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Chapter 7
Rules of Differentiation 

& Taylor Series

Isaac Newton and Gottfried Leibniz
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7.1 Review: Derivative and Derivative Rules
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• Review: Definition of  derivative.

• Applying this definition, we review the 9 rules of  differentiation:

1) Constant:  0

2) Power: 𝑛𝑥

3) Sum/Difference

4) Product
∗ 𝑔 𝑥 𝑓 𝑥
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7.1 Review: Derivative and Derivative Rules

• (continuation) 9 rules of  differentiation:

5) Quotient (from 4) 
/ 𝑔 𝑥 𝑓 𝑥 /𝑔 𝑥

6) Exponential 𝑘𝑒

7) Chain Rule ∗ (with 𝑦 𝑔 𝑥

8) Inverse function. Let 𝑦 𝑓 𝑥 be a strictly monotonic function. 

. 

9) Constant, Product and Power (from 1, 2 & 4)

𝑐𝑛𝑥
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• Recall the definition of  derivative.

• Applying this definition, we derive the constant rule: 

The derivative of  a constant function is zero for all values of  x.

 

00limlim

then    If

)()(
lim

0

00

0

















xx

x

x

kk
 

kx)f(x kf(x) 
x

xfxxf
 f '(x) 

dx

dy

k
dx

d

dx

dy
kxfy

7.1.1 Constant Rule
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7.1.2 Power-Function Rule
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Example: Let Total Revenue (R) be:

R = 15 Q – Q2  𝑀𝑅 15 2𝑄.

As Q increases R increases (as long as Q > 7.5).
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7.1.3 Sum or Difference Rule
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7.1.4 Product Rule

The derivative of  the product of  two functions is equal to the 
second function times the derivative of  the first plus the first 
function times the derivative of  the second.

Example: Marginal Revenue (MR)

Total Revenue: R = P Q 

Given 𝑃 15 𝑄  R 15 𝑄 𝑄
 

 𝑄 𝑃 𝑄 1 ∗ 15 𝑄 15 2𝑄

Same as in previous example.

4          ∗ 𝑔 𝑥 𝑓 𝑥
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7.1.5 Quotient Rule
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7.1.6 Exponential-Function Rule
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 A mathematician went insane and believed that he was the 
differentiation operator. His friends had him placed in a mental 
hospital until he got better. All day he would go around frightening 
the other patients by staring at them and saying "I differentiate you!" 

 One day he met a new patient; and true to form he stared at him and 
said "I differentiate you!", but for once, his victim's expression didn't 
change. 

 Surprised, the mathematician collected all his energy, stared fiercely 
at the new patient and said loudly "I differentiate you!", but still the 
other man had no reaction. Finally, in frustration, the mathematician 
screamed out "I DIFFERENTIATE YOU!" 

 The new patient calmly looked up and said, "You can differentiate me all 
you like: I'm ex."

7.1.6 Exponential-Function Rule: Joke
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7.1.7 Chain Rule
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7.1.7 Chain rule: Application – Log rule
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• Consider h(x) = eln(x) = x.  h’(x) = 1.

Now, apply Chain rule to h(x):
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Note: A monotonic function is one in which a given value of  x yields 
a unique value of  y, and given a value of  y will yield a unique value of  
x (a one-to-one mapping). These types of  functions have a defined 
inverse.

Example: Inverse supply function

𝑄 𝑏 𝑏 𝑃  P 𝑄 (where 𝑏 > 0)

𝑏 

• Let y = f(x) be a differentiable strictly monotonic function:

𝑓 𝑦 .

13

7.1.8 Inverse-function Rule

14

7.1.8 Inverse-function Rule

 This property of one-to-one mapping is unique to the class of 
functions known as monotonic functions:

 Recall the definition of  a function: 
function: one y for each x
monotonic function: one x for each y (inverse function)

 if x1 > x2  f(x1) > f(x2) monotonically increasing

Qs = b0 + b1P supply function (where b1 > 0) 

P = – b0/b1 + (1/b1)Qs inverse supply function

 if x1 > x2  f(x1) < f(x2) monotonically decreasing

Qd = a0 – a1P demand function (where a1 > 0)

P = a0/a1 – (1/a1)Qd inverse demand function
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7.2 Extension: Partial Differentiation

 In multivariate calculus, y depends on several variables: 

y = f(x1, x2, …, xn.)

 The derivative of  y with respect to one of  the variables –while the 
other variables are held constant– is called a partial derivative.

