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• Difference equations work well when we model variables that change 
incrementally in value. When variables change continuously we use 
differential equations. 

• We start with a continuous time series {𝑥 𝑡 }.

• Ordinary Differential Equation (ODE): It relates the values of 
variables at a given point in time and the changes in values over time.

Example: Gሺ𝑡, 𝑥 𝑡 , 𝑥ᇱ 𝑡 , 𝑥ᇱᇱ 𝑡 , ...) = 0 ∀t. t: scalar, usually time

• An ODE depends on a single independent variable. A partial differential 
equation (PDE) depends on many independent variables.

14.1 Differential Equations: Definitions
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• ODEs are classified according to the highest degree of derivative. 

- First-Order ODE: 𝑥ᇱ 𝑡 ൌ Fሺ𝑡, 𝑥 𝑡 ሻ ∀t.  

- Nth-Order ODE: Gሺ𝑡, 𝑥 𝑡 , 𝑥ᇱ 𝑡 , 𝑥ᇱᇱ 𝑡 , ...) = 0 ∀t. 

Examples: First-order ODE     𝑥ᇱ 𝑡 ൌ  𝑎 𝑥 𝑡 + φ(t)

Second-order ODE   𝑥ᇱᇱ 𝑡 ൌ 𝑎
 
𝑥ᇱ 𝑡 + 𝑏 𝑥 𝑡 + φ(t)

• If G(.) is linear, we have a linear ODE. If G(.) is anything but linear, 
then we have a non-linear ODE.

• In this lecture, we emphasize linear ODE.

14.1 Differential Equations: Definitions

• A differential equation not depending directly on t is called autonomous.

Example: 𝑥ᇱ 𝑡 ൌ  𝑎 𝑥 𝑡 + 𝑏 is autonomous.

• A differential equation is homogeneous if φ(t) = 0 

Example: 𝑥ᇱ 𝑡 ൌ  𝑎 𝑥 𝑡 is homogeneous.

• If starting values, say x(0), are given. We have an initial value problem.

Example: 𝑥ᇱ 𝑡  + 2 𝑥 𝑡 = 3 𝑥 0 = 2. 

• If values of the function and/or derivatives at different points are given, 
we have a boundary value problem. 

Example: 𝑥ᇱ 𝑡  + 4 𝑥 𝑡 = 0 𝑥 0  = -2,  𝑥 π/4 = 10. 

4

14.1 Differential Equations: Definitions
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• A solution of an ODE is a function 𝑥 𝑡 that satisfies the equation for all 
values of t. Many ODE have no solutions.

• Analytic solutions -i.e., a  closed expression of 𝑥 in terms of 𝑡- can be 
found by different methods. Example: conjectures, integration.

• Most ODE’s do not have analytic solutions. Numerical solutions will be 
needed.

• If for some initial conditions a differential equation has a solution that 
is a constant function (independent of 𝑡), then the value of the constant, 
𝑥∞, is called an equilibrium state or stationary state. 

• If, for all initial conditions, the solution of the differential equation 
converges to 𝑥∞ as 𝑡→∞, then the equilibrium is globally stable. 

5

14.1 Differential Equations: Definitions
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• Problem: “The rate of growth of the population is proportional to the 
size of the population.”

Quantities: 𝑡 = time, 𝑃 𝑡 = population, 𝑘 = proportionality constant 
(growth-rate coefficient)

• The differential equation representing this problem:
ௗ௉ሺ௧ሻ

ௗ௧
ൌ 𝑘 𝑃 𝑡

Note that 𝑃0 = 0 is a solution because 
ௗ௉ሺ௧ሻ

ௗ௧
ൌ 0 forever (trivial!).

• If 𝑃0 ≠ 0, how does the behavior of the model depend on 𝑃0 and 𝑘?  
In particular, how does it depend on the signs of 𝑃0 and 𝑘?

14.1 ODE: Classic Problem
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• The differential equation:  
ௗ௉ሺ௧ሻ

ௗ௧
 = 𝑘 𝑃 𝑡

• Guess a solution: The first derivative should be “similar” to the 
function. Let’s try an exponential: 𝑃 𝑡 = 𝑐 𝑒௞௧

ௗ௉ሺ௧ሻ

ௗ௧
ൌ 𝑐 𝑘𝑒௞௧ ൌ 𝑘 𝑃 𝑡 −it works!

