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Chapter 9

Optimization: One Choice Variable

1

Léon Walras (1834-1910) Vilfredo Federico D. Pareto (1848-1923)

9.1 Optimum Values and Extreme Values

¢ Goal vs. non-goal equilibrium

* In the optimization process, we need to identify the objective
function to optimize.

* In the objective function the dependent variable represents the
object of maximization or minimization

Example:
- Define profit function: 7 =PQ — C(Q)
- Objective: Maximize T
- Tool: Q
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9.2 Relative Maximum and Minimum: First-
Derivative Test

Critical Value

The critical value of x is the value x;, if /'(x;) = 0.

e A stationary value of y is f{x,). Heconsting
* A stationary point is the point with coordinates x, and fx;).

* A stationary point is coordinate of the extremum.

* Theorem (Weierstrass)
Let f : S—R be a real-valued function defined on a compact
(bounded and closed) set S € R™. If fis continuous on S, then f
attains its maximum and minimum values on S. That is, there exists
a point ¢, and ¢, such that

S@=fe=f( Vx &S 3

9.2 First-derivative test © B

* 'The first-order condition (f.0.c.) or necessary
condition for extrema is that /"'(»*) = 0 and
the value of f{x*) is:

* A relative minimum if /'(x*) changes its sign ”
from negative to positive from the
immediate left of x to its immediate right. 2 pny0
(first derivative test of min.) © .

* A relative maximum if the derivative f'(x) y A oo
changes its sign from positive to negative / i
from the immediate left of the point x* to
its immediate right. (first derivative test for a
max.) ® 4
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9.2 First-derivative test @)

* The first-order condition or necessary condition for extrema is

that /'(x*) = 0 and the value of f{x*) is:

¢ Neither a relative maxima nor a relative minima if
/'(>) has the same sign on both the immediate left and right of
point x;, (first derivative test for poznt of inflection).

£1(x*)=0

9.2 Example: Average Cost Function

AC=0*-50+8 Objective function
£(Q)=20-5 1st derivative function
1(Q)=20-5=0 f.o.c.
0 =5/2=25 extrema
left Ac=£(0’) right
f(2.4)=1.76 7(2.5)=1.75 £(2.6)=1.76 relative min

7'(2.4)=-02 7(25)=0  £'2.6)=02 (-+)

6
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9.3 The smiletest ©® ©

* Convexity and Concavity: The smile test for aximum/minimum

o If £ "(x) <O for all x, then strictly concave.
= critical points are global maxima ®

o If £ "(x) > O for all x, then strictly convex.
= critical points are global minima ©

* If a concave utility function (typical for risk aversion) is assumed
for a utility maximizing representative agent, there is no need to

check for s.o.c. Similar situation for a concave production function
7

9.3 The smile test: Examples: ®

Example 1: Revenne Function

1) TR =12000 —20* Revenue function
2) MR =1200-40*=0 f.o.c.

3)Q =300 extrema
4) MR' =4 2nd derivative
5) MR' <0 = Q" =300 is a maximum

Example 2: Average Cost Function
AC=0"-50+8 Objective function
f(0)=20-5=0 fo.c.
0" =5/2=2.5extrema
(@)=2>0 = Q" =5/2=2.5isa minimum 8
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9.3 Inflection Point

e Definition

A twice differentiable function f(x) has an znflection point at x iff the
second derivative of f{.) changes from negative (positive) in some

interval (2, X) to positive (negative) in some interval (X, 7), where

X< (m, n).

e Alternative Definition

An inflection point is a point (x, y) on a function, fx), at which the
first derivative, f'(x), is at an extremum, -i.e. 2 minimum or
maximum. (Note: /(x)=0 is necessary, but not sufficient condition.)

Example: U(w) =w-2w?+w’
U(w) = 4w +3 w?
U(w) = 4 + 6w — 4+ 6 W=0

W = 2/3 is an inflection point 9

9.4 Formal Second-Derivative Test: Necessary
and Sufficient Conditions

* The zero slope condition is a necessary condition and since it is
found with the first derivative, we refer to it as a 1%t order condition.