⋯ ⋯

⋯
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 The Black-Scholes (BS) formula prices an European call option on a 
non-dividend paying stock, as a function of the stock price (St), time 
to maturity (T-t), strike price (K), interest rates (i) and the stock price 
volatility ():

𝐶 𝑆  𝑁 𝑑1 𝐾 𝑒 𝑁 𝑑2
where 

𝑁 𝑑 𝑒 𝑑𝑥 (standard normal distribution function)

d1 = [ln(St/K) + (i + 2/2) (T – t)]/( 𝑇 𝑡),

d2 = [ln(St/K) + (i – 2/2) (T – t)]/( 𝑇 𝑡)) = d1 –  𝑇 𝑡

• The Greeks represent the first derivatives of the BS pricing formulas
(ceteris paribus) with respect to the driver variables: St, (T-t), i, . For
example, the first derivative with respect to St is called Δ (or BS Delta).

7.2 Application: Black-Scholes – Greeks
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• Δ = BS Delta

Δ = 𝑁 𝑑1 𝑆 ∗ 𝐾 𝑒 ∗

• Taking derivatives and  using the FTC to get N'(d):

𝑁 𝑑1 𝑒

𝑁 𝑑2 𝑒 𝑒

Then,

 Δ 𝑁 𝑑1 𝑆
1

2𝜋
𝑒 ∗

𝑑 𝑑1
𝑑𝑆

𝐾 𝑒
1

2𝜋
𝑒 ∗

𝑑 𝑑1
𝑑𝑆

7.2 Application: Black-Scholes – Greeks (Delta)

18

Δ 𝑁 𝑑1 𝑁′ 𝑑1 ∗ ∗ 𝑆 𝐾 𝑒 ] 𝑁 𝑑1

since 𝑒 (from definition of d1)

• We can use Δ to establish a portfolio that is not sensitive to changes 
in St: A long position in one call and a short position Δ stocks. The 
profits from this portfolio are: 

Π = Ct – Δ St

Then,

Δ = 0.

Note: A position with a delta of zero is referred to as being delta-neutral.

7.2 Application: Black-Scholes – Greeks (Delta)
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• V = BS Vega: It measures the sensitivity of option prices to changes
in volatility. Recall BS formula:

𝐶 𝑆  𝑁 𝑑1 𝐾 𝑒 𝑁 𝑑2
Then,

V = 𝑆 𝑁′ 𝑑1 ∗ 𝐾 𝑒 𝑁′ 𝑑2 ∗

Using the result (check it):

= + 𝑇 𝑡

and after some algebra, similar to what we did above with the result:

𝑆 𝑁′ 𝑑1 𝐾 𝑒 𝑁′ 𝑑2 ,

we get to:

V 𝑆  𝑁 𝑑1  𝑇 𝑡 0

7.2 Application: Black-Scholes – Greeks (Vega)

20

7.2 Application: Black-Scholes – Greeks (Rho)

• P = BS Rho: It measures the sensitivity of option prices to changes
in interest rates. For the call option we get:

P
𝑑𝐶
𝑑𝑖

 𝑆 𝑁 𝑑1 ∗
𝑑 𝑑1
𝑑𝑖

𝐾 𝑒 𝑁 𝑑2 ∗
𝑑 𝑑2
𝑑𝑖

 𝑇 𝑡 𝐾 𝑒 𝑁 𝑑2

Using the result (check it):

=

A bit of algebra, again, mainly using:  𝑆 𝑁′ 𝑑1 𝐾 𝑒 𝑁′ 𝑑2

delivers
P 𝑇 𝑡 𝐾𝑒  ∗ 𝑁 𝑑2
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7.3 Second & Higher Derivatives

Derivative of  a derivative 
 Given y = f(x)

 The first derivative f '(x) or dy/dx is itself  a function of  x, it 
should be differentiable with respect to x, provided that it is 
continuous and smooth.

 The result of  this differentiation is known as the second derivative 
of  the function f and is denoted as f ''(x) or d2y/dx2.

 The second derivative can be differentiated with respect to x again 
to produce a third derivative: 

f  '''(x) and so on to f(n)(x) or dny/dxn

 This process can be continued to produce an n-th derivative. 

