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Chapter 7
Rules of Differentiation
& Taylor Series

Isaac Newton and Gottfried Leibniz

(for private use, not to be posted/shated online)

7.1 Review: Derivative and Derivative Rules

* Review: Definition of derivative.

f'(x)= lim 2 = lim Sl +8x)- flx) _dy

A0 Ay A0 Ax dx

* Applying this definition, we review the 9 rules of differentiation:

dlf (x)=c]

1) Constant: T =0
2) Power: i
) dx

3) Sum/Difference W *IWN _ 4f | 49

dx dx dx
dif ()xg(x)] _ df ag
4) Product 0 T glx) + ™ f(x)
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7.1 Review: Derivative and Derivative Rules

* (continuation) 9 rules of differentiation:

alf /gl _ [df

5) Quotient (from 4) T Eg(x) - Z—i f(0)1/g(x)?

dle**c]

= kek*
dx

6) Exponential

. dlz=f(g(x)] _dz d :
7) Chain Rule % = ﬁ * % (with y = g(x))

8) Inverse function. Let ¥y = f(x) be a strictly monotonic function.
dr 1
dy
Y dx

9) Constant, Product and Power (from 1, 2 & 4)

d[cx™]
dx

= cnx" 1

= JEE
7.1.1 Constant Rule

e Recall the definition of derivative.

f'(x)= lim 2 = lim Sl +8x)- flx) _dy

A0 Ay A0 Ax dx

* Applying this definition, we derive the constant rule:

The derivative of a constant function is zero for all values of x.

~ ()= b _d
y=f(x)=k = . dxk 0
@ _ oy g SEHAX) - ()
dx S = Alglo Ax

If fix) = k  then fix + Ax) =k

lim =1lim0=0
Ax—0 Ax Ax—0
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7.1.2 Power-Function Rule

f(x+Ax)—f(x) Mim (x+Ax)" —x"

S = Al)lcgno Ax Ax—0 Ax

Mim (x" +nx""'Ax+(n=1D)x"Ax> + ...+ nxAx"" + Ax") — x”

B Ax—0 Ax

= Emo X"/ Ax+nx"" + (n=Dx"PAx+ .+ nxAx" 7 + Ax"T —x" / Ax
=nx""

lim GFAD) =X

Ax—0

Example: Let Total Revenue (R) be:
R=15Q- Q> :Z—gzMR=15—2Q.

As Q increases R increases (as long as Q > 7.5).

= JEE
7.1.3 Sum or Difference Rule

d ' '
D L) ell= 1)
* The derivative of a sum (or difference) of two functions is the

sum (or difference) of the derivatives of the two functions

Example : C = 0°-40%+100+75

dc = iQ3 _i4Q2 +110Q+i75

dQ  do~  dQ dQ dQ
dC

= =30*-80+10+0
70 0" -80
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7.1.4 Product Rule
gy ERION_ G ) + 22 ()

The derivative of the product of two functions is equal to the
second function times the derivative of the first p/us the first
function times the derivative of the second.

Example: Marginal Revenue (MR)
Total Revenue: R = P Q
Given P=15 -Q = R=(15 —-0Q)Q

dR aQ — _ _ _
:@_@Q-l- —P Q+1*(15 Q) 15 ZQ

Same as in previous example.

" JEE
7.1.5 Quotient Rule

dlf(x)/g()] df

5) TN 7 gy -2 peon/g o

Example :

C = C(Q) Total cost

AC = C(Q)/Q Average cost
d_c0)_0-clo)-c(o) :l{c’(g)_@} L - ac]
g 0 0 Q Q Q

if ddQ C(QQ ) =0, then AC = MC (Average Cost = Marginal Cost)
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7.1.6 Exponential-Function Rule

_ k(x+Ax)  Kx KAX
f'(x) = lim S+ Ax) f(x): lim & "% — ¢ lim (e D
Ax—0 Ax Ax—0 Ax A0 Ax
» . » N )
Definition of e : e unique positive number for which 111m ——=1
—0
h f—
Let i = k4x. Then, limu =K
h—0
K(x+Ax) eloc
Thus, lim —————— =™
Ax—0 Ax

* Example : Exponential Growth
d

y= f(t)z eOASt ZeOASt — O'SeOASt

" J
7.1.6 Exponential-Function Rule: Joke

® A mathematician went insane and believed that he was the
differentiation operator. His friends had him placed in a mental
hospital until he got better. All day he would go around frightening
the other patients by staring at them and saying "I differentiate you!"

