

4.7 Determinants: Laplace formula

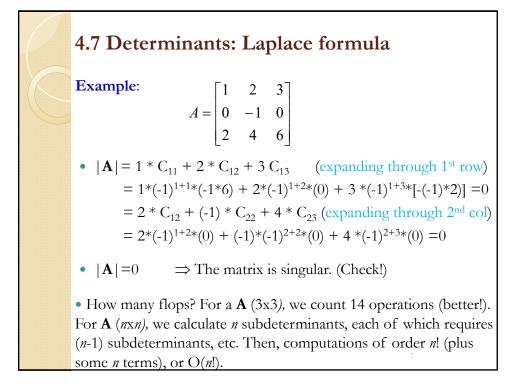
• Define the *C*_{*i,i*} the *cofactor* of **A** as:

$$C_{i,j} = (-1)^{i+j} | M_{i,j} |$$

- The cofactor matrix of **A** -denoted by **C**-, is defined as the *n*x*n* matrix whose (*i*,*j*) entry is the (*i*,*j*) cofactor of **A**. The transpose of **C** is called the adjugate or adjoint of **A** -adj(**A**).
- Theorem (Determinant as a Laplace expansion)
 Suppose A = [a_{ij}] is an *nxn* matrix and *i,j* = {1, 2, ...,n}. Then the determinant

$$|A| = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

= $a_{ij}C_{ij} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$



4.7 Determinants: Computations

• By today's standards, a 30×30 matrix is small. Yet it would be impossible to calculate a 30×30 determinant by Laplace formula. It would require over $n! (30! \approx 2.65 \times 10^{32})$ multiplications.

• If a computer performs one quatrillion (1.0x10¹⁵) multiplications per second (a Petaflops, the 2008 record), it would have to run for over 8.4 billion years to compute a 30×30 determinant by Laplace's method.

• Using a very fast computer like the 2013 China Tianhe-2 (33 petaflops), it would take 254 million years.

• Not a very useful, computationally speaking, method. Avoid factorials! There are more efficient methods.

4.7 Determinants: Computations

• Faster way of evaluating the determinant: Bring the matrix to UT (or LT) form by linear transformations. Then, the determinant is equal to the product of the diagonal elements.

• For **A** ($n \ge n$), each linear transformation involves adding a multiple of one row to another row, that is, n or fewer additions and n or fewer multiplications. Since there are n rows, this is a procedure of order n^3 -or $O(n^3)$.

Example: For n = 30, we go from $30! = 2.65*10^{32}$ flops to $30^3 = 27,000$ flops.

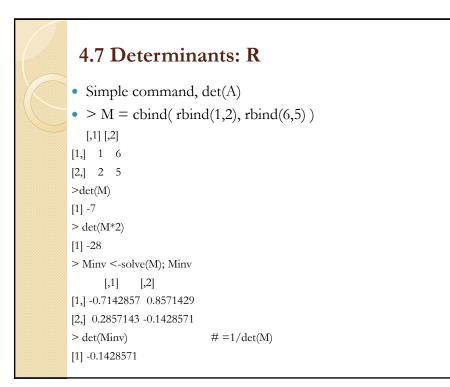
4.7 Determinants: Properties

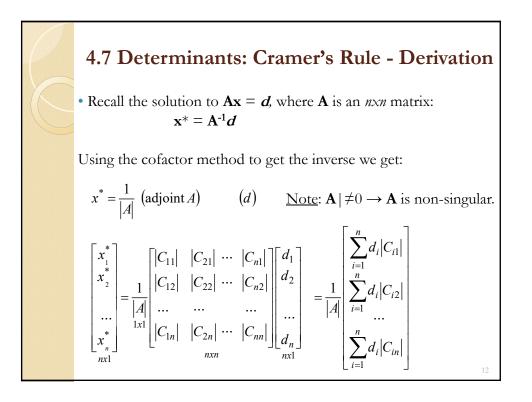
• Interchange of rows and columns does not affect $|\mathbf{A}|$. (Corollary, $|\mathbf{A}| = |\mathbf{A}'|$.)

• To any row (column) of **A** we can add any multiple of any other row (column) without changing |**A**|.