(and, in fact, 𝑐 = 𝑃0.)

14.1 ODE: Classic Problem

• A first-order ODE:
𝑥ᇱ 𝑡 ൌ 𝑓ሺ𝑡, 𝑥 𝑡 ሻ ∀t. 

Notation:  𝑥ሶ ൌ 𝑥ᇱ 𝑡 ൌ ௗ௫

ௗ௧

• The steady state represents an equilibrium where the system does not 
change anymore. When 𝑥 𝑡 does not change anymore, we call its 
value 𝑥∞ . That is, 

𝑥ᇱ 𝑡 ൌ 0

Example: 𝑥ᇱ 𝑡 ൌ 𝑎 𝑥 𝑡 + 𝑏, with 𝑎 ≠ 0.

When 𝑥ᇱ 𝑡 ൌ 0,  𝑥∞ = − 𝑏/𝑎.

8

14.2  1st-order ODE: Notation and Steady State
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• A 1st-order ODE is separable if it can be written as:  𝑥ᇱ 𝑡 = 𝑓ሺ𝑡ሻ 𝑔 𝑥
∀t. Easier to solve (discussed first by Leibniz and Bernoulli in 1694).

Example: is separable. 

It can be written as: 𝑥ᇱ 𝑡 = [𝑒௫ሺ௧ሻ/𝑥 𝑡 ]·[𝑒௧ √(1 + 𝑡ଶ)]. 

• 𝑥ᇱ 𝑡 = 𝑓ሺ𝑡ሻ + 𝑔ሺ𝑥 𝑡 ሻ is not separable unless either 𝑓ሺ. ሻ or 𝑔ሺ. ሻ is 
identically 0: it cannot be written in the form 𝑥ᇱ 𝑡 = 𝑓 𝑡 𝑔 𝑥 . 
• If  𝑔ሺ. ሻ is a constant, then the general solution of the equation is 
simply the indefinite integral of 𝑓ሺ. ሻ. 
• If 𝑔ሺ. ሻ is not constant, the equation may be easily solved. Assume 
𝑔 𝑥 ≠ 0 for all values that x assumes in a solution, we may write: 

𝑑𝑥/𝑔 𝑥 = 𝑓ሺ𝑡ሻ dt.

• Then, we may integrate both sides:   ׬ 1/𝑔 𝑥  𝑑𝑥
௧
଴ ׬ = 𝑓 𝑡  𝑑𝑡

௧
଴ .
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14.2 Separable first-order ODE
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Example: 𝑥ᇱ 𝑡 ൌ 𝑥 𝑡  𝑡. 
• Steps to solve equation:

1) Write the equation as: 𝑑𝑥 /𝑥 = 𝑡 𝑑𝑡.
2) Integrate both sides: ln 𝑥 = 𝑡ଶ/2 + C.  (C always consolidates the 
constants of integration).

3) Isolate 𝑥 :    𝑥 𝑡 = C 𝑒௧
మ/ଶ ∀ 𝑡. (C = 𝑒஼ ). 

Note: If 𝑥 𝑡 ≠ 0  ∀t; in all the solutions we need C ≠ 0. 

• With an initial condition x(t0) = x0, the value of C is determined:

• Definite solution (no unknowns):

• Suppose at 𝑥(𝑡0=2) = 𝑥0 = 1.78 . Then, at 𝑡 = 3.103, 

𝑥 𝑡 ൌ 3.103 = [1.78 * exp(−22/2)] * exp(3.1032/2) = 29.693194

2/
0
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2
0

2
0 tt exCCex 
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14.2 Separable first-order ODE
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• A linear first-order differential equation takes the form 

𝑥ᇱ 𝑡 ൌ 𝑎 𝑡  𝑥 𝑡 ൅ 𝑏ሺ𝑡ሻ ∀𝑡, for some functions 𝑎 and 𝑎.

