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RS – Ch 4-2 – Linear Algebra

Mathematics for Economists

Chapters 4-5 – Part 2
Linear Models and Matrix Algebra

A. L. Cauchy (1789–1857, France)Pierre-Simon Laplace (1749–1827, France)

4.7 Determinant of  a Matrix

 The determinant is a number associated with any squared matrix. 

 If  A is an nxn matrix, the determinant is |A| or det(A).

 Since the early days, a determinant was used to “determine” if  a 
system of  linear equations has a unique solution.

 Cramer (1750) expanded the concept to sets of  equations, but a 
bit later, they were recognized by Vandermonde (1772) as 
independent functions.

 Determinants are used to characterize invertible matrices. A 
matrix is invertible (non-singular) if  and only if  |A|≠0.

 That is, if  |A|≠0 → A is invertible or non-singular.

 Can be found using factorials, pivots, and cofactors! 

 Lots of  interpretations.
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4.7 Determinant of  a Matrix

 When n is small, determinants are used for inversion and to solve 
systems of  equations. 

Example: Inverse of  a 2x2 matrix:
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11 This matrix is called the 
adjugate of  A (or adj(A)).

A-1 = adj(A)/|A|
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Then, subtract from 
right to left
Note: N! terms

 Q: How many flops? For A (3x3), we count 17 operations. 

4.7 Determinant of  a Matrix (3x3)
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4.7 Determinants: Laplace formula

 The determinant of  a matrix of  arbitrary size can be defined 
by the Leibniz formula or the Laplace formula. 

 The Laplace formula (or expansion) expresses the determinant 
|A| as a sum of  n determinants of  (n-1) × (n-1) sub-matrices 
of  A. There are n2 such expressions, one for each row and 
column of  A

 Define the i,j minor Mij (usually written as |Mij|) of  A as the 
determinant of  the (n-1) × (n-1) matrix that results from 
deleting the i-th row and the j-th column of  A. 

5Pierre-Simon Laplace (1749 – 1827, France).

 Define the Ci,j the cofactor of  A as:
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• The cofactor matrix of  A -denoted by C-, is defined as the nxn
matrix whose (i,j) entry is the (i,j) cofactor of  A. The transpose 
of  C is called the adjugate or adjoint of  A -adj(A). 

• Theorem (Determinant as a Laplace expansion)

Suppose A = [aij] is an nxn matrix and i,j= {1, 2, ...,n}. Then the 
determinant
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4.7 Determinants: Laplace formula
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Example:

7
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 |A|= 1 * C11 + 2 * C12 + 3 C13 (expanding through 1st row)

= 1*(-1)1+1*(-1*6) + 2*(-1)1+2*(0) + 3 *(-1)1+3*[-(-1)*2)] =0

= 2 * C12 + (-1) * C22 + 4 * C23 (expanding through 2nd col)

= 2*(-1)1+2*(0) + (-1)*(-1)2+2*(0) + 4 *(-1)2+3*(0) =0

 |A|=0  The matrix is singular. (Check!) 

 How many flops? For a A (3x3), we count 14 operations (better!). 
For A (nxn), we calculate n subdeterminants, each of  which requires 
(n-1) subdeterminants, etc. Then, computations of  order n! (plus 
some n terms), or O(n!). 

4.7 Determinants: Laplace formula

4.7 Determinants: Computations

 By today’s standards, a 30×30 matrix is small. Yet it would be
impossible to calculate a 30×30 determinant by Laplace formula.
It would require over n! (30! ≈ 2.65 × 1032) multiplications.

 If  a computer performs one quatrillion (1.0x1015) multiplications 
per second (a Petaflops, the 2008 record), it would have to run for 
over 8.4 billion years to compute a 30×30 determinant by Laplace’s 
method.

 Using a very fast computer like the 2013 China Tianhe-2 (33 
petaflops), it would take 254 million years.

