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Chapter 8

Multivariate Calculus

Isaac Barrow (1630-1677) Augustin Louis Cauchy (1789-1857) .

" JE
8.1 Multivariate Calculus: Partial Differentiation
® Now, y depends on several variables: y = fix;, x,, ..., x,.)

® The derivative of y w.r.t. one of the variables —while the other
variables are held constant- is called a partial derivative.

y:f(x19x27"'5xn)

lim Ay _ lim SO +Ax,xy,.,x,)— f(X,X5,...,X,)
Ax;—0 Axl Ax;—0 Axl
Oy . _—
=—=f (partial derivative w.r.t. X;)
ox,
. A .
In general, lim 2 6_y =f;,, i=1l.n

A0 Ax;  Ox
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8.1 Partial Differentiation: Example

Cobb -Douglas production function : Q = AK“ L’
(4=96;a+p=1) Q =96K ** L7

MPPg =2 — (036K 7107 = 28 8K 7107
K
MPP; = ZQ—i =(0.706K°L7°? = 672K L7

We collect the first derivatives in a vector, VQ.

dQ
ax | [28.8 K~07107

VQ = = ]
dQ| l67.2 K03-03
dx

Note: The first derivative of a scalar function w.t.t a vector is called
the gradient.

" JEE
8.1 Partial differentiation: Market Model

Q,=a-bP (a,b>0)
Q,=—c+dP (c,d>0)

E fﬂ[ﬂ ) K |

el T

Q*:ad—bc P*:a+c

b+d b+d
Q: d >0 Q: b <0
oa b+d oc b+d
Py E_1 .
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8.1 Partial differentiation: Market Model

m Using linear algebra, we have:

d b
0| _|(b+d) (p+a)| a
P’ 1 -1 |-c
(b+d) (b+d)
X' =A4"d
ox"Jod =A"'

X | [ 4 -b
ox éa  oc |_|b+d b+d

od | 1 1
oa oc b+d b+d

Note: We call the matrix of first partial derivatives with respect to a
vector the Jacobian, J. s

= JEE
8.1 Partial Differentiation: Likelihood

® In the usual estimation problem in Classical Linear Model (CLM),
the unknowns are the parameters (typical in the CLM, B and 62). We
treat the data (x, and y,) as (conditionally) known numbers. Assuming

normality for the error term, &, the (log) likelihood function is:
_.r 2o s Ty T b —x B, B):
logL = 5 InQzc?) Py Z;g, 3 In27 3 Inc? = ZT:] 0, —x.8-x,5)

1st partial derivative:

OlnL 1 T 1 T
8/3 == 20_2 21:1 2(yt _xl,zﬂl _x2,tﬂ2)(_x1,z) :; 21:1 (ytxl,l _xlz,zﬂl _xz,:xl,zﬂz)
1
olnL 1
6,8 :? ZZ (ytxZ,t _xl,txZ,tﬂl _xitﬁz)
2

OlnL T 1 2
=———t—> £
oo’ 20° 20! ZT:I !

1 <r 1l «r T 1
J= I:O'Z Z:l (ytxl,f - xlz,tﬁl - xz,rxl,rﬁz) ; 2:1 (yrxz,t _xl,rxz,tﬁl _xf,rﬂz) _E +E ZTZI & 2()_
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8.1 The Jacobian

® The Jacobian is the matrix of first partial derivatives at the point x
(with respect to a vector):

of (x)

0x1

Z2AC))

0xp

Notation: J or Df.. For the one equation case (a scalar function), J is a
row vector and it’s usually called gradient or gradient vector at x. It is
usually written as a column vector as Vf{x) and also called the gradient
or gradient vector at X.

m A vector is characterized by its length and direction. To emphasize
the direction, the length, A, can be standardized, say " b" = 1. The
direction is studied with directional derivatives. 7

" JdEE
8.1 Directional Derivatives

m We can think that the partial derivatives of = f{x, 5, w, ...)
represent the rates of changes of gin the x; j, ....

® Suppose that we now wish to find the rate of change of 3 at (x;, 5)
in the direction of an arbitrary unit vector u = <a, b>.

V4
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8.1 Directional Derivatives

m Consider the surface § with equation g = fx, y) [the graph of /]
and we let g, = f{x;, ;) = The point P(x;, y,, %) lies on S.

m The vertical plane that passes through P in the direction of u
intersects ' in a curve C.

