .0315    94.113   .0000|2.1671   .0149   145.689   .0000| 
|MU(2)   |   6.1766   .0394   156.656   .0000|4.3514   .0150   289.916   .0000| 
|MU(3)   |   7.3133   .0420   174.328   .0000|5.1812   .0190   272.983   .0000| 
+--------+-----------------------------------+--------------------------------+ 
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Table 9.5 Latent Class Ordered Logit Models 
+-------------------------------------------+--------------------------------+ 
| Latent Class / Panel OrdProbs Model       |                                | 
| Number of observations            27326   | Number of observations    4483 | 
| Log likelihood function       -32639.79   | Log likelihood Func. -5743.560 | 
| Info. Criterion: AIC =          2.39148   | Info. Criterion: AIC = 2.57799 | 
| Unbalanced panel has    7293 individuals. |                                | 
| LHS variable = values 0,1,..., 4          |                                | 
+--------+----------------------------------+--------------------------------+ 
|        |   Panel Data, 7,293 Individuals  |Cross Section, 4483 Observations| 
+--------+-----------+--------+-------+-----+-------+--------+--------+------+ 
|Variable|Coeff.     |Standard|b/St.Er|Prob.|Coeff. |Standard|b/St.Er.|Prob. | 
|        |           |Error   |       |     |       |Error   |        |      | 
+--------+-----------+--------+-------+-----+-------+--------+--------+------+ 
+--------+Model parameters for latent class 1                                | 
|Constant|  6.3342   .2374    26.677   .0000| 4.8481  1.1057    4.385   .0000| 
|AGE     |  -.0591   .0024   -24.266   .0000| -.0643   .0151   -4.263   .0000| 
|EDUC    |   .1067   .0100    10.681   .0000|  .0931   .0706    1.319   .1872| 
|INCOME  |   .2600   .1309     1.987   .0470|  .5364   .5847     .918   .3589| 
|MARRIED |   .1397   .0545     2.564   .0103| -.8097  1.2774    -.634   .5261| 
|KIDS    |  -.0024   .0483     -.051   .9595|  .1736   .4600     .377   .7059| 
|MU(1)   |  3.6647   .1566    23.395   .0000| 1.6653   .4927    3.380   .0007| 
|MU(2)   |  7.2343   .1690    42.799   .0000| 4.6231   .5832    7.926   .0000| 
|MU(3)   |  8.6861   .1813    47.901   .0000| 6.6873  1.1739    5.697   .0000| 
+--------+Model parameters for latent class 2                                | 
|Constant|  2.6680   .1756    15.194   .0000| 4.8928  1.4105    3.469   .0005| 
|AGE     |  -.0486   .0026   -18.894   .0000| -.0647   .0242   -2.676   .0074| 
|EDUC    |   .0688   .0110     6.261   .0000|  .0188   .0950     .198   .8427| 
|INCOME  |   .7206   .1479     4.871   .0000|  .8615   .9192     .937   .3486| 
|MARRIED |   .2207   .0606     3.640   .0003| 1.1373  2.0288     .561   .5751| 
|KIDS    |   .0234   .0575      .406   .6845| -.4177   .6478    -.645   .5191| 
|MU(1)   |  2.6404   .0417    63.345   .0000| 1.1750   .7604    1.545   .1223| 
|MU(2)   |  5.0168   .0826    60.747   .0000| 4.6922  1.1750    3.993   .0001| 
|MU(3)   |  5.5344   .1012    54.687   .0000| 6.0958  1.3305    4.582   .0000| 
+--------+Model parameters for latent class 3                                | 
|Constant|  6.1949   .2778    22.299   .0000| 4.7151  1.4752    3.196   .0014| 
|AGE     |  -.0361   .0026   -13.961   .0000| -.0137   .0213    -.640   .5222| 
|EDUC    |   .0571   .0139     4.119   .0000| -.0564   .0754    -.748   .4542| 
|INCOME  |  -.4401   .1324    -3.325   .0009|  .2615   .6820     .383   .7014| 
|MARRIED |  -.0120   .0604     -.198   .8428|  .1501   .4114     .365   .7152| 
|KIDS    |   .0084   .0566      .148   .8821| -.3081   .3045   -1.012   .3117| 
|MU(1)   |  2.2870   .1839    12.437   .0000| 4.0424  1.8974    2.130   .0331| 
|MU(2)   |  4.6390   .1915    24.229   .0000| 4.5358  1.2916    3.512   .0004| 
|MU(3)   |  5.6626   .1910    29.648   .0000| 4.5358  1.2351    3.672   .0002| 
+--------+Estimated prior probabilities for class membership                 | 
|ONE_1   |  -.5926   .1075    -5.514   .0000|  .2715  1.7062     .159   .8736| 
|FEMALE_1|  -.0311   .0893     -.348   .7276|  .1884   .3109     .606   .5446| 
|HANDDU_1|  -.7248   .1673    -4.331   .0000| -.3633   .3648    -.996   .3193| 
|WORKIN_1|  -.0687   .0960     -.716   .4742|  .6391   .3820    1.673   .0944| 
|ONE_2   |  -.7473   .1026    -7.281   .0000|  .5073  1.5932     .318   .7502| 
|FEMALE_2|   .2239   .0868     2.579   .0099| -.1693   .3832    -.442   .6588| 
|HANDDU_2|  1.1296   .1081    10.447   .0000| -.5219   .3961   -1.317   .1877| 
|WORKIN_2|  -.3003   .0906    -3.315   .0009|  .1720   .4867     .353   .7238| 
|ONE_3   |     .00   ...(Fixed Parameter)...|    .00   ...(Fixed Parameter)..|   
|FEMALE_3|     .00   ...(Fixed Parameter)...|    .00   ...(Fixed Parameter)..|   
|HANDDU_3|     .00   ...(Fixed Parameter)...|    .00   ...(Fixed Parameter)..|   
|WORKIN_3|     .00   ...(Fixed Parameter)...|    .00   ...(Fixed Parameter)..|   
|        Prior class probabilities at data means for LCM variables           | 
|        |Class 1     Class 2     Class 3   | Class 1     Class 2    Class 3 | 
|        |.50172      .22339      .27489    | .44728      .34178     .21094  | 
+--------+----------------------------------+--------------------------------+ 
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9.5  Dynamic Models 
 
 Dynamic effects in ordered choice models have been introduced in two settings.  In the 
pure time series applications in which researchers have examined asset price movements, interest 
rate changes and monetary policy, the focus is on inertia, and takes the form of an autoregressive 
model in the latent variable regression.  The Czado, Heyn and Müller (2005) and Müller and 
Czado (2005) study of migraine headache severity is also presented in this framework, though 
their study can be usefully viewed as falling somewhere between the time series analysis of, e.g., 
Eichengreen et al.’s (1985) study of bank rate policy and the recent panel data studies, e.g., of 
health satisfaction.  In panel data settings, such as Contoyannis, Jones and Rice (2004), the model 
is directed at state dependence, and, instead, takes the form of lagged effects in the observed 
variables.  We will examine each of these in a bit more detail. 
 A natural form of the ordered probit model with lagged effects is suggested by Girard and 
Parent (2001), 
 
 yt*  =  β′xt  +  εt, 
 εt    =  ρεt-1 + ut, 
 yt    =  j  if  μj-1  <  yt*  <  μj, 
 
with the usual restrictions.  Estimation is carried using a Gibbs sampler (MCMC) and using 
Albert and Chib’s data augmentation method; the values yt* as well as the initial value, y0* are 
treated as nuisance parameters to be included with β, μ and ρ for posterior analysis. 
 Eichengreen, Watson and Grossman (1985) examined the Bank Rate (BR) adjustment 
policies of the Bank of England over a period of 328 weeks.  The structural model is 
 
 Prob[ΔBRt = -50 | Jt]  =  P1t(Jt), 
 Prob[ΔBRt =    0 | Jt]  =  P2t(Jt), 
 Prob[ΔBRt = 100| Jt]  =  P3t(Jt), t = 1,…,T, 
 
where the adjustment rates are in basis points and Jt is an information set that contains current and 
lagged values of exogenous variables xt and the entire preceding history of bank rates, BRs, s = 
1,…,t-1.  An underlying regression is specified for the “change in an unobserved “underlying” 
bank rate, 
 
 ΔBRt*  =  β′xt  +  εt,  εt|Jt ~ N[0,σ2]. 
 
The observed Bank Rate changes when it is too far from BRt* according to the rule, 
 
 ΔBRt  =  -50  if  BRt*  <  BRt-1 -  αL, 
 ΔBRt  =     0  if  BRt-1 – αL < BRt*  <  BRt-1 + αU, 
 ΔBRt  =  100 if  BRt* > BRt-1 + αU. 
 
Thus, the rule is that the observed rate decreases by 50 basis points if BRt* is “appreciably” less 
than BRt-1 and increases by 100 basis points if BRt* is appreciably greater than BRt-1.  Appreciably 
is defined by the unknown threshold values, αL and αU.  The authors note, the model resembles a 
familiar ordered probit model, but differs in at least two major respects.  First, although the 
structural equations describe the changes in BR, the inequalities that invoke the similarity with the 
ordered probit model are defined in the levels of BR, not changes.  Thus, there are stochastic 
dynamics in BRt.  Second, since the lagged value of the observed time series appear in the model 
definition, the identification of the model parameters must be developed in detail. It does not 
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follow from simple examination of the specification as it does in the conventional model.  The 
likelihood function (see their pp. 741-744) is markedly more complicated than that we have 
examined so far.  Among the most challenging aspects is that because of the autoregressive nature 
of the random components in the model, the time series must be treated as a single T-variate 
observation.  That implies integration of a T (=328) variate normal integral.  A strategy is devised 
in the paper.  Eichengreen et al.’s (1985) study has provided the foundation for a number of 
subsequent studies of bank policy, including Genberg and Gerlach (2004) and Basu and de Jong 
(2006). 
 A somewhat simpler form of the ordered probit model has been used to analyze 
movements in stock prices when the movements of an underlying continuous price variable are 
expressed in discrete units (“ticks”).  Tsay (2002) presents the following general characterization 
of an application:  Define yit*  to be the unobservable true price change of an asset, so that  
 
 yit* = Pit* - Pi,t-1*, 
 
where Pit* is the virtual price of the asset at time t.  The ordered probit model derives from the 
assumed structure 
 
 yit*  =  β′xit  +  εit, 
 E[εit|xit,wit]  =  0, 
 Var[εit|xit,wit]  =  σ2(wit), 
 εit|xit,wit  ~  N[0,σ2(wit)], 
 
where xit might contain the exogenously determined information available at time t-1 and wit is 
conditioning data such as the time interval of the change as well as “some conditional[ly] 
heteroscedastic variables.”  If the observed price change is restricted to a fixed set of intervals, 
then an ordered probit model emerges; 
 
 yit  =  sj  if  αj-1  <  yit*  <  αj, j = 1,…,J. 
 
What follows is a familiar ordered probit model, distinguished from our earlier model by the 
assumed heteroscedasticity of εit.  Tsay describes in detail an early study of more than 100 stocks 
by Hausman, Lo and MacKinlay (1992).  Hausman et al. describe three features of the American 
stock market that motivate their treatment: First, stock prices were stated at the time (no longer) 
in discrete, 1/8 dollar units, so the true continuous variable could not be measured.  Second, the 
timing of transactions can be irregular and random, which makes discrete time modeling 
problematic.  Third, received models have not adequately accounted for the correlations between 
price changes and other economic variables – these are captured in the latent regression equation 
in the ordered probit model. 
 Czado, Heyn and Müller (2005) also used a time series model with dynamics in the latent 
variable to study the reported severity of migraine headaches reported in the diary of a single 
patient.  The underlying variable, severity of the headache in interval t, is modeled as 
 
 yt*  =  β′xt + γyt-1* + εt. 
 