® One day he met a new patient; and true to form he stared at him and
said "I differentiate you!", but for once, his victim's expression didn't
change.

m Surprised, the mathematician collected all his energy, stared fiercely
at the new patient and said loudly "I differentiate you!", but still the
other man had no reaction. Finally, in frustration, the mathematician
screamed out "I DIFFERENTIATE YOU!"

m The new patient calmly looked up and said, "Yow can differentiate me all
you like: I'm &-."
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7.1.7 Chain Rule

This is a case of two or more differentiable functions, in which each
has a distinct independent variable, where z = f{g(x)). That s,
z = f(y),1.e.,zis a function of variabley and

v = g(x),i.e.,yisa function of variablex

y e _dd

dx dy dx

d) d) dglx oo\

D) SOV )
Example: R = f{Q) (revenue)& Q= g(L) (output)
dR _dR dQ
dL  dQ dL

= 1'0)-¢'(1)

= MR-MPP, = MRP,

" J
7.1.7 Chain rule: Application — Log rule

e Chain Rule :d—Z= d—Zd—y

dx dy dx

df (v) _ df (v) dg (x)
dx dy  dx

= f'(»)g'(x)

* Consider h(x) = "™ =x. = P(x) = 1.

Now, apply Chain rule to A(x):

n(x) @ In(x) _ d In(x)
dx dx
d In(x) dn(x) 1

X = —

dx dx X

h'(x)=e

1=

12
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7.1.8 Inverse-function Rule

* Let y = f{x) be a differentiable strictly monotonic function:

d —17 1
£=f1(y)=?.

Note: A monotonic function is one in which a given value of x yields

a unique value of y, and given a value of y will yield a unique value of
x (a one-to-one mapping). These types of functions have a defined
inverse.

Example: Inverse supply function

Qs = by + b, P = P=-2+-0Q (where by> 0)
1 1

40s _ a _ 1

dP_b1 :>dQ_b1

13

= JEE
7.1.8 Inverse-function Rule

m This property of one-to-one mapping is unique to the class of
functions known as monotonic functions:

B Recall the definition of a function:

function: one y for each x

monotonic function:

B ifx, > x = fx) > Ax)
Q,=b,+bP
= by/by + (1/b)Qq

B ifx; > x) = fx) <Ax)
Q4=
P=ay/a;—(1/2)Qq

a,—a,P

one x for each y (inverse function)

monotonically increasing
supply function (where b; > 0)

inverse supply function

monotonically decreasing
demand function (where a, > 0)

inverse demand function "
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7.2 Extension: Partial Differentiation

® In multivariate calculus, y depends on several variables:

= X eeny X,)

® The derivative of y with respect to one of the variables —while the
other variables are held constant— is called a partial derivative.

y:f(x]7x23"'9xn)
A_y= lim f(xl+Ax1’x27""xn)_f(x17x2a"'axn)

lim
Ax;—0 Axl Ax;—0 Axl
Oy . .
=—=1f (partial derivative w.r.t. x,)
Ox,
In general, lim ﬂza—yz , i=1l.n
A0 Ax;  Ox;

" J
7.2 Application: Black-Scholes — Greeks

® The Black-Scholes (BS) formula prices an European call option on a
non-dividend paying stock, as a function of the stock price (S,), time
to maturity (T-t), strike price (K), interest rates (1) and the stock price
volatility (o):
C, = S, N(d1) — K e " T-DN(d2)
where
2

X
N(d) = [ =€ 7dx (standard normal distribution function)

dl = [In(S/K) + (i + 6%/2) (T - v)]/(c VT — ¢t),
d2 =[InS/K) + (—-0%/2) (T-19)]/(c VT —t)) =dl —c VT —t
* The Greeks represent the first derivatives of the BS pricing formulas

(ceteris paribus) with respect to the driver variables: S, (T-t), i, 6. For
example, the first detivative with respect to S, is called A (ot BS Delta)!®
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7.2 Application: Black-Scholes — Greeks (Delta)

* A = BS Delta
_dc; _ AN d(dl) . _jr—t) AN d(d2)
A as; N(dD + 5, a@n - ds; Ke a@z) = ds;

* Taking derivatives and using the FTC to get N'(d):

N@D o, 1 @
2D = N'(d1) ==
N(d2) _ .y _ 1 —ﬁ_ 1 —{d—12+£(T—t)—d10\/T—t}
W_N(dz)_\/T_ne 2 —Ee 2 2
d(d1l) _d@@2) _ 1
ds; ~ dSy  oST—t
Then,
1 _d2 d(d1) . 1 _d2? d(d1)
A=N(d1)+S;——e 2 * —Ke IO —¢e7 2 x——
@+ S s, Vi as;

"
7.2 Application: Black-Scholes — Greeks (Delta)

o2
A= N(dl) + Nl(dl) % % % [St - K e—{(l+7)(T—t)}+d16\/T—t] _ N(dl)
t

2
. St —{(i+6—>(T—t)}+d10'\/T—t
since i e 2

(from definition of d1)

* We can use A to establish a portfolio that is not sensitive to changes
in S;: A long position in one call and a short position A stocks. The
profits from this portfolio are:

I[T=C,-AS,
Then,

A _2%_p=,

ds;  dSg

Note: A position with a delta of zero is referred to as being de/z‘a—ﬂeutm{.g
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7.2 Application: Black-Scholes — Greeks (Vega)

