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Chapter 8
Multivariate Calculus

Augustin Louis Cauchy (1789–1857)Isaac Barrow (1630-1677)
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8.1 Multivariate Calculus: Partial Differentiation
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 Now, y depends on several variables: y = f(x1, x2, …, xn.)

 The derivative of  y w.r.t. one of  the variables –while the other 
variables are held constant- is called a partial derivative.
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8.1 Partial Differentiation: Example

We collect the first derivatives in a vector, Q. 

Q ൌ

ୢொ

ୢ୶

ୢ୕

ୢ୶

=
28.8 𝐾ି଴.଻𝐿଴.଻

67.2 𝐾଴.ଷ𝐿ି଴.ଷ

Note: The first derivative of  a scalar function w.r.t a vector is called 
the gradient.
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8.1 Partial differentiation: Market Model
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Note: We call the matrix of  first partial derivatives with respect to a 
vector the Jacobian, J.

8.1 Partial differentiation: Market Model

 Using linear algebra, we have:

8.1 Partial Differentiation: Likelihood

 In the usual estimation problem in Classical Linear Model (CLM), 
the unknowns are the parameters (typical in the CLM, β and σ2 ). We 
treat the data (xt and yt) as (conditionally) known numbers. Assuming 
normality for the error term, εt, the (log) likelihood function is:
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8.1 The Jacobian

 The Jacobian is the matrix of first partial derivatives at the point x 
(with respect to a vector):

J ൌ

డ௙ሺ𝒙ሻ

డ௫భ
⋮

డ௙ሺ𝒙ሻ

డ௫೙

Notation: J or Dfx. For the one equation case (a scalar function), J is a 
row vector and it’s usually called gradient or gradient vector at x. It is 
usually written as a column vector as f(x) and also called the gradient 
or gradient vector at x. 

 A vector is characterized by its length and direction. To emphasize 
the direction, the length, h, can be standardized, say ║h║= 1. The 
direction is studied with directional derivatives.

8

8.1 Directional Derivatives

 We can think that the partial derivatives of  z = f(x, y, w, …) 
represent the rates of changes of z in the x, y, …. 

 Suppose that we now wish to find the rate of change of z at (x0, y0) 
in the direction of an arbitrary unit vector u = <a, b>.
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 Consider the surface S with equation z = f(x, y) [the graph of f ] 
and we let z0 = f(x0, y0)  The point P(x0, y0, z0) lies on S.

 The vertical plane that passes through P in the direction of u
intersects S in a curve C.

 The slope of the tangent line 

T to C at the point P is the rate 

of change of z in the direction 
of u.

8.1 Directional Derivatives

10

 Now, let Q(x, y, z) be another point on C.

 P’, Q’ be the projections of P, Q on the xy-plane.

 The vector 𝑃ᇱ𝑄′ is parallel to u.

 𝑃ᇱ𝑄′ = h u = <h a, h b>, for some scalar h.

 Then, 
x – x0 = ha  ⇒ x = x0 + ha

y – y0 = hb ⇒ y = y0 + hb

If we take the limit as h → 0, we  
get the rate of change of z (w. r. to

distance) in the direction of u.

h

yxfhbyhaxf

h

z oo ),(),( 00




8.1 Directional Derivatives
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 The directional derivative of f at (x0, y0) in the direction of a unit vector 
u = <a, b> is: 

if the limit exists. 

 Special cases:

- If u = i = <1, 0>, then Di f = fx.

- If u = j = <0, 1>, then Dj f = fy.

That is, the partial derivatives of f with respect to x and y are just 
special cases of the directional derivative.

h
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8.1 Directional Derivatives

12

 The Jacobian determinant, |J|, at a point x gives information about 
the behavior of F(.) near x. For instance, the continuously 
differentiable function F is invertible near a point x∈Rn if  |J|≠ 0.

 Use |J| to test the existence of functional dependence between 
functions. If |J| = 0  functional dependence, that is, a solution to a 
system of equations does not exist.

 Not limited to linear functions.  

 For the 2x2 case:

2212

2111

xyxy

xyxy
J






Carl Jacobi (1804 – 1851, Germany) 

8.1 The Jacobian Determinant

12
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 The partial derivative is also a function of x: f’(x) = g(x1, x2, …, xn.)

 If the n partial derivatives are continuous functions at point x, we 
say that f is continuously differentiable at x. 

