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Chapters 5
Vector Spaces
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Giuseppe Peano (1858–1932, Italy) David Hilbert (1862–1943, Germany) 
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5.1 Vector multiplication: Geometric 
interpretation

 Think of  a vector (an 
Euclidian vector) as a 
directed line segment in N-
dimensions! (has “length” 
and “direction”)

 Scalar multiplication 
(“scales” the vector –i.e., 
changes length)

 Source of  linear 
dependence
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5.1 Vector Addition: Geometric interpretation

 v' = [2 3]

 u' = [3 2]

 w’ = v‘ + u' = [5 5]

 Note: Two vectors plus the 
concepts of  addition and 
multiplication can create a two-
dimensional space. (Space = A set 
of  points, say R3, a “universe”.)
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• A vector space is a mathematical structure formed by a collection of  
vectors, which may be added together and multiplied by scalars. (It 
is closed under multiplication and addition.)  Giuseppe Peano in 
1888 gave a precise definition to this concept.

5.2 Vector (Linear) Space

 We introduce an algebraic structure called vector space over a field. 
We use it to provide an abstract notion of  a vector: an element of  
such algebraic structure.

 Given a field R (of  scalars) and a set V of  objects (vectors), on 
which “vector addition” (VxV→V), denoted by “+”, and “scalar 
multiplication” (RxV →V), denoted by “. ”, are defined.  

If  the following axioms are true for all objects u, v, and w ∈V and 
all scalars c and k in R, then V is called a vector space and the objects 
in V are called vectors.
1. u + v ∈V (closed under addition).

2. u + v = v + u (vector addition is commutative).

3. Ø ∈V, such that u+ Ø = u (Ø = null element).

4. u + (v + w) = (v + u) +w (distributive law of  vector addition)
4
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5. For each v, there is a –v, such that v + (–v) = Ø

6. c .u ∈ V (closed under scalar multiplication).

7. c. (k . u) = (c .k) u (scalar multiplication is associative).

8. c. (v + u) = (c. v) + (c. u)
9. (c + k) . u = (c. u) + (k. u)
10.  1.u=u (unit element).   
11.  0.u= Ø (zero element). 
We can write S = {V, R, +, .}to denote an abstract vector space.

This is a general definition. If  the field R represents 
the real numbers, then we define a real vector space.
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5.2 Vector Space

Giuseppe Peano (1858 – 1932, Italy) 

1. n-dimensional vectors:

x ൌ
𝑥ଵ
⋮
𝑥௡

∈ Rn, Cn

Note: The vector space consisting of  n-column vectors, with 
vector addition and multiplication corresponding to matrix 
operations is an n-dimensional vector space (Euclidean n-space), 
which we will denote Rn. 

2. An infinite sequence of  real numbers. We will be interested in 
bounded sequences such that {xk} < M, for M < ∞.

x ൌ

𝑥ଵ
⋮
𝑥௡
⋮

∈ R∞, C∞
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5.2 Vector Space: Examples
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3. The collection of  all continuous real valued functions f(t) on the 
interval C[a,b] on the real line is a linear vector space. The zero 
vector is the function identically zero on [a,b]. 

4. The collection of  polynomial functions on the interval [a,b] is a 
linear vector space.
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5.2 Vector Space: Examples

 Definition: Subspace 

Given the vector space V and W a set of  vectors, such that 
W∈V. Then, W is a subspace if  it also a vector space. That is, 

- u, v ∈ W  u + v ∈V, and

- u ∈ W & for every c ∈R  c.u ∈V.

- W contains the 0-vector of  V.

Thus, a nonempty subset W of  a vector space V that is closed 
under addition and scalar multiplication and contains the 0-vector 
of  V is a subspace of  V.

 That is, a subspace is a subset of  V that can be considered a 
vector space!
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5.2 Vector Space: Subspace
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 Example: Subspace

W2 is not a subspace of  V, it does not 

include the 0-vector of  V.

W2 is just a “hyperplane.”

