Chapter 8 Multivariate Calculus

Isaac Barrow (1630-1677)

Augustin Louis Cauchy (1789-1857)

8.1 Multivariate Calculus: Partial Differentiation

■ Now, y depends on several variables: $y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right.$.)

- The derivative of y w.r.t. one of the variables -while the other variables are held constant- is called a partial derivative.

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \begin{aligned}
\lim _{\Delta x_{1} \rightarrow 0} \frac{\Delta y}{\Delta x_{1}} & =\lim _{\Delta x_{1} \rightarrow 0} \frac{f\left(x_{1}+\Delta x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\Delta x_{1}} \\
& \left.\equiv \frac{\partial y}{\partial x_{1}} \equiv f_{1} \quad \text { (partial derivative w.r.t. } x_{1}\right)
\end{aligned}
\end{aligned}
$$

In general, $\quad \lim _{\Delta x_{i} \rightarrow 0} \frac{\Delta y}{\Delta x_{i}} \equiv \frac{\partial y}{\partial x_{i}} \equiv f_{i}, \quad \mathrm{i}=1 \ldots \mathrm{n}$

8.1 Partial Differentiation: Example

Cobb-Douglas production function : $\mathrm{Q}=\mathrm{AK}^{\alpha} \mathrm{L}^{\beta}$
$(A=96 ; \alpha+\beta=1) \quad \mathrm{Q}=96 \mathrm{~K}^{0.3} \mathrm{~L}^{0.7}$
$M P P_{K}=\frac{\partial Q}{\partial K}=(0.3) 96 K^{-.7} L^{0.7}=28.8 K^{-.7} L^{0.7}$
$M P P_{L}=\frac{\partial Q}{\partial L}=(0.7) 96 K^{0.3} L^{-0.3}=67.2 K^{0.3} L^{-0.3}$
We collect the first derivatives in a vector, $\nabla \mathrm{Q}$.

$$
\nabla \mathrm{Q}=\left[\begin{array}{l}
\frac{\mathrm{d} Q}{\mathrm{dx}} \\
\frac{\mathrm{dQ}}{\mathrm{dx}}
\end{array}\right]=\left[\begin{array}{l}
28.8 K^{-0.7} L^{0.7} \\
67.2 K^{0.3} L^{-0.3}
\end{array}\right]
$$

Note: The first derivative of a scalar function w.r.t a vector is called the gradient.
8.1 Partial differentiation: Market Model
$Q_{d}=a-b P \quad(a, b>0)$
$Q_{s}=-c+d P \quad(c, d>0)$
$\left[\begin{array}{cc}1 & b \\ 1 & -d\end{array}\right]\left[\begin{array}{l}Q \\ P\end{array}\right]=\left[\begin{array}{l}a \\ -c\end{array}\right]$
$\frac{1}{-(b+d)}\left[\begin{array}{cc}-d & -b \\ -1 & 1\end{array}\right]\left[\begin{array}{c}a \\ -c\end{array}\right]=\left[\begin{array}{c}Q^{*} \\ P^{*}\end{array}\right]$
$Q^{*}=\frac{a d-b c}{b+d} \quad P^{*}=\frac{a+c}{b+d}$
$\frac{\partial Q^{*}}{\partial a}=\frac{d}{b+d}>0 \quad \frac{\partial Q^{*}}{\partial c}=\frac{-b}{b+d}<0$
$\frac{\partial P^{*}}{\partial a}=\frac{1}{b+d}>0 \quad \frac{\partial P^{*}}{\partial c}=\frac{1}{b+d}>0$

8.1 Partial differentiation: Market Model

- Using linear algebra, we have:

$$
\begin{aligned}
& {\left[\begin{array}{l}
Q^{*} \\
P^{*}
\end{array}\right]=\left[\begin{array}{ll}
\frac{d}{(b+d)} & \frac{b}{(b+d)} \\
\frac{1}{(b+d)} & \frac{-1}{(b+d)}
\end{array}\right]\left[\begin{array}{c}
a \\
-c
\end{array}\right]} \\
& x^{*}=A^{-1} d \\
& \partial x^{*} / \partial d=A^{-1} \\
& \frac{\partial x^{*}}{\partial d}=\left[\begin{array}{cc}
\frac{\partial Q^{*}}{\partial a} & \frac{\partial Q^{*}}{\partial c} \\
\frac{\partial P^{*}}{\partial a} & \frac{\partial P^{*}}{\partial c}
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{b+d} & \frac{-b}{b+d} \\
\frac{1}{b+d} & \frac{1}{b+d}
\end{array}\right]
\end{aligned}
$$

Note: We call the matrix of first partial derivatives with respect to a vector the Jacobian, \mathbf{J}.

8.1 Partial Differentiation: Likelihood

- In the usual estimation problem in Classical Linear Model (CLM), the unknowns are the parameters (typical in the CLM, β and σ^{2}). We treat the data (x_{t} and y_{t}) as (conditionally) known numbers. Assuming normality for the error term, \mathcal{E}_{t}, the (log) likelihood function is:

$$
\log L=-\frac{T}{2} \ln \left(2 \pi \sigma^{2}\right)^{2}-\frac{1}{2 \sigma^{2}} \sum_{=1}^{T} \varepsilon_{t}^{2}=-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{=1}^{T}\left(y_{t}-x_{1, t} \beta_{1}-x_{2, t} \beta_{2}\right)^{2}
$$

1st partial derivative:

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \beta_{1}}=-\frac{1}{2 \sigma^{2}} \sum_{=1}^{\mathrm{T}} 2\left(y_{t}-x_{1, t} \beta_{1}-x_{2, t} \beta_{2}\right)\left(-x_{1, t}\right)=\frac{1}{\sigma^{2}} \sum_{=1}^{\mathrm{T}}\left(y_{t} x_{1, t}-x_{1, t}^{2}, \beta_{1}-x_{2, t} x_{1, t} \beta_{2}\right) \\
& \frac{\partial \ln L}{\partial \beta_{2}}=\frac{1}{\sigma^{2}} \sum_{=1}^{\mathrm{T}}\left(y_{t} x_{2, t}-x_{1, t} x_{2, t} \beta_{1}-x_{2, t}^{2} \beta_{2}\right) \\
& \frac{\partial \ln L}{\partial \sigma^{2}}=-\frac{T}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{=1}^{T} \varepsilon_{t}^{2} \\
& J=\left[\frac{1}{\sigma^{2}} \sum_{==1}^{\mathrm{T}}\left(y_{t} x_{1, t}-x_{1, t}^{2} \beta_{1}-x_{2, t} x_{1, t} \beta_{2}\right) \frac{1}{\sigma^{2}} \sum_{=1}^{\mathrm{T}}\left(y_{t} x_{2, t}-x_{1, t} x_{2, t} \beta_{1}-x_{2, t}^{2} \beta_{2}\right) \quad-\frac{T}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{=1}^{T} \varepsilon_{t}^{2}\right]
\end{aligned}
$$

8.1 The Jacobian

- The Jacobian is the matrix of first partial derivatives at the point \mathbf{x} (with respect to a vector):

$$
\mathbf{J}=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

Notation: \mathbf{J} or $D f_{x}$. For the one equation case (a scalar function), \mathbf{J} is a row vector and it's usually called gradient or gradient vector at \mathbf{x}. It is usually written as a column vector as $\nabla f(\mathrm{x})$ and also called the gradient or gradient vector at \mathbf{x}.