21
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7.3 Higher Derivatives: Example – 1st, 2nd & 3rd
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7.3 Higher Derivatives: Example – 1st to 5th

7.3 Example: Black-Scholes – Greeks (Gamma)

24

• The BS Gamma of a derivative security, Γ, represents the rate of
change of Δ with respect to the price of the underlying asset. That is,
Γ is the second derivative of the call option with respect to St. Recall:

Δ = 𝑁 𝑑1

Then,

Γ 𝑁′ 𝑑1 ∗

Using 𝑁 𝑑1 𝑒 &  

we get:

Γ 𝑒 ∗  Γ > 0
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7.3 Interpretation of the second derivative

 f '(x) measures the rate of change of a function 

 e.g., whether the slope is increasing or decreasing

 f ''(x) measures the rate of change in the rate of change of a 
function

 e.g., whether the slope is increasing or decreasing at an 
increasing or decreasing rate

 how the curve tends to bend itself 

 Utility functions are increasing in consumption f '(x)>0. But they 
differ by the rate of change in f '(x)>0; that is, they differ on f ''(x).

 f ''(x) > 0, increasing f '(x)>0

 f ''(x) = 0, constant f '(x)>0

 f ''(x) < 0, decreasing  f '(x)>0 (usual assumption)

26

7.4 Strict concavity and convexity

 Strictly concave: if we pick any pair of points M and N on its curve 
and joint them by a straight line, the line segment MN must lie 
entirely below the curve, except at points MN. 

 A strictly concave curve can never contain a linear segment 
anywhere (if it does it is just concave, not strictly concave).

 Test: if f "(x) is negative for all x, then it is strictly concave.

 Strictly convexity: if we pick any pair of points M and N on its curve 
and joint them by a straight line, the line segment MN must lie 
entirely above the curve, except at points MN. 

 A strictly convex curve can never contain a linear segment 
anywhere (if it does it is just convex, not strictly convex)

 Test: if f "(x) is positive for all x, then it is strictly convex
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Figure 7.6 Concave and Convex Functions
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7.4 Concavity and Convexity:   & 





• Concave functions have valuable properties: critical points are global 
maxima, & the weighted sum of  concave functions is also concave. A 
popular choice to describe an average utility and production functions.

Example: AP = Arrow-Pratt risk aversion measure = – U’’(w)/U’(w) 
Let U(w) = β ln(w ) (β > 0)
U’(w) = β/w > 0  
U’’(w) = – β /w-2 < 0 
AP = 1/w  As w (wealth) increases, risk aversion decreases.

• If  f  "(x) < 0 for all x  strictly concave.
 There is a global maxima

• If  f  "(x) > 0 for all x  strictly convex.
 There is a global minima
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Figure 7.5 Logarithmic Utility Function
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Figure 7.7 Utility Functions for Risk-Averse & 
Risk-Loving Individuals

30
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7.5 Series

• Definition: Series, Partial Sums and Convergence
Let {an} be an infinite sequence. 
1. The formal expression Σn an is called an (infinite) series. 
2. For N = 1, 2, 3, ... the expression Sn = Σn an is called the N-th partial 
sum of  the series. 
3. If  lim Sn exists and is finite, the series is said to converge. 
4. If  lim Sn does not exist or is infinite, the series is said to diverge. 

Example: Σn (1/2)n = 1/2 + 1/4 + 1/8 + 1/16 + ... (an infinite 
series). The 3rd, and 4th partial sums are, respectively: 0.875, & 0.9375.
The n-th partial sum for this series is defined as 

Sn = 1/2 + 1/2 2 + 1/2 3 + ... + 1/2 n

Divide S n by 2 and subtract it from the original one, we get: 
Sn - 1/2 S n = 1/2 – 1/2 n+1  Sn = 2 (1/2 – 1/2 n+1)

Then, lim Sn = 1 (the infinite series converges to 1) 25

32

7.5 Series: Convergence

• A series may contain positive and negative terms, many of  them may 
cancel out when added together. Hence, there are different modes of  
convergence: one mode for series with positive terms, and another 
mode for series whose terms may be negative and positive. 

• Definition: Absolute and Conditional Convergence
A series Σn an converges absolutely if  the sum of  the absolute values Σn

|an| converges. 
A series converges conditionally, if  it converges, but not absolutely. 

Example: Σn (-1)n = -1 + 1 - 1 + 1 ...  no absolute convergence
Conditional convergence? Consider the sequence of  partial sums: 

Sn = -1 + 1 - 1 + 1 ... - 1 = -1 if  n is odd, and 
Sn = -1 + 1 - 1 + 1 ... - 1 + 1 = 0 if  n is even. 

Then, Sn = -1 if  n is odd and 0 if  n is even. The series is divergent.  
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7.5 Series: Rearrangement

• Conditionally convergent sequences are rather difficult to work with. 
Several operations do not work for such series. For example, the 
commutative law. Since a + b = b + a for any two real numbers a and 
b, positive or negative, one would expect also that changing the order 
of  summation in a series should have little effect on the outcome 

• Theorem: Convergence and Rearrangement
A series Σn an be an absolutely convergent series. Then, any 
rearrangement of  terms in that series results in a new series that is also 
absolutely convergent to the same limit.