 Definition:  Linear Combination
Given vectors u1, ..., uk,, the vector w = c1 u1+ ....+ ck uk is called a 
linear combination of  the vectors u1, ..., uk,.
Notation: <u1, ..., uk> is the set of  all linear combinations of  uj’s.

 Recall that a set of  vectors is linearly dependent if  any one of  them 
can be expressed as a linear combination of  the remaining vectors; 
otherwise, the set is linearly independent (LI). 9

5.2 Vector Space: Subspace
v2

v3

v1

W2

 Definition: Maximally linear independent (max-LI) subset
Given a set U={u1, ..., uk} of  vectors in a vector space V. If  W
={ui,1, ..., ui,q} ∈ U containing q vectors is LI and every subset 
with more than q vectors is LD, then W is called maximally linear 
independent subset of  U. Moreover, we will call q the rank of  the set 
U, written q = rank(U). (The max-LI subset is not unique.)

Definition: Full rank
Given A (mxn). We say A has full rank if  rank(A) = min(m,n).

5.2 Vector Space: Rank

38
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 Definition: Spanning set 

Given the set Z in V and U = {u1, ..., uk} in Z, we say U spans Z, 
or U is a spanning set for Z, if  Z ∈<u1, ..., uk> or Z ∈<U>.

That is, a set of  vectors spans Z if  all the vectors in Z can be 
expressed in terms of  this set of  vectors.

Example: Vectors v1 & v3 span the v3 – v1

plane. Also, v3 & u1 also span the same 

v3 – v1 plane.

5.2 Vector Space: Spanning Set

v2

v3

v1 u1
35

 Definition: Basis set (“basis”)

Given U = {u1, ..., uk} and a subspace W∈V. Then, U is a basis set
for W if

1) span the subspace W, 

2) U is linearly independent (LI).

Example: The N-dimensional subspace WN of  the V space
(N=2).

5.2 Vector Space: Basis

v2

v3

v1

W2

u2

u1
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 Theorem:

If  a vector space has a basis with a finite number N of  elements, 
then, every other basis also has N elements. 

 Definition: Space dimension

If  a vector space V has a basis with N < ∞ elements, we say that 
V is a finite dimensional vector space and that V has dimension N, or 
N = dim(V).

 Theorem:

If  {u1, ..., uk} are linearly independent vectors for k < N, 
where N is the dimension of  the vector space, we can always 
construct a basis by adding additional independent vectors: 

{u1, ..., uk, uk+1, ..., uN}. 
13

5.2 Vector Space: Basis and Space Dimension

 A vector space V can be decomposed into independent 
subspaces instead of  vectors, say V1, V2, …, Vm. Then,

V = V1 + V2 + V3 + … + Vm

We call this direct sum decomposition. It is similar to a basis 
decomposition when the Vi all have dimension 1.

Example: The 3-dimensional space V can be decomposed as: 

V = v1+ v2 + v3, where the vi’s are LI. 

Alternatively, V can be decomposed as

V = V1+ v3, where V1 = v1+ v2.

 If V=U+W, then dim(V)= dim(U)+dim(W), where U∩W = {0}.

14

5.2 Vector Space: Basis and Space Dimension
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 As we defined them, vector spaces do not provide enough 
structure to study issues in real analysis, for example convergence 
of  sequences. More structure is needed.

 For example, we can introduce as an additional structure the  
concept of  order (≤), to compare vectors. This additional structure 
creates ordered vector spaces.

 We can introduce a norm, which we will use to measure the length
or magnitude of  vectors. This creates a normed vector space, denoted 
as a pair (V, ║.║) where V is a vector space and ║.║ is a norm 
on V.

 A normed vector space has a defined mapping from V → R1.
15

5.2 Vector Space: Measuring Length

• An (mx1) column vector u and a (1xn) row vector v, yield a 
product matrix uv of  dimension (mxn).
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5.3 Notes on Vector Operations

A matrix

A scalar
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• The dot product produces a scalar! y = c’z =(1x1=1xn nx1)= z’c. 
Note that from the definition, the dot product is commutative.

