Mathematics for Economists

Chapters 4-5 - Part 2

Linear Models and Matrix Algebra

Pierre-Simon Laplace (1749-1827, France) A. L. Cauchy (1789-1857, France)

4.7 Determinant of a Matrix

- The determinant is a number associated with any squared matrix.
- If \mathbf{A} is an $n \mathbf{x} n$ matrix, the determinant is $|\mathbf{A}|$ or $\operatorname{det}(\mathbf{A})$.
- Since the early days, a determinant was used to "determine" if a system of linear equations has a unique solution.
- Cramer (1750) expanded the concept to sets of equations, but a bit later, they were recognized by Vandermonde (1772) as independent functions.
- Determinants are used to characterize invertible matrices. A matrix is invertible (non-singular) if and only if $|\mathbf{A}| \neq 0$.
- That is, if $|\mathbf{A}| \neq 0 \rightarrow \mathbf{A}$ is invertible or non-singular.
- Can be found using factorials, pivots, and cofactors!
- Lots of interpretations.

4.7 Determinant of a Matrix

- When n is small, determinants are used for inversion and to solve systems of equations.
Example: Inverse of a 2×2 matrix:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad|A|=\operatorname{det}(A)=a d-b c \\
& A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \quad \begin{array}{l}
\text { This matrix is called the } \\
\text { adjugate of } \mathrm{A}(\operatorname{or} \operatorname{adj}(\mathrm{~A})) .
\end{array} \\
& A^{-1}=\operatorname{adj}(A) /|A|
\end{aligned}
$$

4.7 Determinant of a Matrix (3x3)

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a e i+b f g+c d h-a f h-b d i-c e g
$$

Sarrus' Rule: Sum from left to right. Then, subtract from right to left Note: N! terms

- Q: How many flops? For A (3x3), we count 17 operations.

4.7 Determinants: Laplace formula

- The determinant of a matrix of arbitrary size can be defined by the Leibniz formula or the Laplace formula.
- The Laplace formula (or expansion) expresses the determinant $|\boldsymbol{A}|$ as a sum of n determinants of $(n-1) \times(n-1)$ sub-matrices of \mathbf{A}. There are n^{2} such expressions, one for each row and column of \mathbf{A}
- Define the i, j minor M_{ij} (usually written as $\left|M_{\mathrm{ij}}\right|$) of \mathbf{A} as the determinant of the $(n-1) \times(n-1)$ matrix that results from deleting the i-th row and the j-th column of \mathbf{A}.

4.7 Determinants: Laplace formula

- Define the $C_{i, j}$ the cofactor of \mathbf{A} as:

$$
C_{i, j}=(-1)^{i+j}\left|M_{i, j}\right|
$$

- The cofactor matrix of \mathbf{A}-denoted by \mathbf{C}-, is defined as the $n \times n$ matrix whose (i, j) entry is the (i, j) cofactor of \mathbf{A}. The transpose of \mathbf{C} is called the adjugate or adjoint of $\mathbf{A}-\operatorname{adj}(\mathbf{A})$.
- Theorem (Determinant as a Laplace expansion)

Suppose $\mathbf{A}=\left[a_{i j}\right]$ is an $n \times n$ matrix and $i, j=\{1,2, \ldots, n\}$. Then the determinant

$$
\begin{aligned}
& |A|=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n} \\
& =a_{i j} C_{i j}+a_{2 j} C_{2 j}+\ldots+a_{n j} C_{n j}
\end{aligned}
$$

4.7 Determinants: Laplace formula

Example:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 0 \\
2 & 4 & 6
\end{array}\right]
$$

- $|\mathbf{A}|=1 * \mathrm{C}_{11}+2 * \mathrm{C}_{12}+3 \mathrm{C}_{13} \quad$ (expanding through $1^{\text {st }}$ row) $\left.=1^{*}(-1)^{1+1 *}(-1 * 6)+2^{*}(-1)^{1+2 *}(0)+3 *(-1)^{1+3 *}\left[-(-1)^{*} 2\right)\right]=0$
$=2 * \mathrm{C}_{12}+(-1) * \mathrm{C}_{22}+4 * \mathrm{C}_{23}$ (expanding through $\left.2^{\text {nd }} \mathrm{col}\right)$ $=2^{*}(-1)^{1+2 *}(0)+(-1)^{*}(-1)^{2+2 *}(0)+4 *(-1)^{2+3 *}(0)=0$
- $|\mathbf{A}|=0 \quad \Rightarrow$ The matrix is singular. (Check!)
- How many flops? For a $\mathbf{A}(3 \times 3)$, we count 14 operations (better!). For A $(n \times n)$, we calculate n subdeterminants, each of which requires ($n-1$) subdeterminants, etc. Then, computations of order $n!$ (plus some n terms), or $\mathrm{O}(n!)$.