Let Σn an be a conditionally convergent series. Then, for any real 
number c there is a rearrangement of  the series such that the new 
resulting series will converge to c. 

34

7.5 Series: Absolute Convergent Series

• Absolutely convergent series behave just as expected. 

• Theorem: Algebra of  Absolute Convergent Series 
Let Σn an and Σn bn be two absolutely convergent series. Then: 

1. The sum of  the two series is again absolutely convergent. Its limit is 
the sum of  the limit of  the two series. 

2. The difference of  the two series is again absolutely convergent. Its 
limit is the difference of  the limit of  the two series. 

3. The product of  the two series is again absolutely convergent. Its 
limit is the product of  the limit of  the two series (Cauchy Product). 



RS - Ch 7 - Rules of  Differentiation

18

35

7.5 Series: Convergence Tests

• There are many tests for convergence or divergence of  series. Here 
are the most popular in economics.

• Divergence Test
If  the series Σn an converges, then {an} converges to 0. Equivalently: 
If  {an} does not converge to 0, then the series Σn an can not converge. 

• Limit Comparison Test
Suppose Σn an and Σn bn are two infinite series. Suppose also that 

r = lim |an/bn| exists and 0 < r < ∞. 
Then Σn an converges absolutely iff Σn bn converges absolutely. 

36

7.5 Series: Convergence Tests

• p Series Test
The series Σn (1/np) is called a p Series. 

if  p > 1 the p-series converges 
if  p ≤  1 the p-series diverges. 

• Alternating Series Test
A series of  the form Σn (-1)n bn, with bn≥0 is called alternating series. If  
{bn} is decreasing and converges to 0, then the sum converges. 

• Geometric Series Test
Let a ∈R. The series Σn an is called geometric series. Then,

if  |a|< 1 the geometric series converges 
if  |a|≥ 1 the geometric series diverges. 
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7.5 Series: Power Series

,
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7.5 Series: Power Series

• Properties: 
- The power series converges at its center, i.e. for x = c
- There exists an r such that the series converges absolutely and 
uniformly for all |x – c|≤p, where p<r, and diverges ∀|x – c| > r.  r is 
called the radius of  convergence for the power series and is given by: 

r = lim sup |an /an+1| 

Note: It is possible for r to be zero –i.e., the power series converges 
only for x = c– or to be ∞ -i.e., the series converges for all x. 

Example: Σn=0 (3n/2n) (x – 2)n; an = 3n/2n

r = lim sup|an/an+1|= lim sup|(3n/2n)/(3(n+1)/2n+1)| 
= lim sup| n/(n+1)* 2| = 2 

 Series converges absolutely and uniformly on any subinterval of  
|x – 2|< 2.
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7.5 Series: Power Series

• Polynomials are relatively simple functions: they can be added, 
subtracted, and multiplied (but not divided), and, again, we get a 
polynomial. Differentiation and integration are particularly simple and 
yield again polynomials. 

• We know a lot  about polynomials (e.g. they can have at most n
zeros) and we feel pretty comfortable with them. 

• Power series share many of  these properties. Since we can add, 
subtract, and multiply absolutely convergent series, we can add, 
subtract, and multiply (think Cauchy product) power series, as long as 
they have overlapping regions of  convergence. 

• Differentiating and integrating works as expected. Important result: 
Power series are infinitely often (lim sup) differentiable. 

40

7.6 Taylor Series

• The Taylor series is a representation of  a (infinitely 
differentiable) function as an infinite sum of  terms 
calculated from the values of  its derivatives at a single 
point, x0. 

Brook Taylor (1685 – 1731, England)

Definition: Taylor Series 
Suppose f is an infinitely often differentiable function on a set D and c 
∈D. Then, the series 

𝑇 𝑥, 𝑐 ∑
!

𝑥 𝑐

is called the (formal) Taylor series of  f centered at, or around, c. 

Note: If  c = 0, the series is also called MacLaurin Series.

