Chapter 9
 Optimization: One Choice Variable

Léon Walras (1834-1910)

Vilfredo Federico D. Pareto (1848-1923)

9.1 Optimum Values and Extreme Values

- Goal vs. non-goal equilibrium
- In the optimization process, we need to identify the objective function to optimize.
- In the objective function the dependent variable represents the object of maximization or minimization

Example:

- Define profit function: $\quad \pi=\mathrm{PQ}-\mathrm{C}(\mathrm{Q})$
- Objective: Maximize π
- Tool: Q

9.2 Relative Maximum and Minimum: FirstDerivative Test
 Critical Value
 The critical value of x is the value x_{0} if $f^{\prime}\left(x_{0}\right)=0$.
 - A stationary value of y is $f\left(x_{0}\right)$.

- A stationary point is the point with coordinates x_{0} and $f\left(x_{0}\right)$.
- A stationary point is coordinate of the extremum.
- Theorem (Weierstrass)

Let $f: \mathrm{S} \rightarrow \mathrm{R}$ be a real-valued function defined on a compact (bounded and closed) set $\mathrm{S} \in \mathrm{R}^{\mathrm{n}}$. If f is continuous on S , then f attains its maximum and minimum values on S. That is, there exists a point c_{1} and c_{2} such that

$$
f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right) \quad \forall x \in \mathrm{~S}
$$

9.2 First-derivative test

- The first-order condition (f.o.c.) or necessary condition for extrema is that $f^{\prime}\left(x^{*}\right)=0$ and the value of $f\left(x^{*}\right)$ is:
- A relative minimum if $f^{\prime}\left(x^{*}\right)$ changes its sign from negative to positive from the immediate left of x_{0} to its immediate right. (first derivative test of min.) ().

- A relative maximum if the derivative $f^{\prime}(x)$ changes its sign from positive to negative from the immediate left of the point x^{*} to its immediate right. (first derivative test for a max.) :

9.2 First-derivative test

- The first-order condition or necessary condition for extrema is that $f^{\prime}\left(x^{*}\right)=0$ and the value of $f\left(x^{*}\right)$ is:
- Neither a relative maxima nor a relative minima if
$f^{\prime}(x)$ has the same sign on both the immediate left and right of point x_{0} (first derivative test for point of inflection).

9.2 Example: Average Cost Function

$A C=Q^{2}-5 Q+8 \quad$ Objective function
$f^{\prime}(Q)=2 Q-5 \quad$ 1st derivative function
$f^{\prime}(Q)=2 Q-5=0 \quad$ f.o.c.
$Q^{*}=5 / 2=2.5 \quad$ extrema
left $\quad A C=f\left(Q^{*}\right) \quad$ right
$f(2.4)=1.76 \quad f(2.5)=1.75 \quad f(2.6)=1.76 \quad$ relative \min
$f^{\prime}(2.4)=-0.2 \quad f^{\prime}(2.5)=0 \quad f^{\prime}(2.6)=0.2 \quad(-,+)$

9.3 The smile test

- Convexity and Concavity: The smile test for aximum/minimum
- If f " $(x)<0$ for all x, then strictly concave. \Rightarrow critical points are global maxima

- If $f^{\prime \prime}(x)>0$ for all x, then strictly convex. \Rightarrow critical points are global minima

- If a concave utility function (typical for risk aversion) is assumed for a utility maximizing representative agent, there is no need to check for s.o.c. Similar situation for a concave production function

9.3 The smile test: Examples:

Example 1: Revenue Function

1) $T R=1200 Q-2 Q^{2} \quad$ Revenue function
2) $M R=1200-4 Q^{*}=0 \quad$ f.o.c.
3) $\mathrm{Q}^{*}=300$ extrema
4) $M R^{\prime}=-4 \quad$ 2nd derivative
5) $M R^{\prime}<0 \quad \Rightarrow Q^{*}=300$ is a maximum

Example 2: Average Cost Function

$$
\begin{array}{ll}
A C=Q^{2}-5 Q+8 & \text { Objective function } \\
f^{\prime}(Q)=2 Q-5=0 & \text { f.o.c. } \\
Q^{*}=5 / 2=2.5 \text { extrema } \\
f^{\prime \prime}(Q)=2>0 & \Rightarrow Q^{*}=5 / 2=2.5 \text { is a minimum }
\end{array}
$$

9.3 Inflection Point

- Definition

A twice differentiable function $f(x)$ has an inflection point at x iff the second derivative of $f($ (.) changes from negative (positive) in some interval (m, \tilde{x}) to positive (negative) in some interval (\tilde{x}, n), where $\tilde{x} \in(m, n)$.