* V = BS Vega: It measures the sensitivity of option prices to changes
in volatility. Recall BS formula:
C, =S, N(d1) — K e {T-DN(d2)
Then,
Ct

d(dl) d(dZ)

v =%t = 5, N'(d1) *
Using the result (check it):

d(d1) _ d(d2) —
=+ VT =t

do
and after some algebra, similar to what we did above with the result:

S,N'(d1) = K e '{T-DN'(d2),

— K e {T-ON'(d2) *

we get to:

V =S, NdDVT—¢t >0

"
7.2 Application: Black-Scholes — Greeks (Rho)

e P = BS Rho: It measures the sensitivity of option prices to changes
in interest rates. For the call option we get:

d(;l) K e {T-ON'(d2) *
+ (T —t)K e " T-DN(d2)

dC;

d(d2)
a T

Using the result (check it):
an) _ a2
di di
A bit of algebra, again, mainly using: S;N'(d1) = K e"{T~ON'(d2)

delivers
P=(T—t)Ke {T=D x N(d2)

20

10
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7.3 Second & Higher Derivatives

Derivative of a derivative

Given y = f{x)

The first derivative f'(x) or dy/dxis itself a function of x, it
should be differentiable with respect to x, provided that it is
continuous and smooth.

The result of this differentiation is known as the second derivative
of the function fand is denoted as f"(x) or d?y/dx>.

The second derivative can be differentiated with respect to x again
to produce a third derivative:

7/ ™(x) and so on to fV(x) or d%y/dx"
This process can be continued to produce an 7-th derivative.

21

" JEE
7.3 Higher Detivatives: Example — 15, 274 & 34

1) R=f(0)=12000-20° primitive ~function

2) 7'(0)=1200 — 40 Ist derivative

3) Q)= -4 2nd derivative

4) fm"()=0 3rd derivative

Graphically:

D R =12000-20?

2) MR =1200-40
1200-40 =0
0 =300 o m o

3) MR'=-4 2

11
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7.3 Higher Derivatives: Example — 1% to 5%

1) y=f(x)=4x*—x’+17x> +3x—1  primitive function
2)  f'(x)=16x"-3x* +34x+3 Ist derivative

3) Sf"(x)=48x —6x+34 2nd derivative

4) £9(x)=96x—6 3rd derivative

5) F¥(x)=96 4th derivative

6) F2x)=0 5th derivative

23

"
7.3 Example: Black-Scholes — Greeks (Gamma)

e The BS Gamma of a derivative security, I', represents the rate of
change of A with respect to the price of the underlying asset. That is,
I' is the second derivative of the call option with respect to S,. Recall:

e _
A= a5, N(d1)
Then,
2
rod ¢ _ dA _ dNd1) _ N'(d1) * d(d1)
ds;2 — ds; ds; ds;

. ) o @ @) _ d@dz _ 1
Usmg N (dl) = \/T_ne 2 & ds; = ds, = sy et
we get:

1 _d?
I'= Ee 2k ﬁ =1>0

24

12
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7.3 Interpretation of the second derivative

m /'(x) measures the rate of change of a function
e.g., whether the slope is increasing or decreasing

m /"(x) measures the rate of change in the rate of change of a
function

e.g., whether the slope is increasing or decreasing at an
increasing or decreasing rate

how the curve tends to bend itself

m Utility functions are increasing in consumption /'(x)>0. But they
differ by the rate of change in f'(x)>0; that is, they differ on /"(x).

f'x) >0, increasing f'(x)>0
J'®) =0, constant /'(x)>0
S'® <0, decreasing /'(x)>0 (usual assumption)

25

7.4 Strict concavity and convexity

® Strctly concave: if we pick any pair of points M and N on its curve
and joint them by a straight line, the line segment MN must lie
entirely below the curve, except at points MN.

m A strictly concave curve can never contain a linear segment
anywhere (if it does it is just concave, not strictly concave).

m Test: if /"(x) is negative for all x, then it is strictly concave.

m Strictly convexity: if we pick any pair of points M and N on its curve
and joint them by a straight line, the line segment MN must lie
entirely above the curve, except at points MN.

m A strictly convex curve can never contain a linear segment
anywhere (if it does it is just convex, not strictly convex)

m Test: if /"(x) is positive for all x, then it is strictly convex

26

13
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Figure 7.6 Concave and Convex Functions

f&) ()

') <0
frx)<0
/ x \ x

(@) ®)

f'x>0 f'x)>0

27

" J
7.4 Concavity and Convexity: ® & ©

o If f"(x) <Oforallx = strictly concave.
=> There is a global maxima ®
o If f"(x)>O0forallx = strictly convex. o
=> There is a global minima v

¢ Concave functions have valuable properties: critical points are global
maxima, & the weighted sum of concave functions is also concave. A
popular choice to describe an average utility and production functions.