4.7 Determinants: Computations

- By today's standards, a 30×30 matrix is small. Yet it would be impossible to calculate a 30×30 determinant by Laplace formula. It would require over $n!\left(30!\approx 2.65 \times 10^{32}\right)$ multiplications.
- If a computer performs one quatrillion $\left(1.0 \times 10^{15}\right)$ multiplications per second (a Petaflops, the 2008 record), it would have to run for over 8.4 billion years to compute a 30×30 determinant by Laplace's method.
- Using a very fast computer like the 2013 China Tianhe-2 (33 petaflops), it would take 254 million years.
- Not a very useful, computationally speaking, method. Avoid factorials! There are more efficient methods.

4.7 Determinants: Computations

- Faster way of evaluating the determinant: Bring the matrix to UT (or LT) form by linear transformations. Then, the determinant is equal to the product of the diagonal elements.
- For $\mathbf{A}(n \mathbf{x} n)$, each linear transformation involves adding a multiple of one row to another row, that is, n or fewer additions and n or fewer multiplications. Since there are n rows, this is a procedure of order n^{3}-or $\mathrm{O}\left(n^{3}\right)$.

Example: For $n=30$, we go from $30!=2.65 * 10^{32}$ flops to $30^{3}=$ 27,000 flops.

4.7 Determinants: Properties

- Interchange of rows and columns does not affect $|\mathbf{A}|$.
(Corollary, $|\mathbf{A}|=\left|\mathbf{A}^{\prime}\right|$.)
- To any row (column) of \boldsymbol{A} we can add any multiple of any other row (column) without changing $|\mathbf{A}|$.
(Corollary: if we transform \mathbf{A} into \mathbf{U} or $\mathbf{L},|\mathbf{A}|=|\mathbf{U}|=|\mathbf{L}|$, which is equal to the product of the diagonal element of \mathbf{U} or \mathbf{L}.)
- $|\mathbf{I}|=1$, where \mathbf{I} is the identity matrix.
- $|k \mathbf{A}|=k^{\mathrm{n}}|\mathbf{A}|$, where k is a scalar.
- $|\mathbf{A}|=\left|\mathbf{A}^{\prime}\right|$.
- $|\mathbf{A B}|=|\mathbf{A}||\mathbf{B}|$.
- $\left|\mathbf{A}^{-1}\right|=1 /|\mathbf{A}|$.
- Recursive flops formula: flops $_{n}=n^{*}\left(\right.$ flops $\left._{n-1}+2\right)-1$

4.7 Determinants: \mathbf{R}

- Simple command, $\operatorname{det}(\mathrm{A})$
- $>\mathrm{M}=\operatorname{cbind}(\operatorname{rbind}(1,2), \operatorname{rbind}(6,5))$
[1] [,2]
[1,] $1 \quad 6$
[2, $2 \quad 5$
$>\operatorname{det}(\mathrm{M})$
[1] -7
$>\operatorname{det}\left(\mathrm{M}^{*} 2\right)$
[1]-28
$>$ Minv <-solve(M); Minv
[,1] [,2]
$[1]-,0.714285700 .8571429$
[2,] 0.2857143-0.1428571
$>\operatorname{det}($ Minv $)$

$$
\#=1 / \operatorname{det}(M)
$$

[1] - 0.1428571

4.7 Determinants: Cramer's Rule - Derivation

- Recall the solution to $\mathbf{A x}=\boldsymbol{d}$, where \mathbf{A} is an $n \times n$ matrix:

$$
\mathbf{x}^{*}=\mathbf{A}^{-1} \boldsymbol{d}
$$

Using the cofactor method to get the inverse we get:

$$
\begin{aligned}
& x^{*}=\frac{1}{|A|}(\operatorname{adjoint} A) \quad(d) \quad \text { Note: } \mathbf{A} \mid \neq 0 \rightarrow \mathbf{A} \text { is non-singular. }
\end{aligned}
$$

4.7 Determinants: Cramer's Rule - Derivation

- Example: Let A be 3x3. Then,

1) $\left[\begin{array}{c}x_{1}^{*} \\ x_{2}^{*} \\ x_{3}^{*}\end{array}\right]=\frac{1}{|A|}\left[\begin{array}{l}d_{1}\left|C_{11}\right|+d_{2}\left|C_{21}\right|+d_{3}\left|C_{31}\right| \\ d_{1}\left|C_{12}\right|+d_{2}\left|C_{22}\right|+d_{3}\left|C_{32}\right| \\ d_{1}\left|C_{13}\right|+d_{2}\left|C_{23}\right|+d_{3}\left|C_{33}\right|\end{array}\right]=\frac{1}{|A|}\left[\begin{array}{l}\sum_{i=1}^{3} d_{i}\left|C_{i 1}\right| \\ \sum_{i=1}^{3} d_{i}\left|C_{i 2}\right| \\ \sum_{i=1}^{3} d_{i}\left|C_{i 3}\right|\end{array}\right]$
2) $\quad \sum_{i=1}^{3} d_{i}\left|C_{i 1}\right|=d_{1}\left|C_{11}\right|+d_{2}\left|C_{21}\right|+d_{i}\left|C_{31}\right|$ where $\left|C_{i j}\right| \equiv(-1)^{i+j}\left|M_{i j}\right|$
3) $\quad \sum_{i=1}^{3} d_{i}\left|C_{i 1}\right|=d_{1}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+d_{2}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|+d_{3}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right|=\left|A_{1}\right|$
4) $\quad A_{1}=\left[\begin{array}{lll}d_{1} & a_{12} & a_{13} \\ d_{2} & a_{22} & a_{23} \\ d_{3} & a_{32} & a_{33}\end{array}\right]$. Find $\left|\mathrm{A}_{1}\right|$ such that $x_{1}^{*}=\left|A_{1}\right| /|A|$