(Corollary: if we transform **A** into **U** or **L**, $|\mathbf{A}| = |\mathbf{U}| = |\mathbf{L}|$, which is equal to the product of the diagonal element of **U** or **L**.)

- $|\mathbf{I}| = 1$, where **I** is the identity matrix.
- $|k\mathbf{A}| = k^n |\mathbf{A}|$, where k is a scalar.
- $\bullet |\mathbf{A}| = |\mathbf{A}'|.$
- $|\mathbf{AB}| = |\mathbf{A}| |\mathbf{B}|.$
- $|\mathbf{A}^{-1}| = 1/|\mathbf{A}|$.
- Recursive flops formula: $flops_n = n * (flops_{n-1} + 2) 1$





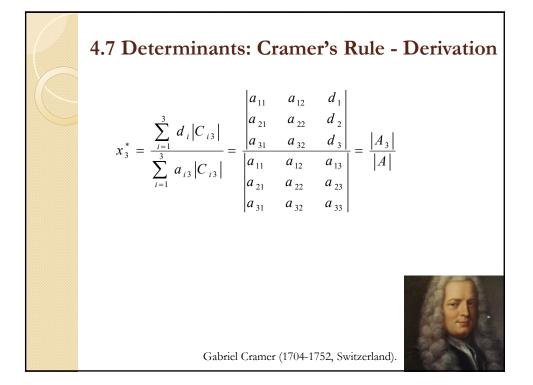
4.7 Determinants: Cramer's Rule - Derivation
• Example: Let **A** be 3x3. Then,
1)
$$\begin{bmatrix} x_1^*\\ x_2^*\\ x_3^* \end{bmatrix} = \frac{1}{|A|} \begin{bmatrix} d_1|C_{11}| + d_2|C_{21}| + d_3|C_{31}|\\ d_1|C_{12}| + d_2|C_{22}| + d_3|C_{32}|\\ d_1|C_{13}| + d_2|C_{23}| + d_3|C_{33}| \end{bmatrix} = \frac{1}{|A|} \begin{bmatrix} \sum_{i=1}^3 d_i|C_{i1}|\\ \sum_{i=1}^3 d_i|C_{i2}|\\ \sum_{i=1}^3 d_i|C_{i3}| \end{bmatrix}$$

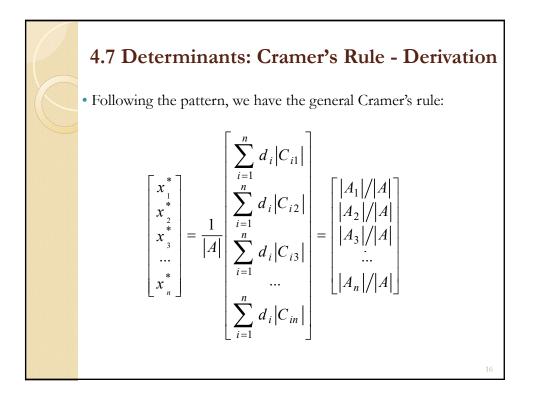
2) $\sum_{i=1}^3 d_i|C_{i1}| = d_1|C_{11}| + d_2|C_{21}| + d_i|C_{31}|$ where $|C_{ij}| = (-1)^{i+j}|M_{ij}|$
3) $\sum_{i=1}^3 d_i|C_{i1}| = d_1 \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + d_2 \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + d_3 \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = |A_1|$
4) $A_1 = \begin{bmatrix} d_1 & a_{12} & a_{13} \\ d_2 & a_{22} & a_{23} \\ d_3 & a_{32} & a_{33} \end{vmatrix}$. Find $|A_1|$ such that $x_1^* = |A_1|/|A|$

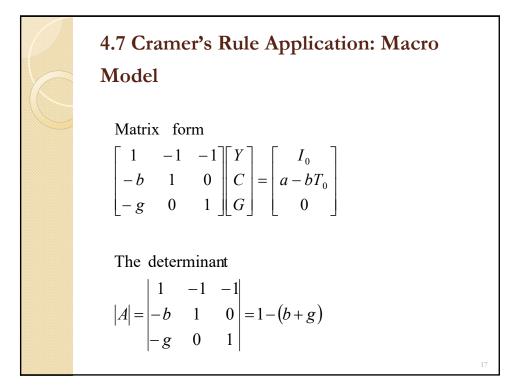
4.7 Determinants: Cramer's Rule - Derivation