• When c is a vector of  1’s, usually noted as ι, then:

17

• The dot or Inner product (IP), “•”, is a function that takes pairs of  
vectors and produces a number. For vectors c & z, it is defined as:

5.3 Vector Multiplication: Dot (inner) Product

𝑦 ൌ 𝒄 • 𝒛 ൌ 𝑐ଵ 𝑐ଶ … 𝑐௡

𝑧ଵ
𝑧ଶ
⋮
𝑧ଷ

ൌ 𝐜ᇱ𝐳

𝒄 • 𝒛 ൌ 𝑐ଵ ∗ 𝑧ଵ + 𝑐ଶ ∗ 𝑧ଶ + ... + 𝑐௡ ∗ 𝑧௡ ൌ ∑ 𝑐௜𝑧௜
௡
௜ୀଵ

𝜾 • 𝒛 ൌ 1 ∗ 𝑧ଵ + 1 ∗ 𝑧ଶ + ... + 1 ∗ 𝑧௡ ൌ ∑ 𝑧௜
௡
௜ୀଵ

• It is possible to define an inner product for functions. Instead of  
a sum over the corresponding elements of  a vector, the inner 
product on functions is defined as an integral over some interval. 
For example, for functions f(x) & g(x):

f  • g ׬ = f(x) g(x) dx

5.3 Vectors: Dot Product

• Inner products (IP) in econometrics are common. For example, 
the Residual Sum of  Squares (RSS), where e is a vector of  
residuals:

𝒆 • 𝒆 ൌ 𝒆′𝒆 ൌ 𝑒ଵ ∗ 𝑒ଵ+ 𝑒ଶ∗ 𝑒ଶ+...+ 𝑒௡ ∗ 𝑒௡ ൌ ∑ 𝑒௜
ଶ௡

௜ୀଵ
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• Some intuition. 
- IP is used as a tool to define length or size for vectors: 

∥ α ∥ = sqrt[α′ α] = α𝟏𝟐 ൅ ⋯൅ α𝒏𝟐

The square root makes the inner product to be expressed in the 
same units as the original vector. 

- Now, it is possible to compare vectors and measure “distances” 
between vectors and, eventually, convergence!

- IP also can be used to define a notion like angle between vectors, 
since any two vectors, say α and β, determine a plane. The IP 
connects the length and the angle between the vectors α and β:

α′ • β = ∥ α ∥ ∥ β ∥ cos(θ)

5.3 Vectors: Dot Product - Intuition

5.3 Vectors: Dot Product – Geometry

• There is a geometric interpretation to the IP. The IP connects the 
length and the angle between the vectors α and β:

α′ • β = ∥ α ∥ ∥ β ∥ cos(θ)

The IP is related to the angle between the two vectors – but it does 
not tell us the angle.

• Now, we define orthogonality using the IP. Since cos(θ=90)=0, 
the IP of  two orthogonal (perpendicular or “┴”) vectors is zero.

Example: In the CLM, we have 

y = Xb + e = Projection + “error” 
Then:

X′e = X′(y – Xb) = X′y – X′X (X′X)-1X′y = 0  (X ┴ e).
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5.3 Vectors: Dot Product - Properties

• The dot product fulfils the following properties if  α, β, and γ are 
real vectors and k is a scalar.

1. Commutative: α • β = <α, β> = β • α
Note: We say α and β (non-zero vectors) are orthogonal iff α • β = 0

2. Distributive over vector addition:   α • (β + γ) = α • β + α • γ

3. Bilinear: α • (kβ + γ) = k (α•β) + α•γ

4. Scalar multiplication:  (k1 α) • (k2 β) = k1 k2 (α • β)

Note: Nice, intuitive properties.

Notation: α • β = <α, β> (<.,.> is the physics notation).

