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Chapter 6
Introduction to Calculus

Archimedes of  Syracuse (c. 287 BC – c. 212 BC ) Bhaskara II (1114 – 1185) 1

6.0 Calculus

2

• Calculus is the mathematics of  change. 

• Two major branches: Differential calculus & Integral calculus, which are 
related by the Fundamental Theorem of  Calculus.

• Differential calculus determines varying rates of  change. It is applied 
to problems involving acceleration of  moving objects (from a flywheel 
to the space shuttle), rates of  growth and decay, optimal values, etc. 

• Integration is the "inverse" (or opposite) of  differentiation. It 
measures accumulations over periods of  change. Integration can find 
volumes and lengths of  curves, measure forces and work, etc. Older 
branch: Archimedes (c. 287−212 BC) worked on it. 

• Applications in science, economics, finance, engineering, etc.
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6.0 Calculus: Early History

• The foundations of  calculus are generally attributed to Newton and 
Leibniz, though Bhaskara II is believed to have also laid the basis of  it.  
The Western roots go back to Wallis, Fermat, Descartes and Barrow. 

• Q: How close can two numbers be without being the same number?
Or, equivalent question, by considering the difference of  two numbers:
How small can a number be without being zero?

• Fermat’s and Newton’s answer: The infinitessimal, a positive quantity, 
smaller than any non-zero real number.

• With this concept differential calculus developed, by studying ratios 
in which both numerator and denominator go to zero simultaneously.

3

6.1 Comparative Statics

 Comparative statics: It is the study of different equilibrium states 
associated with different sets of values of parameters and 
exogenous variables.

 Static equilibrium analysis: we start with y* = f(x)

 Comparative static equilibrium analysis: y1* - y0* = f(x1) – f(x0)  

(subscripts 0 and 1: initial & subsequent points in time)

 Issues: 

Quantitative & qualitative of change or

Magnitude & direction

The rate of change –i.e., the derivative (Y/ G)
4
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• We  uses differential calculus to study what happens to an 
equilibrium in an economic model when something changes.

Example: Macroeconomic Model
Given 

Y = C + I0 + G0

C = a + b (Y – T)
T =d + t Y

Solving for Y  Y* = (a – bd + I0 + G0)/[1 – (b*(1-t))]

• Question: What happens to Y* when an exogenous variable, say G0,  
changes in the model?
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6.1 Comparative Statics: Application

5

6.2 Rate of Change & the Derivative

• Difference quotient:
Let y = f(x)
- Evaluate y = f(x) at two points: x0 and x1: y0 = f(x0) & y1 = f(x1)
- Define: Δx= x1 – x0  x1 = x0 + Δx

Δy= y1 – y0  Δy = f(x0 + Δx) – f(x0) 

- Then, we define the difference quotient as:

• Q: What happens to f(.) when x changes by a very small amount?

• That is, we want to describe the small-scale behavior of  a function
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• Difference quotient:

• To describe the small scale behavior of  a function, we use the 
derivative. 

• Derivative (based on Newton’s and Leibniz’s approach):
Let’s take Δx as an infinitesimal (a positive number, but smaller than 
any positive real number) in the difference quotient:
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Another interpretation: Infinitesimals are locations which are not 
zero, but which have zero distance from zero.

6.2 Rate of  Change & the Derivative
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• The derivative captures the small-scale behavior of  a function –i.e., 
what happens to f(.) when x changes by a very small amount.

• But, the infinitesimal approach was not elegant. A real number is 
either small but non-zero or is zero. Nothing is in between. Definition 
and manipulation of  infinitesimals was not very precise. 

• D’Alembert started to think about “vanishing quantities.” He saw 
the tangent to a curve as a limit of  secant lines. This was a 
revolutionary, though graphical, approach:

As the end point of  the secant converges on the point of  tangency, it 
becomes identical to the tangent “in the limit.” 

6.2 Rate of  Change & the Derivative

8
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• As the lim of x  0, then  f‘(x) measures the tangent (rise/run) of 
f(x) at the initial point A. Again, the secant becomes the tangent.

• This is the traditional motivation in calculus textbooks. 
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• Graphical interpretation of  the derivative:
Slope = tangent of  the function at x=x0:

Jean d'Alembert (1717 – 1783)

6.2 Rate of  Change & the Derivative
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• The graphical interpretation is subject to objections like those seen 
in Zeno’s paradoxes (say, Achilles and the Tortoise).