• The partial sum formed by the first n + 1 terms of  a Taylor series is 
a polynomial of  degree n. It is called the nth Taylor polynomial of  f.
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7.6 Taylor Series: Remarks

- A Taylor series is associated with a given function f. A power series 
contains (in principle) arbitrary coefficients an. Therefore, every Taylor 
series is a power series but not every power series is a Taylor series. 
- 𝑇 𝑥, 𝑐 converges trivially for x = c, but it may or may not converge 
anywhere else. In other words, the “r” of  𝑇 𝑥, 𝑐 is not necessarily greater 
than zero.
- Even if  𝑇 𝑥, 𝑐 converges, it may or may not converge to  f.

Example: A Taylor Series that does not converge to its function 

f(x) = exp(-1/x2) if  x ≠ 0

= 0 if  x = 0
• The function is infinitely often differentiable, with f ’(0) = 0. Tf(x, 0)
around c = 0 has radius of  convergence infinity.  
• Tf(x, 0) around c = 0 does not converge to the original function (Tf(x, 
0) = 0 for all x).

7.6 Maclaurin Series: Power Series Derivation

42
               n

(n)///

n
nn

n

n
n

n
n

n
n

n
n

n
n

x
n!

f
  x

!

 f
 x

!

f
  x

!

f
 f(x) 

nfaannnnf

faafaf

faafaf

faafaf

faafaf

annnnxf

xannnaxf

xannxaaxf

xnaxaxaaxf

xaxaxaxaaxf

0

2

0

1

0

0

0

function primitive  theinto tscoefficien  theof  value thengSubstituti

!)0()1)(2)(3()3)(2)(1()0(

!3)0(!3)0(6)0(

!2)0(!2)0(2)0(

!1)0(!1)0()0(

!0)0(!0)0()0(

tcoefficien for the solving& gsimplifyin 0,cat function each  Evaluating

derivative n)1)(2)(3()3)(2)(1()(

derivative 3)2)(1(...6)(

derivative 2)1(...62)(

derivative 1...32)(

function primitive...)(

210

///
33

///
3

///

//
22

//
2

//

/
11

/
1

/

000

th

rd3
3

///

nd2
32

//

st12
321

/

3
3

2
210








































RS - Ch 7 - Rules of  Differentiation

22

43

7.6 Taylor Series: Taylor’s Theorem

Suppose f  ∈ Cn+1([a, b]) –i.e., f is (n+1)-times continuously 
differentiable on [a, b]. Then, for c ∈ [a,b] we have: 

In particular, the 𝑇 𝑥, 𝑐 for an infinitely often differentiable function 
f converges to f iff the remainder R(n+1)(x) → 0 as n → ∞. 

• We can show that a function really has a Taylor series by checking 
that the remainder goes to zero. Lagrange found an easier expression:

for some p between x and c. 

               

   dppxpf
n!

xR

Rxx
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xf
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c f
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cf
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7.6 Taylor Series: Taylor’s Theorem

• Implications: 
- A function that is (n+1)-times continuously differentiable can be 
approximated by a polynomial of  degree n.
- If  f is a function that is (n+1)-times continuously differentiable and 
f(n+1)(x) = 0 for all x, then f is necessarily a polynomial of  degree n. 
- If  a function f has a Taylor series centered at c then the series 
converges in the largest interval (c – r, c + r) where f is differentiable. 

• In practice, a function is approximated by its Taylor series using a small 
n, say n = 2:

• The error (& the approximation) depends on the curvature of  f.

𝑓 𝑥 𝑥 𝑐
!

𝑥 𝑐
!

𝑥 𝑐
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7.6 Taylor Series: Taylor Polynomial

• The partial sum formed by the first n + 1 terms of  a Taylor series is 
a polynomial of  degree n that is called the nth Taylor polynomial of  the 
function. 

• Taylor polynomials are approximations of  a function, which become 
generally better as n increases. 

Example: We approximate the following quadratic function with a 
Taylor polynomial around c = 1:

𝑓(x) = 5 + 2x + x2 𝑓(c =1) = 8
𝑓′((x) = 2 + 2x 𝑓′(c =1) = 4

For n = 1: 𝑇 𝑥, 𝑐
!
𝑥 1

!
𝑥 1

 8 + 4 (x – 1) = 4 + 4x

with R2 = [2/2!](x – 1)2 =(x – 1)2

46Note: Polynomials can be approximated with great accuracy. 

