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Mathematics for Economists

Chapters 4-5 — Part 2
Linear Models and Matrix Algebra

Pierre-Simon Laplace (1749-1827, France) ~ A. L. Cauchy (1789-1857, France)

4.7 Determinant of a Matrix

o The determinant is a number associated with any squared matrix.
e If Aisan zxz matrix, the determinant is |A| or det(A).

e Since the early days, a determinant was used to “determine”’ if a
system of linear equations has a unique solution.

e Cramer (1750) expanded the concept to sets of equations, but a
bit later, they were recognized by Vandermonde (1772) as
independent functions.

e Determinants are used to characterize invertible matrices. A
matrix is invertible (non-singular) if and only if |A|#0.

e Thatis, if |A|#0 — A is invertible or non-singular.

 Can be found using factorials, pivots, and cofactors!

* Lots of interpretations.
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4.7 Determinant of a Matrix

e When 7 is small, determinants are used for inversion and to solve
systems of equations.

Example: Inverse of a 2x2 matrix:

c

A:[a ﬂ | A|= det(4) = ad — be

A = ;{ d - b} This matrix is called the
ad —bc|-c a adjugate of A (or adj(A)).

Al =adjA)/|A]

4.7 Determinant of a Matrix (3x3)

a b c
d e fl=aei+bfg+cdh—afh—bdi—ceg
g h i
a b cla b cla b c Sarrus’ Rule: Sum
d e from left to right.
) . hoi Then, subtract from
! g ! right to left

Note: N! terms

* Q: How many flops? For A (3x3), we count 17 operations.
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4.7 Determinants: Laplace formula

* The determinant of a matrix of arbitrary size can be defined
by the Leibniz formula or the Laplace fornula.

o The Laplace formula (ot expansion) expresses the determinant
| A| as a sum of # determinants of (#-1) X (#-1) sub-matrices
of A. There are n? such expressions, one for each row and
column of A

¢ Define the 7/ minor M (usually written as | M;|) of A as the
determinant of the (#-1) X (#-1) matrix that results from
deleting the ~th row and the /~th column of A.

Pierre-Simon Laplace (1749 — 1827, France).

4.7 Determinants: Laplace formula

¢ Define the C;;the cofactor of A as:

Ci,j = (_1)i+j |Mi,j |

* The cofactor matrix of A -denoted by C-, is defined as the #x#
matrix whose (7) entry is the (z/) cofactor of A. The transpose
of C is called the adjugate or adjoint of A -adj(A).

* Theorem (Determinant as a Laplace expansion)

Suppose A = [a,] is an zxn matrix and 7,;/= {1, 2, ...,n}. Then the
determinant

| 4= a,C, +a,C,+..+a,C,
= ai/.Cl.j + aszzj +...+ ananj
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4.7 Determinants: Laplace formula

Example: 1 2 3
A=10 -1 0
2 4 6

e |[A|=1*C,; +2*C,+3Cj; (expanding through 1% row)
= PHED) (IR + 2511 24(0) + 3 5(1)FH(1)2)] =0
=2*C,, + (-1) * C,, + 4 * Cy; (expanding through 279 col)
= 2D + (FCLEO) + 4 HCDPHO) =0

° |A|=0 => The matrix is singular. (Check!)

* How many flops? For a A (3x3), we count 14 operations (better!).
For A (nxn), we calculate 7 subdeterminants, each of which requires
(n-1) subdeterminants, etc. Then, computations of order 7! (plus
some 7 terms), or O(#l).

4.7 Determinants: Computations

* By today’s standards, a 30X30 matrix is small. Yet it would be
impossible to calculate a 30X30 determinant by Laplace formula.
It would require over 7 (30! = 2.65 X 10°%) multiplications.

e If a computer performs one quattillion (1.0x10"%) multiplications
per second (a Petaflops, the 2008 record), it would have to run for

over 8.4 billion years to compute a 30X30 determinant by Laplace’s
method.

e Using a very fast computer like the 2013 China Tianhe-2 (33
petaflops), it would take 254 million years.