 Not a very useful, computationally speaking, method. Avoid 
factorials! There are more efficient methods. 8



5

RS – Ch 4-2 – Linear Algebra

4.7 Determinants: Computations

 Faster way of  evaluating the determinant: Bring the matrix to 
UT (or LT) form by linear transformations. Then, the determinant 
is equal to the product of  the diagonal elements. 

 For A (nxn), each linear transformation involves adding a multiple 
of  one row to another row, that is, n or fewer additions and n or 
fewer multiplications. Since there are n rows, this is a procedure of  
order n3 -or O(n3). 

Example: For n = 30, we go from 30! = 2.65*1032 flops to 303 = 
27,000 flops.  

9

4.7 Determinants: Properties

 Interchange of  rows and columns does not affect |A|. 
(Corollary, |A| = |A’|.)

 To any row (column) of  A we can add any multiple of  any other 
row (column) without changing |A|. 

(Corollary: if  we transform A into U or L, |A|=|U| = |L|, 
which is equal to the product of  the diagonal element of  U or L.)

 |I| = 1, where I is the identity matrix. 

 |kA| = kn |A|, where k is a scalar.

 |A| = |A’|.

 |AB| = |A||B|.

 |A-1|=1/|A|.

 Recursive flops formula: flopsn= n * (flopsn-1 + 2) - 1
10
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4.7 Determinants: R

 Simple command, det(A)

 > M = cbind( rbind(1,2), rbind(6,5) )
[,1] [,2]

[1,]    1    6

[2,]    2    5

>det(M)

[1] -7

> det(M*2)

[1] -28

> Minv <-solve(M); Minv

[,1]       [,2]

[1,] -0.7142857  0.8571429

[2,]  0.2857143 -0.1428571

> det(Minv) # =1/det(M)

[1] -0.1428571
11
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4.7 Determinants: Cramer’s Rule - Derivation

• Recall the solution to Ax = d, where A is an nxn matrix:
x* = A-1d

Using the cofactor method to get the inverse we get:

Note: A|≠0 → A is non-singular.

⋯

⋯
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⋯⋯ ⋯
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• Example: Let A be 3x3. Then, 

4.7 Determinants: Cramer’s Rule - Derivation
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4.7 Determinants: Cramer’s Rule - Derivation
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4.7 Determinants: Cramer’s Rule - Derivation

Gabriel Cramer (1704-1752, Switzerland).
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4.7 Determinants: Cramer’s Rule - Derivation

• Following the pattern, we have the general Cramer’s rule:

⋯

⋯⋯
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4.7 Cramer’s Rule Application: Macro 

Model
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• Applying Cramer’s rule for the 3x3 case:

4.7 Cramer’s Rule Application: Macro Model
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4.8 - Linear Models & Matrix Algebra: 
Summary

 Matrix algebra can be used:
a. to express the system of  

equations in a compact notation; 
b. to find out whether solution to a 

system of  equations exist; and 
c. to obtain the solution if  it exists. 

d. If  n is small, we can find A-1 , 
but in general, we will avoid this 
step. We will resort to more 
efficient methods to solve for x*, 
likely using a Cholesky 
decomposition with Gaussian 
elimination.

19
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4.8 - Notation and Definitions: Summary

 A (Upper case letters) = matrix
 b (Lower case letters) = vector
 nxm = n rows, m columns
 rank(A) = number of  linearly independent vectors of  A
 trace(A) = tr(A) = sum of  diagonal elements of  A
 Null matrix = all elements equal to zero.
 Diagonal matrix = all off-diagonal elements are zero.
 I = identity matrix (diagonal elements: 1, off-diagonal: 0)
 |A| = det(A) = determinant of  A
 A-1 = inverse of  A
 A’= AT = Transpose of  A
 |Mij|= Minor of  A
 A = AT  Symmetric matrix
 AT A = A AT  Normal matrix
 AT = A-1  Orthogonal matrix
 A = A2  Idempotent matrix 20
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21

• A set of  linear simultaneous equations:
Ab = d A is a non-singular and b and d are 

conformable vectors.