4.7 Determinants: Cramer's Rule - Derivation

$$
x_{1}^{*}=\frac{\sum_{i=1}^{3} d_{i}\left|C_{i 1}\right|}{\sum_{i=1}^{3} a_{i 1}\left|C_{i 1}\right|}=\frac{\left|\begin{array}{lll}
d_{1} & a_{12} & a_{13} \\
d_{2} & a_{22} & a_{23} \\
d_{3} & a_{32} & a_{33}
\end{array}\right|}{\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|}=\frac{\left|A_{1}\right|}{|A|}
$$

$$
x_{2}^{*}=\frac{\sum_{i=1}^{3} d_{i}\left|C_{i 2}\right|}{\sum_{i=1}^{3} a_{i 2}\left|C_{i 2}\right|}=\frac{\left|\begin{array}{lll}
a_{11} & d_{1} & a_{13} \\
a_{21} & d_{2} & a_{23} \\
a_{31} & d_{3} & a_{33}
\end{array}\right|}{\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|}=\frac{\left|A_{2}\right|}{|A|}
$$

4.7 Determinants: Cramer's Rule - Derivation

$$
x_{3}^{*}=\frac{\sum_{i=1}^{3} d_{i}\left|C_{i 3}\right|}{\sum_{i=1}^{3} a_{i 3}\left|C_{i 3}\right|}=\frac{\left|\begin{array}{lll}
a_{11} & a_{12} & d_{1} \\
a_{21} & a_{22} & d_{2} \\
a_{31} & a_{32} & d_{3}
\end{array}\right|}{\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|}=\frac{\left|A_{3}\right|}{|A|}
$$

4.7 Determinants: Cramer's Rule - Derivation

- Following the pattern, we have the general Cramer's rule:

$$
\left[\begin{array}{c}
x_{1}^{*} \\
x_{2}^{*} \\
x_{3}^{*} \\
\ldots \\
x_{n}^{*}
\end{array}\right]=\frac{1}{|A|}\left[\begin{array}{c}
\sum_{i=1}^{n} d_{i}\left|C_{i 1}\right| \\
\sum_{i=1}^{n} d_{i}\left|C_{i 2}\right| \\
\sum_{i=1}^{n} d_{i}\left|C_{i 3}\right| \\
\sum_{i=1}^{n} d_{i}\left|C_{i n}\right|
\end{array}\right]=\left[\begin{array}{c}
\left|A_{1}\right| /|A| \\
\left|A_{2}\right| /|A| \\
\left|A_{3}\right| /|A| \\
\cdots \\
\left|A_{n}\right| /|A|
\end{array}\right]
$$

4.7 Cramer's Rule Application: Macro

Model

> Matrix form

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
-b & 1 & 0 \\
-g & 0 & 1
\end{array}\right]\left[\begin{array}{l}
Y \\
C \\
G
\end{array}\right]=\left[\begin{array}{c}
I_{0} \\
a-b T_{0} \\
0
\end{array}\right]
$$

The determinant

$$
|A|=\left|\begin{array}{ccc}
1 & -1 & -1 \\
-b & 1 & 0 \\
-g & 0 & 1
\end{array}\right|=1-(b+g)
$$

4.7 Cramer's Rule Application: Macro Model

- Applying Cramer's rule for the 3×3 case:
$\left|A_{Y}\right|=\left|\begin{array}{ccc}I_{0} & -1 & -1 \\ a-b T_{0} & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=I_{0}+a-b T_{0} \quad Y^{*}=\frac{\left|A_{Y}\right|}{|A|}=\frac{I_{0}+a-b T_{0}}{1-(b+g)}$
$\left|A_{C}\right|=\left|\begin{array}{ccc}1 & I_{0} & -1 \\ -b & a-b T_{0} & 0 \\ -g & 0 & 1\end{array}\right|=b I_{0}+(1-g)\left(a-b T_{0}\right) \quad C^{*}=\frac{\left|A_{C}\right|}{|A|}=\frac{b I_{0}+(1-g)\left(a-b T_{0}\right)}{1-(b+g)}$
$\left|A_{G}\right|=\left|\begin{array}{ccc}1 & -1 & I_{0} \\ -b & 1 & a-b T_{0} \\ -g & 0 & 0\end{array}\right|=g\left(a-b T_{0}+I_{0}\right) \quad G^{*}=\frac{\left|A_{G}\right|}{|A|}=\frac{g\left(a-b T_{0}+I_{0}\right)}{1-(b+g)}$

4.8 - Linear Models \& Matrix Algebra: Summary

- Matrix algebra can be used:
a. to express the system of equations in a compact notation;
b. to find out whether solution to a
$A x=d$ system of equations exist; and
c. to obtain the solution if it exists.
$x^{*}=A^{-1} d$

$$
A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A}
$$

d. If n is small, we can find \mathbf{A}^{-1}, but in general, we will avoid this step. We will resort to more

$$
x^{*}=\frac{\operatorname{adj} A}{|A|} d
$$ efficient methods to solve for x^{*}, likely using a Cholesky decomposition with Gaussian elimination.