® The slope of the tangent line
T to C at the point P is the rate

of change of zin the direction
of u.

- _
8.1 Directional Derivatives

® Now, let O(x, 5, g) be another point on C.
[1 P’, O be the projections of P, O on the xy-plane.

1 The vector P’Q’ is parallel to u.

0 PQ =haua=<habb, for some scalar .

® Then,

X=Xy =ha > x=x,+ ha
I=Do=hb = y=y,thb
Az _ f(x,+ha,y, +hb)— f(x4,¥)

h h

If we take the limit as » — 0, we
get the rate of change of 7 (w. r. to

distance) in the direction of u.
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8.1 Directional Derivatives

® The directional derivative of fat (x;, y,) in the direction of a unit vector
u=-<q, b is:

f(xo +ha’yo +hb)_f(x07y0)
h

D, f(x¢,¥0) = }1113%)

if the limit exists.

® Special cases:
-Ifu=1i=<1,02, then D,f= /.
-Ifu=j=<0, 1>, then D/f:]j

That is, the partial derivatives of fwith respect to x and y are just
special cases of the directional derivative.

11

" JEE
8.1 The Jacobian Determinant

® The Jacobian determinant, |J|, at a point x gives information about
the behavior of F(.) near x. For instance, the continuously
differentiable function F is invertible near a point xeR” if |J|# 0.

m Use |J| to test the existence of functional dependence between
functions. If |J| = 0 = functional dependence, that is, a solution to a
system of equations does not exist.

m Not limited to linear functions.

m For the 2x2 case:

ayl/axl ayl/éxz

J| =
| | ayz/axl ayz/axz

Carl Jacobi (1804 — 1851, Germany)
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8.1 Cross partial derivatives

® The partial derivative is also a function of x: f(x) = g(x;, x,, ..., x,.)

m [f the # partial derivatives are continuous functions at point x, we
say that fis continnously differentiable at x.

m [f the # partial derivatives are themselves differentiable on an open
set S €R”, we can compute their partial derivatives. For example:

o°f _ af(af
Ox,0x;  0Ox; Ox;

® The result of this differentiation is known as the cross partial derivative
of / with respect to x; and x;. It is usually denoted as f;.

)

® When 7=, cross partial derivatives becomes the second-order
derivative, denoted as f;. The matrix of all second derivatives is the
Hessian. 3

" J
8.1 Cross partial derivatives: Greeks

m We want to know how the BS A changes as maturity approaches.

Recall:
A % = N(d1) & d1 = [In(S;/K)+ (i + 62/2) (T-1)]/(c VT — ).
t
Then,
2
A _dB _ dANW@D _ gy « 29D
ds.dt ~ dt dt dt
_ar?
USiﬂg N’(dl) = \/T_T[e 2 &
aay __ (+5) | )
dt 20VT—t  20(T—-t)3/2

a_ 1 —d—{ () , () }

we get: = e 2 -
g dt  2m 20VT—t 20(T—-t)3/2 "
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8.1 Cross partial derivatives: Greeks

m If the option is at-the-money (S = K), then

d12 i+£
a _ 1 e 2z x 2 <0
dt  2m 206VT—t

That is, as time goes by, delta decreases.

Note: Same qualitative result if the call option is out-of-the-money (St
<K.

15

"
8.1 Cross partial derivatives: Hessian

® The matrix of all second derivatives is called the Hessian, usually
denoted by H. For example:

_| arrfaxt 97 f f(exex,)
0> f f(oxyox) &7 f[ox3

Example: Cobb-Douglas function, Q = AK*LP
Oy = adk “7'LP
0, =paK® L
5o |—al-a)4K o2 p Bo AK 7'LP!
ap AK *7'LP! —-B1-Pp)4K* LP2

Note: f; = f; This is a general result (Young’s Theorem). Then, H is a
symmetric matrix. H plays a very important role in optimization. 16
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8.1 Cross partial derivatives: Hessian - Example

m We want to calculate H for a function, using econometrics
notation, of B, and B, and 62 (we treat x, and y, as constants, along
with 02). This (log) function is:
T T — , ,
10g L= f (s Y20 7 | fr07) = —EIHZE—EIHO'Z —7‘22,:1 W =x,' B —xy, B’