• Based on the work of  Cauchy and Weierstrass, we use limits to 
replace infinitesimals. Limits have a precise definition and nice  
properties. Then, we have an easier definition to work with: 

• Derivative (based on Weierstrass’s approach): 
Let’s take limits (Δx → 0) in the difference quotient we get the 
derivative:

6.2 Rate of  Change & the Derivative
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• Product of  Labor
Suppose Q=f(L) is a production function, where L is the only input, 
labor. Let L1 = L0+ ΔL, then, we define:

Average product of  labor = Change in production/change in labor 
= [f(L1) – f(L0)] /(L1 – L0)

Let L0 = 0 and f(L0)=0. Define L1 = ΔL = 1 hour 
 labor productivity = f(L1) /hour 

• Marginal product of  labor
The marginal product of  labor at L= L0 is

lim ΔL→0 [f(L0+ ΔL) – f(L0)]/ΔL (if  the limit exists)

6.2 Rate of  Change & Derivative: Economic 
Interpretation
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  :Example

6.2 Rate of  Change & Derivative: Power function

12
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Now, evaluate derivative at x=3 
y = 3x2 – 4 (red)
f ’(x) = 6x
f ’(x0=3) = 18 
y =  18x – 31, tangent at point (3, f(3)=23) (blue)

6.2 Rate of  Change & Derivative: Power function

13

> f = function(x) {3*x^2 – 4}
> plot(f, 0, 7)

> D1 = function(f, delta=.000001){function(x){ (f(x+delta) - f(x))/(delta)} }
> plot(D1(f), 0, 10)

> D = function(f, delta=.000001){function(x){ (f(x+delta) - f(x-delta))/(2*delta)} }

> plot(D(f), 0, 10)

6.2 Rate of  Change & Derivative in R
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• In the one dimensional case, we define the derivative as: 

6.2 Differentials
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Equivalently, we can write
f(x0+Δx)= f(x0) +Δx f ‘(x) + rx(Δx),

where rx(Δx) represent the remainder, which is of  smaller order than 
Δx, or o(Δx). That is,  
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• The quantity f(x0+Δx) - f(x0) is composed of  two terms:
- Δx f ‘(x), the part proportional to the change in x (Δx)
- rx(Δx), an “error,” which gets smaller with Δx.

The expression df(x) = Δx f ‘(x) is called the (first) differential of f. 15

𝑥ଵ௧

Figure 6.9 Differential Approximation and Actual 
Change of a Function

The differential df(x) = Δx f ‘(x) is the linear part of  the increment 
f(x0+Δx) – f(x0). This is expressed by geometrically replacing the 
curve at point x0 by its tangent.

16
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6.2 Differentials and Approximations

• The differential is used to linearly approximate changes in  f(x). The 
“error” –i.e., the quality of  the approximation– depends on the 
curvature of  is f(x) and, of  course, on the magnitude of  Δx.

• For very small Δx, the approximation should be good, regardless of  
f(x). But, when is Δx very small?

• An interesting case is when Δx = 1. In this case, df(x) = f ‘(x). Then, 
the first derivative approximates the change in the function per 
additional unit of  x. 

In the production function example, f ’(L) measures the additional 
output that can be produced with an additional unit of  labor.

17

Figure 6.11 Differential Approximation for 
Beta with Different Functions

Note:  Since Δx =1 in all cases, dy = f ‘(x). As the function has more 
curvature,  the linear approximation becomes less precise. 18
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• Recall the solution to Y (income) in the Macroeconomic model:

We have a linear function in I (investment) and G (government 
spending) . Assume I is fixed, then we have y=f(G).

• Comparative Static Question: 
What happens to Y* when G increases by ∆G? We approximate the 
answer by:
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6.2 Differentials and Approximations: Example

 if  ΔG =$1, then dY = f ‘(G). 

6.2 Multivariate Calculus: Partial Differentiation
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• It is straightforward to extend the concepts of  derivative and 
differential to more than one variable. In this case, y depends on 
several variables: x1, x2, …, xn.

The derivative of  y w.r.t. one of  the variables –while the other 
variables are held constant– is called partial derivative.

20
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6.2 Partial derivatives: Example
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L AK  Q :function Production

LAK
L

Q
MPL

LAK
K

Q
MPK

• Interpretation: As usual:
MPL: Marginal product of  labor
MPK: Marginal product of  capital

• We use them to linearly approximate the change in production ∆Q in 
the face of  unitary changes, one at a time, of  inputs. When L and K 
change simultaneously, we need to use the total derivative: 

∆Q ≈ MPL ∆L + MPK ∆K

Example: Cobb-Douglas production function

22

6.3 Concept of Limit: Preliminaries

 Let M be a metric space and let S be a subset of M. For example, 
M=Rn and S=Q.