4.8 - Notation and Definitions: Summary

- \mathbf{A} (Upper case letters) $=$ matrix
- b (Lower case letters) $=$ vector
- $n \mathrm{x} m=n$ rows, m columns
- $\operatorname{rank}(\mathbf{A})=$ number of linearly independent vectors of \mathbf{A}
- $\operatorname{trace}(\mathbf{A})=\operatorname{tr}(\mathbf{A})=$ sum of diagonal elements of \mathbf{A}
- Null matrix = all elements equal to zero.
- Diagonal matrix $=$ all off-diagonal elements are zero.
- $\mathbf{I}=$ identity matrix (diagonal elements: 1 , off-diagonal: 0)
- $|\mathbf{A}|=\operatorname{det}(\mathbf{A})=\operatorname{determinant}$ of \mathbf{A}
- $\mathbf{A}^{-1}=$ inverse of \mathbf{A}
- $\mathbf{A}^{\prime}=\mathbf{A}^{\mathrm{T}}=$ Transpose of \mathbf{A}
- $\left|M_{\mathrm{ij}}\right|=$ Minor of \mathbf{A}
- $\mathbf{A}=\mathbf{A}^{\mathrm{T}} \quad \Rightarrow$ Symmetric matrix
- $\mathbf{A}^{\mathrm{T}} \mathbf{A}=\mathbf{A} \mathbf{A}^{\mathrm{T}} \quad \Rightarrow$ Normal matrix
- $\mathbf{A}^{\mathrm{T}}=\mathbf{A}^{-1} \quad \Rightarrow$ Orthogonal matrix
- $\mathbf{A}=\mathbf{A}^{2} \quad \Rightarrow$ Idempotent matrix

4.9 Eigenvalues and Diagonal Systems

- A set of linear simultaneous equations:

$$
\mathbf{A b}=\mathbf{d} \quad \mathbf{A} \text { is a non-singular and } \mathbf{b} \text { and } \mathbf{d} \text { are }
$$ conformable vectors.

- Under certain circumstances, we can diagonalize this system:
$\boldsymbol{\Lambda} \nu=0 \quad$ where $\boldsymbol{\Lambda}$ is a diagonal matrix.
- Eigenvalues (Characteristic Roots)
$\mathbf{A x}=\lambda \mathbf{x} \quad$ This is the eigenvalue problem
λ is the eigenvalue (characteristic root)
\mathbf{x} is the eigenvector (characteristic vector)
- Cauchy discovered them studying how to find new coordinate axes for the graph of the quadratic equation $a x^{2}+2 b x y+c y^{2}=d$ so that the equation with the new axes would be of the form $A x^{2}+C y^{2}=D$.

4.9 Eigenvalues and Diagonal Systems

- $\mathbf{A x}=\lambda \mathbf{x} \quad$ (Basic equation of eigenvalue problem)
- For the square matrix \mathbf{A}, there is a vector \mathbf{x} such that the product of $\mathbf{A x}$ results in a scalar, $\boldsymbol{\lambda}$, that, when multiplied by \mathbf{x}, gives the same product.
- The multiplication of vector \mathbf{x} by a scalar is the same as stretching or shrinking the coordinates by a constant value. (The matrix \mathbf{A} just scales the vector x!)
- $\mathbf{A x}=\lambda \mathbf{I x} \quad \Rightarrow[\mathbf{A}-\lambda \mathbf{I}] \mathbf{x}=\mathbf{0}$
- $\mathbf{K}=[\mathbf{A}-\lambda \mathbf{I}] \quad$ Characteristic matrix of matrix \mathbf{A}
- $\mathbf{K} \mathbf{x}=\mathbf{0}$ Homogeneous equations.

4.9 Eigenvalues and Diagonal Systems

- Homogeneous equations: $\mathbf{K} \mathbf{x}=\mathbf{0}$
- Trivial solution $\mathbf{x}=\mathbf{0}$ (If $|\mathbf{K}| \neq 0$, from Cramer's rule)
- Nontrivial solution $(\mathbf{x} \neq \mathbf{0})$ can occur if $|\mathbf{K}|=0$.
- That is, do all matrices have eigenvalues?

No. They must be square and $|\mathbf{K}|=|\mathbf{A}-\lambda \mathbf{I}|=0$.

- Eigenvectors are not unique. If \mathbf{x} is an eigenvector, then $\beta \mathbf{x}$ is also an eigenvector: $\quad \mathbf{A}(\beta \mathbf{x})=\lambda(\beta \mathbf{x})$
- To calculate eigenvectors and eigenvalues, expand the equation

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

- The resulting equation is called characteristic equation.