* Not a very useful, computationally speaking, method. Avoid
factorials! There are more efficient methods.
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4.7 Determinants: Computations

e Faster way of evaluating the determinant: Bring the matrix to
UT (or LT) form by linear transformations. Then, the determinant
is equal to the product of the diagonal elements.

e For A (nxn), each linear transformation involves adding a multiple
of one row to another row, that is, 7 or fewer additions and 7 or
fewer multiplications. Since there are 7 rows, this is a procedure of
otder 72 -or O(°).

Example: For » = 30, we go from 30! = 2.65*10° flops to 30° =
27,000 flops.

4.7 Determinants: Properties

e Interchange of rows and columns does not affect |A]|.
(Corollary, |A| = |A’])

e To any row (column) of A we can add any multiple of any other
row (column) without changing |A].

(Corollary: if we transform A into U or L, |[A|=|U| = |L|,
which is equal to the product of the diagonal element of U or L.)

e |I| =1, where I is the identity matrix.
° |£A| = £ |A|, where £is a scalar.

o [A] =AY

* [AB| = [A[|[B].

° |[A1[=1/]A].

* Recursive flops formula: flops,= 7 * (tflops, , +2) - 1
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4.7 Determinants: R

e Simple command, det(A)
« > M = cbind( rbind(1,2), tbind(6,5) )
L1121
] 1 6
2] 2 5
>det(M)
(1] -7
> det(M*2)
1] -28
> Minv <-solve(M); Minv
12
[1,] -0.7142857 0.8571429
[2,] 0.2857143 -0.1428571
> det(Minv) # =1/det(M)
[1] -0.1428571

4.7 Determinants: Cramer’s Rule - Derivation

* Recall the solution to Ax = d, where A is an zx# matrix:
x* = Ald

Using the cofactor method to get the inverse we get:

X =ﬁ (adjoint 4) (@) Note: A|#0 — A is non-singular.
ES - -r 5 T d.|C.
xﬂ1= |C11| |C21| |Cnl| d, ; l| 11|
x
2

d n
|Gl [Cal - [Cal || 2 1 Sy
IZZI: .l| 12|

x* |C1n| |C2n| |Cnn| d 1
g B nxn T n]_ Zdi|cin|
nx
L i=l i

nx1
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* Example: Let A be 3x3. Then,

4.7 Determinants: Cramer’s Rule -

>4

x;‘ d||C, |+ d,|Cyy |+ d5|Cy | | i
1) x, ‘ | d\|Cpy|+ d,|Cop| + d5|Cyy| | = ‘A‘ Zdi
X, d\|Cps|+ d,|Cop| + | Co| 3

Zd,. C
L i=1

Derivation

C,

1

Ci 2

i3

3 d, a, ay
Z d, |C,1| d a a |A |
* =l 3 3 3 |4
x] 3 = y
Z a |C | ay 4 ag | |
il il
i=1 20 4 4p
d;  dyp  dgy
ay, d, aj;
3 a, d, ay
Ydilcol |, y
| |4y 3 a4
X, =

: = =
Z a |C | ay dp  ap |A|
2 |G
; a

3 .
2) Z =d||C,|+d,|C M,
3 a a a a
3) Z 23 +d2 12 13_’_(13 12 ‘A‘
i-1 azz Qs ay Ay ay a4y
d a, a;
4) A =|d, a, a, | Find|A |such thatx, =|4]|/|4]
d; ay ay;
4.7 Determinants: Cramer’s Rule - Derivation
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4.7 Determinants: Cramer’s Rule - Derivation

* -1
x3 = 3 = = A
Z a.lc ay 4 ap | |
i3|C i3
i=1 21 4 dp
az A4z Ay

Gabriel Cramer (1704-1752, Switzerland).