 Definition: N-ball

Let c be a point in M and r be a positive number. The set of all points x
∈ M whose distance is less than r is called an n-ball of radius r and 
center c. It is usually denoted by B(c) or B(c, r). Thus:

B(c, r)={ x: x ∈ M, d(x, c) < r }

In Euclidian spaces, we have 

B(c, r)={ x: x ∈ Rn, ║x – c ║< r }

An n-ball is also called a neighborhood of c.

Example: B(4, 3) in R is the open interval (1, 7).
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6.3 Concept of Limit: Preliminaries

 Definition: Interior, accumulation & isolated points

Assume that c ∈ S and x ∈ M. Then, 

(a) if there is an n-ball B(c), all of whose points belong to S, c is called an
interior point of S. The set of all interior points of S is called the interior of 
S

(b) if every n-ball B(x) contains at least one point of S different from x, 
then x is called an accumulation point of S. It is also called limit point.

(c) if B(c) ∩ S = {c}, then c is an isolated point of S.

 Definition: Boundary Point

(d) if every n-ball B(x) contains at least one point of S and at least one 
point of the complement of S, then x is called a boundary point of S. The 
set of all boundary points of S is called the boundary of S.

24

6.3 Concept of Limit: Preliminaries

Note: Every non-isolated boundary point of a set S∈R is a limit point 
of S. A limit point is never an isolated point

Examples: Limit point (Let M=Rn and  S=Q)

- 2 is a limit point of S since {xn = 2; 2; 2; 2; 2; ... } or {xn = 1; 1+1/2; 
1+2/3; 1+3/4; ...}. 2 is a limit point of S that belongs to S.
- π is a limit point of S since {xn = 3, 3.14, 3.141, 3.1415, . . .}. π does not 
belong to S (though, it belongs to M).

Let’s look at the interval (0, 4).

- The boundary of (0, 4) is the set consisting of the two elements {0, 4}. -
The interior of the set (0, 4) is the set (0, 4) -i.e., itself. 

- No points of either set are isolated, and each point of the set {0, 4} is an 
accumulation point. The same is true, incidentally for each of the sets (0, 
4), [0, 4), (0, 4], and [0, 4].
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 Definition: Open and Closed sets 

A set S ⊂ M is said to be:

(a) open (in M) if all its points are interior points

(b) closed (in M) if it contains all its accumulation points

(c) bounded (in M) if there is a real number r>0 and a point c in M such 
that S lies entirely within the n-ball B(c, r)

(d) compact (in M) if it is closed and bounded 

Examples: Let A be an interval in R. For a < b in R we have:

(a, b), (a, ∞), R  are open intervals in R.

[a, b], [a, ∞), R  are closed intervals in R.

[-3, 4] is bounded in R (it is contained in B(0, 5) or B(2, 6)). [-3, 4] is compact

 The set of all open sets on a space M is called the topology on M.

6.3 Concept of Limit: Open and Closed Sets

6.3 Concept of Limit: Open and Closed Sets

Note: Some sets (like the M itself) are both closed and open, they are 
called clopen sets. But, [0; 1)⊂ R is neither open nor closed. Thus, 
subsets of a metric space can be open, closed, both, or neither.

 Properties:

- The compliment of an open set is closed and the compliment of a 
closed set is open.

- Every union of open sets is again open. 

- Every intersection of closed sets is again closed. 

- Every finite intersection of open sets is again open 

- Every finite union of closed sets is again closed. 

- Every open set U ⊂ R can be expressed as a countable disjoint union 
of open intervals of the form (a; b), where a is allowed to take on the 
value -∞ and b is allowed to +∞. 30
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6.3 Concept of Limit: Cantor set C

Note: Open sets in R are generally easy. Closed sets can get  
complicated.

 Cantor Middle Third Set 
Start with the unit interval S0 = [0, 1].

Remove from S0 the middle third. Set S1 = S0\(1/3, 2/3)

Remove from S1 the 2 middle thirds. Set S2=S1\{ (1/9, 2/9) U (7/9, 8/9)}

Continue, where Sn+1=Sn\{ middle thirds of subintervals of Sn }.

Then, the Cantor set C is defined as C =  Sn

The Cantor set C is an indication of the complicated structure of closed 
sets in the real line. 

28

The Cantor set C is an indication of the complicated structure of 
closed sets in the real line. 

C has the following properties: 

- C is compact (i.e., closed and bounded) 

- C is perfect –i.e., it is closed and every point of C is a limit point of C. 

- C is uncountable (since every non-empty perfect set is uncountable). 