The observed severity is recorded on a scale 0,1,…,5, four times per day over a period of 268 
days.  The regressor variable includes such variables as weather conditions and day of the week.  
The application is a pure time series model.  As in the Eighengreen et al. study, the dynamics 
greatly complicate the estimation process.  A customized form of Markov Chain Monte Carlo 
(Bayesian) estimation method for this model is presented in Müller and Czado (2005). 
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 The autoregressive models examined so far are natural specifications for the observed 
outcomes.  Contoyannis, Jones and Rice (2004) examined self assessed health status in the British 
Household Panel Survey (BHPS).  The measure of health status is reported with values 1,…,5.  
Individuals have a general tendency to repeat the same value unless other factors change.  The 
common effects regression suggested to account for this state dependence is 
 
 hit*  =  β′xit  +  5

1j=Σ γjmj,i,t-1  + αi + εit, 
 
where αi is a fixed effect and  
 
 mi,j,t-1 = 1 if  yi,t-1 = j and 0 otherwise. 
 
A familiar ordered probit model applies; 
 
 hit  =  j  iff μj-1  <  yit*  <  μj. 
 
Initially, it is proposed to treat this as a random effects model using the method of Butler and 
Moffitt (1982).  In order to accommodate possible correlation between αi and the (means of the) 
other variables and to handle the problem of the initial conditions [Heckman (1981)], they 
employ the Mundlak (1978) device in: 
 
 αi  =  α0 + 5

1j=Σ αjmi,1,j + i′xθ  + ui. 
 
where ui ~ N[0,σ2].  Inserting this equation into the latent regression provides their ordered probit 
model, 
 
 hit*  =  β′xit  +  5

1j=Σ γjmj,i,t-1  + α0 + 5
1j=Σ αjmi,1,j + i′xθ  + ui + εit. 

 
(A few normalizations, such as removal of a redundant constant term, are needed to secure 
identification of the parameters.)  A final adjustment to the model based on a procedure devised 
by Wooldridge (2002a) is used to account for the rather substantial attrition over the 8 waves of 
their panel. 
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10 
 

Bivariate and Multivariate Ordered Choice Models 
 
The preceding sections have examined the more or less standard approaches to modeling  ordered 
data, beginning with the most basic model and ending with various specifications that 
accommodate observed and unobserved heterogeneity in panel data.  In what follows, we 
examine some recent extensions of the model that include modifications to the basic structure and 
additions to it that occasionally mandate multiple equation frameworks.  It will emerge shortly 
that most of these extensions do not fit comfortably into the ordered logit framework.  At this 
point, it will prove convenient to drop the distinction between the probit and logit models, and 
focus attention, as in the received literature, on the ordered probit model. 
 
 
10.1  Multiple Equations 
 
 A multiple equation specification for, say, M ordered choices is a natural extension of the 
model.  The extension is based on a seemingly unrelated regressions (SUR) model for the latent 
regressions: 
 
 yi,1*  =  β1′xi,1    +  εi,1,  yi,1  =    j  if μj-1,1  <  yi,1*  <  μj,1, εi,1 ~ N[0,1], 
 … 
 yi,M*  =  βM′xi,M  +  εi,M,  yi,M  =  j  if μj-1,M  <  yi,M*  <  μj,M, εi,M  ~ N[0,1], 
 
 (εi,1,…,εi,M)  ~  N[0,R], 
 
where R is the unrestricted correlation matrix of the random terms.  In principle, this is a 
straightforward extension of the single variable model. The estimation is substantially 
complicated because of the amount of computation involved.  In the one variable case, the 
probability is the area under the univariate normal density bounded by two points on a line, which 
requires two function evaluations of the univariate normal cdf.  For two dimensions, the 
probability is the volume under the bivariate normal surface bounded by a rectangle, which, in 
general, requires four function evaluations of the bivariate normal integral.  For three dimensions, 
it requires eight function evaluations of the trivariate normal integral.  And so on.  The amount of 
computation rises with 2M.  Moreover, the computation of the integrals, themselves, is 
cumbersome.  For one dimension, the typical library routine computation of the normal integral 
involves evaluation of a ratio of two fourth or fifth order polynomials.  The bivariate normal 
integral must typically be done using quadrature.  [See, e.g., Drezner (1978).]  For three 
dimensions or higher, the computation is generally be done by simulation, which will (with 
current techmology) involve a formidable amount of computing. [But, see Drezner (1994).]  This 
model, even for only two dimensions, does not lend itself conveniently to the ordered logit form, 
and the received applications use the ordered probit model exclusively.  [See, however, 
Dardanomi and Forcina (2004), who do obtain some analytical results for a multivariate ordered 
logit model.] 
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10.2  Bivariate Ordered Probit Models 
 
 The two equation case has dominated the received applications, largely because of the 
practical difficulty of evaluating the higher order normal integrals needed to estimate the models.  
For two outcomes, we have 
 
 yi,1*  =  β1′xi,1  +  εi,1, yi,1  =    j  if μj-1  <  yi,1*  <  μj, j = 0,…,J1, 

 yi,2*  =  β2′xi,2  +  εi,2,  yi,2  =    j  if δj-1  <  yi,2*  <  δj,  j = 0,…,J2,   (10.1) 
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These are the probabilities that enter the log likelihood for a maximum likelihood estimator of the 
parameters.   
 Partial effects for this model will be complicated functions of the parameters regardless 
of how they are defined.  But, for a bivariate model, such as this one, even what margin is of 
interest is not obvious.  Derivatives of the bivariate probability, ,1 ,2 ,1 ,2Prob( , | , )i i i iy j y k= = x x  
might well not correspond to a useful experiment.  One might, instead, wish to compute the 
derivatives of the conditional probability, 
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The denominator would be computed using the marginal, univariate ordered probit model.  In 
either case, the computation will be based on a common result.  For convenience, we drop the 
observation subscript and define the variables, 
 
 AL  =  μj-1 - β1′x1, AU  =  μj - β1′x1, BL  =  δk-1 - β2′x2, BU  =  δk - β2′x2, 
 
where subscripts “L” and “U” refer to “lower” and “upper,” respectively.  Then, the bivariate 
probability is 
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and the marginal univariate probability is 
 
 Prob(y2 = k)  =  Φ(BU) – Φ(BL).       (10.5) 
 
Computing partial effects from either viewpoint will require the result 
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 (The result is symmetric in A and B.)  Collecting results, then 
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If any variables appear in both equations, the effects are added.  For the conditional probabilities, 
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As before, if variables appear in both equations, the two components are added.  Before 
examining the applications of the model in detail, it is useful to look more closely at some special 
cases. 
 An admittedly trivial extension is the bivariate model in which ρ equals zero.  In this 
instance, the bivariate model becomes a pair of univariate models.  We mention this case at this 
point, as chronologically, the second application of the bivariate ordered probit model, Gustaffson 
and Stafford (1992), used this model to study child care subsidies and labor supply behavior for a 
sample of Swedish mothers.  The hypothesis of uncorrelated equations is easily testable in this 
setting using either a likelihood ratio test or the Wald statistic (t ratio) associated with the 
estimate of ρ.  Butler and Chatterjee (1995) consider other tests of the model specification, 
normality and exogeneity of the right hand sides, using GMM rather than maximum likelihood 
estimation.  (They apply their methods to the study of dogs/television ownership noted below.)  
Guo, Bhat and Copperman (2003) used the unrestricted model shown above to model the joint 
count of motorized and nonmotorized trips for a survey of individuals in the San Francisco Bay 
area. 
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10.3  Polychoric Correlation 
 
 The polychoric correlation coefficient is computed for a pair of discrete ordered 
variables, such as yi,1 and yi,2 above.  The theory behind the computation is that yi,1 and yi,2 are 
censored versions of underlying, bivariate normally distributed variables, again, precisely as yi,1 
and yi,2 above are obtained.  The polychoric correlation coefficient is an estimator of the 
correlation coefficient in the underlying bivariate normal distribution.  The best known method of 
computing the coefficient for grouped data (in the form of contingency tables), is due to Olssen 
(1979, 1980).  [See , also, Ronning (1990) and Ronning and Kukuk (1996).]  The development 
above suggests a counterpart for how to compute the coefficient when the data are individually 
measured.  If the two equations in the bivariate model have only their constant terms, and no 
regressors, then precisely the suggested underlying model emerges. 
 
 yi,1*  =  β1  +  εi,1,  yi,1  =    j  if μj-1  <  yi,1*  <  μj, j = 0,…,J1, 

 yi,2*  =  β2  +  εi,2,  yi,2  =    j  if δj-1  <  yi,2*  <  δj,  j = 0,…,J2,   (10.9) 
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Thus, the implied algorithm, which has been built into modern software such as NLOGIT, Stata 
and SAS, is simply to fit a bivariate ordered probit model which has only constant terms in the 
two equations.  [See, as well, Calhoun (1986, 1995) for further discussion of computer programs.]  
Returning to the regression model, it follows that the correlation coefficient in the bivariate 
ordered probit regression model can be interpreted as the conditional (on xi,1 and xi,2) polychoric 
correlation coefficient. 
 
10.4  Semi-Ordered Bivariate Probit Model 
 
 A second interesting special case arises if one of the variables is binary; 
 
 yi,1*  =  β1′xi,1  +  εi,1, yi,1  =    0  if  yi,1*  <  0,  and yi,1 = 1 if yi,1* > 0, 

 yi,2*  =  β2′xi,2  +  εi,2,  yi,2  =    j  if δj-1  <  yi,2*  <  δj,  j = 0,…,J2,   (10.10) 
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This case (like the previous one) does not mandate any special modification of the likelihood 
function.  The appropriate terms can be obtained directly from the earlier general result.  This 
particular form has appeared in a number of applications, under the name “Bivariate Semi-
Ordered Probit Model.”  Weiss (1993) used this model to examine the extent of injuries in 
motorcycle accidents, with the binary variable being helmet use.  Armstrong and McVicar (2000) 
used this form to examine the relationship between education and vocational training for a sample 
of Irish youth.  McVicar and McKee (2002), using the same model, studied the two variables, 
vocational attainment (ordered) and working part time during education (binary), also for a 
sample of Irish youth. In this study, the education achievement is a four level exam measure. 
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10.5  Applications of the Bivariate Ordered Probit Model 
 
 The first application of the bivariate ordered probit model is Calhoun (1991, 1994) who 
examined the joint distribution of “Desired Family Size” (DFS) and “Children Ever Born” (CEB).  
In a followup analysis, he used CEB to truncate DFS, to eliminate unwanted children, then 
reexamined the model with this form of truncation.  In an application to descriptions of criminal 
behavior and subsequent labor market experience, Nagin and Waldfogel (1995) examined the job 
market performance of young British offenders at ages 17 and 19.  In a related analysis, 
Paternoster and Brame (1998) examined “self control” and “criminal behavior” in a study in 
criminology [See, also, comments in Britt (2000).] Butler and Chatterjee (1997), in their 
contribution to pet econometrics, analyzed the joint ownership of dogs and televisions.  This is 
one of several studies in which authors used the bivariate ordered probit to model variables that 
arguably should be analyzed as counts (with something like a Poisson regression model.  
However, the bivariate Poisson regession model remains to be well developed.  [See, also, Sanko 
et al. (2004) who looked at ownership of cars and motorcycles and Bhat et al. (1996b, 1998, 
1999, 2000, 2002) who analyzed vehicle ownership, trip counts and activity counts.]  The ordered 
probit model has been modified for use in contingent valuation studies, in which survey 
respondents express their preferences with a range of values rather than a point.  Kuriama et al. 
(1998) used a contingent valuation study to examine consumers’ preferences for a world heritage 
site in Japan.  The ordered probit study follows a Vote/No Vote choice, and so has elements of 
the semiordered bivariate probit model described earlier as well.  In two very natural application, 
Kohler and Rodgers (1999) studied the motivation to have children in a survey of pairs of twins. 
Christensen et al. (2003) also examined twins, in their case, seeking a genetic effect on fertility. 
Biswas and Das (2002) examined an epidemiologic study of diabetic retinopathy.  Separate 
equations are specified for the right and left eye severity of the disease (coded 0 to 4).  This is one 
of only a few Bayesian applications.  [Biswas and Das benchmarked their study against an earlier 
analysis of the same data by Kim (1995).  It is surprising that they did not use Kim’s estimates in 
their priors.  This seems like a natural application of Bayesian updating.]  A variety of other 
applications have appeared, most since 2000, in economics, finance and transportation research.  
Table 9.1 lists some of the recent applications.  (Full citations appear in the references list.) 
 