• The magnitude (length or size) is the square root of  the dot product 
of  a vector with itself (just like the Pythagorean theorem):

∥ 𝜶 ∥= sqrt[𝜶′𝜶 ] = αଵଶ ൅ αଶଶ ൅ ⋯൅ α௡ଶ

Note:  If  we set k = 1/║α║  ║(1/║α║) α║ = 1. 
 Nice result, used to normalize vectors.

5.3 Vectors: Dot Product & Size

• Now, we can talk about the size of  vectors.  We can apply this 
definition to define other concepts, for example, convergence, in a 
similar fashion as in calculus: A sequence of  vectors xn converge to 
a point c if  ∥xn – c∥ decreases to 0 as n increases. 

• Useful property: If  k is a scalar, then the size of  a vector times k 
is |k| times the size of  the vector.

∥ 𝑘𝜶 ∥= sqrt[𝑘𝜶′ 𝑘𝜶 ] =|𝑘| ∥ 𝜶 ∥
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5.3 Vectors: Magnitude and Direction

e1

e2

∥ 𝒆 ∥



• We mentioned that vectors have magnitude and direction.

• To talk about magnitude, we need to define the notion of  size,  
length, or distance (from origin) of  a vector. In Euclidean spaces, 
the magnitude of  the n-dimensional vector e can be calculated as:

• This measure is called the Euclidian norm.

• The angle (“phase”)  gives the direction of  the vector. Thus, a
vector can also be defined in terms of  polar coordinates: (∥ 𝒆 ∥, ). 

• If  ∥ 𝒆 ∥=1, e is a unit vector (a pure direction vector).

∥ 𝒆 ∥= sqrt[e′e]= 𝑒ଵଶ ൅ ⋯൅ 𝑒௡ଶ

5.4 Vectors: Norm

• Given a vector space V, the function g:V→R is called a norm iff:
1) g(x) ≥ 0, for all x ∈V
2) g(x) = 0 iff x = Ø (empty set)
3) g(αx) = |α|g(x) for all α ∈ R, x ∈ V
4) g(x + y)  ≤ g(x) + g(y) (“triangle inequality”) for all x,y ∈V

The norm is a generalization of  the notion of  size or length of  a 
vector.

Example: On Rn, the Euclidian norm of  x = (x1, x2, ..., xn) is given 
by

∥ 𝒙 ∥= sqrt[x′x]= 𝑥ଵଶ ൅ 𝑥ଶଶ ൅ ⋯൅ 𝑥௡ଶ

while the Manhattan (Taxicab) norm is defined as:
∥ 𝒙 ∥1= |𝑥ଵ| ൅ |𝑥ଶ| ൅⋯൅ |𝑥௡|
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5.4 Vectors: Norm

Example (continuation): On C[a, b] 

∥ 𝒇 𝑡 ∥ = sqrtሾ׬ |𝑓 𝑡 |ଶ𝑑𝑡ሿ
௕
௔

Note: Euclidian norm = L2 norm (2-norm).
Manhattan norm = L1 norm (1-norm).

• We can generalize the concept of  norm on Rn.

Definition: Lp norm
For a real number p ≥ 1, the Lp-norm (or p-norm) of  x is defined by

pp
n

pp
p

xxxx /1
21 )||...|||(| 

• An infinite number of  functions can be shown to qualify as 
norms. For vectors in Rn, we have the following examples:

g(x) = maxi (xi);

g(x) = ∑i |xi|; 

g(x) = [∑i (xi)4 ] ¼

• Given a norm on a vector space, we can define a measure of  
“how far apart” two vectors are, using the concept of  a metric.

5.4 Vectors: Norm
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• Given a vector space V, the function d: VxV→ R is called a 
metric or a distance function if  and only if:
1) d(x, y) ≥ 0, (“positive”) for all x,y ∈ V
2) d(x, y) = 0 (“non-degenerate”) iff x = y
3) d(x, y) = d(y, x) (“symmetry”) for all x,y ∈ V
4) d(x+y) ≤ d(x, z) + d(z, y) (“triangle inequality”) for all x,y,z ∈ V

Given a norm g(.), we can define a metric by the equation:
d(x, y) = g(x – y).