* Following the pattern, we have the general Cramer’s rule:

4.7 Determinants: Cramer’s Rule - Derivation

S,
i=1

X Z |41]/4] |
gl |zl
P L = | ]45]/|4
TS afen ||
. i=1

¥, | [ 4.1/14],

Z di|Cin |
L i=1 i
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4.7 Cramer’s Rule Application: Macro

Model

Matrix form

1 -1 -1y I,
-b 1 0| C|=|a-bT,
-g 0 1]G 0
The determinant
I -1 -1
l4=]-b 1 0]|=1-(b+g)
-g 0 1

4.7 Cramer’s Rule Application: Macro Model

* Applying Cramer’s rule for the 3x3 case:

‘AY‘ =

I, -1 -1

a-bT, 1 0|=I1,+a-bT, Y =
0 0 1

| A |

~b a-bT, 0|=bl,+(1-g)a—bT))

-g 0 1

1 -1 I,

~b 1 a-bT|=gla—bT+1,)

-g 0 0

‘AY‘ _ Iy +a-bl;

4 1-(b+g)
C*:@:bzﬁ(l—g)(a—bzg)
4 1-(b+g)

G :@: g(a—bZ) +IO)
4 1-(b+g)
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4.8 - Linear Models & Matrix Algebra:
Summary

* Matrix algebra can be used:

a. to express the system of Ax =d
equations in a compact notation; *

b. to find out whether solution to a
system of equations exist; and adjA

. C -1
c. to obtain the solution if it exists. A =

d. If #is small, we can find A1 | * adjA

but in general, we will avoid this x = —F/———d

step. We will resort to more |A |
efficient methods to solve for x*
likely using a Cholesky
decomposition with Gaussian
elimination.

bl

4.8 - Notation and Definitions: Summary

e A (Upper case letters) = matrix

* b (Lower case letters) = vector

° uxm = n rows, 7 columns

e rank(A) = number of linearly independent vectors of A
e trace(A) = 7(A) = sum of diagonal elements of A

* Null matrix = all elements equal to zero.

* Diagonal matrix = all off-diagonal elements are zero.

e I = identity matrix (diagonal elements: 1, off-diagonal: 0)
° |A| = det(A) = determinant of A

e Al =inverse of A

o A’= AT = Transpose of A

* |M;|= Minor of A

o A=AT = Symmetric matrix
e ATA=AAT = Normal matrix

o AT=A"1 = Orthogonal matrix
o A=A2 = Idempotent matrix

10
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4.9 Eigenvalues and Diagonal Systems

* A set of linear simultaneous equations:
Ab=d A is a non-singular and b and d are

conformable vectors.

* Under certain circumstances, we can diagonalize this system:
Av=0o where A is a diagonal matrix.

* Figenvalues (Characteristic Roots)

Ax = Ax This is the eigenvalue problem
A is the eigenvalue (characteristic roo?)
x is the eigenvector (characteristic vector)

* Cauchy discovered them studying how to find new coordinate
axes for the graph of the quadratic equation ax?+2bxy+¢*=d so
that the equation with the new axes would be of the form

Ax?+Cy? = D.

4.9 Eigenvalues and Diagonal Systems

*Ax =Ax  (Basic equation of eigenvalue problem)

* For the square matrix A, there is a vector x such that the product
of Ax results in a scalar, A, that, when multiplied by x, gives the
same product.

* The multiplication of vector x by a scalar is the same as
stretching or shrinking the coordinates by a constant value. (The
matrix A just scales the vector x!)

cAx = A Ix = [A-AI]x=0
*K=[A- L] Characteristic matrix of matrix A
*Kx=0 Homogeneous equations.

11
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4.9 Eigenvalues and Diagonal Systems

* Homogeneous equations: Kx =0
- Trivial solution x = 0 (If |K| # 0, from Cramer’s rule)
- Nontrivial solution (x # 0) can occur if |K| = 0.