- A vector is characterized by its length and direction. To emphasize the direction, the length, \boldsymbol{h}, can be standardized, say $\|\boldsymbol{h}\|=1$. The direction is studied with directional derivatives.

8.1 Directional Derivatives

- We can think that the partial derivatives of $z=f(x, y, w, \ldots)$ represent the rates of changes of $₹$ in the x, y, \ldots.
- Suppose that we now wish to find the rate of change of z at $\left(x_{0}, y_{0}\right)$ in the direction of an arbitrary unit vector $\mathbf{u}=\langle a, b\rangle$.

8.1 Directional Derivatives

- Consider the surface S with equation $z=f(x, y)$ [the graph of $f]$ and we let $z_{0}=f\left(x_{0}, y_{0}\right) \Rightarrow$ The point $P\left(x_{0}, y_{0}, z_{0}\right)$ lies on S.
- The vertical plane that passes through P in the direction of \mathbf{u} intersects S in a curve C.
- The slope of the tangent line T to C at the point P is the rate of change of \approx in the direction of \mathbf{u}.

8.1 Directional Derivatives

- Now, let $Q(x, y, z)$ be another point on C.
$\square P^{\prime}, Q^{\prime}$ be the projections of P, Q on the $x y$-plane.
\square The vector $\overrightarrow{P^{\prime} Q^{\prime}}$ is parallel to \mathbf{u}.$\overrightarrow{P^{\prime} Q^{\prime}}=h \mathbf{u}=\langle h a, b b\rangle, \quad$ for some scalar h.
- Then,

$$
\begin{aligned}
& x-x_{0}=b a \Rightarrow x=x_{0}+b a \\
& y-y_{0}=b b \Rightarrow y=y_{0}+b b
\end{aligned}
$$

$$
\frac{\Delta z}{h}=\frac{f\left(x_{o}+h a, y_{o}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

If we take the limit as $h \rightarrow 0$, we get the rate of change of z (w. r. to distance) in the direction of \mathbf{u}.

8.1 Directional Derivatives

- The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is:

$$
D_{u} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{o}+h a, y_{o}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if the limit exists.

- Special cases:
- If $\mathbf{u}=\mathbf{i}=\langle 1,0\rangle$, then $D_{i} f=f_{x}$
- If $\mathbf{u}=\mathbf{j}=\langle 0,1\rangle$, then $D_{j} f=f_{f}$.

That is, the partial derivatives of f with respect to x and y are just special cases of the directional derivative.

8.1 The Jacobian Determinant

- The Jacobian determinant, $|\mathbf{J}|$, at a point \mathbf{x} gives information about the behavior of $F($.$) near \mathbf{x}$. For instance, the continuously differentiable function F is invertible near a point $\mathbf{x} \in R^{n}$ if $|\mathbf{J}| \neq 0$.
- Use $|\mathbf{J}|$ to test the existence of functional dependence between functions. If $|\mathbf{J}|=0 \Rightarrow$ functional dependence, that is, a solution to a system of equations does not exist.
- Not limited to linear functions.
- For the 2×2 case:

$$
|J|=\left|\begin{array}{ll}
\partial y_{1} / \partial x_{1} & \partial y_{1} / \partial x_{2} \\
\partial y_{2} / \partial x_{1} & \partial y_{2} / \partial x_{2}
\end{array}\right|
$$

8.1 Cross partial derivatives

- The partial derivative is also a function of $\boldsymbol{x}: f^{\prime}(\boldsymbol{x})=\mathrm{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- If the n partial derivatives are continuous functions at point \boldsymbol{x}, we say that f is continuously differentiable at \boldsymbol{x}.
- If the n partial derivatives are themselves differentiable on an open set $S \in R^{n}$, we can compute their partial derivatives. For example:

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial f}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right)
$$

- The result of this differentiation is known as the cross partial derivative of f with respect to x_{i} and x_{j}. It is usually denoted as $f_{i j}$.
- When $i=j$, cross partial derivatives becomes the second-order derivative, denoted as $f_{i i}$. The matrix of all second derivatives is the Hessian.

8.1 Cross partial derivatives: Greeks

■ We want to know how the $\mathrm{BS} \Delta$ changes as maturity approaches. Recall:

$$
\Delta=\frac{d C_{t}}{d S_{t}}=N(d 1) \& \mathrm{~d} 1=\left[\ln \left(S_{t} / \mathrm{K}\right)+\left(\mathrm{i}+\sigma^{2} / 2\right)(\mathrm{T}-\mathrm{t})\right] /(\sigma \sqrt{T-t}) .
$$

Then,

$$
\frac{d^{2} C_{t}}{d S_{t} d t}=\frac{d \Delta}{d t}=\frac{d N(d 1)}{d t}=N^{\prime}(d 1) * \frac{d(d 1)}{d t}
$$

Using $N^{\prime}(d 1)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{d 1^{2}}{2}} \quad \&$

$$
\frac{d(d 1)}{d t}=-\frac{\left(i+\frac{\sigma^{2}}{2}\right)}{2 \sigma \sqrt{T-t}}+\frac{\ln \left(\frac{S}{K}\right)}{2 \sigma(T-t)^{3 / 2}}
$$

we get:

$$
\frac{d \Delta}{d t}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{d 1^{2}}{2}} *\left\{-\frac{\left(i+\frac{\sigma^{2}}{2}\right)}{2 \sigma \sqrt{T-t}}+\frac{\ln \left(\frac{S}{K}\right)}{2 \sigma(T-t)^{3 / 2}}\right\}
$$

8.1 Cross partial derivatives: Greeks

- If the option is at-the-money $\left(S_{t}=\mathrm{K}\right)$, then

$$
\frac{d \Delta}{d t}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{d 1^{2}}{2}} *\left\{-\frac{\left(i+\frac{\sigma^{2}}{2}\right)}{2 \sigma \sqrt{T-t}}\right\}<0
$$

That is, as time goes by, delta decreases.

Note: Same qualitative result if the call option is out-of-the-money $\left(S_{t}\right.$ $<\mathrm{K}$).

8.1 Cross partial derivatives: Hessian

- The matrix of all second derivatives is called the Hessian, usually denoted by \mathbf{H}. For example:

$$
H=\left[\begin{array}{cc}
\partial^{2} f / \partial x_{1}^{2} & \partial^{2} f /\left(\partial x_{1} \partial x_{2}\right) \\
\partial^{2} f /\left(\partial x_{2} \partial x_{1}\right) & \partial^{2} f / \partial x_{2}^{2}
\end{array}\right]
$$

Example: Cobb-Douglas function, $\mathrm{Q}=A K^{\alpha} L^{\beta}$

$$
\begin{aligned}
& Q_{K}=\alpha A K^{\alpha-1} \mathrm{~L}^{\beta} \\
& Q_{L}=\beta A \mathrm{~K}^{\alpha} \mathrm{L}^{\beta-1} \\
& H=\left[\begin{array}{cc}
-\alpha(1-\alpha) A K^{\alpha-2} \mathrm{~L}^{\beta} & \beta \alpha A K^{\alpha-1} \mathrm{~L}^{\beta-1} \\
\alpha \beta A K^{\alpha-1} \mathrm{~L}^{\beta-1} & -\beta(1-\beta) A \mathrm{~K}^{\alpha} \mathrm{L}^{\beta-2}
\end{array}\right]
\end{aligned}
$$

Note: $f_{i j}=f_{j i}$ This is a general result (Young's Theorem). Then, \mathbf{H} is a symmetric matrix. H plays a very important role in optimization.

