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Chapter 9
Optimization: One Choice Variable

Vilfredo Federico D. Pareto (1848–1923)Léon Walras (1834-1910)
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9.1 Optimum Values and Extreme Values

• Goal vs. non-goal equilibrium

• In the optimization process, we need to identify the objective 
function to optimize.

• In the objective function the dependent variable represents the 
object of maximization or minimization

Example:

- Define profit function:  = PQ − C(Q)

- Objective: Maximize 
- Tool: Q
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9.2 Relative Maximum and Minimum:  First-
Derivative Test

Critical Value

The critical value of  x is the value x0 if  f ′(x0) = 0.

• A stationary value of  y is f(x0). 

• A stationary point is the point with coordinates x0 and f(x0). 

• A stationary point is coordinate of  the extremum.

• Theorem (Weierstrass)

Let f  : S→R be a real-valued function defined on a compact 
(bounded and closed) set S ∈ Rn. If  f is continuous on S, then f
attains its maximum and minimum values on S. That is, there exists 
a point c1 and c2 such that

f  (c1) ≤ f  (x) ≤ f  (c2) ∀x ∈ S.
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9.2 First-derivative test 

• The first-order condition (f.o.c.) or necessary 
condition for extrema is that f '(x*) = 0 and 
the value of f(x*) is:

• A relative minimum if f '(x*) changes its sign 
from negative to positive from the 
immediate left of x0 to its immediate right. 
(first derivative test of min.) 

• A relative maximum if the derivative f '(x) 
changes its sign from positive to negative 
from the immediate left of the point x* to 
its immediate right. (first derivative test for a 
max.) 
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9.2 First-derivative test 

• The first-order condition or necessary condition for extrema is 
that f '(x*) = 0 and the value of f(x*) is:

• Neither a relative maxima nor a relative minima if 
f '(x) has the same sign on both the immediate left and right of 
point x0 (first derivative test for point of inflection).
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9.2 Example: Average Cost Function
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9.3 The smile test  





• Convexity and Concavity: The smile test for aximum/minimum

• If  f  "(x) < 0 for all x, then strictly concave.
 critical points are global maxima

• If  f  "(x) > 0 for all x, then strictly convex.
 critical points are global minima

• If  a concave utility function (typical for risk aversion) is assumed 
for a utility maximizing representative agent, there is no need to 
check for s.o.c. Similar situation for a concave production function
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9.3 The smile test: Examples: 
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Example 1: Revenue Function

Example 2: Average Cost Function
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9.3 Inflection Point

• Definition

A twice differentiable function f(x) has an inflection point at x iff the 
second derivative of f(.) changes from negative (positive) in some 
interval (m, 𝑥) to positive (negative) in some interval (𝑥, n), where 
𝑥∈(m, n).

• Alternative Definition

An inflection point  is a point (x, y) on a function, f(x), at which the 
first derivative, f ′(x), is at an extremum, -i.e. a minimum or 
maximum. (Note: f’’(x)=0 is necessary, but not sufficient condition.)

Example: U(w) = w – 2 w2 + w3

U’(w) = 4w +3 w2

U’’(w) = 4 + 6w  4 + 6 𝑤=0

𝑤 = 2/3 is an inflection point
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9.4 Formal Second-Derivative Test: Necessary 
and Sufficient Conditions

• The zero slope condition  is a necessary condition and since it is 
found with the first derivative, we refer to it as a 1st order condition.

• The sign of  the second derivative is sufficient to establish the 
stationary value in question as a relative minimum if  f "(x0) > 0, the 
2nd order condition or relative maximum if  f "(x0) < 0.
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9.4 Example 1: Optimal Seignorage
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9.4 Example 2: Profit function (Two solutions)
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9.4 Example 3: Optimal Timing - wine storage
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9.4 Example 3: Optimal Timing - wine storage
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Plot of  Optimal Time with  r = 0.10  (⟹ t = 25)

9.4 Example 3: Optimal Timing - wine storage

9.4 Example 4: Least Squares

• In the CLM, we assume a linear model, relating y and X, which we call 
the DGP: y = X + 

• The relation is not exact, there is an error term, . We want to find the 
 that minimizes the sum of  square errors, ’.

• Assume there is only one explanatory variable, x. Then, 

Then, we write the first order condition as:

In the general, multivariate case, these f.o.c. are called normal equations. 
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• The LS solution, b, is 

• Second order condition 

(It’s a globally convex function.)
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9.4 Example 4: Least Squares



9.4 Example 5: Maximum Likelihood

• Now, in the CLM, we assume  follow a normal distribution:
|X ~ N(0, σ2IT)

Then, we write the likelihood function, L, as:

• We want to find the  that maximizes the likelihood of  the 
occurrence of  the data. It is easier to do the maximization after taking 
logs –i.e, a monotonic increasing transformation. That is, we maximize 
the log likelihood function w.r.t.  :
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• Assume σ known and only one explanatory variable, x. Then, 

• Then, the f.o.c.:

Note: The f.o.c. delivers the normal equations for β (same condition 
as in Least Squares) ⟹ MLE solution = LS estimator, b. That is, 

• Nice result for OLS b: ML estimators have very good properties!
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9.4 Example 5: Maximum Likelihood

9.4 Example 5: Maximum Likelihood   

• Second order condition

(It’s a globally concave function.) ⋯
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9.5 Taylor Series of a polynomial function: 
Revisited

             

 
   

       

      is.  what determines  ofsign   the
2

 

Then,

.inflectionor  min., max., a is i.e.,-0 ,At 

21
 

 then2,n If

1
 Where

21
)(

bygiven  is change Then the s.derivative its of sum  weightedby the

  edapproximat becan function Any  :function arbitrary an for  seriesTaylor  

00
//2

0
0

0

000

3
2

0
01

0
0

0

1
0

1

1

10
02

0
01

0
0

0

x)(xf xx
!

x f
 ) f(x) - f(x

x)(xfx

R xx
!

x f
 xx

!

xf
 ) f(x) - f(x

xx
!n

pf
R

Rxx
n!

xf
  xx

!

x f
 xx

!

xf
 xfxf

//

/

///

n
)(n

n

n
n

(n)///























22

9.5 Taylor expansion and relative extremum
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9.5 Nth-derivative test
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9.5 Nth-derivative test
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9.5 Nth-derivative test

Example (continuation):