Table 10.1  Applications of Bivariate Ordered Probit Since 2000 
Year Authors   Application 
2000 Magee, et al.  Correlation between husband's and wife's education 
2000 Bhat and Singh  Bivariate count model travel related activities 
2002 Lawrence and Palmer  Views on health care reform, 
2003 Guo, Bhat, Copperman Counts of motorized and nonmotorized trips 
2004   Bedi and Tunali  Participation in land and labor contracts in turkish agriculture 
2004   Dupor et al.   Federal Reserve Open Market Committee: Bias announcement 
    (ease, neutral, tighten) and magnitude of next meeting 
    adjustment (-25, 25/0, 0, 0/25, 25+) 
2005   Dueker et al.  Job restrictions of nurses: 
2005  Filer and Honig  Pensions and retirement behavior, 
2006 Adams   University and internal cost allocations of R&D expenditure 
2006   Scott and Axhausen  Interactions between cars and season tickets,   
2006  Scotti   Bivariate Model of Fed and European Central Bank main 
    policy rates  
2007  Mitchell and Weale Accuracy of expectations about financial circumstances in 
    the British Household Panel Survey 
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10.6  A Panel Data Version of the Bivariate Ordered Probit Model 
 
 Since it is a two equation model, it is unclear how common heterogeneity effects should 
enter the bivariate model.  [See, e.g., Verbeek (1990), Verbeek and Nijman (1992) and Zabel 
(1992) for a similar exchange in the context of the sample selection model.]  Generically, a 
bivariate model with time invariant random effects  might appear 
 
 yit,1*  =  β1′xit,1  +  εit,1  +  u1,i;     yit,1  =    j  if μj-1  <  yit,1*  <  μj, j = 0,…,J1, 

 yit,2*  =  β2′xit,2  +  εit,2  +  u2,i;      yit,2  =    j  if δj-1  <  yit,2*  <  δj,  j = 0,…,J2, (10.11) 
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Computation of the parameters in this model would involve integration over both bivariate 
normal integrals.  The approach used by Riphahn, Wambach and Million (2003) for a bivariate 
Poisson model with two random effects suggests a strategy.  Conditioned on the random effects, 
the likelihood function is 

(10.12) 
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where mit,j = 1 if yit,1 = j and 0 otherwise and nit,k = 1 if yit,2 = k and 0 otherwise.  To obtain a form 
of the likelihood function we can use for estimation, it is necessary to eliminate the unobserved 
random effects.  We use a Cholesky decomposition of the covariance matrix to write 
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where (vi,1,vi,2) are independent N(0,1) variables.  It follows that γ11
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γ21γ22 = σ12.  The specific probabilities with this substitution become 
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The unconditional log likelihood is obtained by integrating out the random effects.  This step has 
been simplified by the Cholesky decomposition, since the bivariate integration involves 
independent standard normals.  This could be done using nested Hermite quadratures or 
simulation.  The latter is likely to be simpler and faster.  The simulated log likelihood function is 
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A fixed effects model might be considered as an alternative, however this would have several 
drawbacks: Two full sets of effects must be estimated.  As usual, the fixed effects preclude time 
invariant variables in either equation. Though it remains to be established, it seems likely that the 
force of the incidental parameters problem (small T bias) would operate here as well.  The 
Mundlak (1978) device of including the group means of the time varying variables in the 
equations might be a useful middle ground. 
 
10.7  Trivariate and Multivariate Ordered Probit Models 
 
 As noted earlier, for practical reasons, the bivariate probit is more or less the dimensional 
limit of the applications of the multivariate ordered probit model.  Nonetheless, there have been a 
handful of applications of the trivariate probit model.  Two in the area of transportation research 
that focus on joint determination of activity and travel model are Scott and Kanaroglou (2001) 
and Buliung (2005).  Genius, Pantzios and Tzouvelakis (2005) estimate a “trivariate semi-ordered 
probit model.”  In their application to organic farming in Greece, two of the three equations, 
contact with an extension agent and use of other sources of information, are binary, while the land 
adoption decision (none, part, full) has three outcomes.  Crouchley (2005) is a methodology 
study. 
 Bhat and Srinivasan (2005) suggested how one might extend the ordered probit models to 
an arbitrary number of equations.  Using our own notation, define the latent seemingly unrelated 
regressions system with ordered choice equations, 
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The usual restrictions on the threshold parameters are applied for each equation.  The random 
components εi = (εi1,εi2,...,εiM)′ are assumed to be independent, identically distributed with 
standard logistic distributions. Thus, conditioned on uim, each equation defines an ordered logit 
model.  (The choice of a mixture of logit and probit models in this instance seems difficult to 
motivate.  However, it will be a trivial modification of the model to assume that εim is normally 
distributed.  This would appear to be a more natural specification.)  The additional set of random 
terms, ui = (ui1,ui2,...,uiM) are assumed to be distributed as multivariate normal with mean vector 0 
and correlation matrix R.  (As always, unrestricted variance parameters are unidentified.)  
Nonzero elements in the correlation matrix reflect the presence of common unobserved factors.  
Conditioned on ui, the M observed random variables are independent, so the conditional joint 
likelihood function for individual i is 
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The unconditional likelihood function is obtained by integrating ui out of the function, 
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where  the integral is over the M dimensional random vector ui and ( : )M if u R  is the M variate 
normal density with zero means and correlation matrix R.  The log likelihood function would 
then be obtained by summing the logs of the contributions to the likelihood function.  The 
integrals are not directly computable, so Bhat and Srinivasan (2005) propose to use simulation 
instead.  In order to obtain the estimating equations, the device used in Section 5.2.5 is used to 
install the unknown correlation matrix directly into the model. We write ui = Dvi where D is the 
lower triangular Cholesky factorization of R, so R = DD′ and vi has a standard normal 
distribution, with mean vector 0 and covariance matrix I.  (D is lower triangular with ones on the 
diagonal.)  Then, the  simulated log likelihood function is 
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The simulation is run over Q random (or pseudo-random) draws on vi.  The authors used Halton 
sequences to accelerate the simulation process.  The model was applied to a setting of counts of 
“stops” in seven activity categories.  We note, the interpretation of the coefficients in the model 
will be problematic.  Partial effects could be computed from the equations individually by 
contitioning on then integrating out the random factors as done above for the likelihood function.  
However, there is no comparability of the coefficients across equations, as each equation has its 
own scale factor, 
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(A different number of terms is needed for each equation to account for the correlations.) 
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11 
 

Two Part and Sample Selection Models 
 
 Two part models describe situations in which the ordered choice is part of a two stage 
decision process.  In a typical situation, an individual decides whether or not to participate in an 
activity then, if so, decides how much.  The first decision is a binary choice.  The intensity 
outcome can be of several types – what interests us here is an ordered choice. In the example 
below, an individual decides whether or not to be a smoker. The intensity outcome is how much 
they smoke.  The sample selection model is one in which the participation “decision” realtes to 
whether the data on the outcome variable will be observed, rather than whether the activity is 
undertaken.  This chapter will describe several types of two part and sample selection models 
  
11.1  Inflation Models 
 
 Harris and Zhao (2007) analyzed a sample of 28,813 Australian individuals’ responses to 
the question “How often do you now smoke cigarettes, pipes or other tobacco products?”  [Data 
are from the Australian National Drug Strategy Household Survey, NDSHS (2001).]  Responses 
were “zero, low, moderate, high,” coded 0,1,2,3.  Figure 11.1 below reproduces their Figure 3 
(page 1095).  The leftmost bar of each set shows the sample histogram.  The spike at zero shows 
a considerable excess of zeros compared to what might be expected in an ordered choice model.  
The authors reason that there are numerous explanations for a zero response: “genuine 
nonsmokers, recent quitters, infrequent smokers who are not currently smoking and potential 
smokers who might smoke when, say, the price falls.”  It is also possible that the zero response 
includes some individuals who prefer to identify themselves as nonsmokers.  The question is 
ambiguously worded, but arguably, the group of interest is the genuine nonsmokers.  This 
suggests a type of latent class arrangement in the population.  There are (arguably) two types of 
zeros, the one of interest, and another type generated by the appearance of the respondent in the 
latent class of people who respond zero when another response would actually be appropriate.  
The end result is an inflation of the proportion of zero responses in the data.  A “Zero Inflation” 
model is proposed to accommodate this failure of the base case model.   

Zero inflation as a formal model to explain data such as these originates in Lambert’s 
(1992) study of quality control in industry.  Sampling for defectives in a production process can 
produce two types of zeros (per unit of time).  The process may be under control, or it may be out 
of control and the observer happens to draw zero defectives in a particular sample.  This inflates 
the number of zeros in a sample beyond what would be expected by a count model such as the 
Poisson model – the modification named the ZIP (zero inflated) or ZAP (zero altered) Poisson 
model.  [See also Heilbron (1994), Hinde et al. (1998), Mullahy (1997) and Greene (1994).] 
 Harris and Zhao proposed the following zero inflated ordered probit (ZIOP) model: 
 
 Participation equation:  

      Regime 0 for nonparticipation (nonsmoker), Regime 1 for participation, 

        r*  =  α′z  +  u, u ~ N[0,1], 
      r  =   1 if r* > 0, 0 otherwise,       (11.1) 
      Prob(r = 1|z) = Φ(α′z). 
 Activity equation: 
      y*  =  β′x + ε, ε ~ N[0,1], independent of u, 
      y    =  j  if μj-1  < y*  <  μj, j = 0,1,...,J. 
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 Figure 11.1  Tobacco Consumption Survey and Model Results 
 
 (At the risk of some confusion below, we have modified Harris and Zhao’s notation to conform 
to the conventions we have used up to this point.)  Thus, a standard probit model governs 
participation and our familiar ordered probit model governs “true” activity.  The observed activity 
level, however, is not y.  It is 
 
 yo  =  r × y. 
 
Nonparticipants and some participants reports zeros.  Thus, the zero outcome occurs when r = 0 
and when r = 1 and y = 0.  Therefore, the zero outcome is inflated by the r = 0 regime.  The 
applicable probabilities for the observed outcomes are 
 
 Prob(yo = 0  | x,z)  =  Prob(r = 0 | z) + Prob(r = 1 | z) × Prob(y = 0 | x, r = 1), (11.2) 
 Prob(yo = j | x,z)    =  Prob(r = 1 | z) × Prob(y = j | x, r = 1). 
 