* The sign of the second derivative is s#fficzent to establish the
stationary value in question as a relative minimum if /"(x;) > 0, the
27 order condition or relative maximum if f"(x) < 0.
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9.4 Example 1: Optimal Seignorage

M C(rt
e Demand for money
P
M iy .
S =7g—=ge tm ey Seignorage

F.o.c. (assume 7 =7°):
ﬁ v e*l(ir+r)+aY + ﬂ_(_l)ef/i(;r +r)+aY
dr
— e—l(ﬂ+r)+aY + ﬂ_(_ﬂ)e—ﬂ,(ﬂﬂ‘)#—al/ — e—l(ir+r)+aY (1 _ 7[],)
1 .. .
(1-z*A)=0 = 7%= 7 (Critical point)

S.o.c. :
d*S B
dr’

: 1 . 1. .
NS (7%= =)=-Ae """ <0 => g*=_—is a maximum
: A A

_le—l(;u—r)-ﬁ—ay (1 _ 72'1) + (_l)e—l(zﬂ—r)ﬂzy _ _ﬂe—l(ﬂ*'")*'ay (2 _ ﬂ%)

dr

9.4 Example 2: Profit function (Two solutions)

Revenue and Cost functions
1) TR =12000-20°
2) TC=0°-61.250%+1528.50 +2000

15,000
10,000

5,000

3) x=TR-TC =-0°®+59.250% —328.50 — 2000

Profit function 2

Ist derivative of profit function
4) n'=-307+118.50-328.5=0
5) 0/=3  0,=365

500 Q

2nd derivative of profit function

6) n"=-60+118.5 00
7) =n"(3)=100.5 n"(36.5) =-100.5 1,500
applying the smile test 200

8) n”(Ql*)> 0 — min n"(Q;)< 0 — max

-500
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9.4 Example 3: Optimal Timing - wine storage

A@)=Ve™ Present value

V=ke' Growth in value

At = ke'" e = ke

lnA(t) = Ink +Ine’ " Monotonic transformation of objective function
= Ink + (¢ —rt)Ine
=Ink+(" —rt)

a4l 1.
dt A 2
Foc: H_ L —rj=0 Lt g
dt 2 2
1 1
wWir r

9.4 Example 3: Optimal Timing - wine storage

Optimal time : * = 12
4r
Let (r)=10%
t* = ;2 = 25 years
4¢0.10)

Determine optimal values for A(t) and V :
A@) = ke ™

let (k) =$1/bottle

At) = M) = ¢ =$12.18 / bottle

V = Ae”

V = ($12.18/bottle) e/’ = $148.38 / bottle
V' =$148.38 / bottle
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9.4 Example 3: Optimal Timing - wine storage

Plot of Optimal Time with = 0.10 (= 7= 25)
1} 15;

0125

0.1

0.075

7\||\|||||||\||\|||||||\||\||\|||
10 20 30 40 a0 B0 70
t

9.4 Example 4: Least Squares

¢ In the CLLM, we assume a linear model, relating y and X, which we call
the DGP: y =XB+e

* The relation is not exact, there is an error term, €. We want to find the
[ that minimizes the sum of square errors, €’€.

 Assume there is only one explanatory variable, x. Then,
. T
Mlnﬂ S(Bly,x)= thl(yf _xtﬁ)2

Then, we write the first order condition as:

2—; = 20y, —x b)) == (v, —22) =0

In the general, multivariate case, these f.o.c. are called normal equations.
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9.4 Example 4: Least Squares

* The LS solution, b, is
T o
b :LH—(x'x)ilx'y

= =
Zt:l xtz
* Second order condition @
2

2,3‘5; = —Z; (=x)>0 = b a minimum

(It’s a globally convex function.)