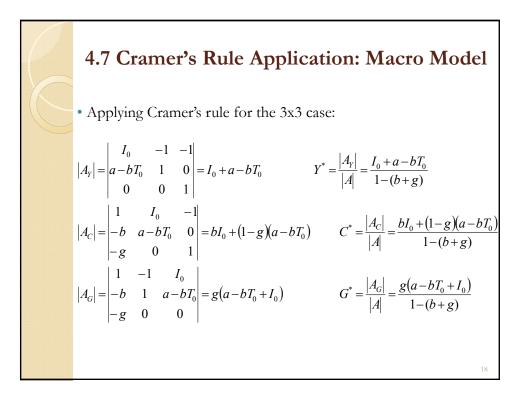
$$x_{1}^{*} = \frac{\sum_{i=1}^{3} d_{i}|C_{ii}|}{\sum_{i=1}^{3} a_{ii}|C_{ii}|} = \frac{\begin{vmatrix} d_{1} & a_{12} & a_{13} \\ d_{2} & a_{22} & a_{23} \\ d_{3} & a_{32} & a_{33} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \frac{|A_{1}|}{|A|}$$

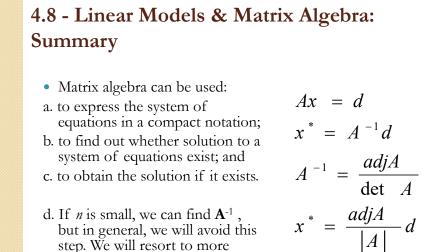
$$x_{2}^{*} = \frac{\sum_{i=1}^{3} d_{i}|C_{i2}|}{\sum_{i=1}^{3} a_{i2}|C_{i2}|} = \frac{\begin{vmatrix} a_{11} & d_{1} & a_{13} \\ a_{21} & d_{2} & a_{23} \\ a_{31} & d_{3} & a_{33} \\ a_{31} & d_{3} & a_{33} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \frac{|A_{2}|}{|A|}$$

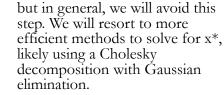


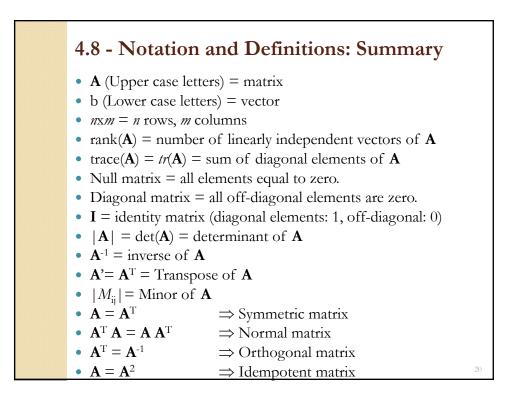


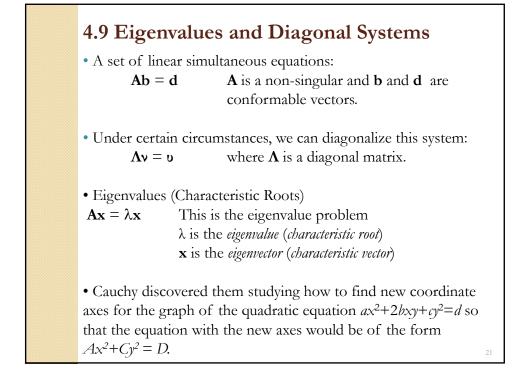


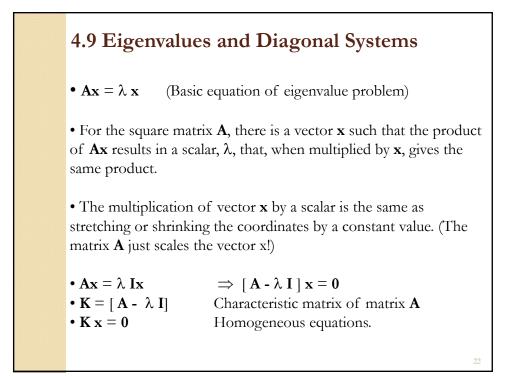












4.9 Eigenvalues and Diagonal Systems

• Homogeneous equations: $\mathbf{K} \mathbf{x} = \mathbf{0}$

- Trivial solution $\mathbf{x} = \mathbf{0}$ (If $|\mathbf{K}| \neq 0$, from *Cramer's rule*)
- Nontrivial solution $(\mathbf{x} \neq \mathbf{0})$ can occur if $|\mathbf{K}| = 0$.