4.9 Eigenvalues and Diagonal Systems

- Characteristic equation: $|\mathbf{A}-\lambda \mathbf{I}|=0$

Example: For a 2×2 matrix:

$$
\begin{gathered}
{[\mathrm{A}-\lambda \mathrm{I}]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right]} \\
|\mathrm{A}-\lambda \mathrm{I}|=\left|\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right|=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12} a_{21}=0 \\
a_{11} a_{22}-a_{12} a_{21}-\lambda\left(a_{11}+a_{22}\right)+\lambda^{2}=0
\end{gathered}
$$

- For a 2-dimensional problem, we have a simple quadratic equation with two solutions for λ.

4.9 Eigenvalues: 2x2 Case

For $n=2$, we have a simple quadratic equation with two solutions for λ. In fact, there is generally one eigenvalue for each dimension, but some may be zero, and some complex.

$$
\begin{aligned}
& 0=a_{11} a_{22}-a_{12} a_{21}-\left(a_{11}+a_{22}\right) \lambda+\lambda^{2} \\
& \lambda=\frac{\left(a_{11}+a_{22}\right) \pm \sqrt{\left(a_{11}+a_{22}\right)^{2}-4\left(a_{11} a_{22}-a_{12} a_{21}\right)}}{2}
\end{aligned}
$$

Note 1: The solution for λ can be written as:

$$
\lambda=1 / 2 \operatorname{trace}(\mathrm{~A}) \pm 1 / 2\left[\operatorname{trace}(\mathrm{~A})^{2}-4|\mathrm{~A}|\right]^{1 / 2}
$$

Three cases:

1) Real different roots: trace $(A)^{2}>4|A|$
2) One real root: $\operatorname{trace}(A)^{2}=4|A|$
3) Complex roots: trace $(\mathrm{A})^{2}<4|\mathrm{~A}|$

4.9 Eigenvalues: 2×2 Case

- Note 2: If \mathbf{A} is symmetric, the eigenvalues are real. That is, we need to have $\operatorname{trace}(\mathbf{A})^{2}>4|\mathbf{A}|$. For $n=2$, we check this condition:

$$
\begin{aligned}
& \left(a_{11}+a_{22}\right)^{2}-4\left(a_{11} a_{22}-a_{12} a_{12}\right)>0 \\
& a_{11}^{2}+a_{22}^{2}+2 a_{11} a_{22}-4 a_{11} a_{22}+4 a_{12}^{2}>0 \\
& a_{11}^{2}+a_{22}^{2}-2 a_{11} a_{22}+4 a_{12}^{2}>0 \\
& \left(a_{11}-a_{22}\right)^{2}+4 a_{12}^{2}>0
\end{aligned}
$$

4.9 Eigenvalues: Geometric Interpretation

- Geometric Interpretation for the 2×2 Case:

The x, y values of A can be seen as representing points on an ellipse centered at $(0,0)$. The eigenvectors are in the directions of the major and minor axes of the ellipse, and the eigenvalues are the lengths of these axes to the ellipse from $(0,0)$.

4.9 Eigenvalues: General Case

- General $n \mathrm{x} n$ case:

The characteristic determinant $\mathrm{D}(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$
is clearly a polynomial in λ :

$$
\mathrm{D}(\lambda)=\alpha_{\mathrm{n}} \lambda^{\mathrm{n}}+\alpha_{\mathrm{n}-1} \lambda^{\mathrm{n}-1}+\alpha_{\mathrm{n}-2} \lambda^{\mathrm{n}-2}+\ldots+\alpha_{1} \lambda+\alpha_{0}
$$

- Characteristic equation:
$\mathrm{D}(\lambda)=\alpha_{\mathrm{n}} \lambda^{\mathrm{n}}+\alpha_{\mathrm{n}-1} \lambda^{\mathrm{n}-1}+\alpha_{\mathrm{n}-2} \lambda^{\mathrm{n}-2}+\ldots+\alpha_{1} \lambda+\alpha_{0}=0$
There are n solutions to this polynomial. The set of eigenvalues is called the spectrum of \mathbf{A}. The largest of the absolute values of the eigenvalues of \mathbf{A} is called the spectral radius of \mathbf{A}.
- Eigenvalues are computed using the QR algorithm (1950s) or the divide-and-conquer eigenvalue algorithm (1990s). They are computationally intensive. They take $4 n^{3} / 3$ flops.