- Alternative Definition

An inflection point is a point (x, y) on a function, $f(x)$, at which the first derivative, $f^{\prime}(x)$, is at an extremum, -i.e. a minimum or maximum. (Note: $f^{\prime \prime}(x)=0$ is necessary, but not sufficient condition.)
Example: $U(w)=w-2 w^{2}+w^{3}$

$$
\mathrm{U}^{\prime}(\mathrm{w})=4 \mathrm{w}+3 \mathrm{w}^{2}
$$

$$
U^{\prime \prime}(\mathrm{w})=4+6 \mathrm{w} \quad \Rightarrow 4+6 \widetilde{w}=0
$$

$$
\widetilde{w}=2 / 3 \text { is an inflection point }
$$

9.4 Formal Second-Derivative Test: Necessary and Sufficient Conditions

- The zero slope condition is a necessary condition and since it is found with the first derivative, we refer to it as a $1^{\text {st }}$ order condition.
- The sign of the second derivative is sufficient to establish the stationary value in question as a relative minimum if $f^{\prime \prime}\left(x_{0}\right)>0$, the $2^{\text {nd }}$ order condition or relative maximum if $f^{\prime \prime}\left(x_{0}\right)<0$.

9.4 Example 1: Optimal Seignorage

$$
\begin{array}{ll}
\frac{M}{P}=e^{-\lambda\left(\pi^{e}+r\right)+\alpha Y} & \text { Demand for money } \\
S=\pi \frac{M}{P}=\pi e^{-\lambda\left(\pi^{e}+r\right)+\alpha Y} & \text { Seignorage }
\end{array}
$$

F.o.c. (assume $\pi=\pi^{e}$):
$\frac{d S}{d \pi}=e^{-\lambda(\pi+r)+\alpha Y}+\pi(-\lambda) e^{-\lambda(\pi+r)+\alpha Y}$

$$
=e^{-\lambda(\pi+r)+\alpha Y}+\pi(-\lambda) e^{-\lambda(\pi+r)+\alpha Y}=e^{-\lambda(\pi+r)+\alpha Y}(1-\pi \lambda)
$$

$(1-\pi * \lambda)=0 \quad \Rightarrow \pi^{*}=\frac{1}{\lambda} \quad$ (Critical point)
S.o.c. :
$\frac{d^{2} S}{d \pi^{2}}=-\lambda e^{-\lambda(\pi+r)+\alpha Y}(1-\pi \lambda)+(-\lambda) e^{-\lambda(\pi+r)+\alpha Y}=-\lambda e^{-\lambda(\pi+r)+\alpha Y}(2-\pi \lambda)$
$\frac{d^{2} S}{d \pi^{2}}\left(\pi^{*}=\frac{1}{\lambda}\right)=-\lambda e^{-\lambda\left(\pi^{*}+r\right)+\alpha Y}<0 \quad \Rightarrow \pi^{*}=\frac{1}{\lambda}$ is a maximum

9.4 Example 2: Profit function (Two solutions)

Revenue and Cost functions

1) $T R=1200 Q-2 Q^{2}$
2) $T C=Q^{3}-61.25 Q^{2}+1528.5 Q+2000$

Profit function
3) $\pi=T R-T C=-Q^{3}+59.25 Q^{2}-328.5 Q-2000$

1st derivative of profit function
4) $\pi^{\prime}=-3 Q^{2}+118.5 Q-328.5=0$
5) $Q_{1}^{*}=3 \quad Q_{2}^{*}=36.5$

2nd derivative of profit function
6) $\pi^{\prime \prime}=-6 Q+118.5$
7) $\pi^{\prime \prime}(3)=100.5 \quad \pi^{\prime \prime}(36.5)=-100.5$
applying the smile test
8) $\pi^{\prime \prime}\left(Q_{1}^{*}\right)>0 \rightarrow \min \pi^{\prime \prime}\left(Q_{2}^{*}\right)<0 \rightarrow \max$