- C has length zero, but contains uncountably many points. 

- C does not contain any open set.

This set is used to construct counter-intuitive objects in real analysis or 
to show lack of generalization of some results. For example, Riemann 
integration does not generalize to all intervals. 

6.3 Concept of Limit: Cantor set C
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6.3 Concept of Limit: Functions

 Definition: Functions

Let S and T two sets (say, two metric spaces). If with each element x in 
S there is associated exactly one element y in T, denoted f(x), then f is 
said to be a function from S to T. We write

f: S → T,

and say that f is defined on S with values in T. The set S is called the 
domain of f; the set of all values of f is called the range of f, and it is a 
subset of T. T is called the target or codomain.

• The image of f is defined as 

image(f) = {t ∈ T : there is an s ∈ S with f(s) = t}. 

If C is a subset of the range T, then the preimage, or inverse image, of C under 
the function f is the set defined as 

f -1(C) = {x ∈ S : f(x) ∈ C } 

30

6.3 Concept of Limit: Functions

 Example: Domain and image of f : X → Y

f is a function from domain X to codomain Y. The smaller yellow oval 
inside Y is the image of f. 

Peter G. Lejeune Dirichlet (1805 – 1859, Germany) 

Domain 

Codomain 

Image 
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6.3 Concept of Limit: Functions

• A function f: S → R defined on set S with values in R is called real-valued. 

f: S → Rm (m>1) whose values are points in R is called a vector function. 

A vector function is bounded if there is a real number B such that 

║f (x)║ ≤ B for all x in S.

 A function f from S to T can be classified into three groups:

- One-to-one if whenever f(s) = f(w), then s = w. Also called injections.

- Onto if for all t ∈T ∃s∈S such that f(s) = t. Also called surjections. 

- Bijection if it is one-to-one and onto -i.e., bijections are functions that are 
injective and surjective. 

Examples: A linear function is a bijection. A periodic function is not one-
to-one. Say, g(x) = cos(x) is neither one-to-one nor onto in R. 

32

6.3 Concept of Limit: Inverse Functions

• When  f: S → T is one-to-one on a set C in S, there is a function from 
f(C) back to C, which assigns to each t ∈f(C)  the unique point in C
which mapped to it. This map is called the inverse of f on C and it written 
as: 

f -1: f(C) → C.

Examples: 

- Let f: R → T, say f = 3x+2  f -1: (y – 2)/3 

- The logarithm is the inverse of the exponential function. 

- The demand function q = D(p), under the usual assumptions, has as 
the inverse function p = D-1 (q), which is called the inverse demand function.
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6.3 Concept of Limit: Composition Functions

• Let  f: S → T and g: V → W be two functions. Suppose that T is a 
subset of V. Then, the composition of f  with g is defined as the function:

(g ◦ f)(x) = g(f(x)) for all x in S.

That is, function composition is the application of one function to the 
results of another. The functions f and g can be composed by computing 
the output of g when it has an argument of f(x) instead of x. Intuitively, 
if z is a function g(y) and y is a function f(x), then z is a function h(x). 

Example: Define f(x) = x5 and g(x) = exp(x). Then, (g ◦ f)(x) = exp(x5)

34

6.3 Concept of Limit: Sequences

 Definition: Sequence

A sequence of real numbers is a function f: N → R. 

That is, a sequence can be written as f(1), f(2), f(3), ..... Usually, we will 
denote such a sequence by the symbol {aj} where aj = f(j). 

Example: The sequence ½, ¼, ⅛, ... is written as {1/2j}. 

 Definition: Convergence

A sequence {aj} of real (or complex) numbers is said to converge to a real (or 
complex) number c if for every ε>0, there is an integer N>0 such that if

j> N, then 
| aj – c | <  ε.

The number c is called the limit of the sequence {aj} and we write aj → c. 

If a sequence {aj} does not converge, then we say that it diverges. 
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6.3 Concept of Limit: Sequences

Example: The sequence {
ଵ

௝
} converges to zero. 

We need to show that no matter which ε > 0 we choose, the sequence 
will eventually become smaller than this number. Take any ε > 0. Then, 
there exists a positive integer N such that 1/N < ε . 

Thus, for any j > N we have: 

| 
ଵ

௝
– 0| = | 

ଵ

௝
| < 

ଵ

ே
< ε, whenever j > N. 

This is precisely the definition of the sequence {1/j} converging to 0. 

Note: Easy proof. A proper choice of N is the key. 

 If {aj} is a convergent sequence, {aj} is bounded & the limit is unique.

Example: The sequence of Fibonacci numbers is unbounded. Then, 
the sequence cannot converge (convergent sequence must be bounded). 