8.1 Cross partial derivatives: Hessian - Example

■ We want to calculate \mathbf{H} for a function, using econometrics notation, of β_{1} and β_{2} and σ^{2} (we treat x_{t} and y_{t} as constants, along with σ^{2}). This (log) function is:
$\log L=f\left(y_{1}, y_{2}, \ldots, y_{T} \mid \beta, \sigma^{2}\right)=-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{t}-x_{1, t}{ }^{\prime} \beta_{1}-x_{2, t}{ }^{\prime} \beta_{2}\right)^{2}$
1st derivative s:

$$
\begin{aligned}
& f_{x}=\frac{\partial \ln L}{\partial \beta_{1}}=-\frac{1}{2 \sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}} 2\left(y_{t}-x_{1, t} \beta_{1}-x_{2, t} \beta_{2}\right)\left(-x_{1, t}\right)=\frac{1}{\sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t} x_{1, t}-x_{1, t}^{2} \beta_{1}-x_{2, t} x_{1, t} \beta_{2}\right) \\
& f_{y}=\frac{\partial \ln L}{\partial \beta_{2}}=\frac{1}{\sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t} x_{2, t}-x_{1, t} x_{2, t} \beta_{1}-x_{2, t}^{2} \beta_{2}\right)
\end{aligned}
$$

2nd derivatives and cross derivative s:
$f_{x x}=\frac{\partial^{2} \ln L}{\partial \beta_{1}^{2}}=-\frac{1}{\sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}} x_{1, t}^{2}<0$
$f_{x y}=\frac{\partial^{2} \ln L}{\partial \beta_{1} \partial \beta_{2}}=-\frac{1}{\sigma^{2}} \sum_{\mathrm{t}=1}^{\mathrm{T}} x_{2, x} x_{1, t}$
$f_{y y}=\frac{\partial^{2} \ln L}{\partial \beta_{2}{ }^{2}}=-\frac{1}{\sigma^{2}} \sum_{t=1}^{\mathrm{T}} x_{2, t}{ }^{2}<0$

8.1 Cross partial derivatives: Hessian - Example

- Then:

$$
\begin{aligned}
& f_{x x}=-\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}} x_{1, t}^{2}<0 \\
& f_{x y}=-\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}} x_{2, t} x_{1, t} \\
& f_{y y}=-\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}} x_{2, t}^{2}<0 \\
& H=\left[\begin{array}{ll}
-\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}}\left(x_{1, t}^{2}\right) & -\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}}\left(x_{2, t} x_{1, t}\right) \\
-\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}}\left(x_{1, t} x_{2, t}\right) & -\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}}\left(x_{2, t}^{2}\right)
\end{array}\right]=-\frac{1}{\sigma^{2}} \sum_{i=1}^{\mathrm{T}}\left[\begin{array}{cc}
x_{1, t}^{2} & x_{2, t} x_{1, t} \\
x_{1, t} x_{2, t} & x_{2, t}
\end{array}\right]=-\frac{X^{\prime} X}{\sigma^{2}}
\end{aligned}
$$

Note: \mathbf{H} plays an important role in maximum likelihood estimation. Its (negative expected) inverse is used to calculate SE.

8.2 Differentials

Problem: What if no explicit reduced-form solution exists because of the general form of the model?
Example: In the macro model, what is $\partial \mathrm{Y} / \partial \mathrm{T}$ when

$$
\mathrm{Y}=\mathrm{C}\left(\mathrm{Y}, \mathrm{~T}_{0}\right)+\mathrm{I}_{0}+\mathrm{G}_{0} \text { ? }
$$

T_{0} can affect C direct and indirectly through Y , violating the partial derivative assumption.
Solution: Use differentials! Recall that we thought of differentials as a (1st-order) approximation to a change in $f(\mathrm{x}): \mathrm{d} f(\mathrm{x})=\Delta x f^{4}(\mathrm{x})$

- Find the derivatives directly from the original equations in the model.
- Take the total differential, adding all the effects (indirect and direct).
- The partial derivatives become the parameters in the sum.

8.2.1 Differentials and derivatives

- Recall that we thought of differentials as a ($1^{\text {st }}$-order) approximation to a change in $f(x)$: $\mathrm{d} f(\mathrm{x})=\Delta x f^{\prime}(\mathrm{x})$.
- Total derivatives measure the total change in y from the direct and indirect affects of a change in x_{i}.
- The symbols $\mathrm{d} y$ and $\mathrm{d} x$ are called the differentials of $y \& x$, respectively.
- A differential describes the change in y that results for a specific and not necessarily small change in x from any starting value of x in the domain of the function $y=f(x)$.
- The derivative $(\mathrm{d} y / \mathrm{d} x)$ is the quotient of two differentials: $\mathrm{d} y \& \mathrm{~d} x$.
- $f^{\prime}(x) \mathrm{d} x$ is a first-order approximation of $\mathrm{d} y$:

$$
y=f(x) \Rightarrow d y=f^{\prime}(x) d x
$$

8.2.2 Differentials and point elasticity

- Let $\mathrm{Q}_{\mathrm{d}}=f(\mathrm{P}) \quad$ (explicit-function general-form demand equation)
- Find the elasticity of demand with respect to price. We use and manipulate differentials.
$\varepsilon_{d} \equiv \frac{\% \Delta Q_{d}}{\% \Delta P}=\frac{\left(d Q_{d}\right) / Q_{d}}{(d P) / P}=\frac{\left(d Q_{d} / d P\right)}{Q_{d} / P}=\frac{\text { marginal function }}{\text { average function }}$
elastic if $\left|\varepsilon_{d}\right|>1$, inelastic if $\left|\varepsilon_{d}\right|<1$

8.3 Total Differentials

- Extending the concept of differential to smooth continuous functions with two or more variables
- Let $y=f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \quad$ Find total differential $\mathrm{d} y$

$$
d y=\frac{\partial y}{\partial x_{1}} d x_{1}+\frac{\partial y}{\partial x_{2}} d x_{2} \Rightarrow d y=f_{1} d x_{1}+f_{2} d x_{2}
$$

- Chain Rule derivation:

Find $\mathrm{dz} / \mathrm{dx}_{1}$, where $z=f(y)$ and $y=g\left(x_{1}, x_{2}\right)$.
Algorithm : Substitute the total differential of y into that of z and divide through by dx_{1} assuming $\mathrm{dx}_{2}=0$

1) $d z=\frac{d z}{d y} d y$
2) $d y=\frac{\partial y}{\partial x_{1}} d x_{1}+\frac{\partial y}{\partial x_{2}} d x_{2}$
3) $d z=\frac{d z}{d y}\left(\frac{\partial y}{\partial x_{1}} d x_{1}+\frac{\partial y}{\partial x_{2}} d x_{2}\right)$
4) $\left.\frac{d z}{d x_{1}}\right|_{d x_{2}=0}=\frac{d z}{d y} \frac{\partial y}{\partial x_{1}}$