Note at this point, by dint of the independence of ε and u, Prob(y = 0 | x, r = 1) = Prob(y = 0 | x ).  
We will relax this assumption later.   
 With the assumption of joint normality of ε and u, the associated probabilities are 
obtained from those of the binary probit model and the ordered probit model; 
 
 Prob(yo = 0 | x,z) = [1 - Φ(α′z)] + Φ(α′z) × Φ(0 - β′x),    (11.3) 
 Prob(yo = j | x,z)  =  Φ(α′z) × [Φ(μj - β′x) - Φ(μj-1 - β′x)], j = 1,...,J, 
 
with the same normalization as earlier, μ-1 = -∞, μ0= 0, μJ = +∞.  The log likelihood function is 
built up as the sum of the logs of the probabilities of the observed outcomes. 
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 An extension which would seem to be appropriate for this application is to allow the 
unobserved effects in the participation equation and the activity equation to be correlated 
(producing a ZIOPC model).  Thus, we now have 
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The correlation coefficient, ρ, is now an additional parameter to be estimated.  With this 
modification, we no longer have Prob(y = 0 | x, r = 1) = Prob(y = 0 | x ); the former is now a 
probability from the bivariate normal distribution.  The probabilities of the observed outcomes 
become 
 
 Prob(yo = 0 | x,z)  = [1 - Φ(α′z)] + Φ2(α′z,- β′x,-ρ),    (11.4) 
 Prob(yo = j  | x,z)  =  Φ2(α′z, μj - β′x, -ρ) - Φ2(α′z, μj-1 - β′x,-ρ), j = 1,…,J, 
 
where Φ2(.,.,.) denotes the probability of a joint event from the bivariate normal cdf.  This 
modification drastically alters the partial effects in the model.  To organize these in a convenient 
fashion, we adopt the authors’ device.  Let x* = (xo,xc,zo) so that xo is variables in x that are not 
also in z, xc is variables that are in both x and z, and zo is variables in z that are not in x.  By 
rearranging and reordering the parameter vectors, β and α into β* = (βo,βc,0) and α* = (0,αc,αo), 
then β′x = β*′x* and α′z = α*′x*.  We can thus obtain the partial effects by differentiating with 
respect to x* and obtaining the needed decomposition.  Then, with this in place, 
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These results are likely to bear little resemblance to the raw coefficients, particularly for variables 
which appear in both equations. 
 Testing the null hypothesis of the ZIOP model against the alternative of the ZIOPC 
model is a simple test of the hypothesis that ρ equals zero. This can be done using a Wald (t) test 
or a likelihood ratio test.  Testing for the inflation effects is more complicated however.  The 
obvious restriction, α = 0, does not remove the inflation effect; it makes the regime probabilities 
both equal to one half.  What is needed to remove the inflation effect is α′z →∞, which cannot be 
imposed.  The hypotheses are not nested.  Greene (1994) proposed using the Vuong (1989) test 
for this hypothesis in the context of the zero inflated Poisson model.  Denote the probability for 
the observed outcome from the inflation model as fI(yo,r|x,z) and that for the uninflated model as 
fU(yo,r|x,z).  Then, 
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The test statistic is 
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The limiting distribution of V under the null hypothesis of no difference is N(0,1).  The test is 
directional.  Large positive values favor the inflation model; large negative values favor the 
uninflated model.  The inconclusive region for a 5% significance level would be (-1.96,+1.96).  
Given the greater number of parameters in the inflation model, it will be rare for V to be strongly 
negative.  It will often strongly favor the larger model. 
 Brooks, Harris and Spencer (2007) applied the same style of analysis to the policy 
decisions of the members of the Bank of England Monetary Policy Committee.  In this study, the 
participation equation is a decision to adjust monetary policy (at all).  The activity equation is 
whether rates should decrease (yo = 0), stay the same (yo = 1) or increase (yo = 2).  (The model of 
Eichengreen, Watson and Grossman (1985) is developed on this logic as well.)  In this case, the 
no change result can occur because of a decision not to change rates, or by an inclination to 
change rates followed later by a decision not to.  Thus, the model produces “ones inflation.” 
 
11.2  Sample Selection Models 
 
 The familiar sample selection model was extended to binary choice models by 
Wynand and van Praag (1981) and Boyes, Hoffman and Low (1989).  A variety of 
extensions have also been developed for ordered choice models, both as sample selection 
(regime) equations and as models for outcomes subject, themselves, to sample selectivity.  
We consider these two cases and some related extensions. 
 The models of sample selectivity in this area are built as extensions of Heckman’s (1979) 
canonical model, 
 
 Probit Participation Equation: 
      zi*  =  α′wi  +  ui, 
      zi    =  1[zi*  >  0].        (11.8) 
 Regression Activity Equation: 
      yi*  =  β′xi  +  εi, 
      (εi,ui)  ~  N[(0,0),(1,ρσε,1)]. 
 Observation:   For observations with zi = 1, 
      E[yi* | xi,wi,zi = 1]  =  β′xi  +  (ρσε)[φ(α′wi)/ φ(α′wi)] 
              =  β′xi  +  θλi. 
 
Estimation of the regression equation by least squares while ignoring the selection issue produces 
biased and inconsistent estimators of all the model parameters.  Estimation of this model by two 
step methods is documented in a voluminous literature, including Heckman (1979) and Greene 
(2008a).  The two step method involves estimating α first in the participation equation using an 
ordinary probit model, then computing an estimate of λi, ( ) ( )ˆ ˆ ˆ/i i i′ ′λ = φ Φx xβ β , for each 

individual in the selected sample.  At the second step, an estimate of (β,θ) is obtained by linear 
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regression of yi on xi and ˆ
iλ .  Necessary corections to the estimated standard errors are described 

in Heckman (1979), Greene (1981,2008b), and, in general terms, in Murphy and Topel (2002).   
 
11.2.1  A Sample Selected Ordered Probit Model 
 
 Consider a model of educational attainment or performance in a training or vocational 
education program (e.g., low, median, high), with selection into the program as an observation 
mechanism.  [Boes (2007) examines a related case, that of a treatment, D that acts as an 
endogenous dummy variable in the ordered outcome model.]  The structural equations would be 
 
 Selection Equation: 
      z*  =  α′w  + u, 
      z    =  1[z* > 0]. 
 Ordered Probit Outcome: 
      y*  =  β′x  +  ε,        (11.9) 
      y    =  j  if μj-1  <  y*  <  μj. 
 Observation Mechanism: 
      y,x  observed when z = 1, 
      (ε,u)  ~  N[(0,0), (1,ρ,1)]. 
 
In this situation, the “second step” model is nonlinear.  The received literature contains many 
applications in which authors have “corrected for selectivity” by following the logic of the 
Heckman two step estimator, that is, by constructing λi = φ(α′wi)/Φ(α′wi) from an estimate of the 
probit selection equation and adding it to the outcome equation. [See, e.g., Greene (1994).  
Several other examples are provided in Greene (2008b).]  However, this is only appropriate in the 
linear model with normally distributed disturbances.  An explicit expression, which does not 
involve an inverse Mills ratio, for the case in which the unconditional regression is E[y|x,ε] = 
exp(β′x + ε) is given in Terza (1998).  A template for nonlinear single index function models 
subject to selectivity is developed in Terza (1998) and Greene (2006, 2008a, Sec. 24.5.7).  
Applications specifically to the Poisson regression appear in several places, including Greene 
(1995, 2005).  The general case typically involves estimation either using simulation or 
quadrature to eliminate an integral involving u in the conditional density for y.  Cases in which 
both variables are discrete, however, are somewhat simpler.  A near parallel to the model above is 
the bivariate probit model with selection developed by Boyes, Hoffman and Low (1989) in which 
the outcome equation above would be replaced with a second probit model.  [Wynand and van 
Praag (1981) proposed the bivariate probit/selection model, but used the two step approach rather 
than maximum likelihood.]  The log likelihood function for the bivariate probit model is given in 
Boyes et al. (1989) and Greene (2008a, p. 896): 
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A straightforward extension of the result provides the log likelihood for the ordered probit case, 
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where mij = 1 if yi = j.   
 Essentially this model is applied in Popuri and Bhat (2003) to a sample of individuals 
who chose to telecommute (z = 1) or not (z = 0) then, for those who do telecommute, the number 
of days that they do. We note two aspects of this application that do depart subtly the sample 
selection application: (1) the application would more naturally fall into the category of a hurdle 
model composed of a participation equation and an activity equation given the decision to 
participate – in the latter, it is known that the activity level is positive.  [See Cragg (1971) and 
Mullahy (1986).]  Thus, unlike the familiar choice case, the zero outcome is not possible here.  
(2) The application would fit more appropriately into the sample selection or hurdle model 
frameworks for count data such as the Poisson model.  [See, again, Mullahy (1986), Terza (1994), 
Greene (1995) and Greene (2007a).]  Bricka and Bhat (2006) is a similar application applied to a  
sample of individuals who did (z=1) or did not (z = 0) underreport the number of trips in a travel 
based survey.  The activity equation is the number of trips underreported for those who did.  This 
study, like its predecessor could be framed in a hurdle model for counts, rather than an ordered 
choice model.  A third vexing aspect of this type of model emerged here as well.  The authors 
report that the estimated correlation gravitated to +1.000 during estimation, and the log likelihood 
function continue to increase as it did so.  This is to be expected.  The ordered choice model can 
be decomposed into an equivalent set of binary choices, 1(y = 0), 1(y > 0), 1(y > 1), and so on.  
Thus, it can be seen that the hurdle equation replicates one of the embedded binary choices in the 
ordered choice model.  Because of this redundancy, it is entirely natural that the equations would 
appear to be perfectly correlated. 
 Table  11.1 presents estimates of a sample selection model.  We have used the choice of 
PUBLIC insurance as the selection mechanism.  About 87% of the sample choose the public 
insurance.  We speculate that the factors underlying the motivation to purchase the insurance are 
also related to the response of health satisfaction.  The full model is 
 
 PUBLICi*  =  α1 + α2 AGEi  +  α3 EDUCi  +  α4 HANDDUMi  +  ui, 
 PUBLICi    =  1[PUBLICi*  >  0], 
 HEALTHi*   =  β′xi  +  εi, 
 HEALTHi     =  j  if  μj-1  <  HEALTHi*  <  μj, 
 (HEALTHi, xi)  observed when PUBLICi = 1, 
 (ui. εi)  ~  N2[(0,1), (1,1,ρ)], 
 
using the same set of regressors as previously.  The estimate of ρ suggests that the conjecture 
might be correct.  On average, the factors that motivate insurance purchase seem also to motivate 
a higher response to the health satisfaction question. 
 
11.2.2  Models of Sample Selection with an Ordered Probit Selection Rule 
 
 As noted earlier, the binary probit model is a special case of the ordered probit model. 
The extension of the sample selection model would follow from replacing the participation 
equation with 
 
 Ordered Probit Participation Equation: 
      zi*  =  α′wi  +  ui,        (11.12) 
      zi    =  j if μj-1 < zi*  <  μj. 
 
Then, the objective is to recast the conditional mean function, E[yi* | xi,wi,zi = j] and determine an 
appropriate estimator and set of inference procedures.  A typical application (several of those 
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listed below) considers an “Educational Attainment” participation equation (secondary, college, 
graduate) and an outcome equation such as an earnings equation. 
 