Example: AP = Arrow-Pratt risk aversion measure = — U”(w)/U’(w)
LetUw) =B In(w) (>0
Uw) =B/w>0

U”(w) =-B /w2<0
AP=1/w = As w (wealth) increases, risk aversion decreases. 2s
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U(x) =B ln(x) U'(x) = %

Figure 7.5 Logarithmic Utility Function

™=
W=

U'(x) = ',%

==

29

Risk-Loving Individuals

Utility

v(12)
Lue) +Luas)
2 2 }
|
|
|
1

6 12 18
Risk-Averse Individual
(@)

Utility

1ue) + U0 /
v(12)
|
|

Figure 7.7 Utility Functions for Risk-Averse &

Cookies

Cookies

6 12 18
Risk-Loving Individual
(b)

30

15
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7.5 Series

* Definition: Series, Partial Sums and Convergence

Let {a,} be an infinite sequence.

1. The formal expression X z, is called an (infinite) serses.

2.For N =1, 2,3, ... the expression §, = X a is called the N-z partial
sum of the series.

3.1If /im S exists and is finite, the series is said to converge.

4. If /Zim S, does not exist or is infinite, the series is said to dzverge.

Example: X (1/2)»=1/2+1/4+1/8 + 1/16 + ... (an infinite
series). The 3™, and 4™ partial sums are, respectively: 0.875, & 0.9375.
The #-th partial sum for this series is defined as

S, =1/2+1/22+1/27 +..+1/2"
Divide §' , by 2 and subtract it from the original one, we get:

S -1/28 =1/2-1/2"" =8 =2(/2-1/2"")
Then, /im S, =1 (the infinite series converges to 1) 25

7.5 Series: Convergence

* A series may contain positive and negative terms, many of them may
cancel out when added together. Hence, there are different modes of
convergence: one mode for series with positive terms, and another
mode for series whose terms may be negative and positive.

* Definition: Absolute and Conditional Convergence

A series X a, converges absolutely if the sum of the absolute values X,
|a,| converges.

A series converges conditionally, if it converges, but not absolutely.

Example: 2 (-1)»=-1+1-1+1 .. = no absolute convergence
Conditional convergence? Consider the sequence of partial sums:
S=-1+1-1+1...-1=-1 if 71s odd, and
S =-1+1-1+1..-1+1=0 if nis even.
Then, § = -1if #nis odd and 0 if 7 is even. The series is divergent. 3

16
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7.5 Series: Rearrangement

* Conditionally convergent sequences are rather difficult to work with.
Several operations do not work for such series. For example, the
commutative law. Since @ + b = b + a for any two real numbers 2 and
b, positive or negative, one would expect also that changing the order
of summation in a series should have little effect on the outcome

* Theorem: Convergence and Rearrangement

A series X, a, be an absolutely convergent series. Then, any
rearrangement of terms in that series results in a new series that is also
absolutely convergent to the same limit.

Let X a, be a conditionally convergent series. Then, for any real
number ¢ there is a rearrangement of the series such that the new

resulting series will converge to «.
33

7.5 Series: Absolute Convergent Series

* Absolutely convergent series behave just as expected.

* Theorem: Algebra of Absolute Convergent Series
Let X a,and X b, be two absolutely convergent series. Then:

1. The sum of the two series is again absolutely convergent. Its limit is
the sum of the limit of the two series.

2. The difference of the two series is again absolutely convergent. Its
limit is the difference of the limit of the two series.

3. The product of the two series is again absolutely convergent. Its
limit is the product of the limit of the two series (Cauchy Product).

34
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7.5 Series: Convergence Tests

* There are many tests for convergence or divergence of series. Here
are the most popular in economics.

* Divergence Test
If the series X 2, converges, then {z } converges to 0. Equivalently:

* Limit Comparison Test

Suppose X, @, and X b, are two infinite series. Suppose also that
r=lim|a/b,| exists and 0 <r <o,

Then X 2, converges absolutely iff X 4 converges absolutely.

If {a } does not converge to 0, then the series £ @ can not converge.
n n

35

7.5 Series: Convergence Tests

o p Series Test

The series X, (1/7) is called a p Seties.
if p > 1 the p-series converges
if p = 17 the p-series diverges.

» Alternating Series Test
A series of the form X (-1)” b, with b >0 is called a/ternating series. 1f
{4} is decreasing and converges to 0, then the sum converges.

* Geometric Series Test

Let @ eR. The series X @ is called geometric series. Then,
if |a|<1 the geometric series converges
if |a|= 1 the geometric series diverges.

36

18
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7.5 Series: Power Series

* Definition: Power Series
A function series of the form
_ 2
Xoa,(x-c) =a,+ a(x-c)+ ax-c) + ..
is called a power series centered at e.

That is, a power series is an infinite series of functions where each
term consists of a coefficient 7, and a power (x-¢)".

Examples:
X (D) xP =1+ 2x + 3x + 4x7 + L.