1st derivatives :

OlnL 1 T

1 T
fo= B, == 207 lelz(yr _xl,rﬂl _xz,rﬂz)(_xl,r) = ?lel(ytxl,l _xl%tﬂl _xz‘txl,lﬂz)
OlnL 1 T
fy = aﬂ = ?zr=1 (yt‘xZ,t - ‘xl,txZ,tﬁl - xzz,tﬁz)
2

2nd derivative s and cross derivativess :

L 1 o

frx: aﬂZ __? r=1x12,1<0
1
6211‘1L 1 T
= -—— X
fxy aﬁlaﬂz O_z =17 207t
0’InL 1 T
Jo= 0B, =l ‘=1x22,t<0 17
2

"
8.1 Cross partial derivatives: Hessian - Example
® Then:
£ ——LZF x;, <0
x o_z —17Lt

1 -

f:cy = _? Z(; X0 %14
1 -

fyy :_? Z; xzz»f <0

H

1 1 2
_? Z?;l (xl,txz,z) _? ZT:l ('xil) o

- - 2
o

1l o1, 1 <1
B _F Z::l (xl,t) _? 2:1 (xz,txl,t) 1 T |: xﬁl xz,,xlwt} _ XX

2
KXo Yoy

Note: H plays an important role in maximum likelihood estimation.
Its (negative expected) inverse is used to calculate SE. 18
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8.2 Differentials

Problem: What if no explicit reduced-form solution exists because of
the general form of the model?

Example: In the macro model, what is 0Y / 0T when
Y=C{X,T)+I,+G,?

T, can affect C direct and indirectly through Y, violating the partial

derivative assumption.

Solution: Use differentials! Recall that we thought of differentials as a
(15*-order) approximation to a change in fx): dfix) = Ax f‘(x)

® Find the derivatives directly from the original equations in the
model.

m Take the total differential, adding all the effects (indirect and direct).

® The partial derivatives become the parameters in the sum.

"
8.2.1 Differentials and derivatives
m Recall that we thought of differentials as a (15-order) approximation
to a change in f[x): dfx) = Ax f*(x).

m Total derivatives measure the total change in y from the direct and
indirect affects of a change in x;.

® The symbols dy and dx are called the differentials of y & x,
respectively.

m A differential describes the change in y that results for a specific
and not necessarily small change in x from any starting value of x in
the domain of the function y = fx).

m The derivative (dy/dx) is the quotient of two differentials: dy & dx.

® f'(x)dxis a first-order approximation of dy:

yv=f(x) = dy = f'(x)dx 20




RS - Ch. 8 - Multivariate Calculus

= JE
8.2.2 Differentials and point elasticity

B Let Q= AP) (explicit-function general-form demand equation)

® Find the elasticity of demand with respect to price. We use and
manipulate differentials.

(40,) dg,
%AQ, _ ( d)éd _ ( dP ) _ marginal function
% AP ar 0 average function
° p “p y

elastic if |gd| > 1, inelastic if|gd| <1

&4

21

" JEE
8.3 Total Differentials

®m Extending the concept of differential to smooth continuous
functions with two or more variables

m Lety=f(x,Xx, Find total differential dy

dy = oy Oy
ox X 5

dx | + dx , = dy = fidx, + fydx,

®m Chain Rule derivation:
Find dz/dx, , where z = f{y)and y = g(x,, x, ).
Algorithm : Substitute the total differential of y into that of z
and divide through by dx, assuming dx, =0

1ydz =% gy 3yde = D g D g
dy dy \ Ox, Oox,
0 0 dz dz 0
2) dyza—ydler—ydxz e »
X, ox, dx, dy Ox,

11
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8.3 Total Differentials - Example
Let U be a utility function: U = U (x, x,, ..., x)

Differentiation of U with respect to x;
0U/ Ox;is the marginal utility of the good x;

dx; is the change in consumption of good x;.

= a4 dx, + é,—dez + ..+ é,—den
x, X,

dU

n

* dU equals the sum of the marginal changes in the consumption of
each good and service in the consumption function.