Table 11.1  Estimated Ordered Probit Sample Selection Model 
+-------------------------------------------+ 
| Binomial Probit Model                     | 
| Dependent variable               PUBLIC   | 
| Number of observations             4483   | 
| Log likelihood function       -1471.427   | 
| Restricted log likelihood     -1711.545   | 
+-------------------------------------------+ 
+--------+---------+--------+--------+------+--------+--------+--------+------+ 
|Variable| Coeff.  |Standard|b/St.Er.|Prob. | Coeff. |Standard|b/St.Er.|Prob. | 
|        |         |Error   |        |      |        |Error   |        |      | 
+--------+---------+--------+--------+------+--------+--------+--------+------+ 
+--------+Index function for probability    |  Single Equation probit         | 
|Constant|  3.4512   .1622    21.267   .0000|  3.5925   .1651   21.758   .0000| 
|AGE     |  -.0054   .0025    -2.181   .0292|  -.0027   .0024   -1.110   .2670| 
|EDUC    |  -.1804   .0093   -19.394   .0000|  -.1967   .0094  -21.016   .0000| 
|HANDDUM |   .6710   .0803     8.353   .0000|   .2881   .0980    2.939   .0033| 
+--------+Index function for ordered probit |                                 | 
|Constant|  2.2347   .1270    17.590   .0000|Binary Choice Model Predictions  | 
|AGE     |  -.0160   .0016    -9.780   .0000|        Predicted                | 
|EDUC    |  -.0314   .0092    -3.398   .0007|Actual   0      1    Total       | 
|INCOME  |   .2384   .0994     2.399   .0164|   0    164   408      572       | 
|MARRIED |  -.0093   .0386     -.242   .8089|   1    141  3770     3911       | 
|KIDS    |   .0545   .0371     1.466   .1427| Total  305  4178     4483       | 
+--------+Threshold parameters for index    |                                 | 
|Mu(1)   |   .9695   .0394    24.581   .0000|                                 | 
|Mu(2)   |  2.2399   .0524    42.718   .0000|                                 | 
|Mu(3)   |  2.7091   .0547    49.519   .0000|                                 | 
|Rho(u,e)|   .8080   .0452    17.880   .0000|                                 | 
+--------+----------------------------------+---------------------------------+ 

 
 Garen (1984) builds directly on the Heckman model.  He departs from a model in which  
 
 yi | xi,zi = 0]  =  β0′xi  +  εi0, 
 yi | xi,zi = 1]  =  β1′xi  +  εi1,       (11.13) 
 zi*               =  π1′xi + π2′wi  +  ui,  zi  =  1[zi* > 0], 
 
which is similar to the selection model shown above.  [As stated, it is a “mover/stayer model.”  
See, e.g., Nakosteen and Zimmer (1980) and Greene (2008a, p. 888).]  Garen’s suggestion from 
here suggests how to proceed if zi is continuous – i.e., if zi* were the observation. He proposes to 
treat zi as if it were observed in the form of integer values, 1,...,n, noting that the continuous 
variable emerges as n → ∞.  There is, then a different regression equation for each value of zi.  
What follows is an analysis of a transformed regression equation that is augmented with powers 
of zi and products of zi and xi.  While not a sample selection treatment as such, this does point in 
the direction of a formal sample selection treatment based on the ordered probit model. 
 Terza (1987) develops the two step estimator for a regression model in which one of the 
regressors is generated by an ordered probit model without regressors.  The structural equations 
are equivalent to 
 
 yi    =  β′xi  +  θqi  +  εi, 
 qi*  =  α  +  ui, 
 qi    =  j  if  μj-1  <  qi*  <  μj,       (11.14) 
 (εi,ui)  ~  N[(0, 0),(σε

2, ρσε, 1)]. 
 
It is convenient to define (once again) 
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 mij   =  1 if qi = j and mij  =  0 otherwise. 
 
Under these assumptions, Terza’s main result is 
 
 E[yi|xi,mi0,mi1,...,miJ]  =   β′xi  +  (θρ)fi, 
 
Where           (11.15) 
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[A similar result for the conditional mean of a doubly truncated variable appears in Maddala 
(1983, p. 366).]  Terza goes on to propose a two step estimation procedure.  The first step 
involves maximum likelihood estimation of (α,μ-1,μ0,μ1,...,μJ).  This can be done (first noting that 
as usual, μ-1 = -∞, μ1 = 0 and μJ = ∞) using only the sample proportions in the J+1 cells.  The 
model for qi implies Prob(qi > 0) = Φ(α), so the estimator of α is Φ-1(1-P0).  Continuing, Prob(qi  
>  1) = Φ(μ1 - α) which suggests a method of moments estimator of μ1 based on P1, and so on.  
With these estimates in hand, he then proposes linear regression of y on X and f̂  to estimate β 
and (θρ).  (A method of computing appropriate standard errors is presented later.)     
 As Terza (1987) notes (p. 278) his model is not a correction for selection because the 
values of the dependent variable are observed for all observations.  (The use of the constructed 
regressor is a means to another end, consistent estimation of β.) On the other hand, by a minor 
rearrangement of terms, the results are precisely what is needed for a model of sample selection.  
First, while retaining the ordered probit observation mechanism for qi, replace the constant α with 
the mean of the latent regression, α′wi.  Second, we note that in the “selection on j” case, we 
observe not (mi0,mi1,...,miJ) in full, but only one of them.  Terza’s results then imply 
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This is the result needed to complete the sample selection model. The same two step method can 
now be applied.  Terza’s method of computing corrected asymptotic standard errors is essentially 
unchanged.   
 The model appears in this form in Terza (1983).  [See, as well, Vella (1998, p. 148).] 
Jiminez and Kugler (1987) appears to be the first formal application of the preceding sample 
selection model.  The application is an earnings equation for the Bogota subsample of a 1979-
1981 nationwide survey of graduates in Colombia   The selection mechanism is determined by 
participation in a vocational and technical training course (SENA), recorded as none, short or 
long.  The authors derived the conditional mean function from first principles; the derivation 
follows naturally from earlier results in Maddala (1983), Garen (1984), Heckman (1979), Kenny 
et al. (1979), Lee and Trost (1978) and Trost and Lee (1978).    Kao and Wu (1990) applied the 
same model to an analysis of bond yields in which the selection mechanism assigns bonds to risk 
classes by a rating agency.  [See, as well, Acharya (1988) for a more elaborate development of 
the sample selection model.]   
 Frazis’s (1993) study is similar to Jimenez and Kugler.  This study analyzes earnings of 
high school seniors from the National Longitudinal Study of the High School Class of 1972.  A 
panel of seniors was interviewed in 1972, then again five times between 1973 and 1986.  Frazis’s 
analysis departed from the basic framework in two ways.  The earnings equation is 
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 log y  =  β′x  +  Σj γj Sj  +  δ XS  +  φ u  +  λ uS  +  ε, 
 
where y is earnings, x is a vector of control variables, Sj is a set of dummy variables that equal 
one if at least the level of schooling, j, is attained and zero otherwise, XS is interactions of the 
school attainment dummy variables with X and u represents “aspects of the ability to acquire 
human capital that are unobservable to the researcher.”  Thus, since schooling level is the ordered 
selection mechanism, as stated, this model resembles a treatment effects model, and is also 
similar to Terza’s (1987) formulation. (Motivation for the parts of the equation are given in the 
paper.)  However, note once again, that the observation will be conditioned not on all Sj, but only 
on the one that corresponds to the individual’s schooling level.   Estimates of E[u|Sj] to serve as 
the proxy for u in the earnings equation are obtained by estimating the ordered probit model for 
schooling level and computing the conditional mean function given earlier.  The estimating 
equation (fit by ordinary least squares) is obtained by replacing u in the equation above (in both 
places) with 
 

 1 1

1 1

ˆ ˆ( ) ( )ˆ
ˆ ˆ( ) ( )

j j i j j i
j

j j i j j i

U − −

− −

′ ′⎛ ⎞φ μ − − φ μ −
= ⎜ ⎟⎜ ⎟′ ′Φ μ − − Φ μ −⎝ ⎠

w w
w w

α α

α α
.     (11.17) 

 
The second noteworthy point is that, as the author mentions in passing, the ordered probit model 
provides separate regression coefficients for each level of education.  As he notes, this allows 
negative probabilities.  A discussion of aspects of the data set that should prevent this is given. 
 Two remaining studies of sample selection with ordered probit selection mechanisms are 
Amel and Liang (1994, 1997) and Butler et al. (1994, 1998).  In the first of these, the authors 
examine firm performance in the banking industry.  The conditioning equation used depends on 
the amount of entry in the market; the authors describe small markets in which entry is described 
with a simple probit model, and large ones in which ordered probit and truncated Poisson models 
are used.  Butler, Finegan and Siegfried (1998) [see, also Butler et al. (1994)] analyzed 
performance in economics courses.  The selection mechanism is calculus proficiency measured 
by level of training across several possible courses. 
 Li and Tobias (2006a) replicated Butler et al. (1998) using a Bayesian method rather than 
two step least squares.  The authors describe an “augmented likelihood function” for the model.  
With noninformative priors, they “virtually identically” replicated the original results, which 
suggests that the augmented likelihood function is not equal to the one given above.  Technical 
details are not provided in the paper, but are promised in a no longer existing Iowa State 
University Economics Department working paper.  [Li and Tobias (2006c).] The working paper 
is reincarnated under the same title in Li and Tobias (2006b).  There the authors note that the 
dependent variable in the regression is actually a grade level, which is also discrete and ordered. 
The model in (2006b) is a treatment effects model in a triangular system with the outcome of the 
first ordered probit regression, in the form of a set of endogenous dummy variables, appearing on 
the right hand side of a second ordered outcome model, the grade attainment,.  [Sajaia (2008) is 
vaguely related to this, however, his treatment of the recursive model builds a simultaneous 
equations system in the latent regression, which seems difficult to motivate.  This paper merely 
documents a Stata program, and does not provide detailed technical background.]  The Li and 
Tobias model without the dummy variables (i.e., under a restriction that their coefficients are 
zero) would be the bivariate ordered probit model of  Section 10.2, so it appears that the authors 
have rediscovered the MLE for the bivariate model, using a Gibbs sampling and MCMC 
algorithm rather than classical maximum likelihood.  Technical details are omitted from the 
(2006b) paper, so it is difficult to discern how closely the results resemble each other, but one 
would expect them, with noninformative priors, to give roughly the same numerical results. 
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 Missing from the preceding and from the received literature is a maximum likelihood 
estimator for the ordered probit sample selection model.  One reason one might wish to consider 
an MLE as an alternative approach is that the two step estimators do not produce an estimator of 
ρ, which is likely to be an interesting parameter, for example, if one wished to test for 
“selectivity.”  [In the basic case, there is a method of moments estimator of ρ available – See 
Heckman (1979) and Greene (1981).  However, none has been derived for the ordered choice 
case.  An analog to the estimator developed by Heckman (1979) would be straightforward.   
However, it will have the same shortcoming as the one in the basic model.  As shown in Greene 
(1981), the estimator is not bounded by -1 and +1.  Moreover, even when it does fall in the right 
range, no inference is possible.  (This latter point is of minor consequence.  In the original model 
above, inference is possible about θ = ρσ based on the OLS results, and ρ = 0 is both necessary 
and sufficient for θ = 0, as σ cannot be zero in a sensible model.)  
 The log likelihood for the original sample selection model (binary selection and linear 
regression) is given in Greene (2008a, eq. 24-33) and in Econometric Software (2007); 
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This estimator, though apparently much less frequently used than the two step method, is 
available as a preprogrammed procedure in contemporary software such as Stata and NLOGIT.  
Note that it is a full information maximum likelihood estimator for all the parameters in the 
model.  The estimator is not less robust than the two step estimator; both are fully parametric 
based on the bivariate normal distribution. 
 The counterpart for an ordered probit sample selection model will replace the term Φ(.)  
in the square brackets with 
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and the term ( )i′Φ − wα with 
 