36

6.3 Concept of Limit: Sequences

• Algebra of Convergent Sequences: 

Let {aj} be a convergent sequence. Then, the sequence is bounded, and the 
limit is unique. 

Suppose {aj} and {bj} are converging to a and b, respectively. Then, 

- Their sum converges to a + b, and the sequences can be added term by 
term. 

- Their product converges to a * b, and the sequences can be multiplied 
term by term. 

- Their quotient converges to a/b, provide that b≠0, and the sequences can 
be divided term by term (if the denominators are not zero). 

- If an ≤ bn for all n, then a  ≤ b. (It does not work for strict inequalities).

• We know how to work with convergent sequences, we would like to have 
an easy criteria to determine whether a sequence converges. 
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6.3 Concept of Limit: Sequences

 Definition: Monotonicity

A sequence {aj} is called monotone increasing if aj + 1 ≥  aj for all j. 

A sequence {aj} is called monotone decreasing if aj ≥ aj + 1 for all j. 

 Proposition: Monotone Sequences

- If {aj} is a monotone increasing sequence that is bounded above, then 
the sequence must converge. 

- If {aj} is a monotone decreasing sequence that is bounded below, then 
the sequence must converge. 

Examples: 

- { ௝

௝ାଵ
} is monotone increasing, bounded above by 1. It must converge.

- {ଵ
௝
} is monotone decreasing, bounded below by 0. It must converge.

38

 Often, it is hard to determine the actual limit of a sequence. We want to 
have a definition which only includes the known elements of a particular 
sequence and does not rely on the unknown limit.

 Definition: Cauchy Sequence

Let {aj} be a sequence of real (or complex) numbers. We say that {aj} is
Cauchy if for each ε>0 there is an integer N>0 such that if j, k > N then  

|aj – ak|< ε.

• Now, we know what it means for the elements of a sequence to get 
closer together, and to stay close together. 

 Theorem: Completeness Theorem in R.

Let {aj} be a Cauchy sequence in R. Then, {aj} is bounded. 

Let {aj} be a sequence in R. {aj} is Cauchy iff it converges to some limit a. 

6.3 Concept of  Limit: Cauchy Sequence
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 By considering Cauchy sequences instead of convergent sequences we 
do not need to refer to the unknown limit of a sequence (in effect, both 
concepts are the same). 

 Q: Not all sequences converge. How do we deal with these situation? 

A: We change the sequence into a convergent one (extract subsequences) 
and we modify our concept of limit (lim sup and lim inf).

 Definition: Subsequence.

Let {aj} be a sequence. When we extract from this sequence only certain 
elements and drop the remaining ones we obtain a new sequences 
consisting of an infinite subset of the original sequence. That sequence is 
called a subsequence and denoted by {aj,k}  (k=1, 2, ..., ∞).

Note: We can think of a subsequence as a composition function. 

6.3 Concept of  Limit: Subsequences
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Example: Take the sequence {(-1)j}, which does not converge. The 
sequence is: {-1, 1, -1, 1,...} 

Extract every even number in the sequence, we get: {-1, -1, -1, -1,...}  

 subsequence converges to -1.

Extract every odd number in the sequence, we get: {1, 1, 1, 1,...} 

 subsequence converges to 1.

Note: We can extract infinitely many subsequences from any given sequence

 Proposition: Subsequences from Convergent Sequence

Let {aj} be a convergent sequence, then every subsequence of {aj} 
converges to the same limit. 
Let {aj} be a sequence such that every possible subsequence extracted from 
{aj} converge to the same limit, then {aj} also converges to that limit. 

6.3 Concept of  Limit: Subsequences
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 Theorem: Bolzano-Weierstrass

Let {aj} be a sequence of real numbers that is bounded. Then, there exists 
a subsequence {aj,k} that converges.  

This is one on the most important results of basic real analysis, and 
generalizes the above proposition. It explains why subsequences can be 
useful, even if the original sequence does not converge. 

Example: The sequence {sin(j)} does not converge, but since it is 
bounded, we can extract a convergent subsequence. 

Note: The Bolzano-Weierstrass theorem does guarantee the existence of 
that subsequence, but it does not say how to obtain it. It can be difficult. 
We will extend the concept of limits to deal with divergent sequences.

6.3 Concept of  Limit: Subsequences
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 Definition: Lim Sup and Lim Inf

Let {aj} be a sequence of real numbers. Define 

Aj = inf{aj, aj+1, aj+2, ...} 

and let c = lim (Aj). Then, c is called the limit inferior of the sequence {aj}. 