¢ That is, do all matrices have eigenvalues?
No. They must be square and |K|=|A-AI |= 0.

* Eigenvectors are not unique. If x is an eigenvector, then Bx is
also an eigenvector:  A(Bx) = A (Bx)

* To calculate eigenvectors and eigenvalues, expand the equation
|A—AI |=0

* The resulting equation is called characteristic equation.

4.9 Eigenvalues and Diagonal Systems

* Characteristic equation: |A—AI [=0

Example: For a 2x2 matrix:
[A—ZI]=|:a“ a12}_l|:1 O:|:{a11 -1 a }
a, dy 0 1 ay a, -1

-\
“u “2 = (all _7‘)(‘122 _7“)_“12“21 =0
21 Ay — A

A - |=

2
a1y —apdy _7‘(“11 JF"zz)*‘7L =0

* For a 2-dimensional problem, we have a simple quadratic
equation with two solutions for A.

12
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4.9 Eigenvalues: 2x2 Case

For n=2, we have a simple quadratic equation with two solutions
for A. In fact, there is generally one eigenvalue for each dimension,
but some may be zero, and some complex.

2
0=a,ay,-aya, — (all ta, )ﬂ +4

2= (an +a, )i \/(an +a, )2 - 4(a11a22 - a12a21)
2

Note 1: The solution for A can be written as:
A = Vatrace(A) £ ¥ [trace(AY2— 4| A |]1/2
Three cases:
1) Real different roots: trace(A)? > 4| A|
2) One real root: trace(A)? = 4| A|
3) Complex roots: trace(A)? < 4| A|

4.9 Eigenvalues: 2x2 Case

* Note 2: If A is symmetric, the eigenvalues are real. That is, we
need to have trace(A)? > 4| A|. For #=2, we check this condition:

2
(a“ +azz) _4("11“22 —dapdp )> 0
2 2 2
ay~+ay +2ayay —4ajay +4a,” >0
2 2 2
ay " t+ay  —2aay +4a,” >0

(a“ —dy )2 + 4“122 >0

13
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4.9 Eigenvalues: Geometric Interpretation

* Geometric Interpretation for the 2x2 Case:

The x,y values of A can be seen as representing points on an
ellipse centered at (0,0). The eigenvectors are in the directions of
the major and minor axes of the ellipse, and the eigenvalues are the
lengths of these axes to the ellipse from (0,0).

1.00 075 10

L]
075 100 2 3 .
®
L] = [} "
% | .'.
] Shle 0.0
n. T R

4.9 Eigenvalues: General Case

* General 7x7 case:
The characteristic determinant D()) = det (A — A I)
is clearly a polynomial in A:
DA =o, A" + o A +a, , A%+ Loy A+

* Characteristic equation:
DA) =a, A" +a, A +o A2+ o +o A +ta,=0

There are 7 solutions to this polynomial. The set of eigenvalues
is called the spectrum of A. The largest of the absolute values of
the eigenvalues of A is called the spectral radius of A.

* Eigenvalues are computed using the QR algorithm (1950s) or
the divide-and-conguer eigenvalue algorithm (1990s). They are
computationally intensive. They take 4 °/3 flops.

14
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4.9 Eigenvalues: Properties

* Some properties:
- The product of the eigenvalues =|A]|
- The sum of the eigenvalues = trace(A)
- The eigenvalues of AFare 1,5, A%, ..., A K
- If A is an idempotent matrix, its A's are all 0 or 1.
- If A is an orthogonal matrix (AT = A1), its A,'s (if real) are £1.
Proof: A2 x'x = xX'A'Ax = x'x = |A| =1 (if real, L = £1).
- If A is a symmetric (Hermitian) matrix:
- its A/'s are all real.
- its eigenvectors are orthogonal.
- All eigenvectors derived from unequal eigenvalues are linearly
independent. (7 eigenvectors can form an orthonormal basis!).
- If Ais a pd matrix, its A's are positive and, then, |A|>0.
Proof: 0 < x'Ax = x\x = Ax'x = MIx]I%
Since [x>>0 = x>0 (&|A]|>0).