Check:
1) and 2) follow immediately from properties of  g(.)
3) d(x, y) = g(x-y) = g((-1)(y-x)) = |-1| g(y – x) = g(y – x) = d(y, x)
4) (x – y) = (x – z) + (z – y)  g(x – y) ≤ g(x – z) + g(z – y)

 d(x, y) ≤ d(x, z) + d(z, y)

5.4 Vectors: Metric

Example: On Rn, the distance between two points is usually given 
by the 2-norm distance. But, other distances are possible. 

1-norm distance:

2-norm distance:

p-norm distance:

The red, yellow, and blue lines have  
the same length (12) –i.e., same L1

distance.

The green lines is the L2 distance, the 
shortest distance, which is unique.

5.4 Vectors: Metric
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Note:  This result can be written as

||||||||, vuvu 

• Theorem: Cauchy-Schwarz Inequality  

If  u and v are vectors in a real inner product space, then

|u • v | ൑ ║u║ ║v║

222

2

||||||||,

,,,

vuvu

vvuuvu





General Proof:  Trivial proof  when v = 0. We assume that v • v ≠0. 

5.4 Vectors: Metric

• Theorem: |u • v | ൑ ║u║ ║v║

Proof: Let δ be any number in the field F. Then,

0 ൑║ u – δv ║2 =(u – δ v)•(u – δ v) = u•u – 2 δ u•v + |δ|2 v•v

Choose the value of  δ that minimizes this quadratic form:
δ = u•v/v•v

(Use the trick of  thinking of  F as R. and get f.o.c. and solve:
d(║u – δv║2)/dk = -2 u•v + 2 k v•v = 0  δ = u•v/v•v.)

Then, we get 0 ൑ u•u – 2 (u•v/v•v) u•v + |u•v/v•v |2 v•v

 0 ൑ u•u – |u•v |2 (v•v)-1

which is true if  and only if  |u•v |2 ൑ u•u (v•v)

or equivalently: |u • v | ൑ ║u║ ║v║

5.4 Vectors: Metric
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Definition: Metric Space
A metric on a space M is a mapping d(., .): M×M → [0, ∞) 

satisfying the metric properties (1) through (4) for all x, y and z in 
M. A space endowed with a metric is called a metric space.

Definition: Cauchy sequence 
A sequence of  elements xn of  a metric space with metric
d(., .) is called a Cauchy sequence if  for every ε>0 there exists an n0(ε)
such that for all k,m ≥ n0(ε), d(xk, xm) < ε.

In other words a sequence is Cauchy if, eventually, all the terms are 
all very close to each other. Moreover, every convergent sequence 
is Cauchy (this is easy to prove. Do it!).

Q: Does every Cauchy sequence converge to a limit? Consider a 
sequence approximating π.

5.4 Vectors: Metric Space & Cauchy Sequence

• Consider the sequence 3, 3.14, 3.141, 3.1415, . . . This sequence is 
clearly Cauchy. When considered as a sequence in R, it does 
converge to π. But, as a sequence in Q (rational numbers) it does 
not converge, since π ∉ Q.

• A metric space is complete if  every Cauchy sequence in the space 
converges to some point v in the vector space V.

Examples – Complete: Real numbers (rational + irrationals) are 
complete on the real line (R1). In Rp with finite dimension p every 
Cauchy sequence converges to a limit in Rp.

Examples – Non-complete: The rational numbers, Q. The open 
interval (0,1) with |.| as a metric is not complete. The sequence 
defined by {xn = 1/n} is Cauchy, but does not have a limit in the 
given space. On the other hand, [0,1] is complete.

5.4 Vectors: Complete Metric Space
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• Intuitively, a space is complete if  there are no “tiny holes" on it 
(inside or at the boundary).