• That is, do all matrices have eigenvalues? No. They must be square and $|\mathbf{K}| = |\mathbf{A} - \lambda \mathbf{I}| = 0$.

- Eigenvectors are not unique. If **x** is an eigenvector, then β **x** is also an eigenvector: **A**(β **x**) = λ (β **x**)
- To calculate eigenvectors and eigenvalues, expand the equation $|\, {\bf A} \lambda {\bf I} \,\,| {=} 0$
- The resulting equation is called *characteristic equation*.

23

4.9 Eigenvalues and Diagonal Systems

• Characteristic equation: $|\mathbf{A} - \lambda \mathbf{I}| = 0$

Example: For a 2x2 matrix:

$$\begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix}$$
$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0$$
$$a_{11}a_{22} - a_{12}a_{21} - \lambda(a_{11} + a_{22}) + \lambda^{2} = 0$$

• For a 2-dimensional problem, we have a simple quadratic equation with two solutions for λ .

24

4.9 Eigenvalues: 2x2 Case

For n=2, we have a simple quadratic equation with two solutions for λ . In fact, there is generally one eigenvalue for each dimension, but some may be zero, and some complex.

$$0 = a_{11}a_{22} - a_{12}a_{21} - (a_{11} + a_{22})\lambda + \lambda^{2}$$
$$\lambda = \frac{(a_{11} + a_{22}) \pm \sqrt{(a_{11} + a_{22})^{2} - 4(a_{11}a_{22} - a_{12}a_{21})}}{2}$$

<u>Note 1</u>: The solution for λ can be written as: $\lambda = \frac{1}{2} \operatorname{trace}(A) \pm \frac{1}{2} [\operatorname{trace}(A)^2 - 4|A|]^{1/2}$ Three cases:

1) Real different roots: trace(A)² > 4 | A |

2) One real root: trace(A)² = 4 |A|

3) Complex roots: trace(A)² \leq 4 | A |

4.9 Eigenvalues: 2x2 Case

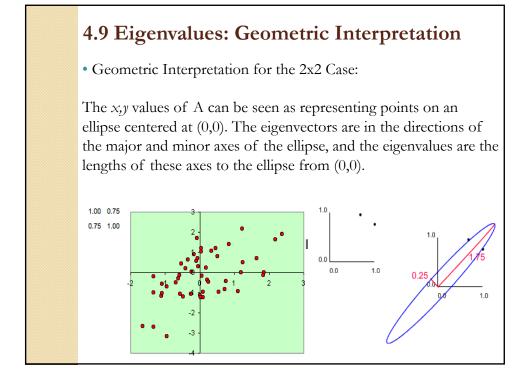
• <u>Note 2</u>: If **A** is symmetric, the eigenvalues are real. That is, we need to have trace(\mathbf{A})² > 4 | **A**|. For *n*=2, we check this condition:

$$(a_{11} + a_{22})^{2} - 4(a_{11}a_{22} - a_{12}a_{12}) > 0$$

$$a_{11}^{2} + a_{22}^{2} + 2a_{11}a_{22} - 4a_{11}a_{22} + 4a_{12}^{2} > 0$$

$$a_{11}^{2} + a_{22}^{2} - 2a_{11}a_{22} + 4a_{12}^{2} > 0$$

$$(a_{11} - a_{22})^{2} + 4a_{12}^{2} > 0$$



4.9 Eigenvalues: General Case

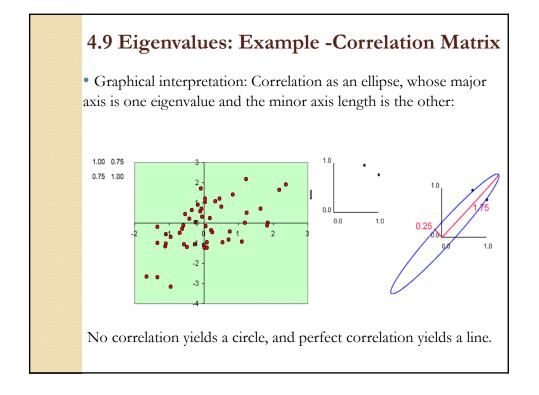
General *n*x*n* case: The characteristic determinant D(λ) = det (**A** - λ **I**) is clearly a polynomial in λ: D(λ) = α_n λⁿ + α_{n-1} λⁿ⁻¹ + α_{n-2} λⁿ⁻² + ... + α₁ λ + α₀
Characteristic equation: D(λ) = α_n λⁿ + α_{n-1} λⁿ⁻¹ + α_{n-2} λⁿ⁻² + ... + α₁ λ + α₀ = 0

There are *n* solutions to this polynomial. The set of eigenvalues is called the *spectrum* of \mathbf{A} . The largest of the absolute values of the eigenvalues of \mathbf{A} is called the *spectral radius* of \mathbf{A} .

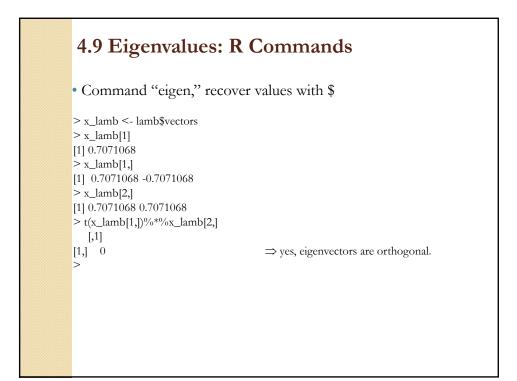
• Eigenvalues are computed using the *QR algorithm* (1950s) or the *divide-and-conquer eigenvalue algorithm* (1990s). They are computationally intensive. They take $4 n^3/3$ flops.

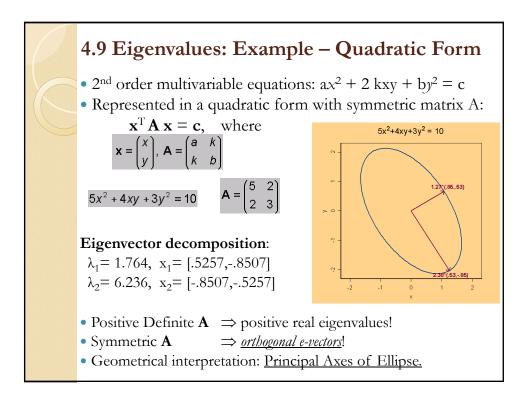
4.9 Eigenvalues: Properties Some properties: - The product of the eigenvalues $= |\mathbf{A}|$ - The sum of the eigenvalues = $trace(\mathbf{A})$ - The eigenvalues of \mathbf{A}^k are $\lambda_1^k, \lambda_2^k, ..., \lambda_n^k$. - If **A** is an idempotent matrix, its λ_i 's are all 0 or 1. - If **A** is an orthogonal matrix ($\mathbf{A}^{T} = \mathbf{A}^{-1}$), its λ_{i} 's (if real) are ± 1 . <u>Proof</u>: $\lambda^2 \mathbf{x'x} = \mathbf{x'A'Ax} = \mathbf{x'x} \Rightarrow |\lambda| = 1$ (if real, $\lambda = \pm 1$). - If **A** is a symmetric (Hermitian) matrix: - its λ_i 's are all real. - its eigenvectors are orthogonal. - All eigenvectors derived from unequal eigenvalues are linearly independent. (n eigenvectors can form an orthonormal basis!). - If **A** is a pd matrix, its λ_i 's are positive and, then, $|\mathbf{A}| > 0$. <u>Proof</u>: $0 < \mathbf{x}' \mathbf{A} \mathbf{x} = \mathbf{x}' \lambda \mathbf{x} = \lambda \mathbf{x}' \mathbf{x} = \lambda \|\mathbf{x}\|^2$. Since $\|\mathbf{x}\|^2 \ge 0 \implies \lambda \ge 0$ (& $|\mathbf{A}| \ge 0$).