 Prob(zi ≠ j | wi)  =  ( ) ( )11 j i j i−

⎡ ⎤′ ′− Φ μ − − Φ μ −⎣ ⎦w wα α .     (11.20) 

 
As stated, this is a conventional maximum likelihood estimator that produces the familiar 
properties consistency, asymptotic normality, etc.  If the selection is “selection on a particular j,” 
however, then no more than one of the threshold parameters will be estimable.  Assuming that α 
contains a constant term, if selection is on j = 0, then the second probability becomes zero and μ0 
already equals zero.  If selection is on j = 1, then μ0 in the second probability is zero and the 
constant in α is identified, while in the first probability, μ1 is estimable distinct from the constant 
in α.  If selection is on j > 1, then the two probabilities have separate constant terms, but only two 
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distinct constant terms are estimable.  The first constant term estimates (α0 - μj) and the second 
estimates (α0 - μj-1). 
 Full information maximum likelihood based on the probabilities shown above should be a 
conventional, relatively straightforward exercise.  However, there is a simplification that might 
prove useful.  This (and the original model) is an ideal setting to employ the Murphy and Topel 
(2002) kind of two step estimator.  As already seen, we can estimate the ordered probit model in 
isolation, using maximum likelihood.  Let 
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Then, a two step approach can be used in which the log likelihood function maximized at the 
second step is 
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Note that the first term is now an irrelevant constant, and the log likelihood function to be 
maximized is based only on the selected sample.  This can be made even more convenient by 
reparameterizing it with the Olsen (1978) reparameterization, θ = 1/σε and γ = (1/σε)β.  Now, the 
relevant log likelihood is 
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Finally, let τ = 2/ 1ρ − ρ .  Then, the log likelihood simplifies a bit more to 
 

 

( )

( )( )
( )( )

2

2
1

log * log  +

ˆ1
              log .

ˆ1

i

i

i iz j

i i j

z j

i i j

L y

y A

y A

=

=

−

′= θφ θ −

⎧ ⎫′Φ τ θ − − + τ −⎪ ⎪
⎨ ⎬
⎪ ⎪′Φ τ θ − − + τ
⎩ ⎭

∑

∑

x

x

x

γ

γ

γ

    (11.23) 

Once estimates of θ, γ and τ are in hand, estimates of the structural parameters, σε, β and ρ, can 
be obtained by inverting the transformations.  This appproach has an additional benefit in that the 
range of τ is unrestricted, while that of ρ must be restricted to (-1,+1) during estimation. 
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11.2.3  A Sample Selected Bivariate Ordered Probit Model 
 
 Bhat and Singh (2000) extended the preceding methodology to a sample selected 
bivariate ordered choice model. In their study, the selection mechanism is a multinomial (three 
outcome) logit model for travel mode choice linked to a bivariate ordered choice model for 
counts of two travel related activities.   To develop the approach, we begin with a simpler case, 
with a binary selection equation.  For two outcomes and a binary regime selection, we would  
have 
 Selection Equation: 
      z*  =  α′w  + u, 
      z    =  1[z* > 0]. 
 Bivariate Ordered Probit Activity Equation:     (11.24) 
      yi,1*  =  β1′xi,1  +  εi,1, yi,1  =    j  if μj-1  <  yi,1*  <  μj, j = 0,…,J1, 
        yi,2*  =  β2′xi,2  +  εi,2,  yi,2  =    j  if δj-1  <  yi,2*  <  δj,  j = 0,…,J2, 
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As before, the ordered choice outcomes, (yi,1,yi,2) are observed only when zi equals one.  The joint 
probability for z = 1, yi,1 = j and yi,2 = k is 
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where Φ3(…) denotes the trivariate normal cdf using mean vector zero and covariance matrix Σ. 
The contribution to the likelihood function for observations with zi = 0 is 
 
 Li

0 = Prob[zi = 0|wi]  =  Φ(-α′wi).      (11.26) 
 
The log likelihood is 
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The log likelihood requires evaluation of trivariate normal integrals, for which quadrature based 
methods are available (e.g., Genz (2008) or Drezner (1994)).  Alternatively, the GHK simulator 
may be used. 
 Bhat and Singh’s application replaces the selection equation with a multinomial logit 
model for mode choice among Q alternatives, 
 
 mi,q*  =  γq′hi,q + vi,q, q = 1,…,Q,       (11.28) 
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where vi,q has type 1 extreme value (Gumbel) distribution, all independent.  Mode choice is then 
reparameterized as three binary choice equations, 
 
 Mi,q*  =  γq′hi,q  -  vi,q, Mi,q  =  1 if Mi,q*  >  0. 
           (11.29) 

 Prob(Miq = 1|hiq)  =  F(γq′hi,q)  =  ,

1 ,

exp( )
exp( )

q i q
Q
s s i s

h
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, q = 1,…,Q. 

 
The transformation to normality uses Lee’s (1983) copula function approach, 
 
 vi,q*  =  Φ-1 [F(γq′hi,q)].        (11.30) 
 
Then, the selection is based on the mode choice, and a separate bivariate ordered probit model 
applies to each mode.  In addition to the choice model parameters that are estimated, there is a set 
of thresholds, μq,1 and μq,2, a set of slopes, β1,q and β2,q, and a set of three correlation coefficients, 
ρq, θ1,q and θ2,q.  In their application, three travel modes were drive alone, shared ride and transit.  
Two activities are evening commute stops and post home-arrival stops.  The full set of parameters 
in the multinomial logit model and in the set of bivariate ordered probit models are then estimated 
simultaneously by full information maximum likleihood (subject to a large number of zero 
restrictions on the parameters of the utility functions and in Σq.)  Readers are referred to Bhat and 
Singh (2000) for details. 
 
 11.3   An Ordered Probit Model with Endogenous Treatment Effects 
 
 Munkin and Trivedi (2008) have analyzed a model that bears some connection to the 
selection model proposed in the previous section.  The model extension considered involves a set 
of endogenous “treatment dummy variables.”  That is, 
 
 yi*  =  β′xi  +  δ′di  +  εi, 

 yi    =  j  if  μj-1  <  yi*  <  μj, 
 
where yi is a measure of medical service utilization (actually a count with excess zeros – the 
ordered choice model is used as an approximation).  The additional vector of covariates, di, is a 
set of dummy variables that is the outcome of a choice of treatments; one of M treatments is 
chosen and for that choice, dim = 1 and dim′ = 0 for all others.  (We have included all M treatments 
in di for pedagogical convenience.  In their analysis, one of the dummy variables is immediately 
dropped from the model since only M-1 are needed to determine the observed outcome.)  The 
treatment outcome is determined by a multinomial probit model of underlying utility across the 
choices.  [See Train (2003) and the large number of sources cited by Munkin and Trivedi for 
discussion of the multinomial probit model.]  The endogeneity of the treatment effects follows 
from the correlations between the random elements of the random utility equations in the choice 
model and the random term, εi in the ordered choice model.  A Bayesian (MCMC) treatment is 
used to estimate the posterior means of the parameters.  A method for estimating models with 
more general forms of endogenous right hand side variables is suggested in Kawakatsu and 
Largey (2009). 
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12 
 

Semiparametric and Nonparametric  
Estimators and Analyses 

 
The foregoing has surveyed nearly all of the literature on ordered choice modeling.  We have, of 
course, listed only a small fraction of the received applications.  But, the full range of 
methodological developments has been presented, with a single remaining exception.  As in many 
other areas of econometrics, a thread of the contemporary literature has explored the boundaries 
of the model that are circumscribed by the distributional assumptions.  We have limited ourselves 
to ordered logit and probit models, while relaxing certain assumptions such as homoscedasticity, 
all within the boundaries of the parametric model.  The last strand of literature to be examined is 
the development of estimators that extend beyond the parametric distributional assumptions.  It is 
useful to organize the overview around a few features of the model, scaling, the distribution of the 
disturbance, the functional form of the regression, and so on.  In each of these cases, we can focus 
on applications that broaden the reach of the ordered choice model to less tightly specified 
settings. 
 There is a long, rich history of semiparametric and nonparametric analysis of binary 
choice modeling (far too long and rich to examine in depth in this already long survey) that 
begins in the 1970s, only a few years after analysis of individual binary data became a standard 
technique.  The binary choice literature has two focal points, maximum score estimation [Manski 
(1975, 1985), Manski and Thompson (1985) and Horowitz (1992)] and the Klein and Spady 
(1993) kernel based semiparametric estimator for binary choice.  (As noted, there is a huge 
number of other papers on the subject.  We are making no attempt to survey this literature.)  
Some of the more recent developments build on these two (mainly on the second; MSCORE 
remains to provide a platform for analysis of ordered choices).  Surprisingly, the formal extension 
of the binary choice models to what would seem to be the natural next step, ordered choice, takes 
place entirely since 2000. 
 To a very small extent, some of the developments already mentioned move the analysis 
in the direction of a semiparametric approach.  Agresti (1999), for example, notes the extension 
of GEE methods [see Diggle, Liang and Zeger (1994)] to the ordered choice model.  GEE 
modeling is based more strongly on conditional means and variances than on distributions, and 
can be viewed as a small step away from the maximum likelihood estimator.  (The step is quite 
small; the formal distributional model is still assumed.  One might surmise, however, that the 
GEE estimator has at least the potential to be robust to failures of the distributional assumption. 
This remains to be verified, however.)  On the other hand, if the latent class model (LCM) that we 
examined in Section 8.2 is simply interpreted as a mixing model rather than as a latent grouping 
model, then the LCM certainly qualifies as a semiparametric approach. [See Heckman and Singer 
(1984) for example.]  Likewise, the mixed (random parameters) ordered probit model can also be 
viewed as a semiparametric estimator; a continuous mixture of underlying distributions that does 
not adhere to a strict distributional assumption. [See, e.g., McFadden and Train (2001) for 
discussion of using continuous mixture models to approximate any underlying distribution.]  (For 
the ordered choice model, to achieve full generality in this interpretation, we would want to allow 
the thresholds, as well as the regression slopes, to be random.) 
 The received literature on semiparametric (and semi-nonparametric and nonparametric) 
analysis of ordered choice models is fairly compact.  We begin with  a study by Chen and Khan 
(2003) that considers the ordered probit model in the presence of unknown (and not 
parameterized) heteroscedasticity.  Lewbel (2000) goes a step beyond Chen and Khan in allowing 
the distribution to be unspecified as well.  We will then examine Stewart’s (2003) parameterized 
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model that approximates an unknown distibution.  Some general observations are collected in 
Section 12.5.  This is not a complete enumeration of this thread of literature (though it is fairly 
close).  Two studies not examined in detail below, but mentioned here are Coppejans (2007) and 
Klein and Sherman (2002), both of which develop consistent parameter estimators, but are, at the 
same time, focused somewhat more heavily on methodological aspects of estimation than the 
papers examined below. 
 