 If the n partial derivatives are themselves differentiable on an open 
set S ∈Rn , we can compute their partial derivatives. For example:

 The result of this differentiation is known as the cross partial derivative
of f with respect to xi and xj. It is usually denoted as fij. 

 When i=j, cross partial derivatives becomes the second-order 
derivative, denoted as fii. The matrix of all second derivatives is the 
Hessian.

8.1 Cross partial derivatives
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 We want to know how the BS Δ changes as maturity approaches. 
Recall:

Δ =
ௗ஼೟
ௗௌ೟

ൌ 𝑁 𝑑1 & d1 = [ln(𝑆௧/K)+ (i + 2/2) (T– t)]/( 𝑇 െ 𝑡).

Then,

ௗమ஼೟
ௗௌ೟ௗ௧

ൌ ௗ୼

ௗ௧
ൌ ௗே ௗଵ

ௗ௧
ൌ 𝑁′ሺ𝑑1ሻ ∗ ௗሺௗଵሻ

ௗ௧

Using 𝑁ᇱ 𝑑1 ൌ ଵ

ଶగ
𝑒ି

೏భమ

మ &

 ௗሺௗଵሻ
ௗ௧

ൌ െ
௜ା

ಚమ

మ

ଶ஢ ்ି௧
൅

௟௡
ೄ

಼

ଶ஢ሺ்ି௧ሻయ/మ

we get:
ௗ୼

ௗ௧
ൌ ଵ

ଶగ
𝑒ି

೏భమ

మ ∗ െ
௜ା

ಚమ

మ

ଶ஢ ்ି௧
൅

௟௡
ೄ

಼

ଶ஢ሺ்ି௧ሻయ/మ

8.1 Cross partial derivatives: Greeks
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 If the option is at-the-money (𝑆௧ = K), then

ௗ୼

ௗ௧
ൌ ଵ

ଶగ
𝑒ି

೏భమ

మ ∗ െ
௜ା

ಚమ

మ

ଶ஢ ்ି௧
< 0

That is, as time goes by, delta decreases. 

Note: Same qualitative result if the call option is out-of-the-money (𝑆௧
< K). 

8.1 Cross partial derivatives: Greeks

16

 The matrix of all second derivatives is called the Hessian, usually 
denoted by H. For example:

Example: Cobb-Douglas function, Q = AKL

8.1 Cross partial derivatives: Hessian
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Note: fij = fji. This is a general result (Young’s Theorem). Then, H is a 
symmetric matrix. H plays a very important role in optimization.
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 We want to calculate H for a function, using econometrics 
notation, of β1 and β2 and σ2 (we treat xt and yt as constants, along 
with σ2). This (log) function is:

8.1 Cross partial derivatives: Hessian - Example
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 Then:
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Note: H plays an important role in maximum likelihood estimation. 
Its (negative expected) inverse is used to calculate SE.

8.1 Cross partial derivatives: Hessian - Example
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Problem: What if no explicit reduced-form solution exists because of 
the general form of the model? 

Example: In the macro model, what is Y / T  when 

Y = C(Y, T0) + I0 + G0 ?

T0 can affect C direct and indirectly through Y, violating the partial 
derivative assumption.

Solution: Use differentials! Recall that we thought of differentials as a 
(1st-order) approximation to a change in f(x):   df(x) = Δx f ‘(x) 

 Find the derivatives directly from the original equations in the 
model.

 Take the total differential, adding all the effects (indirect and direct). 

 The partial derivatives become the parameters in the sum.

8.2 Differentials

19

20

8.2.1 Differentials and derivatives

 Recall that we thought of differentials as a (1st-order) approximation 
to a change in f(x):   df(x) = Δx f ‘(x).

 Total derivatives measure the total change in y from the direct and 
indirect affects of a change in xi.

 The symbols dy and dx are called the differentials of y & x, 
respectively.

 A differential describes the change in y that results for a specific 
and not necessarily small change in x from any starting value of x in 
the domain of the function y = f(x). 

 The derivative (dy/dx) is the quotient of two differentials: dy & dx.

 f '(x)dx is a first-order approximation of dy:

dxxfdyxfy )(')( 
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8.2.2 Differentials and point elasticity

 Let Qd = f(P) (explicit-function general-form demand equation)

 Find the elasticity of demand with respect to price. We use and 
manipulate differentials.
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8.3 Total Differentials

 Extending the concept of differential to smooth continuous 
functions with two or more variables

 Let y = f (x1, x2)    Find total differential  dy



 Chain Rule derivation:
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 Let U be a utility function: U = U (x1, x2, …, xn)

 Differentiation of U with respect to xi

 U/ xi is the marginal utility of the good xi

 dxi is the change in consumption of good xi.  