Let {aj} be a sequence of real numbers. Define: 

Bj = sup{aj, aj+1, aj+2, ...} 

and let d = lim (Bj). Then d is called the limit superior of the sequence. 

Summary:

- lim inf(aj) = lim(Aj), where Aj = inf{aj, aj+1, aj+2, ...}.

- lim sup(aj) = lim(Bj), where Bj = sup{aj, aj+1, aj+2, ...}.

• These limits are often counter-intuitive, they have one very useful property: 

lim sup and lim inf always exist (possibly ∓∞) for any sequence in R.

6.3 Concept of  Limit: Lim Sup and Lim Inf
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Example 1: Consider {(-1)j}. We find the numbers Aj = inf{aj, aj + 1, aj + 2, ...}

A1 = inf{-1, 1, -1, 1, ...} = -1 

A2= inf{1, -1, 1, -1, ... } = -1 

etc. It is clear that lim inf{(-1)j} = -1. (also the infimum)

Similarly, lim sup{(-1)j} = 1. (also the supremum)

Example 2: Consider {1/j}. The sequence is {1, 1/2, 1/3, 1/4, ...}. Then, 
the infimum is zero, while the supremum is 1.  Let’s get the Aj and Bj: 

A1 = inf{1, 1/2, 1/3, 1/4, ...}= 0       & B1=sup{1, 1/2, 1/3, 1/4, ...}= 1 

A2 = inf{1/2, 1/3, 1/4, 1/5, ...}= 0   &  B2=sup{1/2, 1/3, 1/4, 1/5,.}=1/2

A3 = inf(1/3, 1/4, 1/5, 1/6, ...} = 0   & B3=sup( 1/3, 1/4, 1/5, 1/6,.}= 1/3 

etc. It is clear that lim inf{1/j} = 0. (also the infimum)

etc. It is clear that lim sup{1/j} = 0. (different from the supremum)

6.3 Concept of  Limit: Lim Sup and Lim Inf
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6.3 Concept of  Limit: Lim Sup and Lim Inf

 As can be seen from the previous example, as j increases, the lim sup 
decreases and the lim inf increases. We think of lim sup and lim inf as 
subsequential limits.

 Theorem: A finite lim sup {aj} exists iff

(i) {aj} is bounded above and 

(ii) {aj} ↛ −∞.

(Note: For the lim inf case we need (i) bounded below & (ii) ↛ ∞.)

 Theorem: Let {aj} be a sequence. Suppose that lim sup(aj) = B exists. 
Then there is a subsequence {ajk} that converges to B. Moreover, B is 
the largest subsequential limit.  (Similar theorem works for lim inf.)

Note: Both Theorems imply the Bolzano-Weierstrass Theorem.
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6.3 Concept of  Limit: Lim Sup and Lim Inf

 lim sup {aj} is the largest limit of  convergent subsequences of  {aj}. 
(Reverse results holds for lim inf.)

Define a sequence {bj} by {bj} = − {aj}. Then, there is a subsequence 
{bjk} of  {bj} converging to lim sup {bj}, and {ajk} is a subsequence of  
{aj}, satisfying:

lim k→∞ {ajk} = − lim k→∞ {bjk} = − lim sup {bj} = lim inf {aj},

 Corollary. Let {aj} be a bounded sequence in R. Then, {aj} 
converges –i.e., lim j→∞ {aj} exists– if  and only if  lim sup {aj} = lim inf
{aj}.

46

6.3 Concept of Limit: Definition

 Definition: Limit

Let f: S → Rm. Let c be an accumulation point of S. Suppose there 
exists a point b in Rm with the property that for every ε>0 there is a 
δ>0 such that 

║f (x) – b║ < ε ∀x in S, x ≠ c, for which  ║x – c║ < δ.

Then, we say the limit of f (x) is b, as x tends to c, and we write

Note: This is the (ε, δ)-definition of limit, introduced by Bolzano/Cauchy 
and perfected by Weierstrass. 

bxf
cx




)(lim
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6.3 Concept of Limit: Right- & Left-hand Limit

 The limit (f(x), x  c, direction) function attempts to compute the 
limiting value of f(x) as x approaches c from left, c- (the left-hand limit) or 
right, c-+ (the right-hand limit). 

 When the left-hand and the right-hand limits are equal, say to L, we 
say the limit exists and equals L.

 If q = f(v), what value does q approach as v → N? Answer: L

 As v  N from either side, q  L. 

Then, both the left-side limit and the 

right side-limit are equal. 