4.9 Eigenvalues: Example -Correlation Matrix • Example: A correlation matrix $A = \begin{bmatrix} 1 & .75 \\ .75 & 1 \end{bmatrix}$ $\lambda = \frac{1}{2} \operatorname{trace}(A) \pm \frac{1}{2} [\operatorname{trace}(A)^2 - 4 |A|]^{1/2}$ $= \frac{1}{2} 2 \pm \frac{1}{2} [2^2 - 4^{*}0.4735]^{1/2} = 1 \pm \frac{1}{2} [2.25]^{1/2}$ $= 1 \pm \frac{1}{2} [1.5] = 0.25; 1.75$ x = [-0.7071, 0.7071]; [0.7071, 0.7071]Note: x is not unique. Usually, we set $\|x\| = 1$ (dot product).



4.9 Eigenvalue	s: R Commands
• Command "eigen," r	recover values with \$
> A <- matrix(c(1, .75, .75, 1) > A [,1] [,2] [1,] 1.00 0.75 [2,] 0.75 1.00 > eigen(A) eigen() decomposition \$values [1] 1.75 0.25), nrow = 2) ⇒ positive real eigenvalues, A is pd!
<pre>\$vectors [,1] [,2] [1,] 0.7071068 -0.7071068 [2,] 0.7071068 0.7071068. > lamb <-eigen(A) > lambda <- lamb\$values > lambda [1] 1.75 0.25</pre>	⇒ symmetric matrix, eigenvalues are orthogonal





4.9 Diagonal (Eigen) decomposition

• Let **A** be a square $n \ge n$ matrix with *n* linearly independent eigenvectors, x_i (i = 1, 2, ..., *n*). Then, **A** can be factorized as $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$

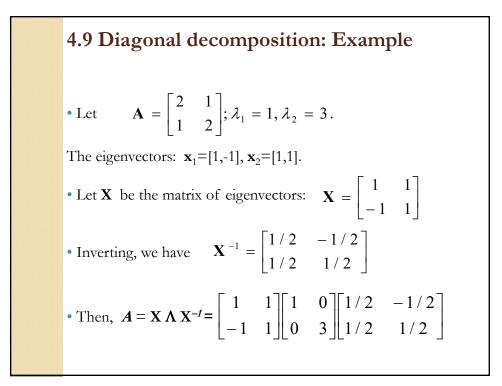
where **X** is the square $(n \times n)$ matrix whose i^{th} column is the eigenvector x_i of **A** and **A** is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, *i.e.*, $\Lambda_{ii} = \lambda_i$.

• The eigenvectors are usually normalized, but they need not be. A non-normalized set of eigenvectors can also be used as the columns of **X**.

Proof: $Ax = \lambda x \implies AX = X\Lambda \implies A = X\Lambda X^{-1} (X^{-1} \text{ exists})$

• Conversely: $X^{-1} A X = \Lambda$

• If $\mathbf{X}^{\mathrm{T}} \mathbf{X} = \mathbf{I}$, **A** is *orthogonally* diagonalizable.



4.9 Diagonal decomposition: Example • Diagonalizing a system of equations: A x = y• Pre-multiply both sides by X⁻¹: $X^{-1} A x = X^{-1} y = v$ $X^{-1} A (X X^{-1}) x = v \qquad (Let v = X^{-1} x)$ $\Rightarrow A v = v$ • Using the (2x2) previous example: $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ $v_1 = \frac{1}{2} x_1 - \frac{1}{2} x_2 \qquad \frac{1}{2} y_1 - \frac{1}{2} y_2 = v_1$ $v_2 = \frac{1}{2} x_1 + \frac{1}{2} x_2 \qquad \frac{1}{2} y_1 - \frac{1}{2} y_2 = v_2$

4.9 Diagonal decomposition: Application

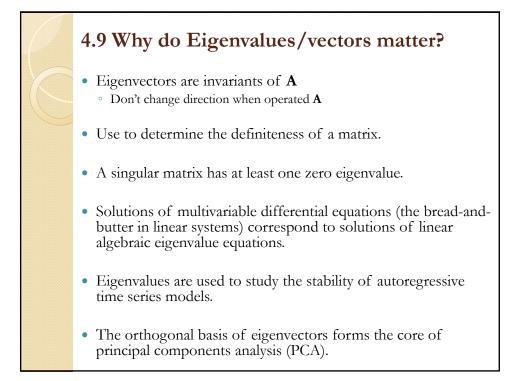
• Let **M** be the square $n \ge n$ matrix defined by: $\mathbf{M} = \mathbf{I}_n - \mathbf{Z}(\mathbf{Z}'\mathbf{Z}^{-1})\mathbf{Z}'$, where **Z** is an $n \ge k$ matrix, with rank(\mathbf{Z})=k.