* To find total derivative wrt to x; divide through by the differential
dx; (partial total derivative):

dUu _5U+6U dx2+ +6U dx ,
dx , Ox,  Ox, dx,  Ox, dx, 3

n

"
8.3 Rules of Differentials (same as derivatives)

Let £ is a constant function; u = #(x;); v = #(x,)

m 1 .de=0 (constant-function rule)
m 2. d(cs”) = cnatdu (powet-function rule)
m 3. duty =dutdr (sum-difference rule)
m 4. d(w) =vdu+ udv (product rule)
m 5 d (lj = M (quotient rule)
v v

w 7. d(ww) = vwdu+ wwdv+ uw dw

du+v+w)=du +dv +dw

24

12



RS - Ch. 8 - Multivariate Calculus

8.3 Example:
Find the total differential (dz) of the function
xX+y
1) =X
2x?
X Y
2) P
2x? 2x?
3) dz = gdx + %dy
ox oy
0z 0 x y 2x? —4x?  —4xy
2 I b +
ox  Ox\2x" 2x (2x2)2 (2x2)2
B 2x? —4x? —4xy x-2x-2y
4x* 2x°
) @:i(iﬁ%j ZE(LZ] L
oy oy \2x® 2x oy 2x 2x
—(x+2y) 1
6) oo tE2) 1, 25
2x° 2x? g

" J
8.3.1 Finding Total Derivatives from Differentials

Given
D y=f(ae..x,)
Total differential dy is equal to the sum of the partial changesin y :
) d =P+ L, + P
ox, 0x, ox,,
3) dy = fidx, + frdx, +...+ f,dx,

The partial total derivative of y wrt x,, for example, is found by
dividing both sides by dx;
dx, dx

dy
4 —=fi+fh—+ ..+ z
) dx1 fi f2 dxl fn dxl

26

13
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8.4 Multivariate Taylor Series

m Recall Taylor’s series formula

F@= Teo = @)+ Loy + Loy 4 L)

1/ 2/ n!

m We want to generalize the Taylor polynomial to multivariate
functions. A similar logic to the univariate case gives us:

f(x)= T(x,a)= f(a)+Df (a) (x —a) +%(x—a)TH(a)(x—a) _

m Using abbreviated notation:

Txa) =X, (1 /i) Dif(a) (x — a)l.

27

x—c)

7

" JEE
8.4 Multivariate Taylor Series

Example: 1%-order Taylor series, around a = (4, ¢) = (0, 0) of
S y) = [A+/(A+y)] =1

= [A+x9/0+y]-1 = fe=0,d=0) = [(1+0)/(1+0)] - 1 =
f=1/0+y) = £(c=0, d=0) = 1
L= DA+ /1 +y)? = /=0, d=0) = -1

Then, 1%-order Taylor series formula:

S ETE;0)= 0+1x-0)+ () F-0)=x-y

* Application to Relative Purchasing Power Parity (PPP):
e = [+ 1)/(1+ )= 1% (1~ 1),
where eg is the percentage change in exchange rates from #to T, or:
egr= Sur/S) - 1.

0

28

14
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8.5 Homogeneous Functions

B Definition:

A function flx, ..., x,) is homogeneous of degree r if multiplication of each
of its independent variables by a constant / will alter the value of the
function by the proportion 7, that is;

i f (o, wsgxy) =J fxp oo ), forall f(ix,, ..., jx,) in the domain of f

Special cases:

-1f r=0, = 1, the function is homogeneous of degree zero

-1f r=1, 1 = j, the function is homogenecous of degree one,
sometimes called Znearly homogeneous.

Note: Technically if / > 0, we say positive homogenous.

29

" J
8.5 Homogeneous Functions: Examples

Examples:

- In applied work, it is common to see homogenous production
functions. For example, a firm increases inputs by 4, then output
increases by 4. Then, f{.) is homogenous of degree (r = 1), we say, f{.)
shows constant returns to scale. 1f r > 1 (r < 1), f{.) shows increasing
(decreasing) returns to scale.

- Demand functions are homogeneous. If all prices and income
change by the same amount (the budget constraint does not change),
the demands remain unchanged. That is,

D@py «os jpus JI) = D(x), ... x,,I) = homogenous of degree 0.

Since individual demands have » = 0, the aggregate demand (sum of
individual demands) also has » = 0. 30
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8.5 Homogeneous Functions: Cobb-Douglas

® A popular production function is the Cobb-Douglas:
Q=AK*IF.