X o (Dr /20 xr=1-1/2x+1/4x2-1/8 x>+ 1/16 x* + ...
-X o (3n/2%) (x-2)" = 3/2 (x-2) + 6/4 (x-2)> + 9/8 (x-2)° + ...
- Popular example in Finance, DDM (discounted dividend model):
- d 1 1 1
P= ;(1+r)t =daytarettary )

7.5 Series: Power Series

* Properties:

- The power series converges at its center, i.e. for x =¢

- There exists an 7 such that the series converges absolutely and
uniformly for all |x — ¢| <p, where p<r, and diverges V |x—¢| > 7. ris
called the radius of convergence for the power series and is given by:

r=limsup \a,/a,.,|

Note: It is possible for rto be zero —i.e., the power series converges
only for x = ¢~ or to be © -i.e., the series converges for all x.

Example: X _; (3n/2%) (x— 2)" a,=3n/2"
r=limsupl|aja,  |= limsup|(3n/2")/(B(n+1)/201)|
= limsup| n/(n+1)* 2] =2
= Series converges absolutely and uniformly on any subinterval of
|x—2|<2. 38
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7.5 Series: Power Series

* Polynomials are relatively simple functions: they can be added,
subtracted, and multiplied (but not divided), and, again, we get a
polynomial. Differentiation and integration are particularly simple and
yield again polynomials.

* We know a lot about polynomials (e.g. they can have at most 7
zeros) and we feel pretty comfortable with them.

* Power series share many of these properties. Since we can add,
subtract, and multiply absolutely convergent series, we can add,
subtract, and multiply (think Cauchy product) power series, as long as
they have overlapping regions of convergence.

* Differentiating and integrating works as expected. Important result:

Power series are infinitely often (lim sup) differentiable. 7’9

" J
7.6 Taylor Series
e The Taylor series is a representation of a (infinitely

differentiable) function as an infinite sum of terms
calculated from the values of its derivatives at a single

point, x;,. F
Brook Taylor (1685 — 1731, England)
Definition: Taylor Series
Suppose fis an infinitely often differentiable function on a set D and ¢
€D. Then, the series
£F™(0)

Ty (x,0) = 50 T (x = o)

is called the (formal) Taylor series of fcentered at, or around, ¢

Note: If ¢ = 0, the series is also called Macl_aurin Series.

* The partial sum formed by the first » + 1 terms of a Taylor series is
a polynomial of degree . It is called the nth Taylor polynomial of f.

40
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7.6 Taylor Series: Remarks

- A Taylor series is associated with a given function f. A power series
contains (in principle) arbitrary coefficients @,. Therefore, every Taylor
series is a power series but not every power series is a Taylor series.

- Tr(x, ¢) converges trivially for x = ¢, but it may or may not converge

anywhere else. In other words, the “r” of T¢ (x, C) is not necessarily greater
than zero.

- Even if Ty (x, ¢) converges, it may or may not converge to f.

Example: A Taylor Series that does not converge to its function
fx) = exp(-1/x9) ifx#0
=0 if x=0
* The function is infinitely often differentiable, with /7(0) = 0. T(x; 0)
around ¢ = 0 has radius of convergence infinity.

* T(x, 0) around ¢ = 0 does not converge to the original function (T(x,
— 41
0) = 0 for all x).

"
7.6 Maclaurin Series: Power Series Derivation

F(x)=ag+ax+a,x* +a;x> +...+a,x"  primitivefunction

1

F1(xX) = ay +2a,x+3azx* +...+ na,x"" 1* derivative

2

F"(x) = 2ay +6a3x +...+ n(n—1)a,x" 2™ derivative

I (x) = 6ay +...+ n(n=1)(n-2)a,x"" 3" derivative

F"(x) = n(n-1)(n-2)(n-3)...3)2)(Da, n™ derivative
Evaluatingeach functionat ¢ = 0, simplifying & solving for the coefficient
S(0)=aq - J(0)=0a, - ag = f(0)/0!

10)=q - flo=1eq > aq=r O
fO=2a, >  flO=2a, >  a=s"0)2
> 70)=3a; -

"(0)=6ay ay = 1" (0)/3
£(©0)=n(n-D(n-2)n-3)...3)2)Na, > a, = " (0)/n!
Substituting the valueof the coefficients into the primitive function

i~ W0p o SOy SO p S0y

42
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7.6 Taylor Series: Taylor’s Theorem

Suppose f € C"([a, b]) —i.e., fis (nt+1)-times continuously
differentiable on [, 4]. Then, for ¢ € [a,b] we have:

f(x)=%(x—0)0 + %fc)(x—c)l +%/(C)(x—c)2 tot —f(n;SxO)(x—xO)”+R

where R, (x) = %If(”“)(p)(x—p)”dp

In particular, the T (x, ¢) for an infinitely often differentiable function
JSconverges to f iff the remainder R, (x) — 0 as # —co.

* We can show that a function really has a Taylor series by checking
that the remainder goes to zero. Lagrange found an easier expression:

(n+1)
R, (%)= f(n N 1()]/7) (x - C)n+l

43
for some p between x and «.

" JEE
7.6 Taylor Series: Taylor’s Theorem

* Implications:

- A function that is (#+17)-times continuously differentiable can be
approximated by a polynomial of degree 7.