9.4 Example 3: Optimal Timing - wine storage

$A(t)=V e^{-r t} \quad$ Present value
$V=k e^{\sqrt{t}} \quad$ Growth in value
$A(t)=k e^{t^{1 / 2}} e^{-r t}=k e^{t / 2 / 2-r t}$
$\ln A(t)=\ln k+\ln e^{t^{t /}-r t} \quad$ Monotonic transformation of objective function

$$
=\ln k+\left(t^{1 / 2}-r t\right) \ln e
$$

$$
=\ln k+\left(t^{1 / 2}-r t\right)
$$

$\frac{d A}{d t} \frac{1}{A}=\frac{1}{2} t^{-1 / 2}-r$
F.o.c.: $\quad \frac{d A}{d t}=A\left(\frac{1}{2} t *^{-1 / 2}-r\right)=0 \quad=>\frac{1}{2} t^{*-1 / 2}-r=0$

$$
=>\frac{1}{2 \sqrt{t} *}=r \quad \quad \Rightarrow t^{*}=\frac{1}{4 r^{2}}
$$

9.4 Example 3: Optimal Timing - wine storage

Optimal time : $t^{*}=\frac{1}{4 r^{2}}$
Let $(r)=10 \%$
$t^{*}=\frac{1}{4(0.10)^{2}}=25$ years
Determine optimal values for $A(t)$ and V :
$A(t)=k e^{t^{1 / 2}-r t}$
let $(k)=\$ 1 /$ bottle
$A(t)=e^{5-(.1)((25)}=e^{2.5}=\$ 12.18 /$ bottle
$V=A e^{r t}$
$V=(\$ 12.18 /$ bottle $) e^{(.1)(25)}=\$ 148.38 /$ bottle
$V=\$ 148.38 /$ bottle

9.4 Example 3: Optimal Timing - wine storage

Plot of Optimal Time with $r=0.10 \quad(\Rightarrow t=25)$

9.4 Example 4: Least Squares

- In the CLM, we assume a linear model, relating \mathbf{y} and \mathbf{X}, which we call the DGP: $\quad \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- The relation is not exact, there is an error term, $\boldsymbol{\varepsilon}$. We want to find the β that minimizes the sum of square errors, $\boldsymbol{\varepsilon} \boldsymbol{\prime} \varepsilon$.
- Assume there is only one explanatory variable, \mathbf{x}. Then,

$$
\operatorname{Min}_{\beta} S(\beta \mid y, x)=\sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t}-x_{t} \beta\right)^{2}
$$

Then, we write the first order condition as:

$$
\frac{\partial S}{\partial \beta}=\sum_{\mathrm{t}=1}^{\mathrm{T}} 2\left(y_{t}-x_{t} b\right)\left(-x_{t}\right)=-\sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t} x_{t}-x_{t}^{2} b\right)=0
$$

In the general, multivariate case, these f.o.c. are called normal equations.

9.4 Example 4: Least Squares

- The LS solution, \mathbf{b}, is

$$
b=\frac{\sum_{t=1}^{\mathrm{T}} y_{t} x_{t}}{\sum_{\mathrm{t}=1}^{\mathrm{T}} x_{t}^{2}}=\left(x^{\prime} x\right)^{-1} x^{\prime} y
$$

- Second order condition ()

$$
\frac{\partial^{2} S}{\partial \beta^{2}}=-\sum_{\mathrm{t}=1}^{\mathrm{T}}\left(-x_{t}^{2}\right)>0 \quad \Rightarrow b \text { a minimum }
$$

(It's a globally convex function.)

9.4 Example 5: Maximum Likelihood

- Now, in the CLM, we assume $\boldsymbol{\varepsilon}$ follow a normal distribution:

$$
\boldsymbol{\varepsilon} \mid \mathbf{X} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)
$$

Then, we write the likelihood function, L, as:

$$
L=f\left(y_{1}, y_{2}, \ldots, y_{T} \mid \beta, \sigma^{2}\right)=\Pi_{t=1}^{T}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2 \sigma^{2}}\left(y_{t}-x_{t}{ }^{\prime} \beta\right)^{2}\right]
$$

- We want to find the β that maximizes the likelihood of the occurrence of the data. It is easier to do the maximization after taking logs -i.e, a monotonic increasing transformation. That is, we maximize the \log likelihood function w.r.t. β :

$$
\begin{aligned}
\ln L & =\sum_{\mathrm{t}=1}^{\mathrm{T}}-\frac{\ln \left(2 \pi \sigma^{2}\right)}{2}+\sum_{\mathrm{t}=1}^{\mathrm{T}}-\frac{1}{2 \sigma^{2}}\left(y_{t}-x_{t}{ }^{\prime} \beta\right)^{2} \\
& =-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \varepsilon^{\prime} \varepsilon
\end{aligned}
$$

9.4 Example 5: Maximum Likelihood

- Assume σ known and only one explanatory variable, \mathbf{x}. Then,

$$
\operatorname{Max}_{\beta} \ln L(\beta \mid y, x)=-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t}-x_{t} \beta\right)^{2}
$$