• Under certain circumstances, we can diagonalize this system:
Λν = υ where Λ is a diagonal matrix.

• Eigenvalues (Characteristic Roots)
Ax = x This is the eigenvalue problem

λ is the eigenvalue (characteristic root)
x is the eigenvector (characteristic vector)

• Cauchy discovered them studying how to find new coordinate 
axes for the graph of  the quadratic equation ax2+2bxy+cy2=d so 
that the equation with the new axes would be of  the form
Ax2+Cy2 = D.

4.9 Eigenvalues and Diagonal Systems

22

4.9 Eigenvalues and Diagonal Systems

• Ax =  x (Basic equation of  eigenvalue problem)

• For the square matrix A, there is a vector x such that the product 
of  Ax results in a scalar, , that, when multiplied by x, gives the 
same product.  

• The multiplication of  vector x by a scalar is the same as 
stretching or shrinking the coordinates by a constant value. (The 
matrix A just scales the vector x!)

• Ax =  Ix  [ A -  I ] x = 0
• K = [ A -  I] Characteristic matrix of  matrix A
• K x = 0 Homogeneous equations.
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4.9 Eigenvalues and Diagonal Systems

• Homogeneous equations: K x = 0
- Trivial solution x = 0 (If  |K| ≠ 0, from Cramer’s rule)
- Nontrivial solution (x ≠ 0) can occur if  |K| = 0.

• That is, do all matrices have eigenvalues?
No. They must be square and |K|=|A – I |= 0.

• Eigenvectors are not unique. If  x is an eigenvector, then x is 
also an eigenvector: A(x) = (x)

• To calculate eigenvectors and eigenvalues, expand the equation  
|A – I |=0  

• The resulting equation is called characteristic equation.

24

4.9 Eigenvalues and Diagonal Systems

• Characteristic equation: |A – I |=0 

Example: For a 2x2 matrix:
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• For a 2-dimensional problem, we have a simple quadratic 
equation with two solutions for .
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For n=2, we have a simple quadratic equation with two solutions 
for . In fact, there is generally one eigenvalue for each dimension, 
but some may be zero, and some complex.
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Note 1: The solution for λ can be written as:
λ = ½trace(A) ± ½ [trace(A)2 – 4|A|]1/2

Three cases:
1) Real different roots: trace(A)2 > 4|A|
2) One real root: trace(A)2 = 4|A|
3) Complex roots: trace(A)2 < 4|A|

4.9 Eigenvalues: 2x2 Case

• Note 2: If  A is symmetric, the eigenvalues are real. That is, we 
need to have trace(A)2 > 4|A|. For n=2, we check this condition:
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4.9 Eigenvalues: 2x2 Case
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• Geometric Interpretation for the 2x2 Case:

The x,y values of  A can be seen as representing points on an 
ellipse centered at (0,0). The eigenvectors are in the directions of  
the major and minor axes of  the ellipse, and the eigenvalues are the 
lengths of  these axes to the ellipse from (0,0).

4.9 Eigenvalues: Geometric Interpretation

4.9 Eigenvalues: General Case

• General nxn case:
The characteristic determinant  D(λ) = det (A – λ I)
is clearly a polynomial in  λ: 

D() = n n + n-1 n-1 + n-2 n-2 +  … + 1  + 0

• Characteristic equation:
D() = n n + n-1 n-1 + n-2 n-2 +  … + 1  + 0 = 0

There are n solutions to this polynomial. The set of  eigenvalues 
is called  the spectrum of  A. The largest of  the absolute values of  
the eigenvalues of  A is called the spectral radius of  A.

• Eigenvalues are computed using the QR algorithm (1950s) or 
the divide-and-conquer eigenvalue algorithm (1990s).  They are 
computationally intensive. They take 4 n3/3 flops.
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• Some properties:
- The product of  the eigenvalues =|A|
- The sum of  the eigenvalues = trace(A)
- The eigenvalues of  Ak are λ1

k, λ2
k, ..., λn

k.
- If  A is an idempotent matrix, its λi′s are all 0 or 1.
- If  A is an orthogonal matrix (AT = A-1), its λi′s (if  real) are ±1.