8.3 Total Differentials - Example

- Let U be a utility function: $\mathrm{U}=\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right)$
- Differentiation of U with respect to x_{i}
- $\partial \mathrm{U} / \partial x_{\mathrm{i}}$ is the marginal utility of the good x_{i}
- $\mathrm{d} x_{\mathrm{i}}$ is the change in consumption of good x_{i}.

$$
d U=\frac{\partial U}{\partial x_{1}} d x_{1}+\frac{\partial U}{\partial x_{2}} d x_{2}+\ldots+\frac{\partial U}{\partial x_{n}} d x_{n}
$$

- $d U$ equals the sum of the marginal changes in the consumption of each good and service in the consumption function.
- To find total derivative wrt to x_{1} divide through by the differential $\mathrm{d} x_{1}$ (partial total derivative):

$$
\frac{d U}{d x_{1}}=\frac{\partial U}{\partial x_{1}}+\frac{\partial U}{\partial x_{2}} \frac{d x_{2}}{d x_{1}}+\ldots+\frac{\partial U}{\partial x_{n}} \frac{d x_{n}}{d x_{1}}
$$

8.3 Rules of Differentials (same as derivatives)

Let k is a constant function; $\mathrm{u}=u\left(x_{1}\right) ; \mathrm{v}=v\left(x_{2}\right)$

- 1. $\mathrm{d} k=0$
(constant-function rule)
- 2. $\mathrm{d}\left(\mathrm{c} u^{\mathrm{n}}\right)=\mathrm{cn} u^{\mathrm{n}-1} \mathrm{~d} u$
(power-function rule)
- 3. $\mathrm{d}(u \pm v)=\mathrm{d} u \pm \mathrm{d} v$
(sum-difference rule)
- 4. $\mathrm{d}(u v)=v \mathrm{~d} u+u \mathrm{~d} v$
(product rule)
- 5. $d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}$
(quotient rule)
- 7. $\mathrm{d}(u v w)=v w \mathrm{~d} u+w w \mathrm{~d} v+u v \mathrm{~d} w$
$d(u \pm v \pm w)=d u \pm d v \pm d w$

8.3 Example:

Find the total differential $(\mathrm{d} \nabla)$ of the function

1) $z=\frac{x+y}{2 x^{2}}$
2) $z=\frac{x}{2 x^{2}}+\frac{y}{2 x^{2}}$
3) $d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y$
4) $\frac{\partial z}{\partial x}=\frac{\partial}{\partial x}\left(\frac{x}{2 x^{2}}+\frac{y}{2 x^{2}}\right)=\frac{2 x^{2}-4 x^{2}}{\left(2 x^{2}\right)^{2}}+\frac{-4 x y}{\left(2 x^{2}\right)^{2}}$

$$
=\frac{2 x^{2}-4 x^{2}-4 x y}{4 x^{4}}=\frac{x-2 x-2 y}{2 x^{3}}
$$

5) $\frac{\partial z}{\partial y}=\frac{\partial}{\partial y}\left(\frac{x}{2 x^{2}}+\frac{y}{2 x^{2}}\right)=\frac{\partial}{\partial y}\left(\frac{y}{2 x^{2}}\right)=\frac{1}{2 x^{2}}$
6) $d z=\frac{-(x+2 y)}{2 x^{3}} d x+\frac{1}{2 x^{2}} d y$

8.3.1 Finding Total Derivatives from Differentials

Given

1) $y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Total differential dy is equal to the sum of the partial changes in y :
2) $d y=\frac{\partial y}{\partial x_{1}} d x_{1}+\frac{\partial y}{\partial x_{2}} d x_{2}+\ldots+\frac{\partial y}{\partial x_{n}} d x_{n}$
3) $d y=f_{1} d x_{1}+f_{2} d x_{2}+\ldots+f_{n} d x_{n}$

The partial total derivative of y wrt x_{1}, for example, is found by dividing both sides by $d x_{1}$
4) $\frac{d y}{d x_{1}}=f_{1}+f_{2} \frac{d x_{2}}{d x_{1}}+\ldots+f_{n} \frac{d x_{n}}{d x_{1}}$

8.4 Multivariate Taylor Series

- Recall Taylor's series formula

$$
f(x) \approx T(x, c)=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)^{1}+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

- We want to generalize the Taylor polynomial to multivariate functions. A similar logic to the univariate case gives us:
$f(x) \approx T(x, a)=f(\mathrm{a})+D f(\mathrm{a})(\mathrm{x}-\mathrm{a})^{1}+\frac{1}{2!}(\mathrm{x}-\mathrm{a})^{T} H(\mathrm{a})(\mathrm{x}-\mathrm{a})+\ldots$
- Using abbreviated notation:

$$
\mathrm{T}(\mathbf{x}, \mathbf{a})=\Sigma_{\mathrm{j}=0 \text { to } n}(1 / \mathrm{j}!) \operatorname{Dif}(\mathbf{a})(\mathbf{x}-\mathbf{a})^{\mathrm{j}} .
$$

8.4 Multivariate Taylor Series

Example: $1^{\text {st_}}$-order Taylor series, around $\mathbf{a}=(d, c)=(0,0)$ of

$$
f(x, y)=[(1+x) /(1+y)]-1
$$

$$
f(\mathrm{x}, \mathrm{y})=[(1+\mathrm{x}) /(1+\mathrm{y})]-1 \quad \Rightarrow f(c=0, d=0)=[(1+0) /(1+0)]-1=0
$$

$$
f_{x}=1 /(1+\mathrm{y}) \quad \Rightarrow f_{x}(c=0, d=0)=1
$$

$$
f_{y}=(-1)(1+\mathrm{x}) /(1+\mathrm{y})^{2} \quad \Rightarrow f_{y}(c=0, d=0)=-1
$$

Then, $1^{\text {st }}$-order Taylor series formula:

$$
f(x, y) \approx T(x, y ; 0)=0+1(x-0)+(-1)(y-0)=x-y
$$

- Application to Relative Purchasing Power Parity (PPP):

$$
\mathrm{e}_{\mathrm{f}, \mathrm{~T}}^{\mathrm{PPP}}=\left[\left(1+\mathrm{I}_{\mathrm{d}}\right) /\left(1+\mathrm{I}_{\mathrm{f}}\right)\right]-1 \approx\left(\mathrm{I}_{\mathrm{d}}-\mathrm{I}_{\mathrm{f}}\right),
$$

where $\mathrm{e}_{\mathrm{f}, \mathrm{T}}$ is the percentage change in exchange rates from t to T , or:

$$
\mathrm{e}_{\mathrm{f}, \mathrm{~T}}=\left(\mathrm{S}_{\mathrm{t}+\mathrm{T}} / \mathrm{S}_{\mathrm{t}}\right)-1
$$

8.5 Homogeneous Functions

- Definition:

A function $f\left(x_{1}, \ldots, x_{n}\right)$ is homogeneous of degree r if multiplication of each of its independent variables by a constant j will alter the value of the function by the proportion j^{r}, that is;
if $f\left(j x_{1}, \ldots, j x_{n}\right)=j^{r} f\left(x_{1}, \ldots x_{n}\right)$, for all $f\left(j x_{1}, \ldots, j x_{n}\right)$ in the domain of f

Special cases:

- If $r=0, j^{0}=1$, the function is homogeneous of degree zero
- If $r=1, j^{1}=\mathfrak{j}$, the function is homogeneous of degree one, sometimes called linearly homogeneous.