- If fis a function that is (#+7)-times continuously differentiable and
S (x) = 0 for all x, then fis necessatily a polynomial of degree 7.

- If a function fhas a Taylor series centered at ¢ then the series
converges in the largest interval (¢ — 7, ¢ + 7) where fis differentiable.

* In practice, a function is approximated by its Taylor series using a small
n, say n = 2

N JASUEY) f@©
f(x) = (x—1c)° +T(x— o)t +T(x —¢)?

* The error (& the approximation) depends on the curvature of £, %
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7.6 Taylor Series: Taylor Polynomial

* The partial sum formed by the first 7 + 1 terms of a Taylor series is
a polynomial of degree # that is called the nth Taylor polynomial of the
function.

* Taylor polynomials are approximations of a function, which become
generally better as 7 increases.

Example: We approximate the following quadratic function with a
Taylor polynomial around ¢ = 1:

f(x) =5+ 2x+ 2 fle=1)=28
fl(=2+2x fle=1)=4
For n = 1: Tf(x, c) ~ %(X -1)° +f(11)'(1) (x—1)?t
A8+ 4 (x—1) =4+ 4x
with R, = [2/2l](x— 1)2=(x— 1) 45

7.6 Taylor Series Approximations

Example (continuation): Let’s check the approximation error, R,:

Ax) =5+ 2x + o2 fx) = 4+ 4x R,
c=1 =8 =8 0
c=1.1 A1) =841 f1.1) =84 0.1
c=12 f1.2)=8.84 f1.2) =838 0.22
Forn=2:
(€9) )
Te(x,c) ~ % =D+ -+ - 1)?

R8+4(x—1)+2/2(x—-1)2=4+4x+ (x—1)?

R4+ 4xt+ad -2x+ 1

x5+ 2x+ 7
with  R;=0
Note: Polynomials can be approximated with great accuracy. 46
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7.6 Taylor Series Approximations: BS Example

* We do an expansion of the BS pricing formula (ceteris paribus) with
respect to S, —i.e., take (T-t), i, and © as fixed, usually at current or
average values. Recall the BS call option pricing formula:

C(S;) = S, N(d1) — K e "T-N(d2)
For n =1, around S, = §*, we have:

C(S;) = C(S*) + A(S™) (5S¢ —S™) = constant + A(S™) S;
If we want to approximate C(S, + 8) around S, we get:

C(S¢+8) = C(Sp) + A(S;) 6
For n = 2, around S, = S* we have:

C(Se +8)c ~ C(Se) + AS,) 8+ 5 I(S,) 82 o

" JEE
7.6 Taylor Series Approximations: BS Example

* From C(St + 8)t = C(St) + A(St) 8
At A, A=0.45 (0 = 19% annual, i = 1.5%, K = $41, T — t = 90/365).

Let 8 = §1, then C($41) = $1.4 + 0.45%$1 = $1.85
C (9
188 Approximation error
P —— (I" correction helps)
B N~ ; |
S;=40 Stl+6=4l S, ($)
* At A’, C = $1.88. Then, the approximation error is $0.03. 48
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7.6 Taylor Series Approximations: BS Example

* At A’, the approximation error is: $1.88 - $1.85 = $.03

* To improve the approximation, we can use a 2"-order Taylor
series:

C(Se +8)c ~ C(Se) + A(S,) § + 5 [(S,) &2

At A, A=0.45 & '=0.09. Then,
C($41) = 1.4 + 0.45%1 + 0.5%.09%12 = $1.895,

which delivers a smaller error ($-0.015).

* Note: The change, 6 (=$1), is not small. At A’, there is a new A
(=55). Delta-neutral portfolios need to be adjusted!

49

7.6 Maclaurin Series of e*

Let’s do a Taylor series around ¢ = 0:

f(x) =e* primitive function =>f(0)=e=1
f'(x) = e* 15t derivative >f(0)=e’=1
F"(x) = e* 21 derivative = f’0)=e’=1
£ (x) = e* 3" derivative = f"0)=e=1
f(x) = e* nth derivative = fM)=e% = 1

Substituting the value of the coefficients into the primitive

function

X — 1 0 1 1 1 2 1 — N 1 n

eF = S (00 + T+ (P At ()= Y —x
n=0

50
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7.6 Maclaurin Series of e 2

Let’s do a Taylor series around ¢ = 0:

x2

fa=e7 > f(0) =1
1) = —xe™T = —xf(x) = /(0) =0
700 = (¥2= ez =(x*~1)f (%) = f(0) = -1
") = 2xe”7 + (—x3 + x)e_xT =(—x3+30)f(x)=> f"'(0)=0
V() = (x*—6x% + 3)f (x) = FV(0) =3
fV(x) = (—x°+10x3 — 15x)f (x) = fY0)=0

fVI(x) = (x6—10x* + 45x2 — 15)f (x) = fY(0) =15

Continue. Then, substituting into a #"-order Taylor seties:
x? 2 4 6 n
X2 x2  x* x o (D" on
e 2 =1 - —4+=——" .. = >
2T s Twt Ln=0 .