4.9 Eigenvalues: Properties

- Some properties:
- The product of the eigenvalues $=|\mathbf{A}|$
- The sum of the eigenvalues $=\operatorname{trace}(\mathbf{A})$
- The eigenvalues of \mathbf{A}^{k} are $\lambda_{1}{ }^{k}, \lambda_{2}{ }^{k}, \ldots, \lambda_{\mathrm{n}}{ }^{\mathrm{k}}$.
- If \mathbf{A} is an idempotent matrix, its λ_{1}^{\prime} 's are all 0 or 1 .
- If \mathbf{A} is an orthogonal matrix $\left(\mathbf{A}^{\mathrm{T}}=\mathbf{A}^{-1}\right)$, its $\lambda_{\mathrm{i}}^{\prime}$ s (if real) are ± 1. Proof: $\lambda^{2} \mathbf{x}^{\prime} \mathbf{x}=\mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{A} \mathbf{x}=\mathbf{x}^{\prime} \mathbf{x} \Rightarrow|\lambda|=1$ (if real, $\lambda= \pm 1$).
- If \mathbf{A} is a symmetric (Hermitian) matrix:
- its λ_{i}^{\prime} 's are all real.
- its eigenvectors are orthogonal.
- All eigenvectors derived from unequal eigenvalues are linearly independent. (n eigenvectors can form an orthonormal basis!).
- If \mathbf{A} is a pd matrix, its λ_{i}^{\prime} 's are positive and, then, $|\mathbf{A}|>0$.

Proof: $0<x^{\prime} \mathbf{A x}=\mathbf{x}^{\prime} \lambda \mathbf{x}=\lambda \mathbf{x}^{\prime} \mathbf{x}=\lambda\|\mathbf{x}\|^{2}$.

$$
\text { Since }\|x\|^{2}>0 \quad \Rightarrow \lambda>0 \quad(\&|\mathbf{A}|>0) .
$$

4.9 Eigenvalues: Example -Correlation Matrix

- Example: A correlation matrix

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cc}
1 & .75 \\
.75 & 1
\end{array}\right] \\
& \begin{aligned}
\lambda & =1 / 2 \operatorname{trace}(\mathbf{A}) \pm 1 / 2\left[\operatorname{trace}(\mathbf{A})^{2}-4|\mathbf{A}|\right]^{1 / 2} \\
& =1 / 22 \pm 1 / 2\left[2^{2}-4^{*} 0.4735\right]^{1 / 2}=1 \pm 1 / 2[2.25]^{1 / 2} \\
& =1 \pm 1 / 2[1.5]=0.25 ; 1.75
\end{aligned} \\
& x=\left[\begin{array}{lll}
-0.7071, & 0.7071] ;[0.7071, \quad 0.7071]
\end{array}\right.
\end{aligned}
$$

Note: \mathbf{x} is not unique. Usually, we set $\|\mathbf{x}\|=1$ (dot product).

4.9 Eigenvalues: Example -Correlation Matrix

- Graphical interpretation: Correlation as an ellipse, whose major axis is one eigenvalue and the minor axis length is the other:

No correlation yields a circle, and perfect correlation yields a line.

[^0]
4.9 Eigenvalues: R Commands

- Command "eigen," recover values with \$
> x_lamb <- lamb\$vectors
> x_lamb[1]
[1] 0.7071068
> x_lamb[1,]
[1] $0.7071068-0.7071068$
> x_lamb[2,]
[1] 0.70710680 .7071068
> t(x_lamb[1,]) \%*\% $\%$ x_lamb[2,]
[1]
[1,] $0 \quad \Rightarrow$ yes, eigenvectors are orthogonal.

4.9 Eigenvalues: Example - Quadratic Form

- $2^{\text {nd }}$ order multivariable equations: $a x^{2}+2 \mathrm{kxy}+\mathrm{b} y^{2}=\mathrm{c}$
- Represented in a quadratic form with symmetric matrix A :

$$
\begin{gathered}
\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{c}, \quad \text { where } \\
\mathbf{x}=\binom{x}{y}, \mathbf{A}=\left(\begin{array}{ll}
a & k \\
k & b
\end{array}\right)
\end{gathered}
$$

$$
5 x^{2}+4 x y+3 y^{2}=10
$$

$$
A=\left(\begin{array}{ll}
5 & 2 \\
2 & 3
\end{array}\right)
$$

Eigenvector decomposition:
$\lambda_{1}=1.764, x_{1}=[.5257,-.8507]$
$\lambda_{2}=6.236, x_{2}=[-.8507,-.5257]$

- Positive Definite $\mathbf{A} \Rightarrow$ positive real eigenvalues!
- Symmetric A $\quad \Rightarrow$ orthogonal e-vectors!
- Geometrical interpretation: Principal Axes of Ellipse.

4.9 Diagonal (Eigen) decomposition

- Let \mathbf{A} be a square $n \times n$ matrix with n linearly independent eigenvectors, $x_{i}(i=1,2, \ldots, n)$. Then, \mathbf{A} can be factorized as

$$
\mathbf{A}=\mathbf{X} \Lambda \mathbf{X}^{-1}
$$

where \mathbf{X} is the square ($n \mathbf{x} n$) matrix whose $i^{\text {th }}$ column is the eigenvector x_{i} of \mathbf{A} and $\boldsymbol{\Lambda}$ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e., $\Lambda_{i i}=\lambda_{i}$

- The eigenvectors are usually normalized, but they need not be. A non-normalized set of eigenvectors can also be used as the columns of \mathbf{X}.
Proof: $\mathbf{A x}=\lambda \mathbf{x} \quad \Rightarrow \mathbf{A X}=\mathbf{X} \Lambda \quad \Rightarrow \mathbf{A}=\mathbf{X} \Lambda \mathbf{X}^{-1}\left(\mathbf{X}^{-1}\right.$ exists $)$
- Conversely: $\mathbf{X}^{-1} \mathbf{A} \mathbf{X}=\Lambda$
- If $\mathbf{X}^{\mathrm{T}} \mathbf{X}=\mathbf{I}, \mathbf{A}$ is orthogonally diagonalizable.