Note: Technically if $j>0$, we say positive homogenous.

8.5 Homogeneous Functions: Examples

Examples:

- In applied work, it is common to see homogenous production functions. For example, a firm increases inputs by k, then output increases by k. Then, $f($.$) is homogenous of degree (r=1$), we say, $f($.) shows constant returns to scale. If $r>1(r<1), f($.$) shows increasing$ (decreasing) returns to scale.
- Demand functions are homogeneous. If all prices and income change by the same amount (the budget constraint does not change), the demands remain unchanged. That is,

$$
D\left(j p_{1}, \ldots, j p_{\mathrm{n}}, j I\right)=D\left(x_{1}, \ldots x_{n} I\right) \quad \Rightarrow \text { homogenous of degree } 0 .
$$

Since individual demands have $r=0$, the aggregate demand (sum of individual demands) also has $r=0$.

8.5 Homogeneous Functions: Cobb-Douglas

- A popular production function is the Cobb-Douglas:

$$
\mathrm{Q}=\mathrm{A} K^{\alpha} L^{\beta} .
$$

The Cobb-Douglas function is homogeneous of degree $\alpha+\beta$:

$$
\begin{aligned}
& A(j K)^{\alpha}(j L)^{\beta}=A j^{\alpha} j^{\beta} K^{\alpha} L^{\beta} \\
& =A j^{\alpha+\beta} K^{\alpha} L^{\beta}=j^{\alpha+\beta} A K^{\alpha} L^{\beta} \\
& =j^{\alpha+\beta} Q
\end{aligned}
$$

Cases: $\alpha+\beta>1$ increasing returns (paid $<$ share)

$$
\alpha+\beta<1 \text { decreasing returns (paid }>\text { share) }
$$

$\alpha+\beta=1$, constant returns (function is linearly homogeneous)
Note: In empirical work it is usually found that $\alpha+\beta$ are close to 1 .
Assuming linear homogeneity is common.

8.5 Homogeneous Functions: Cobb-Douglas

- Linear homogeneity of $\mathrm{Q}=\mathrm{A} K^{\alpha} L^{\beta}$
- If $\alpha+\beta=1$, the Cobb-Douglas function is linearly homogeneous. Let $\mathfrak{j}=1 / L$, then the average physical product of labor $\left(\operatorname{APP}_{L}\right)$ and of capital $\left(\mathrm{APP}_{K}\right)$ can be expressed as the capital-labor ratio, $k \equiv K / L$:

$$
\begin{aligned}
& j Q=\frac{Q}{L}=\phi(k)=A\left(\frac{K}{L}\right)^{\alpha}\left(\frac{K}{L}\right)^{1-\alpha}=A k^{\alpha} \\
& \operatorname{APP}_{\mathrm{L}}=\frac{Q}{L}=\phi(k)=A k^{\alpha} \\
& \operatorname{APP}_{\mathrm{K}}=\frac{Q}{L} \frac{L}{K}=\frac{\phi(k)}{k}=A k^{\alpha-1}
\end{aligned}
$$

Note: This result applies to linearly homogeneous functions

$$
\mathrm{Q}=f(K, L) \Rightarrow \quad j Q=Q / L=f(K / L, L / L)=f(k, 1)=\phi(k)
$$

8.5 Homogeneous Functions: Properties

■ Given a linearly homogeneous production function $\mathrm{Q}=f(K, L)$, the marginal physical products MPP_{L} and MPP_{K} can be expressed as functions of k alone:

$$
\begin{aligned}
& M P P_{K}=\phi^{\prime}(k) \\
& M P P_{L}=\phi(k)-k \phi^{\prime}(k)
\end{aligned}
$$

8.5 Homogeneous Functions: Euler's Theorem

Euler's Theorem

Let $f: \mathrm{R}^{n}{ }_{+} \rightarrow \mathrm{R}$ be continuous, and differentiable on $\mathrm{R}^{n}{ }_{+}$. Then, f is homogeneous of degree r if and only if for all $\boldsymbol{x} \in \mathbf{R}^{\mathrm{n}}{ }^{\text {}}$:

$$
r f\left(x_{1}, \ldots, x_{\mathrm{n}}\right)=\Sigma_{i} f_{i} x_{i}
$$

Example: Suppose $\mathrm{Q}=f(K, L)$, is homogeneous of degree 1, then,

$$
Q=K \frac{\partial Q}{\partial K}+L \frac{\partial Q}{\partial L}=K(M P K)+L(M P L)
$$

Then, if each input is paid the amount of its marginal product the total product will be exactly exhausted by the distributive shares for all the inputs -i.e., no residual is left.

8.5 Homogeneous Functions: Euler's Theorem

- Euler's theorem has a useful corollary:

Suppose that $f: \mathrm{R}^{n} \rightarrow \mathrm{R}$ is differentiable and homogeneous of degree k. Then its first-order partial derivatives f_{i} are homogeneous of degree $k-1$.

Example: Suppose $\mathrm{Q}=f(\mathrm{~K}, \mathrm{~L})$ is homogeneous of degree 1, then, the MPL and MPK are homogeneous of degree 0 . This implies:

$$
\begin{aligned}
& 0=\frac{\partial Q}{\partial L}=L \frac{\partial Q}{\partial L}\left(\frac{\partial Q}{\partial L}\right)+K \frac{\partial Q}{\partial K}\left(\frac{\partial Q}{\partial L}\right)=L \frac{\partial^{2} Q}{\partial L^{2}}+K \frac{\partial^{2} Q}{\partial K \partial L} \\
& \frac{\partial^{2} Q}{\partial K \partial L}=-\frac{L}{K} \frac{\partial^{2} Q}{\partial L^{2}}
\end{aligned}
$$

which is positive since $f_{i i}<0$. That is, the marginal productivity of one factor increases when the other factor also increases (Wicksell's law).

8.5 Homogeneous Functions: Black-Scholes

- Recall the BS call pricing formula:

$$
C_{t}=S_{t} N(d 1)-K e^{-i(T-t)} N(d 2)
$$

It is easy to check that it is homogenous of degree one in S_{t} and K, if we assume the other variables are fixed, especially σ (this assumption is called "sticky-by-strike").

We can apply Euler's Theorem to quickly derive Δ :

$$
\begin{aligned}
& C_{t}=S_{t} * \frac{d C_{t}}{d S_{t}}+K * \frac{d C_{t}}{d K} \\
& \Rightarrow \quad \Delta=\frac{d C_{t}}{d S_{t}}=N(d 1) .
\end{aligned}
$$

Note: The homogeneity property (in financial engineering "sticky. moneyness regime") holds for a more general class of pricing models.