• We want the vector space to be complete –i.e., every Cauchy 
sequence has a limit in the space. A very useful property: If  we 
have a convergent sequence of  vectors to a point p, then, p is in the 
space. Now, we can approximate functions. Now, the techniques of  
calculus can be used. 

Note: In many problems, we find a solution by approximating the 
answer. We need completeness to ensure the approximations 
actually converge to something in the space. For example, 
continuous functions on [0,1] can be approximated by polynomials. 

5.4 Vectors: Complete Vector Space

Definition: Banach space 
A Banach space B is a complete normed vector space. 

• Completeness makes a Banach space closed under convergence.

Examples:(V = R1 (real line), d = ║x – y║p) is a Banach space. 
(V = RN, d = ║x – y║p) is also a Banach space. 

• Since any finite dimensional vector space can be mapped in a one 
to one fashion to RN, we have the following result:

Theorem: In a normed linear vector space, any finite-dimensional 
subspace is complete and thus it forms a Banach space.

5.5 Vectors: Banach and Hilbert Spaces
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• A Hilbert space is a special case of  a Banach space. A Banach
space is a complete normed vector space. In a Hilbert space we 
specify a norm, the inner product (IP), (x • y).

Definition: Hilbert space 
A Hilbert space H is a vector space endowed with an IP, (x • y), 
associated norm ║x║= sqrt(y • x), and metric ║x – y║such that 
every Cauchy sequence in H has a limit in H. 

• If  the space is not complete, H is known as an inner product space.

• Usually, in linear algebra, we are familiar with some vector spaces. 
They are Rn or Cn. These are also Hilbert spaces.

Note: The space we live on, R3, is a Hilbert space! 

5.5 Vectors: Hilbert Space

• It can be shown that a Banach space is a Hilbert space if  and only 
if  its norm satisfies the Parallelogram Law:

║x + y║2 + ║x – y║2 = 2 * (║x║2 +║y║2)

Example: A Banach space, but not a Hilbert space 
The space C[0,1] of  continuous functions f:[0,1] → R, with the 
supremum norm, ║.║∞, is a Banach space, but not a Hilbert space.

Let f(x) = x for x ∈ [0,1] and g(x) = 1 for x ∈ [0,1]. We check if  the 
parallelogram law is not satisfied. Using the supremum norm:

║f║∞ = 1; ║g║∞ = 1; ║f + g║∞= 2;  & ║f – g║∞= 1.
Then,

5 = ║f + g║∞
2 + ║f – g║∞

2 ≠ 2*(║f║∞
2 + ║g║∞

2) = 4.

5.5 Vectors: Hilbert Space
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• Hilbert spaces appear frequently in mathematics, statistics, and 
physics (SS, state space for quantum mechanics), typically as 
infinite-dimensional function spaces. Hilbert space methods helped 
in the development of  functional analysis.

Example I: The space V of  random variables defined on a 
common probability space {Ω, F, P} with finite second moments, 
endowed with IP, X • Y = E[XY], associated norm ║X║ = 
sqrt(X•X) and metric ║X – Y║. 

Example II: L 2, the set of  all functions f: R → R such that the 
integral of  f  2 over the whole real line is finite. In this case, the IP 
is 

f  • g ׬= f(x) g(x) dx

5.5 Vectors: Hilbert Space - Examples

• Banach spaces, and their special case, Hilbert spaces, are usually 
studied in the context of  infinite dimensional vector spaces, as they 
are tailor made to study spaces of  functions and sequences.

• Typical examples of  Hilbert spaces: Euclidean  spaces, spaces of  
square-integrable functions, spaces of  sequences.

• Hilbert Space - Summary:
- Generalization of  Euclidian space (R2, R3).
- Abstract vector (linear) space with an inner product, complete.
- Nice properties: linear space, inner product, sums that
should converge do converge, calculus can be used.