" JJE
x2
7.6 Maclaurin Series of e 2

Apply the Taylor series to the standard normal pdf:

%2

f)=—e"z
- Vom
Now, we approximate f (x) with a 6®-order Taylor seties:
1 _x2 1 x?> x* x®
—e 2 r—1 ——=+——-——
21T 2T 2 8 48
Normal 2nd order | 4th order 6th order
x=0 0.3989423 | 0.3989423 | 0.3989423 | 0.3989423
x=0.2 0.3910427 | 0.3909634 | 0.3910432 | 0.3910427
x=0.5 0.3520653 | 0.3490745 | 0.3521912 | 0.3520614
x=1 0.2419707 | 0.1994711 0.2493389 | 0.2410276
x=1.5 0.1295176 | -0.0498678 | 0.2025879 | 0.107917
x=2 0.05399097 | -0.3989423 | 0.3989423 | -0.1329808

52
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7.6 Maclaurin Series of cos(x)

Let’s do a Taylor series around ¢ = 0:

f(x) =cos(x) primitive function = f(0)=cos(0) =1

f / (x) = —sin(x) 1% derivative = f'(0) =—sin(0) =0
77 (x) = —cos(x) 2™ derivative = f"(0) =—cos(0) = —1
7" (x) = sin(x) 3" derivative = f"(0) = —sin(0) = 0
7@ (x) = cos(x) 4™ derivative = (0)=cos(0) =1

Substituting the valueof the coefficients into the primitive function

s = 1= (P + b 4w =3 ED

* Now, let’s check if the remainder Ry, 4, goes to 0 as # —0:

£+ (p)

|x|2n+2
Ropi2(x) = | Tt

(2n + 2)!

cos(p)
(2n + 2)!

(x_0)2n+2| — | x2n+2| <

and the last term is a converging series to 0, as 7 — . >

7.6 Maclaurin Series of sin(x) & Euler’s formula

Similarly, we can do a Taylor series for sin(x):

sin(x) = x — 3 (0° +5—1!<x)5—7—1!(x)7+~~+=;%x2n+1

* Now, let’s go back to the Taylor seties of e*. Let’s look at e

eix — Z i(ix)n
n!

n=0
1 1 1 1 1
— . . . 2 _ . 3 . . 4 _ . 5 e _ . e
=1+ Lx+2!(lx) +3!(lx) +4! (ix) +5!(lx) + +n!(lx)"+
1 1 1 1
— P 2 _ 3 _ 4 P 5
=1+ ix 2!(x) 13!(x) +4!(X) +15!(x) +

= cos(x) + isin(x)

Note: This last result is called Ewulers formula. (It will re-appear when
solving differential equations with complex roots.) 54
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7.6 Maclaurin Series of log (1+x)

f(x) =log(1+x) primitive function
fly=a+x" 15t derivative
1)y =-1+x72 204 derivative
fIx)y=21+x)73 31d derivative

]; ”(‘x) - D Vm -1+ xj.;” nth derivative

Evaluating each function at xy=0,
£ =0; f'(0) =1L "(0) = =1; f"(0) = 2; .; f" (0) = (=" D(n - 1!
Substituting the value of the coefficients into the primitive function:

0 1 1 —1NO=-Dpn — 1)1
log(1+x) = a(x)o + ﬁ(x)1 —z(x)2 4+ 1) n!(n ) "

)it
:Z;.il( l) xl

55
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7.6 Maclaurin Series of log (1+x)

X X

logl+x) = x—+——-—+
gl +) 2 3 4

* A 1%t order series expansion: log(1+x) = x + O(3).
Notation: O(x?): R is bounded by Ax? as x — 0 for some A < o0,

* Q: Why do we care about this approximation log(1+x) = x?
A: Let’s define net or simple (total) return, R,:

(Pt — Pt—1) + D¢
Pr_q

R, = = Capital gain + Dividend yield

where P, = Stock price or Value of investment at time t
D, = Dividend or payout of investment at time t
Then, we define the gross (total) return as:

R +1 =202

Pr_q >0
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7.6 Maclaurin Series of log (1+x)

¢ There is another commonly used definition of return, the /og (#otal)

return, 1, defined as the log of the gross return:
.= log(1 + R,) = log(P, + D) —log (P, )

Note: When the values are small (-0.1 to +0.1), the two returns are
approximately the same: r, =log(l + R,) = R,

log(1l + =)

* In general —i.e., when returns are not small, r, <R,

57
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7.6 Taylor series: Approximations

* Taylor series work very well for polynomials; the exponential
function ¢¥ and the sine and cosine functions. (They are all examples
of entire functions —1.e., f(x) equals its Taylor series everywhere).

* Taylor series do not always work well. For example, for the
logarithm function, the Taylor series do not converge if xis far
from x;,.