8.6 Implicit Function Theorem

- So far, if we were given $\mathrm{F}(y, x)=0 \rightarrow y=f(x)$.$\mathrm{d} y / \mathrm{d} x$ easy to calculate (not always realistic situation.)
- Suppose $\mathrm{F}(y, x)=x^{3}-2 x^{2} y+3 x y^{2}-22=0$,
\square not easy to solve for $y=f(x) \quad \Rightarrow \mathrm{d} y / \mathrm{d} x=$?
- Implicit Function Theorem: given $\mathrm{F}\left(y, x_{1} \ldots, x_{m}\right)=0$
a) if F has continuous partial derivatives $\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{1}, \ldots, F_{\mathrm{m}}$ and $\mathrm{F}_{\mathrm{y}} \neq 0$
b) if at point $\left(y_{0}, x_{10}, \ldots, x_{m 0}\right)$, we can construct a neighborhood
(N) of $\left(x_{1} \ldots, x_{m}\right)$, say, by limiting the range of $y, y=f\left(x_{1} \ldots, x_{m}\right)$ - -i.e., each vector of x 's \rightarrow unique y

Then, i) y is an implicitly defined function $y=f\left(x_{1} \ldots, x_{m}\right)$ and
ii) still satisfies $\mathrm{F}\left(y, x_{1} \ldots x_{m}\right)$ for every m-tuple in the N_{37} such that $\mathrm{F} \equiv 0$.

8.6.1 Implicit Function Rule

- If the function $\mathrm{F}\left(y, x_{1}, x_{2}, \ldots, x_{n}\right)=\mathrm{k}$ is an implicit function of $y=$ $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then

$$
F_{y} d y+F_{x_{1}} d x_{1}+F_{x_{2}} d x_{2}+\ldots+F_{x_{n}} d_{x_{n}}=0
$$

where $F_{y}=\partial \mathrm{F} / \partial \mathrm{y} ; \quad F_{\mathrm{x} 1}=\partial \mathrm{F} / \partial \mathrm{x}_{1}$

- From this result, we derive the implicit function rule.
- Total differentiation of $\mathrm{F}\left(y, x_{1}, x_{2} \ldots x_{n}\right)=0, \& \operatorname{set} \mathrm{~d} x_{2 \text { to } \mathrm{n}}=0$
$F_{y} d y=-F_{x_{1}} d x_{1}-F_{x_{2}} d x_{2}-\ldots-F_{x_{n}} d_{x_{n}}$
$\left.\frac{d y}{d x_{1}}\right|_{d x_{x} \cdots d x_{n}=0}=\frac{\partial y}{\partial x_{1}}=-\frac{F_{x_{1}}}{F_{y}} \quad$ (Implicit function rule)

8.6.1 Implicit function problem - Examples

- Given the equation $\mathrm{F}(y, x)=x^{3}-2 x^{2} y+3 x y^{2}-22=0$,
- Q1: Find the implicit function $y=f(x)$ defined at $(y=3, x=1)$

■ The function F has continuous partial derivatives $F_{y}, F_{1}, \ldots, F_{\mathrm{m}}$: $\partial \mathrm{F} / \partial \mathrm{y}=F_{\mathrm{y}}=-2 x^{2}+6 x y \quad \partial \mathrm{~F} / \partial \mathrm{x}=F_{\mathrm{x}}=3 x^{2}-4 x y+3 y^{2}$

- At $\left(y_{0}, x_{10}, \ldots, x_{m 0}\right)$ satisfying $\mathrm{F}\left(y, x_{1} \ldots, x_{m}\right)=0, F_{\mathrm{y}} \neq 0$: $\mathrm{F}(y=3, x=1)=1^{3}-2 * 1^{2} * 3+3 * 1 * 3^{2}-22=0$; $\mathrm{F}_{\mathrm{y}}(y=3, x=1)=-2 x^{2}+6 x y=-2 * 1^{2}+6 * 1 * 3=16$.
- Yes! We have a continuous function f with continuous partial derivatives.
- Q2: Find $\mathrm{d} y / \mathrm{d} x$ by the implicit-function rule. Evaluate it at $(y=3, x=1)$
- $\mathrm{d} y / \mathrm{d} x=-F_{\mathrm{x}} / F_{\mathrm{y}}=-\left(3 x^{2}-4 x y+3 y^{2}\right) /\left(-2 x^{2}+6 x y\right)$
$\mathrm{d} y / \mathrm{d} x=-\left(3^{*} 1^{2}-4 * 1 * 3+3 * 3^{2}\right) /\left(-2 * 1^{2}+6^{*} 1 * 3\right)=-18 / 16=-9 / 839$

8.6.2 Derivatives of implicit functions - Examples

- Example 1:

If $\mathrm{F}(z, x, y)=x^{2} z^{2}+x y^{2}-z^{3}+4 y z=0$, then, $\quad \frac{\partial y}{\partial z}=-\frac{F_{z}}{F_{y}}=-\frac{2 x^{2} z-3 z^{2}+4 y}{2 x y+4 z}$

- Example 2: Implicit Production function: $\mathrm{F}(\mathrm{Q}, \mathrm{K}, \mathrm{L})$

$$
\partial \mathrm{F} / \partial \mathrm{J}=\mathrm{F}_{\mathrm{J}} \quad \mathrm{~J}=\mathrm{Q}, \mathrm{~K}, \mathrm{~L}
$$

Applying the implicit function rule:
$\partial \mathrm{Q} / \partial \mathrm{L}=-\left(\mathrm{F}_{\mathrm{L}} / \mathrm{F}_{\mathrm{Q}}\right) \quad-\mathrm{MPP}_{\mathrm{L}}$
$\partial \mathrm{Q} / \partial \mathrm{K}=-\left(\mathrm{F}_{\mathrm{K}} / \mathrm{F}_{\mathrm{Q}}\right) \quad-\mathrm{MPP}_{\mathrm{K}}$
$\partial \mathrm{K} / \partial \mathrm{L}=-\left(\mathrm{F}_{\mathrm{L}} / \mathrm{F}_{\mathrm{K}}\right) \quad-\mathrm{MRTS}$: Slope of the isoquant

8.6.3 Extension: Simultaneous equations case

- We have a set of m implicit equations. We are interested in the effect of the exogenous variables (\mathbf{x}) on the endogenous variables (y). That is, $\mathrm{d} y_{\mathrm{i}} / \mathrm{d} x_{\mathrm{j}}$.
- Find total differential of each implicit function.
- Let all the differentials $\mathrm{d} x_{\mathrm{i}}=0$ except $\mathrm{d} x_{1}$ and divide each term by $\mathrm{d} x_{1}$ (note: $\mathrm{d} x_{1}$ is a choice)
- Rewrite the system of partial total derivatives of the implicit functions in matrix notation