5.5 Vectors: Hilbert Space - Summary

David Hilbert (1862–1943, Germany) 
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• Theorem: (Generalized Law of  Pythagoras) 

If  u and v are orthogonal vectors in an IP space, then

║u + v ║2 = ║u║ 2 + ║v ║ 2

Proof: It follows from u • v = 0. 

• Definition: Orthogonal Complement
Let W be a subspace of  an inner product space V. A vector u in V
is said to be orthogonal to W if  it is orthogonal to every vector in 
W.  The set of  all vectors in V that are orthogonal to W is called 
the orthogonal complement of W.

Notation: We denote the orthogonal complement of  a subspace W
by W┴.  [Read “W perp”.]

5.6 Vectors: Orthogonality

• Theorem: Properties of  Orthogonal Complements 

If  W is a subspace of  a finite-dimensional IP space V, then

- W┴ is a subspace of  V.

- The only vector common to both W and W┴ is 0.

- The orthogonal complement of  W┴ is W;  that is (W┴)┴ = W.

• Theorem:
If  W is a subspace of   RN, then,

dim(W) + dim(W┴) = N.

Furthermore, if  {u1, ..., uk} is a basis for W and {uk+1, ..., uN} is a 
basis for W┴, then {u1, ..., uk, uk+1, ..., uN} is a basis for RN.

5.6 Vectors: Orthogonality
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 Theorem: Projection

Given v a vector in V and a subspace V1, there is a unique 
vector v1 such that |e|= ║v – v1║ is minimized.

Proof:

Decompose V = V1 + V2  = V1 + V1┴ (V2  = V1┴ )

Let v = v1 + v2 , where v1 ∈V1 and v2 ∈V1┴.

Pick an arbitrary “error” vector, e, where p1 ∈V1, as:

e = v – p1 = (v1 + v2) – p1 = (v1 – p1 )+ v2

Then,

║e║2 = e • e = <(v1 – p1 )+ v2, (v1 – p1 )+ v2> 

= ║(v1 – p1 )║2 + ║v2║2

which is minimized when v1 = p1  e ∈V1┴  (or e ┴ vi ∈V1).

5.6 Vectors: Projections

 Theorem: Projection

Note: Many optimization problems in Hilbert spaces use this idea.

5.6 Vectors: Projections

v2

p1

v e = v1 - p1

V1
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 Definition: Projection

Let u and v be two non-zero vectors in an inner product space 
V. Then, the scalar projection of  u onto v is defined as 

k = u•v/v•v

The vector projection of  u onto v is p = k v = (u•v/v•v) v

Derivation: Given two vectors: v in S & u in Rn. We want to find 
p, the vector in S closest to u. Let p = kv.

To minimize ║u – p║ with respect to k.

║u – p║2 =║u – kv║2 =(u - kv)•(u - kv) = u•u – 2k u•v + k2 v•v

d(║u – p║2)/dk = -2u•v + 2k v•v = 0  k = u•v/v•v

 p = (u•v/v•v) v 

5.6 Vectors: Projections

 Lemma: Let v be a non-zero vector and p be the projection of  
u onto v. Then,

(i) (u – p) ┴ p

(ii) u = p u = k v for some k

Proof: Recall p = kv = (u•v/v•v) v 

(i) p • (u – p) = p • u – p • p = 

= |u • v|2/ ║v ║ – |u • v|2/║v ║ = 0

 (u – p) ┴ p
(ii) straightforward.

5.6 Vectors: Projections

u

v p

u – p
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Example: Let V = R2 be spanned by 

𝒗𝟏  ൌ 1
0

and 𝒗𝟐  ൌ 2
1

The projection of  𝒗𝟐 onto 𝒗𝟏 is:

p = (𝒗𝟐• 𝒗𝟏)/(𝒗𝟏• 𝒗𝟏) 𝒗𝟏 ൌ
𝟐

𝟏
1
0
ൌ 2

0

Also, we calculate 

(𝒗𝟐 – p) = 2
1
െ 2

0
= 0

1
Note that 𝒗𝟏and (𝒗𝟐 – p) form a standard basis for R2.

Check property (i): (𝒗𝟐 – p) ┴ p (IP = 0)

p • (𝒗𝟐 – p) = 2*0 + 0*1 = 0.