Proof: λ2 x′x = x′A′Ax = x′x  |λ| = 1 (if  real, λ = ±1).
- If  A is a symmetric (Hermitian) matrix:

- its λi′s are all real.
- its eigenvectors are orthogonal.

- All eigenvectors derived from unequal eigenvalues are linearly 
independent. (n eigenvectors can form an orthonormal basis!).
- If  A is a pd matrix, its λi′s are positive and, then, |A|>0.

Proof:   0 < x′Ax = x′λx = λx′x = λ∥x∥2.  
Since ∥x∥2>0   λ>0 (&|A|>0).

4.9 Eigenvalues: Properties

• Example: A correlation matrix

A = 1 .75
.75 1

λ = ½trace(A) ± ½ [trace(A)2 – 4 |A|]1/2

= ½ 2 ± ½[22 – 4*0.4735]1/2 = 1 ± ½[2.25]1/2

= 1 ± ½[1.5] = 0.25; 1.75 

x = [-0.7071,    0.7071]; [0.7071,    0.7071]

Note: x is not unique. Usually, we set ║x║=1 (dot product).

4.9 Eigenvalues: Example -Correlation Matrix
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• Graphical interpretation: Correlation as an ellipse, whose major 
axis is one eigenvalue and the minor axis length is the other:

No correlation yields a circle, and perfect correlation yields a line.

4.9 Eigenvalues: Example -Correlation Matrix

• Command “eigen,” recover values with $

> A <- matrix(c(1, .75, .75, 1), nrow = 2) 
> A

[,1] [,2]
[1,] 1.00 0.75
[2,] 0.75 1.00
> eigen(A)
eigen() decomposition
$values
[1] 1.75 0.25  positive real eigenvalues, A is pd!

$vectors
[,1]       [,2]

[1,] 0.7071068 -0.7071068
[2,] 0.7071068  0.7071068.  symmetric matrix, eigenvalues are orthogonal
> lamb <-eigen(A)
> lambda <- lamb$values
> lambda
[1] 1.75 0.25

4.9 Eigenvalues: R Commands
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• Command “eigen,” recover values with $

> x_lamb <- lamb$vectors
> x_lamb[1]
[1] 0.7071068
> x_lamb[1,]
[1]  0.7071068 -0.7071068
> x_lamb[2,]
[1] 0.7071068 0.7071068
> t(x_lamb[1,])%*%x_lamb[2,]

[,1]
[1,]    0  yes, eigenvectors are orthogonal.
>

4.9 Eigenvalues: R Commands

4.9 Eigenvalues: Example – Quadratic Form

 2nd order multivariable equations: ax2 + 2 kxy + by2 = c
 Represented in a quadratic form with symmetric matrix A:

xT A x = c, where

Eigenvector decomposition:
λ1= 1.764,  x1= [.5257,-.8507]
λ2= 6.236,  x2= [-.8507,-.5257]

 Positive Definite A  positive real eigenvalues!
 Symmetric A  orthogonal e-vectors! 
 Geometrical interpretation: Principal Axes of  Ellipse.
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4.9 Diagonal (Eigen) decomposition

• Let A be a square nxn matrix with n linearly independent 
eigenvectors, xi (i = 1, 2, …, n). Then, A can be factorized as 

A = X  X-1

where X is the square (nxn) matrix whose ith column is the 
eigenvector xi of  A and Λ is the diagonal matrix whose diagonal 
elements are the corresponding eigenvalues, i.e., Λii = λi.

• The eigenvectors are usually normalized, but they need not be. A 
non-normalized set of  eigenvectors  can also be used as the 
columns of  X.
Proof: Ax = λx  AX=X  A = XX-1 (X-1 exists)■

• Conversely: X-1 A X = 
• If  XT X = I, A is orthogonally diagonalizable.