11

2

211

...
dx

dx
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U

dx

dx

x

U

x

U

dx

dU n

n
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
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




n
n

dx
x

U
dx

x

U
dx

x

U
dU










 2
2

1
1

• dU equals the sum of  the marginal changes in the consumption of  
each good and service in the consumption function.
• To find total derivative wrt to x1 divide through by the differential 
dx1 ( partial total derivative):

8.3 Total Differentials - Example

⋯

24

8.3 Rules of Differentials (same as derivatives)

Let k is a constant function; u = u(x1); v = v(x2)

 1. dk = 0 (constant-function rule)

 2. d(cun) = cn un-1 du (power-function rule)

 3. d(u  v) = du  dv (sum-difference rule)

 4. d(uv) = v du + u dv (product rule)

 5. (quotient rule)

 7. d(uvw) = vw du + uw dv + uv dw

2v

udvvdu

v

u
d











  dwdvduwvud 
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8.3 Example: 
Find the total differential (dz) of the function
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8.3.1 Finding Total Derivatives from Differentials
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 Recall Taylor’s series formula

 We want to generalize the Taylor polynomial to multivariate 
functions. A similar logic to the univariate case gives us:

 Using abbreviated notation: 

T(x,a) = Σj=0 to n (1/j!) Djf(a) (x – a)j.

             n
(n)///

cx
n!

cf
  cx

!

c f
 cx

!

cf
 cfcx Txf  21

21
),()(

        H
!

  Dffax Txf T )ax)((aax
2

1
ax)a(a),()( 1

8.4 Multivariate Taylor Series

28

Example: 1st-order Taylor series, around a = (d, c) = (0, 0) of

f(x, y ) = [(1+x)/(1+y)] – 1

f(x, y)= [(1 + x)/(1 + y)] – 1  f(c=0, d=0) = [(1+0)/(1+0)] - 1 = 0

fx = 1/(1 + y)  fx(c=0, d=0) = 1 

fy = (-1)(1 + x)/(1 + y)2  fy(c=0, d=0) = -1

Then,  1st-order Taylor series formula:

f(x, y) ≈ T(x, y; 0) =  0 + 1 (x – 0) + (-1) (y – 0) = x – y

• Application to Relative Purchasing Power Parity (PPP):

ef,T
PPP = [(1 + Id)/(1 + If)] – 1≈ (Id – If),

where ef,T is the percentage change in exchange rates from t to T, or:  

ef,T = (St+T/St) – 1. 

8.4 Multivariate Taylor Series
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 Definition:

A function f(x1, ..., xn) is homogeneous of degree r if multiplication of each 
of its independent variables by a constant j will alter the value of the 
function by the proportion jr, that is;

if f (jx1, ..., jxn) = jr f(x1, ... xn),  for all f (jx1, ..., jxn) in the domain of f

Special cases:

- If r = 0, j0 = 1,, the function is homogeneous of degree zero

- If r = 1, j1 = j, the function is homogeneous of degree one, 
sometimes called linearly homogeneous.

Note: Technically if j > 0, we say positive homogenous. 

8.5 Homogeneous Functions

30

Examples: 

- In applied work, it is common to see homogenous production 
functions. For example, a firm increases inputs by k, then output 
increases by k. Then, f(.) is homogenous of degree (r = 1), we say, f(.)
shows constant returns to scale. If r > 1 (r < 1), f(.) shows increasing 
(decreasing) returns to scale.

- Demand functions are homogeneous. If all prices and income 
change by the same amount (the budget constraint does not change), 
the demands remain unchanged. That is,

D(jp1, ..., jpn, jI) = D(x1, ... xn,I)     homogenous of degree 0.

Since individual demands have r = 0, the aggregate demand (sum of 
individual demands) also has r = 0.

8.5 Homogeneous Functions: Examples
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 A popular production function is the Cobb-Douglas:

Q = A K L. . 