The Cobb-Douglas function is homogeneous of degree o + f:

AGK Y (GLY = 4 “j’K“L”
— Aja+ﬁKaLﬂ — ja+ﬂAK aLﬁ
= j’0

Cases: o + B > 1 increasing returns (paid < share)
o + B <1 decreasing returns (paid > share)
o + B = 1, constant returns (function is lineatly homogeneous)

Note: In empitical work it is usually found that o+ atre close to 1.
Assuming linear homogeneity is common. 31

8.5 Homogeneous Functions: Cobb-Douglas

m Linear homogeneity of Q = A K* [

-If o + B = 1, the Cobb-Douglas function is lineatly homogeneous.
Let j = 1/L, then the average physical product of labor (APP;) and of
capital (APP,) can be expressed as the capital-labor ratio, k = K/L:

Q K a K 1-a
j = — = — J— — — [04
jQ=p=0l)=4 (L) (L) Ak
APP, = % = ¢ (k) = Ak“
APP =21 = 200  ppa-t

Note: This result applies to linearly homogeneous functions

Q=fK )= jO=0/L=f(K/LLIL)=f(kl)=#k)

32

16



RS - Ch. 8 - Multivariate Calculus

" J
8.5 Homogeneous Functions: Properties

m Given a linearly homogeneous production function Q = K, L),
the marginal physical products MPP, and MPPj can be expressed as
functions of £ alone:

MPP, = ¢'(k)
MPP, = g(k)— k¢' (k)

33

" JEE
8.5 Homogeneous Functions: Euler’s Theorem

Euler’s Theorem
Let f : R”, —R be continuous, and differentiable on R”,. Then, fis
homogeneous of degree rif and only if for all xe R",.

Py e X)) = X5 fi5
Example: Suppose Q = fK, L), is homogeneous of degree 1, then,

x99 ;99 _
0=K_—=+L— K (MPK )+ L(MPL )

Then, if each input is paid the amount of its marginal product the
total product will be exactly exhausted by the distributive shares for all
the inputs —i.e., no residual is left.

34

17
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8.5 Homogeneous Functions: Euler’s Theorem

* Buler’s theorem has a useful corollary:

Suppose that f: R” — Ris differentiable and homogeneous of degree
k. Then its first-order partial derivatives f; are homogeneous of degree
£—1.

Example: Suppose Q = fK, L)) is homogeneous of degree 1, then,
the MPL and MPK are homogeneous of degree 0. This implies:

000,30 80,00 00, 3% . 00
oL oL oL oK " oL oL’ oKoL
2’0 L 3°Q
oKoL K oL’
which is positive since f; <0. That is, the marginal productivity of one
factor increases when the other factor also increases (Wicksells law).

35

8.5 Homogeneous Functions: Black-Scholes

m Recall the BS call pricing formula:

C, =S, N(d1) — K e {T-DN(d2)
It is easy to check that it is homogenous of degree one in S, and K, if
we assume the other variables are fixed, especially o (this assumption

25 called “sticky-by-strike”).

We can apply Euler’s Theorem to quickly derive A:

— ac ace
Ct—St*dSt‘l'K*dK
= A=%= N,

dse

Note: The homogeneity property (in financial engineering “sticky
moneyness regime”’) holds for a more general class of pricing models. 36
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8.6 Implicit Function Theorem

® So far, if we were given F(y, x)=0 — y = f{x).

dy/dx easy to calculate (not always realistic situation.)
m Suppose F(y, x) = x> — 2x% + 3% -22 =0,

not easy to solve for y = flx) = dy/dx=?

W [mplicit Function Theorenr: given F(y, x;, ..., x,) =0
a) if F has continuous partial derivatives E, F,, ..., F, and Eo# 0

b) if at point (yj, x4 ..., X,,), We can construct a neighborhood

(N) of (x, ..., x,), say, by limiting the range of y, y = fix, ..., x,)
--1.e., each vector of x’s — unique y

Then, 1) yis an implicitly defined function y = f{x;, ..., x,) and

1i) still satisfies F(y, x; ... x,) for every z-tuple in the N such
that F=0. 7

" J
8.6.1 Implicit Function Rule

m [f the function F(y, x,, x,, . . ., x) = k is an implicit function of y =
Sy, Xy 00y x), then

Fdy + F de, +F de,+..+F d =0
where F| = OF/0y; F = 0F/0x,

* From this result, we derive the implicit function rule.