4.9 Diagonal decomposition: Example

- Let $\quad \mathbf{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] ; \lambda_{1}=1, \lambda_{2}=3$.

The eigenvectors: $\mathbf{x}_{1}=[1,-1], \mathbf{x}_{2}=[1,1]$.

- Let \mathbf{X} be the matrix of eigenvectors: $\quad \mathbf{X}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
- Inverting, we have $\quad \mathbf{X}^{-1}=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$
- Then, $\boldsymbol{A}=\mathbf{X} \Lambda \mathbf{X}^{-1}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$

4.9 Diagonal decomposition: Example

- Diagonalizing a system of equations:

$$
\mathbf{A x}=\mathbf{y}
$$

- Pre-multiply both sides by \mathbf{X}^{-1} :

$$
\begin{aligned}
& \mathbf{X}^{-1} \mathbf{A} \mathbf{x}=\mathbf{X}^{-1} \mathbf{y}=v \\
& \left.\mathbf{X}^{-1} \mathbf{A}\left(\mathbf{X X ~ X}^{-1}\right) \mathbf{x}=\nu \quad \quad \text { Let } v=\mathbf{X}^{-1} \mathbf{x}\right) \\
& \Rightarrow \Lambda \mathrm{v}=\nu
\end{aligned}
$$

- Using the (2x2) previous example:

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]} \\
\begin{array}{c}
v_{1}=1 / 2 x_{1}-1 / 2 x_{2} \\
v_{2}=1 / 2 x_{1}+1 / 2 x_{2} \\
\begin{array}{l}
1 / 2 y_{1}-1 / 2 \mathrm{y}_{2}=v_{1} \\
1 / 2 \mathrm{y}_{1}+1 / 2 \mathrm{y}_{2}=v_{2}
\end{array} \\
v_{1}=v_{1} \\
3 v_{2}=v_{2}
\end{array}
\end{gathered}
$$

4.9 Diagonal decomposition: Application

- Let \mathbf{M} be the square $n \mathrm{x} n$ matrix defined by: $\mathbf{M}=\mathbf{I}_{\mathrm{n}^{-}} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}^{-1}\right) \mathbf{Z}^{\prime}$, where \mathbf{Z} is an $n \times k$ matrix, with $\operatorname{rank}(\mathbf{Z})=k$.

Let's calculate the trace (\mathbf{M}) :
$\operatorname{trace}(\mathbf{M})=\operatorname{tr}\left(\mathbf{I}_{\mathrm{n}}-\mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}^{-1}\right) \mathbf{Z}^{\prime}\right)=\operatorname{tr}\left(\mathbf{I}_{\mathrm{n}}\right)-\operatorname{tr}\left(\mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}^{-1}\right) \mathbf{Z}^{\prime}\right)=$ $=n-\operatorname{tr}\left(\left(\mathbf{Z}^{\prime} \mathbf{Z}^{-1}\right) \mathbf{Z} \mathbf{Z}\right)=n-\operatorname{tr}\left(\mathbf{I}_{k}\right)=n-k$.

It is easy to check that \mathbf{M} is idempotent ($\lambda_{i}^{\prime} \mathrm{s}$ are all 0 or 1) and symmetric (λ_{i} 's are all real and \mathbf{x} are orthogonal).

Write an orthogonal diagonalization: $\mathbf{M}=\mathbf{X} \Lambda \mathbf{X}^{-1} \quad\left(\mathbf{X}^{\prime} \mathbf{X}^{-1}=\mathbf{I}\right)$.
Again, let's calculate the trace $\left(\mathbf{M}=\mathbf{X} \Lambda \mathbf{X}^{-1}\right)$:

$$
\operatorname{trace}(\mathbf{M})=\operatorname{tr}\left(\mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{-1}\right)=\operatorname{tr}\left(\boldsymbol{\Lambda} \mathbf{X}^{-1} \mathbf{X}\right)=\operatorname{tr}(\boldsymbol{\Lambda})=\Sigma_{\mathrm{i}} \lambda_{\mathrm{i}}
$$

That is, \mathbf{M} has $n-k$ non-zero eigenvalues.

4.9 Why do Eigenvalues/vectors matter?

- Eigenvectors are invariants of A
- Don't change direction when operated \mathbf{A}
- Use to determine the definiteness of a matrix.
- A singular matrix has at least one zero eigenvalue.
- Solutions of multivariable differential equations (the bread-andbutter in linear systems) correspond to solutions of linear algebraic eigenvalue equations.
- Eigenvalues are used to study the stability of autoregressive time series models.
- The orthogonal basis of eigenvectors forms the core of principal components analysis (PCA).