4.9 Eigenvalues: Example -Correlation Matrix

* Example: A correlation matrix

A= [715 715]

A = Yatrace(A) + V5 [trace(A)?— 4 | A|]'/?
= 15 2 & Va[22 — 440.4735]/2 = 1 £ Y6[2.25]1/2
=1+'2[1.5] =0.25; 1.75

x = [0.7071, 0.7071]; [0.7071, 0.7071]

Note: x is not unique. Usually, we set " X " =1 (dot product).

15
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4.9 Eigenvalues: Example -Correlation Matrix

* Graphical interpretation: Correlation as an ellipse, whose major

axis is one eigenvalue and the minor axis length is the other:

100 075 10
0.75 1.00 X S .
4 \ A0 " 10
28 o -
Ll o O 0.0 2
L 00 10
—FF ~—t : : 0.25
s}, D g 2 s
g qdg 0o ° 0
2
()
5 3
A

No correlation yields a circle, and perfect correlation yields a line.

4.9 Eigenvalues: R Commands

* Command “eigen,” recover values with §

> A <- matrix(c(1, .75, .75, 1), nrow = 2)
>A
L1121
[1,] 1.00 0.75
[2,] 0.75 1.00
> cigen(A)
eigen() decomposition
$values
[1] 1.75 0.25 = positive real eigenvalues, A is pd!

$vectors
L2
[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068. = symmetric matrix, eigenvalues are orthogonal
> lamb <-eigen(A)
> Jambda <- lamb$values
> lambda
[1] 1.75 0.25

16
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4.9 Eigenvalues: R Commands

* Command “eigen,” recover values with §

> x_lamb <- lamb$vectors

> x_lambl1]

[1] 0.7071068

> x_lamb(1,]

[1] 0.7071068 -0.7071068

> x_lamb|[2,]

[1] 0.7071068 0.7071068

> t(x_lamb([1,])%*%x_lamb|2,]
L1

1) 0 => yes, eigenvectors are orthogonal.

>

4.9 Eigenvalues: Example — Quadratic Form

o 27 order multivariable equations: ax?> + 2 kxy + by> = ¢

* Represented in a quadratic form with symmetric matrix A:

T _
x'Ax =c, where P ———

2
L

S

5x2 +4xy +3y =10 A= > 2
y toy” = 2 3

Eigenvector decomposition:
M= 1.764, x,= [.5257,-.8507]

= 6236, x,= [-.8507,-.5257] S

e Positive Definite A = positive real eigenvalues!

e Symmetric A => orthogonal e-vectors!

* Geometrical interpretation: Principal Axes of Ellipse.

17
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4.9 Diagonal (Eigen) decomposition

* Let A be a square #x# matrix with 7 linearly independent
eigenvectors, x; (1=1,2, ..., 7). Then, A can be factorized as
A=XAX1

where X is the square (7x7) matrix whose 2" column is the
eigenvector x; of A and A is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues, ze., A = A,

* The eigenvectors are usually normalized, but they need not be. A
non-normalized set of eigenvectors can also be used as the
columns of X.

Proof: Ax = )x = AX=XA = A =XAX"! X!exists)m

* Conversely: XTAX=A
« If XTX =1, A is orthogonally diagonalizable.

4.9 Diagonal decomposition: Example

2 1
° Let A = ;A =1,4, =3.
1 2

The eigenvectors: x,=[1,-1], x,=[1,1].