4.9 Diagonal decomposition: Example

• Let .3,1;
21

12
21 
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The eigenvectors:  x1=[1,-1], x2=[1,1]. 

• Let X be the matrix of  eigenvectors: 
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4.9 Diagonal decomposition: Example

• Diagonalizing a system of  equations:
A x = y 

• Pre-multiply both sides by X-1:
X-1 A x = X-1 y = ν
X-1 A (X X-1)x = ν (Let υ = X-1 x)
 υ = ν

• Using the (2x2) previous example:
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υ1 = ½ x1 - ½ x2

υ2 = ½ x1 + ½ x2

½ y1 - ½ y2 = ν1

½ y1 + ½ y2 = ν2

υ1 = ν1

3υ2 = ν2

4.9 Diagonal decomposition: Application

• Let M be the square nxn matrix defined by: M = In- Z(Z′Z-1)Z′, 
where Z is an nxk matrix, with rank(Z)=k .

Let’s calculate the trace(M):
trace(M) = tr(In – Z(Z′Z-1)Z′) = tr(In) – tr( Z(Z′Z-1)Z′) =

= n - tr((Z′Z-1)Z’Z) = n – tr(Ik) = n – k.

It is easy to check that M is idempotent (λi′s are all 0 or 1) and 
symmetric (λi′s are all real and x are orthogonal).

Write an orthogonal diagonalization: M = X  X-1 (X’X-1 = I).

Again, let’s calculate the trace(M = X  X-1):
trace(M) = tr(XX-1) = tr(X-1X) = tr() = Σi λi

That is, M has n – k non-zero eigenvalues.
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4.9 Why do Eigenvalues/vectors matter?

 Eigenvectors are invariants of  A
◦ Don’t change direction when operated A

 Use to determine the definiteness of  a matrix. 

 A singular matrix has at least one zero eigenvalue. 

 Solutions of  multivariable differential equations (the bread-and-
butter in linear systems) correspond to solutions of  linear 
algebraic eigenvalue equations.

 Eigenvalues are used to study the stability of  autoregressive 
time series models.

 The orthogonal basis of  eigenvectors forms the core of  
principal components analysis (PCA).

40

4.9 Sign of  a quadratic form: Eigenvalue tests

• Suppose we are interesting in an optimization problem for 
z=f(x,y). We set the first order conditions (f.o.c.), solve for x* and 
y*, and, then, check the second order conditions (s.o.c.).

• Let’s re-write the s.o.c. of  z = f(x,y):

  Huu
dy

dx

ff

ff
dydxq

dyfdxdyfdxfqzd

yyxy

xyxx

yyxyxx

'

2 222





















• The s.o.c. of  z=f(x,y) is a quadratic form, with a symmetric 
matrix, H. 

• To determine what type of  extreme points we have, we need to 
check the sign of  the quadratic form.
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41

•.Quadratic form: 
q = u’H u (note: the Hessian, H, is a 

symmetric matrix)
• Let u=Ty, where T is the matrix of  eigenvectors of  H, such that   

T’ T = I (H is symmetric matrix  T’=T-1. Check!)
•. Then,

q = y’ T’ H T y = y’Λ y (T’ H T = Λ)
q = λ1 y1

2 + λ2 y2
2+ ... + λi yi

2 + ... + λn yn
2

 sign(q) depends on the λi‘s only.
• We say:

q is positive definite iff λi > 0 for all i.
q is positive semi-definite iff λi≥ 0 for all i.
q is negative semi-definite iff λi≤0 for all i.
q is negative definite iff λi < 0 for all i.
q is indefinite if  some λi > 0 and some λi < 0.

4.9 Sign of  a quadratic form: Eigenvalue tests

42

• Example: Find extreme values for z=f(x,y), and determine if  they 
are a max or min.

minimum  is 

 definite positive q is positive, are  and  

 4.41421.5858
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4.9 Sign of  a quadratic form: Eigenvalue tests
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4.10 Linear Algebra: Application