* Log approximation around O:

2 | 1

1 ] 1
1.5 24 /
* x 117
0.5 T e e B
& log(1+x) ™
-0.5
-1
-1.5
-2
-2.5
-3
-3.5
—q | I 1 1 I 1
-1.5 -1 0.5 o 0.5 1 1.5

58
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7.6 Taylor Series: Newton Raphson Method

® The Newton Raphson (NR) method is a procedure to iteratively
find roots of functions, or a solution to a system of equations, where
fx)=0. Very popular in numerical optimization, where /’(x)=0.

® To find the roots of a function f{x). We start with:

f(x)

_f () _ Ay
Ay = o x = Ax= 700 - /
s =3 4 f(xk}%; )f(xk)

VRS Sed A G713 VY A C70)
S ) N € AN

—

m We derived an iterative process to find the roots of a function f{x). |

" JEE
7.6 Taylor Series: NR Method

m We can use the NR method to minimize a function.

m Recall that / '(»*) = 0 at a minimum or maximum, thus stationary
points can be found by applying NR method to the derivative. The
iteration becomes:

= _ S1GR)
Xk+1 = Xk Frr(e)

m We need / "(x;) # 0; otherwise the iterations are undefined. Usually,
we add a step-size, A, in the updating step of x:

frxg)
Xk+1 = Xk — kf,,(x’;)

60
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7.6 Taylor Series: NR — Quadratic Approximation

* When used for minimization, the NR method approximates f{x) by
its quadratic approximation near x;.
* Expand f{x) locally using a 2nd-order Taylor series:

Soxct0x) = fx) + [ () b + V2 f (%) (6x)% + 0o(0x)

fx) (g +0%) = f () + f o) b + Vo f (o) (0597

* Find the dx which minimizes this local quadratic approximation:

e ==1"09/ f (=)

s Update x: X =~/ '(%)/ [ "(x).

" JE
7.7 Geometric series

* Geometric series: Each term is obtained from the preceding one by
multiplying it by x, convergent if | x| <1.

Given f(x) = (1-x)"'. Find the first five terms of the Maclaurin series (n = 4) around ¢ =0.

16)= s £ @) L cmef s LoD e SO oy

o = S 5 f@=0-07 =1
i =E=1)-x)? =(1-x)? - fle=0-0y* =
e =2 -1-x) =2(1-x)" - ey=201-0" =2
W= N-2)" =6l-a) - fP=60-0)" =6
P ==R)Q1)1-x)"  =24(1-x)" - FD(e)=24(1-0)" =24

S 1 S a S 1
) =lex+x2+x3+x 4 =) 2" = S> Y ax'=—> ax" =a -1
/() 2{; — 2{; — 1
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7.7 Geometric seties: Approximating (1-a)!

¢ It is possible to accurately approximate some ratios, with (1 — x)
term in the denominator, with a geometric series. Recall:

y=(1-a where 2 =0, 0.1, ..., 0.9
y=l+a+2+2+d+ .

e For n = 4.
*a=01 =1/1-a=11111
& 1+.1+.12+.13+.14 = 1.11110

*2=09 =1/(1-4 =10
& 1+.9+.92+.93+ .94 = 4.09510

63
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7.7 Geometric seties: Approximating Al

¢ Taylor series approximation
(o8]

1-x)1= Z x™ =1+x+x2+.. +x"71 if |x| < 1 (scalar

n=0

(I-A4)"1= Z A" =1+ A+ A%+...+A™1 by analogy

n=0
* Application to the Leontief Model (x =Ax+d = I-Ax=d):

15 0.25 - 1.2541 0.3300
A= 1—A)1=
[0.20 .05] = ( ) 0.2640 1.1221]

(- = [[§ oz ool oz G 2
= lo. '

2400 1.0525
1.2506 0.3290

withn=6 (I—-A)"'=~ [0.2632 1.1214 o
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7.7 Application: Geometric series & PV Models

m A stock price (P) is equal to the discounted some of all futures
dividends. Assume dividends are constant () and the discount
rate is 7. Then:

P = —d 1 1
- ;(1+r)t_ ((1+T)+(1+T)2+m+m+'")

1
P=d(x+x*+x3. . +xt+-)=d -1
(1-x)

-0ty 1) = (e 1) = ()

where x =

(147)

Example: d= USD 1;r = 8% = P = USD 1/.08 = USD 12.50

56
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7.7 Application: Geometric series & PV Models

® Now, we assume dividends (4) grow at a constant (g) and the
discount rate is 7. Then:

+ gt 1 _ (1+g9)
Zd(u o T A0T= "D e T T
1 1
P=d[—————-1\=d ~1
) A+ -+
1+ 1+

=d ((:t;) - 1) =d (E:iﬁi)

Example:d =USD 1;r = 8% & g=2%
=P =USD 1 * (1.02)/(.08 —.02) = USD 17.

Note: NPV of dividend growth = USD 17 — USD 12.5 = USD 4.5

66
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Q: What is the first derivative of a cow?
A: Prime Rib!
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