 Therefore, lim q = L.

q

L

vNv N N← v
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6.4 Evaluation of a Limit

 To  take a limit, substitute successively smaller values that tend to 
N from both the left and right sides since N may not be in the 
domain of the function.

 If v is in both the numerator and denominator remove it from 
either depending on the function

 Taking limits sometimes is not straightforward. 
Example: Given q = (2v + 5)/(v + 1), find the limit of q as v  +∞. 
Dividing the numerator by denominator:

2lim
1

3
2

1
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6.4 Limit Theorems
 If q = a v + b,   = a N + b

 If q = g(v) = b,  = b

 If q = v,  = N

 If q = vk,  = Nk







)(lim)(lim)(lim 2121 qqqq
NvNvNv 



q
Nv

lim

q
Nv

lim
q

Nv
lim
q

Nv
lim

)(lim)(lim)(lim 2121 qqqq
NvNvNv 



)(lim/)(lim)/(lim 2121 qqqq
NvNvNv 



Example: Find lim (1+v)/(2 + v) as v  0
 
  2
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
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L

L

v

v

50

6.4 L’Hôpital’s Rules

 If f and g are differentiable in a neighborhood of x=c, and f(c)=g(c)=0, 
then 

provided the limits exist. 
Note: The same result holds for one-sided limits. 

 If f and g are differentiable and limx→∞ f(x) = limx→∞ g(x) = ∞, then 

provided the last limit exists. 

• In other situations L'Hôpital's rules may also apply, but often a 
problem can be rewritten so that one of these two cases will apply. 
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6.4 Limit Jokes

q
Nv

lim
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 Definition: Continuous function 

Let M and T be two metric spaces (two sets). We say f: M → T is 
continuous if for each convergent sequence xn → x in M, we have 
f(xn) → f(x) in T. 

Note: Continuity preserves limits.

 Requirements for continuity

 f(x) is defined and belongs to T.

 f  has a limit as xn → x –i.e., the limit exists.

 limit equals f(x) in value

6.5 Continuous Function: Definition
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 (ε, δ) Definition: Continuous function 

Let M and T be two metric spaces (two sets). A function f: M → T 
is continuous at x ∈ M if ∀ε ൐ 0, ∃δ > 0, such that y ∈ M and d(x, y) 
< δ d(f(x), f(y)) < ε. 

We say that f is continuous on M if it is continuous at every x ∈ S. If δ
does not depend on x and y (or , then we say f: M → T is uniformly 
continuous.

That is, f is uniformly continuous if it is possible to guarantee that f(x) 
and f(y) be as close to each other as we want by requiring only that x
and y are sufficiently close to each other. With ordinary continuity, 
the maximum distance between f(x) and f(y) may depend on x and y
themselves. 

6.5 Continuous Function: (ε, δ) Definition
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 Continuous functions can fail to be uniformly continuous if they are 
unbounded on a finite domain.

Example: f(x) = 1/x on (0; 1) is continuous, but is not uniformly 
continuous, since it does not matter how small we choose δ, there are 
always points (x, y) in the interval (0; δ) such that |f(x) – f(y)|> ε). 

f(x) = x2 on R is not uniform continuous. This function becomes 
arbitrarily steep as x approaches infinity. 

6.5 Continuous Function: (ε, δ) Definition
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 Continuity preserves limits, but, it does not preserve Cauchy 
sequences. For example, f(x) = 1/x on (0; 1] → R maps 1, 1/2, 1/3, 
1/4,... (Cauchy sequence) to 1, 2, 3, 4,... (non-Cauchy sequence) in R. 
We need uniform continuity to preserve Cauchy sequences.

 Theorem: 
Let M and T be two metric spaces, f: M → T a uniform continuous function 
and {xn} a Cauchy sequence in M. Then, f(xn) is a Cauchy sequence in 
T. 

Proof: Let ε>0 be given. Since f is uniformly continuous, ∃δ>0 s.t.
dM(x, y) < δ  dN(f(x), f(y)) < ε. Since {xn} is Cauchy, ∃L s.t. m; n > 
L  dM(xm, xn) < δ  dN(f(xm), f(xn)) < ε  f(xn) is Cauchy.

Example: Consistent Estimates (Slutzky’s Theorem).

6.5 Continuous Function: (ε, δ) Definition
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 (ε, δ) definition: (ε, δ) Continuous function in R

Let f: S → R be a real valued function on a set S in Rn. Let c be a 
point in S. We say that f is continuous at c if for every ε>0, there 
exists a δ>0 such that

║ f(c+u) – f(c)║< ε

for all points c+u for which ║u║< δ. If f is continuous at every 
point of S, we say f is continuous on S.