The Cobb-Douglas function is homogeneous of degree  + :

   

Qj

LAKjLKAj

LKjAjjLjKA

















Cases:  +  > 1 increasing returns (paid < share)

 +  < 1 decreasing returns (paid > share)

 +  = 1, constant returns (function is linearly homogeneous)

Note: In empirical work it is usually found that + are close to 1. 
Assuming linear homogeneity is common.

8.5 Homogeneous Functions: Cobb-Douglas

32

 Linear homogeneity of Q = A K L

- If  +  = 1, the Cobb-Douglas function is linearly homogeneous. 
Let j = 1/L, then the average physical product of labor (APPL) and of 
capital (APPK) can be expressed as the capital-labor ratio, 𝑘  K/L:

𝑗𝑄 ൌ
𝑄
𝐿
ൌ 𝜙 𝑘 ൌ 𝐴

𝐾
𝐿

ఈ 𝐾
𝐿

ଵିఈ

ൌ 𝐴𝑘ఈ

APPLൌ
ொ

௅
ൌ 𝜙 𝑘 ൌ 𝐴𝑘ఈ

APPKൌ
ொ

௅

௅

௄
ൌ థ ௞

௞
ൌ 𝐴𝑘ఈିଵ

Note: This result applies to linearly homogeneous functions 

Q = f(K, L) 

8.5 Homogeneous Functions: Cobb-Douglas

)()1,()/,/(/ kkfLLLKfLQjQ 
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 Given a linearly homogeneous production function Q = f(K, L), 
the marginal physical products MPPL and MPPK can be expressed as 
functions of k alone:

)(')(

)('

kkkMPP

kMPP

L

K







8.5 Homogeneous Functions: Properties

34

Euler’s Theorem 
Let f  : Rn

+ →R be continuous, and differentiable on Rn
+. Then, f is 

homogeneous of  degree r if  and only if  for all x ∈ Rn
+:

r f (x1, ..., xn) =  Σi fi xi

Example: Suppose Q = f(K, L), is homogeneous of  degree 1, then, 

Then, if  each input is paid the amount of  its marginal product the 
total product will be exactly exhausted by the distributive shares for all 
the inputs –i.e., no residual is left.

   MPLLMPKK
L

Q
L

K

Q
KQ 










8.5 Homogeneous Functions: Euler’s Theorem
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• Euler’s theorem has a useful corollary: 
Suppose that ƒ: Rn → R is differentiable and homogeneous of  degree 
k. Then its first-order partial derivatives fi are homogeneous of  degree 
k − 1. 

Example: Suppose Q = f(K, L) is homogeneous of  degree 1, then,  
the MPL and MPK are homogeneous of  degree 0. This implies:

which is positive since fii <0. That is, the marginal productivity of  one 
factor increases when the other factor also increases (Wicksell’s law). 

2
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8.5 Homogeneous Functions: Euler’s Theorem
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 Recall the BS call pricing formula:

𝐶௧ ൌ 𝑆௧ 𝑁 𝑑1 െ 𝐾 𝑒ି௜ሺ்ି௧ሻ𝑁 𝑑2

It is easy to check that it is homogenous of degree one in St and K, if 
we assume the other variables are fixed, especially σ (this assumption
is called “sticky-by-strike”). 

We can apply Euler’s Theorem to quickly derive Δ:

𝐶௧ ൌ 𝑆௧ ∗
ௗ஼೟
ௗௌ೟

൅ 𝐾 ∗ ௗ஼೟
ௗ௄

 Δ ൌ ௗ஼೟
ௗௌ೟

ൌ 𝑁 𝑑1 .

Note: The homogeneity property (in financial engineering “sticky 
moneyness regime”) holds for a more general class of pricing models. 

8.5 Homogeneous Functions: Black-Scholes
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8.6 Implicit Function Theorem

 So far, if we were given F(y, x)=0  y = f(x). 

 dy/dx easy to calculate (not always realistic situation.)

 Suppose F(y, x) = x3 – 2x2y + 3xy2 - 22 = 0,

 not easy to solve for y = f(x)  dy/dx=?

 Implicit Function Theorem: given F(y, x1 …, xm) = 0 

a) if F has continuous partial derivatives Fy, F1, …, Fm and Fy  0

b) if at point (y0, x10, …, xm0), we can construct a neighborhood 
(N) of (x1 …, xm), say, by limiting the range of y, y = f(x1 …, xm) 
--i.e., each vector of x’s  unique y

Then, i) y is an implicitly defined function y = f(x1 …, xm) and 

ii) still satisfies F(y, x1 … xm) for every m-tuple in the N such 
that F  0.