Example (continuation): Let’s check the approximation error, R2 :
f(x) = 5 + 2x + x2 f(x) ≈ 4 + 4x R2

c = 1 f(1) = 8 f(1) = 8 0
c = 1.1 f(1.1) = 8.41 f(1.1) = 8.4 0.12

c = 1.2 f(1.2) = 8.84 f(1.2) = 8.8 0.22

For n = 2:

𝑇 𝑥, 𝑐
!
𝑥 1

!
𝑥 1

!
𝑥 1

 8 + 4 (x – 1) + 2/2 (x – 1)2 = 4 + 4x + (x – 1)2

4 + 4x + x2 - 2x + 1
5 + 2x + x2

with R3 = 0

7.6 Taylor Series Approximations
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• We do an expansion of  the BS pricing formula (ceteris paribus) with 
respect to St –i.e., take (T-t), i, and  as fixed, usually at current or 
average values. Recall the BS call option pricing formula:

𝐶 𝑆 𝑆  𝑁 𝑑1 𝐾 𝑒 𝑁 𝑑2

For n = 1, around St = 𝑆∗, we have:

𝐶 𝑆 𝐶 𝑆∗   Δ 𝑆∗  𝑆 𝑆∗ = constant + Δ 𝑆∗  𝑆

If  we want to approximate C(St + δ) around St, we get:

𝐶 𝑆 δ 𝐶 𝑆   Δ 𝑆  δ

For n = 2, around St = 𝑆∗ we have:

𝐶 𝑆 δ 𝐶 𝑆   Δ 𝑆  δ   Γ 𝑆 δ

7.6 Taylor Series Approximations: BS Example

48

• From  𝐶 𝑆 δ 𝐶 𝑆   Δ 𝑆  δ

At A, Δ=0.45 (σ = 19% annual, i = 1.5%, K = $41, T – t = 90/365). 

Let δ = $1, then C($41) = $1.4 + 0.45*$1 = $1.85

St ($)St = 40

1.4
A

Approximation error
(Γ correction helps)

Ct ($)

St + δ = 41

A’

1.85

• At A’, Ct = $1.88. Then, the approximation error is $0.03.

1.88

7.6 Taylor Series Approximations: BS Example
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• At A’, the approximation error is: $1.88 - $1.85 = $.03 

• To improve the approximation, we can use a 2nd-order Taylor 
series:

 𝐶 𝑆 δ 𝐶 𝑆   Δ 𝑆  δ   Γ 𝑆 δ

At A, Δ=0.45 & Г=0.09. Then, 
C($41) 1.4 + 0.45*1 + 0.5*.09*12 = $1.895,

which delivers a smaller error ($-0.015).

• Note: The change, δ (=$1), is not small. At A’, there is a new Δ
(=55). Delta-neutral portfolios need to be adjusted! 

7.6 Taylor Series Approximations: BS Example

7.6 Maclaurin Series of ex

50

Let’s do a Taylor series around c = 0: 

⋯ ⋯

𝑓 𝑥 𝑒      primitive function  ⇒ 𝑓 0 𝑒 1  
𝑓 𝑥 𝑒      1st derivative      ⇒ 𝑓′ 0 𝑒 1 
𝑓 𝑥 𝑒   2nd derivative    ⇒ 𝑓′′ 0 𝑒 1 
𝑓 𝑥 𝑒   3rd derivative   ⇒ 𝑓′′′ 0 𝑒 1 
  ⋮     ⋮
𝑓 𝑥 𝑒   nth derivative    ⇒ 𝑓 0 𝑒 1 

Substituting the value of the coefficients into the primitive 
function   

𝑒  
1
0!

𝑥   
1
1!

𝑥  
 1
2!

𝑥  ⋯  
1
𝑛!

𝑥 ⋯
1
𝑛!
𝑥
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7.6 Maclaurin Series of 𝒆
𝒙𝟐

𝟐

51

Let’s do a Taylor series around c = 0: 

𝑓 𝑥 𝑒          ⇒ 𝑓 0 1

𝑓  𝑥𝑒  𝑥𝑓 𝑥   ⇒ 𝑓′ 0 0

𝑓 𝑥 𝑥  1 𝑒   𝑥 1 𝑓 𝑥  ⇒ 𝑓′′ 0 -1

𝑓 𝑥 2𝑥𝑒 𝑥 𝑥 𝑒 𝑥 3𝑥 𝑓 𝑥 ⇒ 𝑓′′′ 0 0

𝑓 𝑥 𝑥 6𝑥 3 𝑓 𝑥  ⇒ 𝑓 0 3
𝑓 𝑥 𝑥 10𝑥 15𝑥 𝑓 𝑥  ⇒ 𝑓 0 0
𝑓 𝑥 𝑥 10𝑥 45𝑥 15 𝑓 𝑥  ⇒ 𝑓 0 15
  ⋮     ⋮

Continue. Then, substituting into a nth-order Taylor series:

𝑒 1 ⋯ ∑
!
𝑥

7.6 Maclaurin Series of 𝒆
𝒙𝟐

𝟐

52

Apply the Taylor series to the standard normal pdf: 

𝑓 𝑥 𝑒   

Now, we approximate 𝑓 𝑥 with a 6th-order Taylor series:
1

2𝜋
𝑒

1

2𝜋
1 

𝑥
2

𝑥
8

𝑥
48

Normal 2nd order 4th order 6th order 

x = 0 0.3989423 0.3989423 0.3989423 0.3989423

x = 0.2 0.3910427 0.3909634 0.3910432 0.3910427

x = 0.5 0.3520653 0.3490745 0.3521912 0.3520614

x = 1 0.2419707 0.1994711 0.2493389 0.2410276

x = 1.5 0.1295176 -0.0498678 0.2025879 0.107917

x = 2 0.05399097 -0.3989423 0.3989423 -0.1329808
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7.6 Maclaurin Series of cos(x)

53
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1)0cos()0(derivative 4)cos()(
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1)0cos()0(''derivative 2)cos()(
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1)0cos()0(function primitive)cos()(

n

n
n

x
n!

 x
!

 
 x

!

 
   (x) 

fxxf

fxxf

fxxf

fxxf

fxxf



Let’s do a Taylor series around c = 0: 

• Now, let’s check if  the remainder R2(n+1) goes to 0 as n →∞:

and the last term is a converging series to 0, as n → ∞.

⋯ ⋯

𝑅 𝑥   |
𝑓 𝑝

2𝑛 2 !
𝑥 0 |     |

cos 𝑝
2𝑛 2 !

𝑥 |  
|𝑥|
2𝑛 2 !

7.6 Maclaurin Series of sin(x) & Euler’s formula

54

Similarly, we can do a Taylor series for sin(x):

sin 𝑥   𝑥  
 1
3!

𝑥  
 1
5!

𝑥
 1
7!

𝑥 ⋯  
1

2𝑛 1 !
𝑥

• Now, let’s go back to the Taylor series of  ex. Let’s look at eix:

𝑒
1
𝑛!

𝑖𝑥

 1  𝑖𝑥
 1
2!

𝑖𝑥
 1
3!

𝑖𝑥
 1
4!

𝑖𝑥
 1
5!

𝑖𝑥 ⋯
1
𝑛!

𝑖𝑥 ⋯

        1  𝑖𝑥
 1
2!

𝑥 𝑖
 1
3!

𝑥
 1
4!

𝑥 𝑖
 1
5!

𝑥 ⋯

        cos 𝑥 𝑖 sin 𝑥

Note: This last result is called Euler’s formula. (It will re-appear when 
solving differential equations with complex roots.) 
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7.6 Maclaurin Series of log (1+x)

55

⋯ ⋯

𝑓 𝑥 log 1 𝑥         primitive function
𝑓/ 𝑥 1 𝑥              1st derivative
𝑓// 𝑥 1 𝑥             2nd derivative
𝑓/// 𝑥 2 1 𝑥             3rd derivative
 ⋮    ⋮
𝑓 𝑥 1 𝑛 1 ! 1 𝑥  nth derivative          

Evaluating each function at x 0, 
𝑓 0 0;  𝑓′ 0 1;𝑓′′ 0 1;𝑓′′ 0 2; … ; 𝑓 0 1 𝑛 1 !

Substituting the value of the coefficients into the primitive function:

log 1 𝑥   
0
0!

𝑥   
1
1!

𝑥  
 1
2!

𝑥  ⋯  
1 𝑛 1 !

𝑛!
𝑥

∑ 𝑥

7.6 Maclaurin Series of log (1+x)


432

)1log(
432  x x x

 x x

• A 1st order series expansion: log(1+x) = x + O(x2). 
Notation: O(x2): R is bounded by Ax2 as x → 0 for some A < ∞. 

• Q: Why do we care about this approximation log(1+x) = x ?

A: Let’s define net or simple (total) return, Rt :

𝑅     
Capital gain + Dividend yield

where Pt = Stock price or Value of  investment at time t

Dt = Dividend or payout of  investment at time t

Then, we define the gross (total) return as:

𝑅 1 56
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7.6 Maclaurin Series of log (1+x)

• There is another commonly used definition of  return, the log (total) 
return, rt, defined as the log of  the gross return:

rt = log(1 + Rt ) = log(Pt + Dt) – log (Pt-1)

Note: When the values are small (-0.1 to +0.1), the two returns are 
approximately the same: rt = log(1 + Rt ) ≈ Rt. 