8.6.3 Extension: Simultaneous equations case

Example : 2x2 System

1) $F_{1}\left(y_{1}, y_{2}, x_{1}\right) \equiv 0$
2) $F_{2}\left(y_{1}, y_{2}, x_{2}\right) \equiv 0$
3) $\frac{\partial F_{1}}{\partial y_{1}} d y_{1}+\frac{\partial F_{1}}{\partial y_{2}} d y_{2}+\frac{\partial F_{1}}{\partial x_{1}} d x_{1}=0$
4) $\frac{\partial F_{2}}{\partial y_{1}} d y_{1}+\frac{\partial F_{2}}{\partial y_{2}} d y_{2}+\frac{\partial F_{2}}{\partial x_{2}} d x_{2}=0$
5) $\frac{\partial F_{1}}{\partial y_{1}} d y_{1}+\frac{\partial F_{1}}{\partial y_{2}} d y_{2}=-\frac{\partial F_{1}}{\partial x_{1}} d x_{1}+0 d x_{2}$
6) $\frac{\partial F_{2}}{\partial y_{1}} d y_{1}+\frac{\partial F_{2}}{\partial y_{2}} d y_{2}=0 d x_{1}-\frac{\partial F_{2}}{\partial x_{2}} d x_{2}$

8.6.3 Extension: Simultaneous equations case

- Rewrite the system of partial total derivatives of the implicit functions in matrix notation ($\mathbf{A x}=\mathbf{d}$)

7) $\frac{\partial F_{1}}{\partial y_{1}} \frac{d y_{1}}{d x_{1}}+\frac{\partial F_{1}}{\partial y_{2}} \frac{d y_{2}}{d x_{1}}=-\frac{\partial F_{1}}{\partial x_{1}}$
8) $\frac{\partial F_{2}}{\partial y_{1}} \frac{d y_{1}}{d x_{1}}+\frac{\partial F_{2}}{\partial y_{2}} \frac{d y_{2}}{d x_{1}}=0$
9) $\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}\end{array}\right]\left[\begin{array}{l}\frac{d y_{1}}{d x_{1}} \\ \frac{d y_{2}}{d x_{1}}\end{array}\right]=\left[\begin{array}{c}-\frac{\partial F_{1}}{\partial x_{1}} \\ 0\end{array}\right]$
10) $\frac{\partial F_{1}}{\partial y_{1}} \frac{d y_{1}}{d x_{2}}+\frac{\partial F_{1}}{\partial y_{2}} \frac{d y_{2}}{d x_{2}}=0$
11) $\frac{\partial F_{2}}{\partial y_{1}} \frac{d y_{1}}{d x_{2}}+\frac{\partial F_{2}}{\partial y_{2}} \frac{d y_{2}}{d x_{2}}=-\frac{\partial F_{2}}{\partial x_{2}}$
12) $\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}\end{array}\right]\left[\begin{array}{l}\frac{d y_{1}}{d x_{2}} \\ \frac{d y_{2}}{d x_{2}}\end{array}\right]=\left[\begin{array}{c}0 \\ -\frac{\partial F_{2}}{\partial x_{2}}\end{array}\right]$

8.6.3 Extension: Simultaneous equations case

- Solve the comparative statics of endogenous variables in terms of exogenous variables using Cramer's rule

13) $\left[\begin{array}{l}\frac{d y_{1}}{d x_{1}} \\ \frac{d y_{2}}{d x_{1}}\end{array}\right]=\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}\end{array}\right]^{-1}\left[\begin{array}{c}-\frac{\partial F_{1}}{\partial x_{1}} \\ 0\end{array}\right]$ 14) $\left[\begin{array}{l}\frac{d y_{1}}{d x_{2}} \\ \frac{d y_{2}}{d x_{2}}\end{array}\right]=\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}\end{array}\right]^{-1}\left[\begin{array}{c}0 \\ -\frac{\partial F_{2}}{\partial x_{2}}\end{array}\right]$

$$
\frac{d y_{1}}{d x_{1}}=\frac{\left|\begin{array}{cc}
-\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\
0 & \frac{\partial F_{2}}{\partial y_{2}}
\end{array}\right|}{|J|}=\frac{-\frac{\partial F_{1}}{\partial x_{1}} \mathrm{x} \frac{\partial F_{2}}{\partial y_{2}}}{\frac{\partial F_{1}}{\partial y_{1}} \mathrm{x} \frac{\partial F_{2}}{\partial y_{2}}-\frac{\partial F_{1}}{\partial y_{2}} \mathrm{x} \frac{\partial F_{2}}{\partial y_{1}}}
$$

8.7 Application: The Market Model

- Assume the demand and supply functions for a commodity are general form explicit functions
$\mathrm{Q}_{\mathrm{d}}=\mathrm{D}\left(\mathrm{P}, \mathrm{Y}_{0}\right)$
$\left(\mathrm{D}_{\mathrm{p}}<0 ; \mathrm{D}_{\mathrm{Y} 0}>0\right)$
$\mathrm{Q}_{\mathrm{s}}=\mathrm{S}\left(\mathrm{P}, \mathrm{T}_{0}\right)$
$\left(\mathrm{S}_{\mathrm{p}}>0 ; \mathrm{S}_{\mathrm{T} 0}<0\right)$
- Q is quantity, $\quad \mathrm{P}$ is price, \quad (endogenous variables) Y_{0} is income, $\quad \mathrm{T}_{0}$ is the tax (exogenous variables) no parameters, all derivatives are continuous
- Find $\quad \partial \mathrm{P} / \partial \mathrm{Y}_{0}, \quad \partial \mathrm{P} / \partial \mathrm{T}_{0}$

$$
\partial \mathrm{Q} / \partial \mathrm{Y}_{0}, \quad \partial \mathrm{Q} / \partial \mathrm{T}_{0}
$$

- Solution:
- Either take total differential or apply implicit function rule
- Use the partial derivatives as parameters
- Set up structural form equations as $\mathbf{A x}=\mathrm{d}$,
- Invert A matrix or use Cramer's rule to solve for $\partial \mathrm{x} / \partial \mathrm{d}$

8.7 Application: The Market Model

1) $D\left(\bar{P}, Y_{0}\right)=S\left(\bar{P}, T_{0}\right) \equiv \bar{Q}$
2) $F^{1}\left(P, Q ; Y_{0}, T_{0}\right)=D\left(\bar{P}, Y_{0}\right)-\bar{Q} \equiv 0$
3) $F^{2}\left(P, Q ; Y_{0}, T_{0}\right)=S\left(\bar{P}, T_{0}\right)-\bar{Q} \equiv 0$

Suppose we are interested in finding $\mathrm{d} \bar{Q} / \mathrm{dY}_{0}$.
Take the total differential of equations (2) \& (3) and organize;
4) $D_{P}^{\prime} d \bar{P}-d \bar{Q}=-D_{Y_{0}}^{\prime} d Y_{0}$
5) $S_{P}^{\prime} d \bar{P}-d \bar{Q}=-S_{T_{0}}^{\prime} d T_{0}$

Put equations (4) \& (5) in matrix format ($\mathrm{Ax}=\mathrm{d}$);
6) $\left[\begin{array}{ll}D_{P}^{\prime} & -1 \\ S_{P}^{\prime} & -1\end{array}\right]\left[\begin{array}{l}d \bar{P} \\ d \bar{Q}\end{array}\right]=\left[\begin{array}{cc}-D_{Y_{0}}^{\prime} & 0 \\ 0 & -S_{T_{0}}^{\prime}\end{array}\right]\left[\begin{array}{l}d Y_{0} \\ d T_{0}\end{array}\right]=\left[\begin{array}{l}-D_{Y_{0}}^{\prime} d Y_{0} \\ -S_{T 0}^{\prime} d T_{0}\end{array}\right]$