38

8.6.1 Implicit Function Rule

 If the function F(y, x1, x2, . . ., xn) = k is an implicit function of y = 
f(x1, x2, . . ., xn), then

where Fy = F/y;        Fx1 = F/x1

 From this result, we derive the implicit function rule. 

 Total differentiation of  F(y, x1, x2 … xn) = 0, & set dx2 to n = 0

0...21 21


nn xxxxy dFdxFdxFdyF

y

x
dxdx

xxxxy

F

F

x

y

dx

dy

dFdxFdxFdyF

nx

nn

1

21

1
0.

1

21

|

...










(Implicit function rule)
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8.6.1 Implicit function problem - Examples

 Given the equation  F(y, x) = x3 – 2x2y + 3xy2 – 22 = 0,

 Q1: Find the implicit function y = f(x) defined at (y = 3, x = 1) 

 The function F has continuous partial derivatives Fy, F1, …, Fm :

∂F/∂y = Fy = – 2x2 + 6xy ∂F/∂x = Fx = 3x2 – 4xy + 3y2

 At (y0, x10, …, xm0) satisfying F (y, x1 …, xm) = 0, Fy ≠ 0:

F(y = 3, x = 1) = 13 – 2 * 12 * 3 + 3 * 1 * 32 – 22 = 0;

Fy (y = 3, x = 1) = – 2x2 + 6xy = – 2 * 12 + 6 * 1 * 3 = 16.

 Yes! We have a continuous function f with continuous partial 
derivatives.

 Q2: Find dy/dx by the implicit-function rule. Evaluate it at (y=3, x=1) 

 dy/dx = – Fx/Fy = – (3x2 – 4xy +3y2 )/(-2x2 + 6xy)

dy/dx = – (3*12 – 4*1*3 + 3*32)/(-2*12 + 6*1*3) = – 18/16 = – 9/8

40

8.6.2 Derivatives of implicit functions - Examples

 Example 1:

If F(z, x, y) = x2z2 + xy2 – z3 + 4yz = 0, 

then,
zxy

yzzx

F

F

z

y

y

z

42

432 22








 Example 2: Implicit Production function: F (Q, K, L)

F/J = FJ J = Q, K, L

Applying the implicit function rule:

Q/L = – (FL/FQ) - MPPL

Q/K = – (FK/FQ) - MPPK

K/L = – (FL/FK) - MRTS: Slope of  the isoquant
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 We have a set of m implicit equations. We are interested in the 
effect of the exogenous variables (x) on the endogenous variables 
(y). That is, dyi/dxj.

 Find total differential of each implicit function.

 Let all the differentials dxi = 0 except dx1

and divide each term by dx1 (note: dx1 is a choice)

 Rewrite the system of partial total derivatives of the implicit 
functions in matrix notation

8.6.3 Extension: Simultaneous equations case
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8.6.3 Extension: Simultaneous equations case
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 Rewrite the system of partial total derivatives of the implicit 
functions in matrix notation (Ax = d)
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8.6.3 Extension: Simultaneous equations case
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 Solve the comparative statics of endogenous variables
in terms of exogenous variables using Cramer’s rule
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8.7 Application: The Market Model

 Assume the demand and supply functions for a commodity are 
general form explicit functions
Qd = D(P, Y0) (Dp < 0; DY0 > 0)
Qs = S(P, T0) (Sp > 0;  ST0 < 0)

 Q is quantity, P is price, (endogenous variables) 
Y0 is income, T0 is the tax (exogenous variables)
no parameters, all derivatives are continuous

 Find P/Y0, P/T0
Q/Y0, Q/T0

 Solution: 
- Either take total differential or apply implicit function rule 
- Use the partial derivatives as parameters
- Set up structural form equations as Ax = d, 
- Invert A matrix or use Cramer’s rule to solve for x/d 
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8.8 Limitations of Comparative Statics

 Comparative statics answers the question: how does the 
equilibrium change with a change in a parameter.

 The adjustment process is ignored

 New equilibrium may be unstable

 Before dynamic, optimization
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8.9 Cheat-Sheet: Rules for Vector Derivatives 

 Consider the linear function: y = 𝑓ሺ𝒙ሻ = 𝒙’  +  
where 𝒙 and  are 𝑘-dimensional vectors and  is a constant.