Let's calculate the trace(**M**): trace(**M**) = tr($\mathbf{I}_n - \mathbf{Z}(\mathbf{Z'Z^{-1}})\mathbf{Z'}$) = tr(\mathbf{I}_n) - tr($\mathbf{Z}(\mathbf{Z'Z^{-1}})\mathbf{Z'}$) = = $n - tr((\mathbf{Z'Z^{-1}})\mathbf{Z'Z}) = n - tr(\mathbf{I}_k) = n - k$.

It is easy to check that **M** is idempotent (λ_i 's are all 0 or 1) and symmetric (λ_i 's are all real and **x** are orthogonal).

Write an orthogonal diagonalization: $\mathbf{M} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$ (**X'X**⁻¹ = **I**).

Again, let's calculate the trace($\mathbf{M} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$): trace(\mathbf{M}) = tr($\mathbf{X}\mathbf{\Lambda}\mathbf{X}^{-1}$) = tr($\mathbf{\Lambda}\mathbf{X}^{-1}\mathbf{X}$) = tr($\mathbf{\Lambda}$) = $\Sigma_i \lambda_i$ That is, \mathbf{M} has n - k non-zero eigenvalues.



4.9 Sign of a quadratic form: Eigenvalue tests

• Suppose we are interesting in an optimization problem for z=f(x,y). We set the first order conditions (f.o.c.), solve for x^* and y^* , and, then, check the second order conditions (s.o.c.).

• Let's re-write the s.o.c. of z = f(x,y):

$$d^{2}z = q = f_{xx} dx^{2} + 2 f_{xy} dx dy + f_{yy} dy^{2}$$
$$q = \begin{bmatrix} dx & dy \end{bmatrix} \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} = u' Hu$$

• The s.o.c. of z=f(x,y) is a quadratic form, with a symmetric matrix, **H**.

• To determine what type of extreme points we have, we need to check the sign of the quadratic form.

4.9 Sign of a quadratic form	n: Eigenvalue tests
•.Quadratic form:	
1	the Hessian, H , is a etric matrix)
• Let $u=Ty$, where T is the matrix of	eigenvectors of H , such that
$\mathbf{T}^* \mathbf{T} = \mathbf{I} \qquad (\mathbf{H} \text{ is symmetric})$	ic matrix \Rightarrow T '= T ⁻¹ . Check!)
•. Then,	
$q = y' T' H T y = y' \Lambda y$	$(\mathbf{T}, \mathbf{H}, \mathbf{T} = \mathbf{V})$
1 5 5 5 5	
$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + + \lambda_i y_i^2$	$+ \dots + \lambda_n y_n^2$
1 5 5 5 5	$+ \dots + \lambda_n y_n^2$
$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + + \lambda_i y_i^2$	$+ \dots + \lambda_n y_n^2$
$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_i y_i^2 + \sum_{i=1}^{n} sign(q) \text{ depends on the } \lambda_i s$	$+ \dots + \lambda_n y_n^2$
$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_i y_i^2 + \dots + \lambda_i y_i^2 + \dots + \lambda_i y_i^2$ $\Rightarrow sign(q) \text{ depends on the } \lambda_i \text{'s}$ • We say:	$+ \dots + \lambda_n y_n^2$ only.
$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_i y_i^2 + \dots + \lambda_i y_i^2$ $\Rightarrow sign(q) \text{ depends on the } \lambda_i^* s$ • We say: q is positive definite iff	+ + $\lambda_n y_n^2$ only. $\lambda_i > 0$ for all i. $\lambda_i \ge 0$ for all i.
$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_i y_i^2 + $	+ + $\lambda_n y_n^2$ only. $\lambda_i > 0$ for all i. $\lambda_i \ge 0$ for all i.