57• In general –i.e., when returns are not small, rt < Rt.  

58

7.6 Taylor series: Approximations

• Taylor series work very well for polynomials; the exponential 
function ex and the sine and cosine functions. (They are all examples 
of  entire functions –i.e., f(x) equals its Taylor series everywhere). 
• Taylor series do not always work well. For example, for the 
logarithm function, the Taylor series do not converge if  x is far 
from x0. 
• Log approximation around 0:
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7.6 Taylor Series: Newton Raphson Method

 The Newton Raphson (NR) method is a procedure to iteratively 
find roots of  functions, or a solution to a system of  equations, where 
f(x)=0. Very popular in numerical optimization, where f ’(x)=0. 

 To find the roots of  a function f(x). We start with:

 We derived an iterative process to find the roots of  a function f(x).
59

 

 f(x) 

 f(xk) 

Xk+1 Xk  X 

 B 

 C  A 

Δ𝑦 ≅
𝜕𝑓 𝑥
𝜕𝑥

Δ𝑥 ⇒ Δ𝑥
Δ𝑦
𝑓′ 𝑥

 

⇒ 𝑥 𝑥
𝑓 𝑥 𝑓 𝑥

𝑓′ 𝑥

     𝑥
0 𝑓 𝑥
𝑓′ 𝑥

𝑥
𝑓 𝑥
𝑓′ 𝑥

7.6 Taylor Series: NR Method

60

 We can use the NR method to minimize a function. 

 Recall that f  '(x*) = 0 at a minimum or maximum, thus stationary 
points can be found by applying NR method to the derivative. The 
iteration becomes:

𝑥 𝑥

 We need f  ''(xk)  0; otherwise the iterations are undefined. Usually, 
we add a step-size, λk, in the updating step of  x:

𝑥 𝑥 λk
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0x

 xf f (x0 +δx) = f (x0) + f '(x0) δx + ½ f ''(x0) (δx)2

• When used for minimization, the NR method approximates f(x) by 
its quadratic approximation near xk.

• Expand f(x) locally using a 2nd-order Taylor series:

f(x+δx) = f(x) + f  '(x) δx + ½ f  ''(x) (δx)2 + o(δx2)

• Find the δx which minimizes this local quadratic approximation:

δx = – f '(x)/ f ''(x)

• Update x: xk+1 = xk – f '(x)/ f ''(x).

7.6 Taylor Series: NR – Quadratic Approximation

7.7 Geometric series

62
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• Geometric series: Each term is obtained from the preceding one by 
multiplying it by x, convergent if  |x|<1.
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7.7 Geometric series: Approximating (1-a)-1

• It is possible to accurately approximate some ratios, with (1 – x) 
term in the denominator, with a geometric series. Recall:

y = (1 – a)-1 where a = 0, 0.1, ..., 0.9
y = 1 + a  + a2 + a3 + a4 + ...

• For n = 4. 
• a = 0.1  1/(1 – a) = 1.1111
& 1+.1+.12+.13+.14 = 1.11110

• a = 0.9  1/(1 – a) = 10 
& 1+.9+.92+.93+.94 = 4.09510

64

7.7 Geometric series: Approximating A-1

• Application to the Leontief  Model  (x = Ax + d  (I – A)x = d):

𝐴 .15 0.25
0.20 .05

 ⇒ 𝐼 𝐴 1.2541 0.3300
0.2640 1.1221

𝐼 𝐴 1 0
0 1

0.15 0.25
0.20 0.05

0.15 0.25
0.20 0.05

1.1725 0.3125
0.2400 1.0525

with n 6 𝐼 𝐴 1.2506 0.3290
0.2632 1.1214

• Taylor series approximation 

1 𝑥 𝑥  1 𝑥 𝑥 . . . 𝑥      if x 1 scalar

𝐼 𝐴 𝐴 𝐼 𝐴 𝐴 . . . 𝐴     by analogy 
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7.7 Application: Geometric series & PV Models
 A stock price (P) is equal to the discounted some of  all futures 

dividends. Assume dividends are constant (d) and the discount 
rate is r. Then:

56

66

7.7 Application: Geometric series & PV Models
 Now, we assume dividends (d) grow at a constant (g) and the 

discount rate is r. Then:

Example: d = USD 1; r = 8%  &  g = 2%
 P = USD 1 * (1.02)/(.08 – .02) = USD 17.

Note: NPV of  dividend growth = USD 17 – USD 12.5 = USD 4.5
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Q: What is the first derivative of a cow? 

A: Prime Rib!