Note: f has to be defined at the point c to be continuous at c.  

• Continuous functions can be added, multiplied, divided, and 
composed with one another and yield again continuous functions. 

6.5 Continuous Function: (ε, δ) Definition in R
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 If c is an accumulation (limit) point of S, the definition of continuity 
implies that

limu→0 f(c +u) = f(c).

 Intuition is tricky: Geometry seems to show that if f is continuous 
at c, it must be continuous near c. This is wrong!

Example: The Dirichlet function  

Let f: R → R  defined by

f(x) = x if x is rational

= 0 if x is irrational

is continuous at x=0, but at no other point.

6.5 Continuity and Differentiability of  a Function
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6.5 Continuity and Differentiability of a Function

 Almost all the basic functions in mathematical econ models are 
assumed to be continuous.

 For example, a production function is continuous if a small change 
in inputs yields a small change in output. (A reasonable assumption.)

 If a function fails to be continuous at a point c, then the function is 
called discontinuous at c, (c is called a point of discontinuity). 

Examples: Non-continuous functions:
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 We say f: Rn → R is differentiable at x* if f’(x*) exists.

 Not every continuous function has a derivative at every point. For 
example: f(x) = |x|.

 |x| is not differentiable at x=0, the left and the right-handed 
limits are different (-1 and +1). Then, there is no unambiguous 
tangent line defined at x=0.

We need the function f(.) to be smooth –i.e., no kinks.

 If f is differentiable at x*, then f is continuous at x*. (Converse 
is, of course, not true.) 

 As with continuous functions, differentiable functions can be 
added, multiplied, divided, and composed with each other to yield 
again differentiable functions. 

6.5 Continuity and Differentiability of  a Function
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 A function f: Rn → R is continuously differentiable on an open set U of 
Rn if and only if for each x, df/dxi exists for all x in U and is 
continuous in x.

 This rational function is not defined at v = ±2, even though the limit 
exists as v  ± 2. It is discontinuous and thus does not have 
continuous derivatives --i.e., it is not continuous differentiable.

4

44
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 This continuous function is not differentiable at x=3 and, thus, does 
not have continuous derivatives (it is not continuously differentiable):
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6.5 Continuity and Differentiability of  a Function
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not continuous:

f(t) = -1 if  t = 0
f(t) = t2 otherwise

continuous
but not
differentiable:

f(t) = |t|

continuous
& differentiable:

f(t) = t2

t

f(t)

6.5 Continuity and Differentiability of  a Function
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 For a function to be continuous differentiable

 All points in the domain of f defined

 The limit is taken on the difference quotient at x=x0 as x0 from 
both directions. The continuity condition is necessary, not sufficient.

 The differentiability condition (smoothness) is both necessary and 
sufficient for whether f is differentiable.

 Theorem: Rolle’s Theorem

If f is continuous on [a, b] and differentiable on (a, b), and f(a)=f(b)=0, 
then there exists a number x in (a, b) such that f'(x) = 0. 

Note: An extension of Rolle's theorem that removes the conditions on 
f(a) and f(b) is the Mean-Value Theorem. These theorems form the 
basis for the familiar test for local extrema of a function.

6.5 Continuity and Differentiability of  a Function
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 Here we want to list some functions that illustrate more or less 
subtle points for continuous and differentiable functions. 

 Dirichlet function: A function that is not continuous at any point in R

 Countable discontinuities: A function that is continuous at the irrational 
numbers and discontinuous at the rational numbers.

 C1 function: A function that is differentiable, but the derivative is not 
continuous.

6.6 Continuity and Differentiability: Examples
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 Cn function: A function that is n-times differentiable, but not (n+1)-
times differentiable

 Cinf function: A function that is not zero, infinitely often 
differentiable, but the n-th derivative at zero is always zero.

 Weierstrass function: A function that is continuous everywhere and 
nowhere differentiable in R.

 Cantor function: A continuous, non-constant, differentiable function 
whose derivative is zero everywhere except on a set of length zero

6.6 Continuity and Differentiability: Examples
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6.7 The Limit and the Quotient Ratio

 Let q  y/x and v  x such that q =f(v) and 

q
x

y
vx 00
limlim






 Q: What value does variable q approach as v approaches 0?

A: If  the function is differentiable, we move from the quotient ratio to 
the derivative.

Note: This definition may not work well when x is a vector, say x=(y,z). 
Measuring Δy is not a problem (the difference between two 
functions), but measuring Δx = (Δy, Δz) is not clear. 

6.8 Resolution of  a Controversy: Butter Biscuits 
or Fruit Chewy Cookies?