9.4 Example 5: Maximum Likelihood

* Now, in the CLLM, we assume € follow a normal distribution:
g|X ~ N(0, ¢°L;)

Then, we write the likelihood function, L, as:

| | ,
o )" exp[— e (v, —x'p)’]

L=f(y,Yy50Vr |ﬂ962):HzT:1

* We want to find the B that maximizes the likelihood of the
occurrence of the data. It is easier to do the maximization after taking
logs —i.e, a monotonic increasing transformation. That is, we maximize
the log likelihood function w.r.t. 3 :

r In(27c?) T 1 ,
InL= th1_T+ Zt:f?(yt —x,'B)>

= —£1r127r—£1nc72 _ 1 ~e'e
2 2

20
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9.4 Example 5: Maximum Likelihood

* Assume o known and only one explanatory variable, x. Then,

T T 2 1 T 2
Max jIn L(B|y,x) = —zln 2z —5 5 > =xp

* Then, the f.o.c.:

OlnL 1 T ~ 1 . R
oB - 252 Z@ 20, =%, Lo )(=x,) = ?thl (y,x, —xlzﬂMLE) =0

Note: The f.o.c. delivers the normal equations for § (same condition
as in Least Squares) = MILE solution = LS estimator, b. That is,

T
~ _ VX, -1
:BMLE =b=+2:(x'x) x'y

Zt:l X

* Nice result for OLS b: ML estimators have very good properties!

9.4 Example 5: Maximum Likelihood ®

e Second order condition

oln’ L T 5 ,
thl ~-x’ <0 = B, 2 maximum

B

(It’s a globally concave function.) -+

10
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9.5 Taylor Series of a polynomial function:
Revisited

Taylor series for an arbitrary function : Any function can be approximated
by the weighted sum of its derivatives. Then the change is given by

/ Va (n)
1@ 1l)= L0y Ll L)y,
(n+1)
Where R, :f(Tl()l/j) x—x, )"
If n =2, then
./ -/
109 o) = %(x—xo)1 v 2(,x°)(x—xo)2 +Ry
At x,, f/(xo) =0 -i.e.,x,isamax., min.,orinflection.
Then,

Vi
J) - flxo) = S 2(/)60 ) (x — X )2 => the sign of 1" (x, ) determines what x, is.

21

9.5 Taylor expansion and relative extremum

A function f(x) attains a relative max (min) valueat x,, if f(x) -f(x,)is neg.(pos.)
for valuesof x in the immediate neighborhood of x,, (the critical value) both to its

left and right Taylor series approximation for a small changein x :

M(x—x ) f//(xo)(

2
I/ 0 2 %)

+..+R,,

J&) - fxy) =
At the max., min., or inflection, f / (x,)=0
andif /" (x,)=0,andif fPx,)=0, -
then f(x) - f(xy) =R,

What is the sign of R for the first nonzero derivative?

22

11
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9.5 Nth-derivative test

If the first derivative of a function f{x)at x, is f/(x,)= 0and

if the first nonzero derivative value at x , encountere d in

successive derivation is that of the N™ derivative, f”(x,) # 0,

then the stationary value £ (x,)will be :
a relative max if Nis even and f™(x,) <0

a relative min if N is even and f*(x,) >0

an inflection point if N is odd

23

9.5 Nth-derivative test

Example:

Y = (7-x)* primitive function
Y' = -4(7-x)° 1 deriative

Y' =0atx =7 the critical value
Y'(7) = 12(7x)* =0 2" deriviativ e
YO(7) =-24(7-x) =0 3" derivative
YW(7) =24 4™ derivative

Because first nonzero derivative Y ™) is even 4)

and Y >0(24), critical value is a min.

24

12
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9.5 Nth-derivative test

Example (continuation):

Y = (7-x)*  primitive function

BE-o

YW =24 4™ derivative

decision rule:

niseven (4)and >0

]
m
9

therefore a minimum

25

13