* Let X be the matrix of eigenvectors: X = { 11 ﬂ

/2 —-1/2
* Inverting, we have X ' = L/z /2 }

1 1)1 0{f1/2 =-1/2
*Then, A=XAX7=
-1 10 3|1/2 1/2

18
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4.9 Diagonal decomposition: Example

* Diagonalizing a system of equations:
Ax=y
* Pre-multiply both sides by X!
X1TAx=X1ly=v
XTAXXDx=v (Letvo = X1x)
=Av=v
* Using the (2x2) previous example:

1oof1/2 —1/2x 1] [t/2 —1/27y,
0 3(1/2 1/2 ||x, | |1/2 1/2 |y,
v = Y2x - 2%, Vay, -2y, =V

v,=Y2x, + %%, Vay, + Vay, = v,

v =V,
3v, = v,

4.9 Diagonal decomposition: Application

* Let M be the square #x7 matrix defined by: M =1 - Z(Z'ZY)Z",
where Z is an 7xk matrix, with rank(Z)=£ .

Let’s calculate the trace(M):
traceM) = tr(I, — Z(Z'ZNYZ") = (1) — tr( Z(Z'"ZY)Z") =
=n-t((Z'ZYLZL) = n—te() = n— k.

It is easy to check that M is idempotent (A;'s are all O or 1) and
symmetric (A's are all real and x are orthogonal).

Write an orthogonal diagonalization: M = X A X1  X°X1=1).
Again, let’s calculate the traceM = X A X1

traceM) = tr(XAX ) = tr(AXX) = tr(A) = X, A,
That is, M has #» — £ non-zero eigenvalues.

19
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4.9 Why do Eigenvalues/vectors matter?

* Eigenvectors are invariants of A
> Don’t change direction when operated A

e Use to determine the definiteness of a matrix.
A singular matrix has at least one zero eigenvalue.

* Solutions of multivariable differential equations (the bread-and-
butter in linear systems) correspond to solutions of linear
algebraic eigenvalue equations.

* Eigenvalues are used to study the stability of autoregressive
time series models.

* The orthogonal basis of eigenvectors forms the core of
principal components analysis (PCA).

4.9 Sign of a quadratic form: Eigenvalue tests

° Suppose we are interesting in an optimization problem for
z=f{x,y). We set the first order conditions (f.o.c.), solve for x* and
y* and, then, check the second order conditions (s.o.c.).

* Let’s re-write the s.o.c. of z = f{x,)):
d’z=gq = fxxa’x2 +2 f, dxdy + fyya’y2

. fxx fxy dx — u' Hu
¢ = ldv dy][fxy fydey}‘ 8

* The s.o.c. of z=f{x,)) is a quadratic form, with a symmetric
matrix, H.

* To determine what type of extreme points we have, we nee4(c)1 to
check the sign of the quadratic form.

20
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4.9 Sign of a quadratic form: Eigenvalue tests

*.Quadratic form:
q=vHu (note: the Hessian, H, is a
symmetric matrix)
¢ Let u=TYy, where T is the matrix of eigenvectors of H, such that

TT=1 (H is symmetric matrix = T'=T"!. Check!)
*. Then,
q=y THTy=yAy (THT=A)

Q= Myttt e Lyt Ay
=> sign(q) depends on the A;s only.
* We say:
q is positive definite iff A;> 0 for all 1.
q is positive semi-definite iff A, = 0 for all i.
q is negative semi-definite iff A, <0 for all i.
q is negative definite iff A < 0 for all 1.
q is indefinite if some A;> 0 and some A; < 0. 41

4.9 Sign of a quadratic form: Eigenvalue tests

* Example: Find extreme values for z=/{x,)), and determine if they
are a max or min.

z=xX +xy+2y° +3
F.o.c.
f.=2x+y=0
{fy=x+4y=0’
y¥=0,x*=0, z*=3
Calculate matrix of second derivatives
VTR ‘2 1
S Sul |14

=>4, and A, are positive, q is positive definite

|H| = = , A, =1.58582; A, =4.4142

* . . .
=>z is minimum 0

21
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4.10 Linear Algebra: Application

Use linear algebra to find the identity of superman.

Let A - S

superman

Then AA'= §

clark kent

epikedmath, com
i 2008
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