8.7 Application: The Market Model

6) $\left[\begin{array}{ll}D_{P}^{\prime} & -1 \\ S_{P}^{\prime} & -1\end{array}\right]\left[\begin{array}{l}d \bar{P} \\ d \bar{Q}\end{array}\right]=\left[\begin{array}{l}-D_{r_{0}}^{\prime} d Y_{0} \\ -S_{T_{0}} d T_{0}\end{array}\right]$

Take the partial total derivative of equation (6) wrt to dY_{0}.
7) $\left[\begin{array}{l}\frac{d \bar{P}}{d Y_{0}} \\ \frac{d \bar{Q}}{d Y_{0}}\end{array}\right]=\left[\begin{array}{ll}D_{P}^{\prime} & -1 \\ S_{P}^{\prime} & -1\end{array}\right]^{-1}\left[\begin{array}{c}-D_{Y_{0}}^{\prime} \\ 0\end{array}\right]$

We want to calculate: $\frac{d \bar{Q}}{d Y_{0}}=\frac{\left|J_{2}\right|}{|J|}$
Calculate the Jacobian determinant, $|\mathrm{J}|$, and $\left|\mathrm{J}_{2}\right|$.
$|J|=\left|\begin{array}{ll}D_{P}^{\prime} & -1 \\ S_{P}^{\prime} & -1\end{array}\right|=S_{P}^{\prime}-D_{P}^{\prime}>0 \quad ; \quad\left|J_{2}\right|=\left|\begin{array}{cc}D_{P}^{\prime} & -D_{Y_{0}}^{\prime} \\ S_{P}^{\prime} & 0\end{array}\right|=S_{P}^{\prime} D_{Y_{0}}^{\prime}>0$
$\frac{d \bar{Q}}{d Y_{0}}=\frac{S_{P}^{\prime} D_{Y_{0}}^{\prime}}{S_{P}^{\prime}-D_{P}^{\prime}}>0$.

8.8 Limitations of Comparative Statics

- Comparative statics answers the question: how does the equilibrium change with a change in a parameter.
- The adjustment process is ignored
- New equilibrium may be unstable
- Before dynamic, optimization

8.9 Cheat-Sheet: Rules for Vector Derivatives

- Consider the linear function: $\quad \mathrm{y}=f(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{\beta} \boldsymbol{\beta}+\omega$ where \boldsymbol{x} and $\boldsymbol{\beta}$ are k-dimensional vectors and ω is a constant.

We derive the gradient in matrix notation as follows:

1. Convert to summation notation: $\quad f(\boldsymbol{x})=\sum_{i}^{k} x_{i} \beta_{i}$
2. Take partial derivative w.r.t. element $x_{j}: \quad \frac{\partial}{\partial x_{j}}\left[\sum_{i}^{k} x_{i} \beta_{i}\right]=\beta_{j}$
3. Put all the partial derivatives in a vector:

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
\frac{\partial f(\boldsymbol{x})}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(\boldsymbol{x})}{\partial x_{k}}
\end{array}\right]=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]
$$

4. Convert to matrix notation:

$$
\nabla f(\boldsymbol{x})=\beta
$$

8.9 Cheat-Sheet: Rules for Vector Derivatives

- Consider a quadratic form: $\quad \mathrm{q}=f(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{A} \boldsymbol{x}$ where \boldsymbol{x} is $k \times 1$ vector and \mathbf{A} is a $k \times k$ matrix, with $a_{j i}$ elements.

Steps:

1. Convert to summation notation:

$$
f(\boldsymbol{x})=\boldsymbol{x}^{\prime}\left[\begin{array}{c}
\sum_{i}^{k} a_{j 1} x_{j} \\
\vdots \\
\sum_{i}^{k} a_{j k} x_{j}
\end{array}\right]=\sum_{i}^{k} \sum_{i}^{k} x_{i} a_{j i} x_{j}
$$

(we rewrite $\sum_{i}^{k} \sum_{i}^{k} x_{i} a_{j i} x_{j}=\sum_{i}^{k} a_{i i} x_{i}^{2}+\sum_{i}^{k} \sum_{i \neq j}^{k} x_{i} a_{j i} x_{j}$)
2. Take partial derivative w.r.t. element x_{j} :

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}\left[\sum_{i}^{k} \sum_{i}^{k} x_{i} a_{j i} x_{j}\right]=2 a_{j j} x_{j}+\sum_{i \neq k}^{k} x_{i} a_{i j}+\sum_{i \neq k}^{k} a_{j i} x_{j} \tag{50}
\end{equation*}
$$

8.9 Cheat-Sheet: Rules for Vector Derivatives

2. Take partial derivative w.r.t. element x_{j} :

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}}\left[\sum_{i}^{k} \sum_{i}^{k} x_{i} a_{j i} x_{j}\right] & =2 a_{j j} x_{j}+\sum_{i \neq k}^{k} x_{i} a_{i j}+\sum_{i \neq k}^{k} a_{j i} x_{i} \\
& =\sum_{i}^{k} x_{i} a_{i j}+\sum_{i}^{k} a_{j i} x_{i}
\end{aligned}
$$

3. Put all the partial derivatives in a vector:

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
\frac{\partial f(\boldsymbol{x})}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(\boldsymbol{x})}{\partial x_{k}}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i}^{k} x_{i} a_{i 1} \\
\vdots \\
\sum_{i}^{k} x_{i} a_{i k}
\end{array}\right]+\left[\begin{array}{c}
\sum_{i}^{k} a_{1 i} x_{i} \\
\vdots \\
\sum_{i}^{k} a_{k i} x_{i}
\end{array}\right]
$$

4. Convert to matrix notation:

$$
\nabla f(\boldsymbol{x})=\mathbf{A}^{\prime} \boldsymbol{x}+\mathbf{A} \boldsymbol{x}=\left(\mathbf{A}^{\prime}+\mathbf{A}\right) \boldsymbol{x}
$$

If \mathbf{A} is symmetric, then $\nabla f(\boldsymbol{x})=2 \mathbf{A} \boldsymbol{x}$

8.9 Cheat-Sheet: Rules for Vector Derivatives

- Hessian of a linear function and a quadratic form
- Linear function:

$$
\mathrm{y}=f(\boldsymbol{x})=\boldsymbol{x}^{\prime} \beta+\omega
$$

We have already derived: $\quad \nabla f(\boldsymbol{x})=\beta$
Then, $\quad \mathbf{H}=\frac{\partial}{\partial \boldsymbol{x}}[\nabla f(\boldsymbol{x})=\beta]=\mathbf{0}$

- Quadratic form:

$$
\mathrm{q}=f(x)=x, \mathrm{~A} \boldsymbol{x}
$$

We have already derived $\nabla f(\boldsymbol{x})=\left(\mathbf{A}^{\prime}+\mathbf{A}\right) \boldsymbol{x}$
Then, $\mathbf{H}=\frac{\partial}{\partial \boldsymbol{x}}\left[\nabla f(\boldsymbol{x})=\left(\mathbf{A}^{\prime}+\mathbf{A}\right) \boldsymbol{x}\right]=\left(\mathbf{A}^{\prime}+\mathbf{A}\right)$

Abducted by an alien circus company, Professor Doyle is forced co write calculus equations in center ring.