12.1  Heteroscedasticity.   
 
 Chen and Khan (2003) propose a semiparametric estimator for the heteroscedastic 
ordered probit model, 
 
 yi* = α + β′xi + σ(xi)εi,        (12.1) 
 yi   = j  if  μj-1 < yi*  <  μj, j = 0,1,…,J, 
 
(we are adapting their application to our notation – theirs differs in several ways likely to produce 
ambiguities in the presentation).  The issue is whether it is possible efficiently (by semiparametric 
standards) to estimate β.  Several normalizations are necessary to begin. As usual, μ-1 = -∞ and μJ 
= +∞.  Since there is assumed to be a nonzero constant term, α, μ0 = 0.  They restrict attention to 
the case J = 2 (three possible outcomes).  “As is always the case with discrete response models, 
location and scale normalizations are required.  As a location normalization, to identify the 
intercept term, [α] we set [μ0] = 0.  As a scale normalization, we set [μ1] = 1.”  (Again, our 
notation.)  The last assumption is, of course, crucial.  Heretofore, we have achieved scale 
normalization by assuming σε = 1.  The implication of the new assumption in the three outcome is 
as follows: 
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This suggests that the variance is estimable.  The authors propose a kernel estimator, 
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(This is a multivariate kernel in any realistic case.  For the application, the authors used a product 
of Epanechnikov kernel functions.  Details on selection of the bandwidth may be found in their 
paper.)  With these estimates of Pi0 and Pi2 in hand, the estimator of σ(xi) is 
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The second step MLEs of α and β are obtained by maximizing a log likelihood function, 
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Where τ(xi) is a trimming function “often adopted in two-step estimators, whose support is 
assumed to be a compact subset of the support of xi.  For the study done here, τ(x) = 0 if either 
predicted probability is outside [0.005,0.995] and 1 otherwise.  The Monte Carlo study that 
follows agrees with expectations; when the ordered probit model is well specified, it performs 
well, and when it is not, it performs poorly.  Likewise confirming expectations, the authors find 
that when there is pronounced heteroscedasticty, their estimator outperforms the MLE that 
assumes homoscedastic disturbances. 
 
12.2  A Distribution Free Estimator with Unknown Heteroscedasticty 
 
 Lewbel’s (2000) formulation of an ordered choice model that allows heteroscedasticity 
of unknown form is 
 
 yi* = zi  + β′xi + σiεi, 
 yi   = j  if  μj-1 < yi*  <  μj, j = 0,1,…,J. 
 
(We rely heavily on Stewart’s (2005) very concise exposition of this model.)  In this instance, the 
normalization is transferred to one of the slope coefficients.  Lewbel’s model is initially 
formulated in terms of a constant σ, but it is noted that the estimator is robust to 
heteroscedasticity of unknown form.  It is convenient to carry the more general form above.  
Lewbel’s estimator is noniterative and requires only ordinary least squares regressions.  The 
“special variable,” zi whose coefficient is normalized, is required to satisfy certain requirements 
[see Lewbel (2000) and Stewart (2005).]  Among other features, the sign of zi must be observed.  
Then, define the indicator y.i = yi/J; values range from 0 to 1.  Then construct, 
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The numerators are trivial to compute, however, the density of z given x requires some additional 
computation.  Stewart (2005, p. 559) navigates some of the developments in the literature for this 
computation.   Assuming the estimator of f(z|x) is in hand and in the estimator of .iy , the estimate 
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of β is obtained by least squares regression of .iy  on xi.  The estimates of the threshold 
parameters are the negatives of the constant terms in the J-1 regressions of jiy on xi. 
 Lewbel provides this approach for binary, ordered and unordered choice models, 
censored regressions, and a variety of other settings.  Stewart notes, that he found no empirical 
applications of the ordered choice model, and only a few about binary responses.  There have also 
been “few” studies that compare the estimator to other semiparametric approaches.  Little is 
known about the behavior of this estimator beyond the asymptotic properties that Lewbel, 
himself, has established in a series of papers [e.g., Lewbel (1997, 2000), Lewbel and Schennach 
(2007), Honore and Lewbel (2002).] 
 
12.3  A Semi-nonparametric Approach 
 
 Stewart (2003, 2005) proposes a model that nests the ordered probit model in a general 
estimator of an unknown density.  The alternative density, proposed by Gallant and Nychka 
(1987) is 
 

 ( )2

0

1( ) ( ).K k
K kk

f
=

ε = γ ε φ ε
θ ∑        (12.8) 

 
The constant, θ, normalizes the density so that it integrates to 1; 
 

 ( )2 

0 
( )K k

kk
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∞
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θ = γ ε φ ε ε∑∫ .       (12.9) 

 
With the normalization, the density is homogeneous of degree zero in γ = (γ0,…,γK), so the 
normalization γ1 = 0 is imposed.  If the remaining γk= 0, the normal distribution results.  The class 
of distributions is defined by the order of the polynomial, K.  The model shares a feature with the 
latent class model examined in Section 8.2; the index, K, is not parametric, and must be located 
by a specification search.  Surprisingly, it turns out that the normal model emerges with K = 1 and 
K = 2 as well as K = 0; the first model in the series that extends the ordered probit model has K = 
3.  The model selection problem is a bit more straightforward here in that the order of the model 
is reduced by one if γK = 0, so a likelihood based approach can be used for the specification 
search. 
 Stewart notes that the implicit scaling is needed to interpret the coefficients in any 
ordered choice model. For the application he considers, he suggests that ratios of coefficients are 
likely to be useful for several reasons.  Figure 12.1 is extracted from Table 1 in Stewart (2005).  
(An alternative model formulation has been omitted.)  The OP and SNP estimates are broadly 
similar, but the least squares estimates show some pronounced differences from both of the 
others.  The SNP model is a parametric extension of the ordered probit model – hence the name 
“semi-nonparametric.”  It is not in the same class as the Lewbel or Chen and Khan specifications.  
The likelihood ratio test rejects the ordered probit model.  The results in Figure 12.1 do not 
include the polynomial parameters or the threshold parameters from the ordered choice models.  
Figure 12.2 is Table 2 from Stewart’s earlier study using the same data and a much larger model. 
Moving across the results, we see the changes from K=2 (OP) to the 3 and 5 order polynomials.   
The hypothesis tests against the null model reject the ordered probit model in both cases.  The 
third order model is also rejected in favor of the fifth order one. 
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Figure 12.1   Table 1 From Stewart (2005) 
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Figure 12.2   Job Satisfaction Application, Extended 
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12.4  A Partially Linear Model 
 
 Bellemare, Melenberg and van Soest (2002) propose the following ordered choice model 
based on a partially linear (semiparametric) latent regression, ordered probit model: 
 
 yi*  =  g(zi)  +  β′xi  +  εi,       (12.10) 
 yi    =  j  if  μj-1  <  yi*  <  μj. 
 
Their model specifies εi ~ N[0,σ2], however, σ remains unidentified.  The usual normalizations of 
the threshold parameters are also required.  There is an interesting intersection of the different 
aspects of “semiparametric” at this point. It seems that concern about the distribution of εi would 
be a moot point here; if g(.) is unspecified, then it seems unlikely that an observed sample could 
support estimation of a model that is also built around an unspecified density for ε.  The implied 
probabilities for the model are 
 
 ( ) ( )1Prob( | , ) ( ) ( ) .i i i j i i j i iy j g g−′ ′= = Φ μ − − − Φ μ − −x z z x z xβ β   (12.11) 

 
Estimation of the model is suggested using a technique by Hardle, Huet, Mammen and Sperlich 
(2004) and Severini and Staniswalis (1994).  This involves iterating back and forth between 
maximum likelihood estimation of θ = (β,μ,σ) conditioned on estimates of g(zi) and estimates of 
g(zi) given the other parameters.  The former uses the conventional MLE carrying the current 
estimates of g(zi) as known constants.  The latter is accomplished by maximizing a separated 
weighted likelihood function for each i to obtain the current estimate of g(zi). 
 
12.5  Semiparametric Analysis 
 
 We have examined most of the received developments in the area of semiparametric and 
nonparametric analyses of the ordered choice model.  The central focus of the developments is 
consistent estimation of the regression slope parameters, β in the absence of an assumption about 
the distribution or the variance of the disturbance.  As we have observed repeatedly in the 
preceding analyses, however, these elements of the model are crucial for translating the 
coefficient estimates into meaningful characterizations of the underlying data generating process, 
and these features are absent by design from the semiparametric estimators.  Perhaps the 
signature feature of the ordered choice model is the vexing result that neither the sign nor the 
magnitude of β is informative about the impact of interesting right hand variables on the process 
that generates the outcome variable.  For example, Coppejans (2007) comments at length on the 
difference in magnitude of a particular coefficient (a fee elasticity) estimated by the ordered 
probit MLE compared to that obtained by a distribution-free sieve estimator.  But, the difference 
in magnitude observed there is comparable to the difference that would emerge in the same 
context if he had used an ordered logit model compared to an ordered probit model.  The fact that 
the scaling induced by the distributional model has been obscured in the estimation process is 
crucial to the finding.  That is, the comparison of the estimates of -0.20 for an ordered probit 
model to a -0.063 for the semiparametric estimator is meaningless without information on the 
scaling induced by the underlying distributions.  No evidence is available to eliminate the 
possibility that the partial effect in the ordered probit model is actually larger, not smaller, than 
that in the semiparametric model.   
 The presence of unaccounted for heteroscedasticity makes this worse.  In the Chen and 
Khan (2003) model, the heteroscedasticity involves the same x as the mean of the regression.  
The upshot is that in neither model is β the partial effect of interest – indeed, the sign of that 
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partial effect could be different from that of β in all cells of the outcome, since the mean effect, β, 
and the variance effect, σ(x) would typically have opposite signs.  In their formulation of the 
model, any partial effect will have to include ∂σ(x)/∂x, however, σ(x) is not estimated 
parametrically; we have no idea what this derivative looks like. 
 Of all the papers that we examined in this section of the literature (perhaps 10 in total), 
only one, Stewart (2005), dwells on this issue at any length.  As he notes, “Estimated coefficients 
in the standard parameterization of the Ordered Probit model cannot be interpreted directly and 
are only identified up to a scale normalization ...  However, ratios of coefficients can be usefully 
interpreted.”  Strictly, this claim is correct when the partial effects in the true model obeys the 
“parallel regressions” feature and it is somewhat misleading as it only appies to a particular 
outcome – the partial effects change sign and magnitude as one moves through the set of 
outcomes.  That is, when the partial effects are of the form ∂Prob(y = j|x)/∂xk = Kβ for some K 
that is independent of k.  Stewart notes that this feature is useful for examining “indifference 
curves,” that is, for examining what trades of two variables will leave the outcome (or, underlying 
preference) unchanged.  [Boes and Winkelmann (2006a) pursue this same point at great length.]  
A second motivation for examining the ratios of coefficients is to see the ratios of specific partial 
effects, relative to a particular variable.  He notes, in the Lewbel formulaton, one of the 
coefficients (that on the “special z”) is normalized to 1. As such, each coefficient on another 
variable is interpretable as relative to this variable.  Of course, the normalization could be on any 
other variable to secure identification of the model, but that would leave Stewart’s observation 
intact.  The ratios of coefficients on other variables to the z in question would survive 
renormalization of the model.  However, even with all this in place, the analysis hangs on the 
assumption that the ratios of partial effects in the model equal the ratios of the parameters.  In 
some of the model extensions we have examined, this is not the case. 
 The upshot of all this is that there is a loose end remaining to be tied up in the 
development of the semiparametric estimators.  In the parametric formulations, the otherwise 
annoying scale difference between, say, probit and logit estimates is reconciled by the scaling of 
the model, itself.  That reconciliation remains to be developed for the semiparametric approaches.  
This is needed in order to make the “robust” parameter estimates meaningful. 
 