We derive the gradient in matrix notation as follows:

1. Convert to summation notation: 𝑓 𝒙 ൌ  ∑ 𝑥௜ ௜௞
௜

2. Take partial derivative w.r.t. element 𝑥௝ :
డ

డ௫ೕ
∑ 𝑥௜ ௜௞
௜ ൌ ௝

3. Put all the partial derivatives in a vector:

𝑓 𝒙 ൌ

డ௙ሺ𝒙ሻ

డ௫భ
⋮

డ௙ሺ𝒙ሻ

డ௫ೖ

ൌ
ଵ
⋮
௞

4. Convert to matrix notation: 𝑓ሺ𝒙ሻ = 
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8.9 Cheat-Sheet: Rules for Vector Derivatives 

 Consider a quadratic form: q = 𝑓ሺ𝒙ሻ = 𝒙’ A 𝒙

where 𝒙 is 𝑘x1 vector and A is a 𝑘x𝑘 matrix, with 𝑎௝௜ elements.

Steps:

1. Convert to summation notation: 

𝑓 𝒙 ൌ 𝒙’
∑ 𝑎௝ଵ𝑥௝ 
௞
௜
⋮

∑ 𝑎௝௞𝑥௝ 
௞
௜

ൌ ∑ ∑ 𝑥௜ 𝑎௝௜  𝑥௝ 
௞
௜

௞
௜

(we rewrite ∑ ∑ 𝑥௜ 𝑎௝௜𝑥௝
௞
௜

௞
௜ ൌ ∑ 𝑎௜௜𝑥௜

ଶ௞
௜ ൅ ∑ ∑ 𝑥௜ 𝑎௝௜𝑥௝ 

௞
௜ஷ௝

௞
௜ )

2. Take partial derivative w.r.t. element 𝑥௝ :
డ

డ௫ೕ
∑ ∑ 𝑥௜ 𝑎௝௜𝑥௝ 

௞
௜

௞
௜ ൌ 2 𝑎௝௝ 𝑥௝ ൅ ∑ 𝑥௜ 𝑎௜௝

௞
௜ஷ௞ ൅∑ 𝑎௝௜  𝑥௝ 

௞
௜ஷ௞
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8.9 Cheat-Sheet: Rules for Vector Derivatives 

2. Take partial derivative w.r.t. element 𝑥௝ :
డ

డ௫ೕ
∑ ∑ 𝑥௜ 𝑎௝௜𝑥௝ 

௞
௜

௞
௜ ൌ 2 𝑎௝௝ 𝑥௝ ൅ ∑ 𝑥௜ 𝑎௜௝

௞
௜ஷ௞ ൅∑ 𝑎௝௜  𝑥௜ 

௞
௜ஷ௞

ൌ ∑ 𝑥௜ 𝑎௜௝
௞
௜ ൅∑ 𝑎௝௜ 𝑥௜ 

௞
௜

3. Put all the partial derivatives in a vector:

𝑓 𝒙 ൌ

డ௙ሺ𝒙ሻ

డ௫భ
⋮

డ௙ሺ𝒙ሻ

డ௫ೖ

ൌ
∑ 𝑥௜ 𝑎௜ଵ
௞
௜
⋮

∑ 𝑥௜ 𝑎௜௞
௞
௜

൅
∑ 𝑎ଵ௜  𝑥௜ 
௞
௜
⋮

∑ 𝑎௞௜  𝑥௜ 
௞
௜

4. Convert to matrix notation: 

𝑓ሺ𝒙ሻ = A’ 𝒙 + A 𝒙 = (A’ + A) 𝒙

If A is symmetric, then 𝑓ሺ𝒙ሻ = 2 A 𝒙
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8.9 Cheat-Sheet: Rules for Vector Derivatives 

 Hessian of a linear function and a quadratic form

 Linear function: y = 𝑓ሺ𝒙ሻ = 𝒙’  +  

We have already derived: 𝑓ሺ𝒙ሻ = 

Then, H = డ
డ𝒙

𝑓ሺ𝒙ሻ =  = 0

 Quadratic form: q = 𝑓ሺ𝒙ሻ = 𝒙’ A 𝒙

We have already derived 𝑓ሺ𝒙ሻ = (A’ + A) 𝒙

Then, H = డ
డ𝒙

𝑓ሺ𝒙ሻ = (A’ + A) 𝒙  = (A’ + A) 
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