- Then, the f.o.c.:

$$
\frac{\partial \ln L}{\partial \beta}=-\frac{1}{2 \sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}} 2\left(y_{t}-x_{t} \hat{\beta}_{M L E}\right)\left(-x_{t}\right)=\frac{1}{\sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t} x_{t}-x_{t}^{2} \hat{\beta}_{M L E}\right)=0
$$

Note: The f.o.c. delivers the normal equations for β (same condition as in Least Squares) \Rightarrow MLE solution $=$ LS estimator, \mathbf{b}. That is,

$$
\hat{\beta}_{M L E}=b=\frac{\sum_{\mathrm{t}=1}^{\mathrm{T}} y_{t} x_{t}}{\sum_{\mathrm{t}=1}^{\mathrm{T}} x_{t}^{2}}=\left(x^{\prime} x\right)^{-1} x^{\prime} y
$$

- Nice result for OLS b: ML estimators have very good properties!

9.4 Example 5: Maximum Likelihood

- Second order condition

$$
\frac{\partial \ln ^{2} L}{\partial \beta^{2}}=\sum_{\mathrm{t}=1}^{\mathrm{T}}-x_{t}^{2}<0 \quad \Rightarrow \hat{\beta}_{M L E} \text { a maximum }
$$

(It's a globally concave function.) ...

9.5 Taylor Series of a polynomial function: Revisited

Taylor series for an arbitrary function : Any function can be approximated by the weighted sum of its derivatives. Then the change is given by
$f(x)-f\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)^{1}+\frac{f^{\prime /}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+R_{n+1}$
Where $R_{n+1}=\frac{f^{(n+1)}(p)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$
If $\mathrm{n}=2$, then
$f(x)-f\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)^{1}+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+R_{3}$
At $x_{0}, f^{\prime}\left(x_{0}\right)=0 \quad$-i.e., x_{0} is a max., min., or inflection.
Then,
$f(x)-f\left(x_{0}\right) \approx \frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2} \quad \Rightarrow$ the sign of $f^{\prime \prime}\left(x_{0}\right)$ determines what x_{0} is.

9.5 Taylor expansion and relative extremum

A function $f(x)$ attains a relative $\max (\min)$ value at x_{0} if $f(x)-f\left(x_{0}\right)$ is neg. (pos.) for values of x in the immediate neighborhood of x_{0} (the critical value) both to its left and right Taylor series approximation for a small change in x :
$f(x)-f\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)^{1}+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots+R_{n+1}$
At the max., min., or inflection, $f^{\prime}\left(x_{0}\right)=0$
and if $f^{\prime \prime}\left(x_{0}\right)=0$, and if $f^{(3)}\left(x_{0}\right)=0, \cdots$
then $f(x)-f\left(x_{0}\right)=R_{n+1}$
What is the sign of R for the first nonzero derivative?

$9.5 \mathrm{~N}^{\text {th }}$-derivative test

If the first derivative of a function $f(x)$ at x_{0} is $f^{\prime}\left(x_{0}\right)=0$ and if the first nonzero derivative value at x_{0} encountere d in successive derivation is that of the $\mathrm{N}^{\text {th }}$ derivative, $f^{(n)}\left(x_{0}\right) \neq 0$, then the stationary value $f\left(x_{0}\right)$ will be :
a relative max if N is even and $f^{(n)}\left(x_{0}\right)<0$
a relative min if N is even and $f^{(n)}\left(x_{0}\right)>0$
an inflection point if N is odd

9.5 $\mathrm{N}^{\text {th }}$-derivative test

Example:

$Y=(7-x)^{4}$
primitive function
$Y^{\prime}=-4(7-x)^{3}$
$\mathrm{Y}^{\prime}=0$ at $\mathrm{x}^{*}=7$
$Y^{\prime \prime}(7)=12(7-x)^{2}=0$
$Y^{(3)}(7)=-24(7-x)=0$
$1^{\text {st }}$ deriative
$Y^{(4)}(7)=24$
the critical value
$2^{\text {nd }}$ deriviativ e
$3^{\text {rd }}$ derivative
$Y^{(4)}(7)=24$
Because first nonzero derivative $\mathrm{Y}^{(\mathrm{n})}$ is even (4)
and $\mathrm{Y}^{(4)}>0(24)$, critical value is a min.

$9.5 \mathrm{~N}^{\text {th }}$-derivative test

Example (continuation):