5.6 Vectors: Projections - Examples

Example: Find the best approximation, p, in subspace S be 
spanned by the columns of  X (Nxk).

Project a vector y onto S (spanned by columns x1, x2, ..., xk):

yp = x1 b1+ x2 b2+ ..+ xk bk = X b

The error vector e will be perpendicular to all vectors in S. Then, 
for e = y – X b (Note: {X}: independent columns.) 

xଵ
ᇱ 𝑒 ൌ 0

xଶ
ᇱ 𝑒 ൌ 0

…
xே
ᇱ 𝑒 ൌ 0

 X′ (y – X b) = 0  X′ y – X′ X b = 0

5.6 Vectors: Projections - Examples
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xଵ
ᇱ 𝑒 ൌ 0

xଶ
ᇱ 𝑒 ൌ 0

…
xே
ᇱ 𝑒 ൌ 0

 X′ (y – X b) = 0  X′ y – X′ X b = 0

 X′ y = X′ X b

 b = (X′ X)-1X′y
Then, 

 yp = X b = X(X′ X)-1X′y 

This is the general result of  projecting a vector y onto a subspace 
S with a basis specified by the columns of  a matrix X. The matrix 
X(X′ X)-1X′ is called projection matrix, P (NxN matrix).

yp

y

e = y - Xb

S x2

x1

5.6 Vectors: Projections - Examples

5.6 Vectors: Projections - CLM

 In the CLM, we have a “Projection matrix”, P:  

P = X(X′X)-1X′ (X is Nxk ⇒ P is NxN)

 Features

Py = X(X′X)-1X′y = Xb = ŷ (fitted values)

Py: The projection of y into the column space of  X.  

PM = P[IT – X(X′X)-1X′ ] = MP = 0  (M: residual maker)

PX = X

 Properties

- P is symmetric – P = P′

- P is idempotent – P*P = P

- P is singular – P-1 does not exist. ⇒ rank(P)=k
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5.6 Vectors: Projections - CLM

•We have two ways to look at y:
y = X𝛃 +  = Conditional mean + disturbance
y = Xb + e = Projection + residual

• Note: X′e = X′(y – Xb) = X′y – X′X(X′X)-1X′y = 0.

𝑦ො

y
e = y – Xb

col X

x2
x1 b2x2

b1x1

 Basis: a space is totally defined by a set of  vectors – any point is a 
linear combination of  the basis.

 Ortho-Normal: orthogonal + normal.

 Orthogonal: dot product is zero –i.e., vectors are perpendicular.

 Normal: magnitude is one.

Example: X, Y, Z (but, do not have to be; basis are not unique!)

 
 
 T

T

T

z

y

x

100

010

001







0

0

0





zy

zx

yx

5.6 Vectors: Orthonormal Basis

• The Gram-Schmidt process is a popular method to orthonormalize a 
set of  vectors in Hilbert spaces (actually, IP spaces). A method 
based on the Cholesky decomposition can also be used.
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




















































ncnbna

vcvbva

ucubua

nvu

nvu

nvu

c

b

a

333

222

111

00

00

00

(not an actual formula – just a way of  thinking about it)

• To change a point from one coordinate system to another, 
compute the dot product of  each coordinate row with each of  the 
basis vectors.

• If  X, Y, Z form an orthonormal basis in R3, we can describe any 
3D point as a linear combination of  these vectors.

• How do we express any point as a combination of  a new basis U, 
V, N, given X, Y, Z?

5.6 Vectors: Orthonormal Basis

You know too much linear algebra when...

You look at the long row of  milk cartons at Whole 
Foods --soy, skim, .5% low-fat, 1% low-fat, 2% low-fat, 
and whole-- and think: "Why so many? Aren't soy, skim, 
and whole a basis?" 