* Total differentiation of F(y, x;, x, ... x,) =0, & setdx, ,, =0

F,dy =-F dx, - F _dx,—-..-F_d_

F
dL |l e 0= a_y = — 2L (Implicit function rule)
de, “T T Ox, F,

38

19
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8.6.1 Implicit function problem - Examples

Given the equation F(j, x) = & — 2x% + 3x° - 22 =0,

Q1: Find the implicit function y = fx) defined at (y = 3, x = 1)
The function F has continuous partial derivatives Fy, F,. . F,:
GF/ayZFVZ—ZxZ-I- 6xy OF/0x = F_=3x*—4xy + 3)°
At (p Xy s 5,0) satisfying F (5, x, ..., x,) = 0, F, # 0:
Fp=3,x=1)= 13—2*12*3+3*1*32—22¥O;

F Oo=3x=1) =22+ 6xy=—2*%12+ 6*1*3 =16.

Yes! We have a continuous function fwith continuous partial
derivatives.

02: Find dy/dx by the implicit-function rule. Evaluate it at (=3, x=1)
dy/dx=-F/F =~ (3o — 4xy +39% )/ (-2x2 + 6x))
dy/dx = — (3¥1% — 4%1*3 + 3*32) /(-2%12 + 6*1*3) = - 18/16 = - 9/8 39

I
8.6.2 Derivatives of implicit functions - Examples
m Example 1:
IfFRz %) =52 + 07— + 4z =0,
2 2
then, é’_yZ_FZ=_2xz—3Z + 4y
oz F 2xy + 4z

y

m Example 2: Implicit Production function: F (Q, K, L)

GF/GJZFJ J=Q,K,L
Applying the implicit function rule:
0Q/0L = — (F, /F) - MPP,
0Q/0K = — (F/Fq) - MPP
OK/0L = — (F, /F) - MRTS: Slope of the isoquant

20
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8.6.3 Extension: Simultaneous equations case

m We have a set of 7 implicit equations. We are interested in the
effect of the exogenous variables (x) on the endogenous variables

() That is, dy,/dx;
m Find total differential of each implicit function.

m Let all the differentials dx; = 0 except dx;
and divide each term by dx; (note: dx; is a choice)

m Rewrite the system of partial total derivatives of the implicit
functions in matrix notation

41

" J
8.6.3 Extension: Simultaneous equations case

Example : 2x2 System
DF (3, 5,,%)=0
2)F,(y,Y,,%,)=0

Z%)ﬂdy1 +%dy2 +%de =0
Wy W, X

4) OF, dy, +%a’y2 +aidx2 =0
oy, , ox,

5)%@1 Jr%dy2 = —%a’x1 +0dx,
Wy W, x,

OF. OF. OF.
6)6_2dy1+8_2dy2: 0dlx, —a—za’x2

42
V1 2 X,




RS - Ch. 8 - Multivariate Calculus

8.6.3 Extension: Simultaneous equations case

m Rewrite the system of partial total derivatives of the implicit
functions in matrix notation (Ax = d)

7noh dn | OF dy, _ OF 10y20 D | OF dyy
oy, dx, 0y, dx, ox, oy, dx, Oy, dx,

gy dn Ob dv, iyl OF dy, | OF,
Oy, dx, Oy, dx, oy, dx, Oy, dx, ox,
oF Ok [[dy, oF LT () 0

9) 8y1 6y2 dx, _ _aixl 12) 6)’1 ayz dxz _ _a&
OF, OF, | dvy 0 OF, OF, | dy, ox
- - - - 2
oy, y, dx, o oy, dx,

43
"

8.6.3 Extension: Simultaneous equations case

m Solve the comparative statics of endogenous variables
in terms of exogenous variables using Cramer’s rule

an
dx,

-1

OF,  OF, v | [oF, o
o, oy, | |-%h A, | o oy 0
_| N V2 T 14) dx, _| 9 Va oF,
e y, dx, y, oy,
_OK Ok
x; Oy
o OB oA R
Dy _ W _ ox; Oy,
dx, I ok OF, Ok OF,
M Oy Oy Oy 44

22
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8.7 Application: The Market Model

m Assume the demand and supply functions for a commodity are
general form explicit functions