12.6  A Nonparametric Duration Model 
 
 Han and Hausman (1988, 1990) suggested a nonparametric approach to analysis of 
duration times that, after some manipulation, is treated in the framework of the ordered choice 
models considered here.  [The model is also documented at length in Bhat (1996a,b) and Bhat and 
Pinjani (2008).] 
 Define Ti to be the time elapsed in an ongoing activity (use of a product under warranty, 
operation of a light bulb, life after transplant of a patient, economic life after layoff, duration of a 
trip, etc.) for individual i, measured on a continuous time scale. Observations in this setting will 
be a set of J+1 discrete intervals, [0,t1),[t1,t2),[t2,t3),…,[tJ,+∞), the time until transition (failure, 
death, exercise of the warranty, rehire, end of the trip, etc.) for individual i, and the interval, j, in 
which the transition takes place.  We also assume that there is a set of measured covariates, xi, 
that remains fixed from the baseline until the ending period.  Observations may be censored, 
which would be observationally equivalent to ‘failing’ in the rightmost interval or not failing at 
all during the observation period.  Let yi denote the observation on which interval contains the 
failure time, so yi = j if failure takes place between tj-1 and tj.  We develop a model for the 
determination of yi. 
 The hazard function for the random variable Ti is 
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The proportional hazards model specifies further that 
 
 λi(τ)  =  λ0(τ) exp(-α - β′xi),       (12.13) 
 
where λ0(τ) is the baseline hazard function.  It follows that the log of the integrated hazard 
function may be expressed as 
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log ( )it

i id ′λ τ τ = α + + ε∫ xβ ,       (12.14) 

 
where εi has an extreme value distribution, F(εi) = 1 - exp(-exp(εi)).  [There is a one to one 
correspondence between the log of the integrated hazard function and the density or the cdf, and 
the extreme value distribution corresponds to the preceding function.  See Kalbfleisch and 
Prentice (2002).]  For reasons that will emerge shortly, we have made the constant term in the 
hazard function explicit, whereas it is subsumed in β in Han and Hausman (1990).  Further define  
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Then, the probability of failure in period j by individual i is 
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This is precisely the form of the probability for the ordered logit model.  In more familiar terms,  
 
 Prob[yi = j|xi]  =  F[μj – β′xi] – F[μj-1 – β′xi], j = 0,1,…,J.    (12.17) 
 
The log likelihood function (as shown in Section 2.4) is 
 
 logL  =  11 0

log ( ) ( )n J
ij j i j ii j

m −= =
′ ′⎡ ⎤Λ μ − α − − Λ μ − α −⎣ ⎦∑ ∑ x xβ β ,  (12.18) 

 
where Λ(.) is the cdf of the logistic random variable and mij = 1 if yi equals j and 0 otherwise.  
The integrated hazard functions and the slope parameters are estimable using maximum 
likelihood, simply by placing the observed interval observations into the ordered logit model 
framework.  An application appears below. 
 
12.6.1  Unobserved Heterogeneity 
 
 A considerable literature is devoted to accommodating unobserved individual 
heterogeneity in the model. [See Han and Hausman (1990) and Bhat (1996a) for extensive 
discussion.]  Various parametric, semiparametric and nonparametric forms for the proportional 
hazards model can be conveniently assembled in the specification 
 
 λi(τ|wi)  =  λ0(τ) exp(-α - β′xi + wi).       (12.19) 
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The standard gamma model, in which exp(wi) has a gamma density with mean 1 and variance σ2, 
can be derived in closed form, as shown by Han and Hausman (1990).  The log likelihood for the 
model with unobserved heterogeneity is obtained as  
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where θ = 1/σ2.  Let 
 
 Ii(t)  =  exp(-β′xi)exp(μt).        (12.21) 
 
Then, the log likelihood function for the expanded model is (after considerable manipulation) 
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21/2

01
log 1 ( )iy
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I t
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==
⎡ ⎤+ σ Σ⎣ ⎦∑  .       (12.22) 

 
 Aside from its mathematical convenience, however, it is difficult to motivate the log 
gamma model for latent heterogeneity.  A model in which the heterogeneity is normally 
distributed, which would be more natural given that the heterogeneity is intended to capture latent 
characteristics of the individual, is now simple to devise, by using the random parameters 
specification presented in Section 8.1.  The random parameters ordered logit model with only the 
constant term specified as a random parameter is consistent with the model for heterogeneity as 
an alternative to the log gamma model; 
 
 λi(τ|wi)  =  λ0(τ) exp[-(α + wi) - β′xi ), wi ~ N[0,σ2].     (12.23) 
 
The model can be estimated by maximum simulated likelihood using the techniques developed in 
Section 8.1.2.  The simulated log likelihood function for this model would be 
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where the simulation is over R replications, and vi,r is a draw from the standard normal 
population.  By simply rearranging the function in terms of αi = α+σvi, we obtain a restricted 
version of the random parameters model in Section 8.1 in which only the constant term is 
random.  The example below extends the earlier application to allow for normally distributed 
individual heterogeneity. 
 Heckman and Singer (1984a,b) argued that a fully parametric model for the heterogeneity 
is likely to distort the estimated distributions.  Their recommendation is consistent with a finite 
mixture (latent class) formulation, such as 
 
 λi(τ)|q  =  λ0(τ) exp[-αq  - β′xi ], q = 1,…,Q,      (12.25) 
 
that is, a finite mixture, ordered logit model in which the threshold parameters and slopes are 
constant across classes, and the constant term defines the inter-class variation.  The log likelihood  
function for this form of the model would be 
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where there are Q classes (support points in this instance), and πq is the unconditional class 
probability (mass point in the heterogeneity distribution).  As shown in Section 8.2, we can use a 
multinomial logit form to constrain the unconditional probabilities to sum to one; 
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Bhat (1996a) suggests that the choice of Q be based on the smallest value of the Akaike 
Information Criterion, 
 
 AIC(Q)  =  -logL - .5 P log N,       (12.28) 
 
where P is the number of parameters estimated.  (The parameter count would not include θq as 
this is a one to one function of the probabilities associated with the mass points, not a 
‘parameter.’)  Bhat’s 1996a application studied the duration of shopping trips by households in a 
survey conducted in April of 1991 by the Central Transportation Planning Staff (CTPS) in the 
Boston Metropolitan region. 
 
12.6.2  Application 
 
 To illustrate the use of the ordered logit model to study duration data, we will examine 
Kennan’s (1985) data on the duration of 62 strikes in the U.S. from 1968 to 1976.  The data 
consist of the 62 durations and, for each year, a measure of “unanticipated” aggregate output.  
[These data are Table F25.3 in Greene (2008, Appendix F).]  The data on strike durations and the 
index of unanticipated output are shown in Figure 12.3.  The durations were arbitrarily grouped 
(purely for this example) into the nine intervals shown in Table 12.1. 
 The estimated ordered logit model is shown in Table 11.2.  The results suggest that 
unanticipated production is a somewhat significant influence on the hazard rate for strike 
duration. To use these results to examine the hazard rates, we compute the following estimates of 
the hazard functions: 
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The results are shown in Figure 12.4.  The jagged imprecision of the estimated function is likely 
due to the small sample (cell) sizes and the small number of intervals considered. 
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Figure 12.3  Strike Duration Data 
 
 
Table 12.1.  Grouping of Strike Durations 
+----------------------------------------------------------------------+ 
|                  Frequency        Cumulative  < =    Cumulative  > = | 
|j    Duration    Count   Percent   Count   Percent    Count   Percent | 
|- ------------- ------- ---------  ------- ---------  ------ ---------| 
|0  0 to   4 weeks    10   16.1290       10   16.1290      62  100.0000| 
|1  5 to  10 weeks     6    9.6774       16   25.8065      52   83.8710| 
|2 11 to  13 weeks     4    6.4516       20   32.2581      46   74.1935| 
|3 14 to  17 weeks     3    4.8387       23   37.0968      42   67.7419| 
|4 18 to  23 weeks     5    8.0645       28   45.1613      39   62.9032| 
|5 24 to  28 weeks     5    8.0645       33   53.2258      34   54.8387| 
|6 29 to  40 weeks     6    9.6774       39   62.9032      29   46.7742| 
|7 41 to  60 weeks     9   14.5161       48   77.4194      23   37.0968| 
|8 61 to   ∞ weeks    14   22.5806       62  100.0000      14   22.5806| 
+----------------------------------------------------------------------+ 
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 Since we have the actual realizations of Ti in hand, we can estimate the logistic hazard 
model that is being approximated with the ordered logit model.  The density and hazard functions 
for the log-logistic model are 
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where δi = exp(β′xi), p is a scale parameter and the denominator of the hazard function is the 
survival function, Prob[ti > Ti].  The estimated parameters are shown in Table 12.2.  The 
resemblance to the ordered logit estimates is to be expected, since the latter are a (rough) 
approximation  The hazard function for the parametric model is shown in Figure 12.5. 
 Finally, the estimates of an ordered logit model with (log)normal heterogeneity accounted 
for in the hazard function are also shown in Table 12.2.  The estimates are obtained by maximum 
simulated likelihood, as discussed earlier.  The results show little evidence of heterogeneity.  Of 
course this is to be expected, since the boundaries of the time intervals are set arbitrarily, and 
these are aggregate data in any event.  (The log likelihood functions for the two ordered choice 
models are almost identical.) 
 
Table 12.2  Estimated Logistic Duration Models for Strike Duration 
+--------+--------+--------+-------+-----+-------+--------+--------+------+ 
|Variable|Coeff.  |Standard|b/St.Er|Prob.|Coeff. |Standard|b/St.Er.|Prob. | 
|        |        |Error   |       |     |       |Error   |        |      | 
+--------+--------+--------+-------+-----+-------+--------+--------+------+ 
|        |Ordered logit model            | Normal heterogeneity model     | 
+----------------------------------------+--------------------------------+ 
+--------+Index function for probability   
|Constant| 1.6088   .2416   6.658   .0000|  1.6087   .3467   4.641   .0000 
|PROD    | 7.9272  4.7790   1.659   .0971|  7.9287  5.8621   1.353   .1762 
+--------+Threshold parameters for index                                  | 
|Mu(1)   |  .6115   .2006   3.049   .0023|  .6115    .2419   2.533   .0113| 
|Mu(2)   |  .9491   .2175   4.363   .0000|  .9491    .2832   3.351   .0008| 
|Mu(3)   | 1.1886   .2253   5.276   .0000| 1.1886    .3085   3.853   .0001| 
|Mu(4)   | 1.5692   .2333   6.727   .0000| 1.5692    .3295   4.763   .0000| 
|Mu(5)   | 1.9257   .2413   7.981   .0000| 1.9257    .3430   5.615   .0000| 
|Mu(6)   | 2.3413   .2553   9.171   .0000| 2.3413    .3597   6.509   .0000| 
|Mu(7)   | 3.0358   .3041   9.984   .0000| 3.0358    .4051   7.494   .0000| 
|Sigma   |                               |  .0042    .2274    .019   .9852| 
+--------+-------------------------------+--------------------------------+ 
|        |Estimated log-logistic parametric hazard model                  | 
|Constant| 3.0256   .1594  18.977   .0000|  Number of Observations = 62   | 
|PROD    | 6.4482  4.2292   1.525   .1273|  Mean of PROD    = 0.0110231   | 
|p       | 1.5233   .1919   7.934   .0000|                                | 
+--------+-------------------------------+--------------------------------+ 
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Figure 12.4  Estimated Nonparametric Hazard Functions 
 
 
 

 
Figure 12.5  Estimated Hazard Function from Loglogistic Parametric Model  
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