4.9 Sign of a quadratic form: Eigenvalue tests

- Suppose we are interesting in an optimization problem for $\mathrm{z}=f(x, y)$. We set the first order conditions (f.o.c.), solve for x^{*} and y^{*}, and, then, check the second order conditions (s.o.c.).
- Let's re-write the s.o.c. of $\mathrm{z}=f(x, y)$:

$$
\begin{aligned}
& d^{2} z=q=f_{x x} d x^{2}+2 f_{x y} d x d y+f_{y y} d y^{2} \\
& q=\left[\begin{array}{ll}
d x & d y
\end{array}\right]\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]\left[\begin{array}{l}
d x \\
d y
\end{array}\right]=u^{\prime} H u
\end{aligned}
$$

- The s.o.c. of $\mathrm{z}=f(x, y)$ is a quadratic form, with a symmetric matrix, \mathbf{H}.
- To determine what type of extreme points we have, we need to check the sign of the quadratic form.

4.9 Sign of a quadratic form: Eigenvalue tests

-.Quadratic form:

$$
\begin{array}{ll}
\mathrm{q}=\mathrm{u}^{\prime} \mathbf{H u} \quad \begin{array}{l}
\text { (note: the Hessian, } \mathbf{H}, \text { is a } \\
\text { symmetric matrix) }
\end{array}
\end{array}
$$

- Let $u=\mathbf{T}$, where \mathbf{T} is the matrix of eigenvectors of \mathbf{H}, such that
$\mathbf{T}^{\prime} \mathbf{T}=\mathbf{I} \quad\left(\mathbf{H}\right.$ is symmetric matrix $\Rightarrow \mathbf{T}^{\prime}=\mathbf{T}^{-1}$. Check!)
-. Then,

$$
\mathrm{q}=\mathrm{y}^{\prime} \mathbf{T}^{\prime} \mathbf{H} \mathbf{T} \mathrm{y}=\mathrm{y}^{\prime} \boldsymbol{\Lambda} \mathrm{y} \quad\left(\mathbf{T}^{\prime} \mathbf{H} \mathbf{T}=\boldsymbol{\Lambda}\right)
$$

$$
\mathrm{q}=\lambda_{1} \mathrm{y}_{1}^{2}+\lambda_{2} \mathrm{y}_{2}^{2}+\ldots+\lambda_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}+\ldots+\lambda_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}^{2}
$$

$$
\Rightarrow \operatorname{sign}(\mathrm{q}) \text { depends on the } \lambda_{\mathrm{i}} \text { s only. }
$$

- We say:

$$
\mathrm{q} \text { is positive definite iff } \quad \lambda_{\mathrm{i}}>0 \text { for all } \mathrm{i} \text {. }
$$

$$
\mathrm{q} \text { is positive semi-definite iff } \lambda_{i} \geq 0 \text { for all } i .
$$

$$
\mathrm{q} \text { is negative semi-definite iff } \lambda_{\mathrm{i}} \leq 0 \text { for all i. }
$$

$$
\mathrm{q} \text { is negative definite iff } \quad \lambda_{i}<0 \text { for all } \mathrm{i} \text {. }
$$

$$
\mathrm{q} \text { is indefinite if some } \quad \lambda_{\mathrm{i}}>0 \text { and some } \lambda_{\mathrm{i}}<0 . \quad{ }^{41}
$$

4.9 Sign of a quadratic form: Eigenvalue tests

- Example: Find extreme values for $\mathrm{z}=f(x, y)$, and determine if they are a max or min.

$$
\mathrm{z}=\mathrm{x}^{2}+x y+2 y^{2}+3
$$

F.o.c.

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{x}=2 x+y=0 \\
f_{y}=x+4 y=0
\end{array}\right. \\
& y^{*}=0, x^{*}=0, z^{*}=3
\end{aligned}
$$

Calculate matrix of second derivatives

$$
\begin{aligned}
& |H|=\left|\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right|=\left|\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right|, \quad \lambda_{1}=1.58582 ; \quad \lambda_{2}=4.4142 \\
& =>\lambda_{1} \text { and } \lambda_{2} \text { are positive, } \mathrm{q} \text { is positive definite } \\
& =>z^{*} \text { is minimum }
\end{aligned}
$$

4.10 Linear Algebra: Application

Use linear algebra to find the identity of superman.

[^0]: 4.9 Eigenvalues: R Commands

 - Command "eigen," recover values with \$
 $>\mathrm{A}<-\operatorname{matrix}(\mathrm{c}(1, .75, .75,1)$, nrow $=2)$
 $>$ A
 [1] [,2]
 [1,] 1.000 .75
 [2,] 0.751 .00
 $>$ eigen(A)
 eigen() decomposition
 \$values
 [1] $1.750 .25 \quad \Rightarrow$ positive real eigenvalues, A is $\mathrm{pd}!$
 \$vectors
 [,1] [,2]
 [1,] $0.7071068-0.7071068$
 $[2] 0.7071068 \quad ,0.7071068 . \quad \Rightarrow$ symmetric matrix, eigenvalues are orthogonal
 $>$ lamb <-eigen(A)
 $>$ lambda <- lamb\$values
 $>$ lambda
 [1] 1.750 .25