Qs =D(®, Y (D, < 0; Dy, > 0)
Q,=5(P, Ty 8> 05 Sro < 0)
m Q) is quantity, P is price, (endogenous variables)
Y, is income, T, is the tax  (exogenous variables)

no parameters, all derivatives are continuous

m Find oP/0Y,, oP/0T,
0Q/0Y,, 0Q/0T,
m Solution:
- Either take total differential or apply implicit function rule
- Use the partial derivatives as parameters
- Set up structural form equations as Ax = d,
- Invert A matrix or use Cramet’s rule to solve for 0x/0d 45

"
8.7 Application: The Market Model
DD(P.Y,)=S(P.Ty) =0

2)FY(P, Q; Y, Ty)=D(P, Y,) -0 = 0
3)FYP, Q; ¥y, Ty)=S(P, T)) -0 = 0

Suppose we are interested in finding dé/ dy,.
Take the total differential of equations (2) & (3) and organize;

4) DpdP —dQ = -Dy, dY,
5) SpdP —dQ =S, dT,
Put equations (4) & (5) in matrix format (Ax = d);

6 D, -1 d}E _ -Dy 0 [dy, _ ~ Dy, dY,
Sp —1].d0 0 —Spo | dTo] |- SpodTy

46
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8.7 Application: The Market Model

6 ‘D, -1 dP|_|-Day,
1S, —1]dO | |-S;,dT,

Take the partial total derivative of equation (6) wrt to dY,.

v |
7 dY, | |D, -1||-Dy
g | |s, -1 0
ay,
We want to calculate : £:|J2|
ay, |J|
Calculate the Jacobian determinant,| J|,and| ], |.
D, -1 D, -D!
={ =8, -Dp>0 5 |J|=| 7T “l=S.D; >0
SP —1 SP 0
O S.D,
@9 _ /P Y"/ >0.
dY, S,—D,

47

8.8 Limitations of Comparative Statics

m Comparative statics answers the question: how does the
equilibrium change with a change in a parameter.

® The adjustment process is ignored
® New equilibrium may be unstable

®m Before dynamic, optimization

48
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8.9 Cheat-Sheet: Rules for Vector Derivatives

m Consider the linear function: y=f(x)=xB+o

where x and B are k-dimensional vectors and ® is a constant.

We derive the gradient in matrix notation as follows:

1. Convert to summation notation: flx) = Zi"' x; Bi
2. Take partial derivative w.r.t. element x;: % [Zf X Bl] =B;
j
3. Put all the partial derivatives in a vector:
f (x)
6x1 Bl
Vfx)=| ¢ [=]:
If(x) Bk
axk
4. Convert to matrix notation: Vf(x)=8 49

8.9 Cheat-Sheet: Rules for Vector Derivatives

m Consider a quadratic form: q=f(x)=xAx

where X is kx1 vector and A is a kxk matrix, with a;; elements.

Steps:
1. Convert to summation notation:
k
2 A k vk
flx)=x ) : = X i Xi Gji Xj
i AjpXj

. k vk —_ \V'k 2 k vk
(We rewrite Zi Zi X ajin = Zi a;ix; + Zi i#] X ajixj)

2. Take partial detivative w.r.t. element X;:

9 Iyvkyk — k k
a_xj[Zi i xiain; | =2 aj; x5 + B xi agp + B @i x5 s
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8.9 Cheat-Sheet: Rules for Vector Derivatives

2. Take partial derivative w.r.t. element X;:
9 Iykyk — k k
o, (XX xiajix; | = 2 a5 % + e x; aij + Ther aji x;
_ vk K
=X X Qi + X A X

3. Put all the partial derivatives in a vector:
df (x)

k k
0xy1 Zi Xi Ajq Zi aqi X
Vi) =| : |= : + :
T |\ Skxan| |ZFawx
axk

4, Convert to matrix notation:
VF(x)=Ax+Ax=A+A)x

If A is symmetric, then Vf(x) =2 A x

51

" J
8.9 Cheat-Sheet: Rules for Vector Derivatives
®m Hessian of a linear function and a quadratic form
m Linear function: y=f(x)=xB+o
We have already derived: Vf(x)=p
Then, H ==[Vf(x)=p] =0

® Quadratic form: q=f(x)=xAx
We have already derived Vf(x) = (A’ + A) x

Then, H=2[Vf(x) =& +A) x ] = (A +A)

52
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