• Case I. 𝑎 𝑡 = 𝑎 ≠ 0 for all 𝑡. 
⇒ 𝑥ᇱ 𝑡 + 𝑎 𝑥 𝑡 = 𝑏 𝑡 ∀𝑡.

- The LHS looks like the derivative of a product. But, not exactly the 
derivative of 𝑓 𝑡  𝑥 𝑡 = 𝑓ᇱ 𝑡  𝑥 𝑡 ൅ 𝑓 𝑡  𝑥ᇱ 𝑡

We would need 𝑓 𝑡 = 1 and 𝑓ᇱ 𝑡 = 𝑎 ∀𝑡, which is not possible. 

- Trick: Multiply both sides by 𝑔 𝑡 for each 𝑡:  
𝑔 𝑡  𝑥ᇱ 𝑡 + 𝑎 𝑔 𝑡  𝑥 𝑡 = 𝑔 𝑡  𝑏 𝑡 ∀𝑡.

- Now, we need 𝑓 𝑡 = 𝑔 𝑡 and 𝑓ᇱ 𝑡 = 𝑎𝑔 𝑡 .  

If 𝑓 𝑡 = 𝑒௔௧ ⇒ 𝑓ᇱ 𝑡 = 𝑎 𝑒௔௧ = 𝑎 𝑓 𝑡

14.2 Linear first-order ODE: Case I - a(t) = a

12

- Set g(t) = 𝑒௔௧ ⇒ 𝑒௔௧ 𝑥ᇱ 𝑡 + 𝑎 𝑒௔௧ 𝑥 𝑡 = 𝑒௔௧ 𝑏ሺ𝑡ሻ
- The integral of the LHS is 𝑒௔௧ 𝑥 𝑡
- Solution:

𝑒௔௧ 𝑥 𝑡 = 𝐶 ׬ + 𝑒௔௦ 𝑏 𝑠  𝑑𝑠
௧
଴ , or

𝑥 𝑡 = 𝑒ି௔௧[𝐶 ׬ + 𝑒௔௦ 𝑏 𝑠  𝑑𝑠
௧
଴ ] -- ׬ 𝑓 𝑠  𝑑𝑠

௧
଴ is the indefinite 

integral of 𝑓ሺ𝑠ሻ evaluated on (0, 𝑡)

• Proposition 

The general solution of the differential equation 

𝑥ᇱ 𝑡 ൅ 𝑎 𝑥 𝑡 ൌ 𝑏ሺ𝑡ሻ ∀𝑡,  
where a is a constant and b is a continuous function, is given by 

𝑥 𝑡 = 𝑒ି௔௧ [𝐶 ׬ + 𝑒௔௦ 𝑏 𝑠  𝑑𝑠
௧
଴ ] ∀𝑡.

14.2 Linear first-order ODE: Case I - a(t) = a
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• Special Case: 𝑏 𝑠 ൌ 𝑏
The differential equation is 𝑥ᇱ 𝑡 ൅ 𝑎 𝑥 𝑡 ൌ 𝑏
Solution:

𝑥 𝑡 = 𝑒ି௔௧ [𝐶 + ∫t 𝑒௔௦ 𝑏 𝑑𝑠] = 𝑒ି௔௧ [𝐶 + 𝑏 ∫t 𝑒௔௦ 𝑑𝑠] 
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Note: If  𝑥 𝑡 ൌ 0 = 𝑥0, ⇒ 𝑥0 = C 

Stability: If  𝑎 > 0 ⇒ 𝑥 𝑡 is stable (and 𝑥∞ = 𝑏/𝑎)

If  𝑎 < 0 ⇒ 𝑥 𝑡 is unstable

14.2 Linear first-order ODE: Case I - a(t) = a

• A phase diagram graphs the first-order ODE. That is, plots 𝑥ᇱ 𝑡
and 𝑥 𝑡 .

Example: 𝑥ᇱ 𝑡 ൌ െ𝑎 𝑥 𝑡 ൅ 𝑏

𝑎 > 0 𝑎 < 0

𝑥 𝑡 𝑥 𝑡

𝑥ᇱ 𝑡𝑥ᇱ 𝑡

x∞=b/a x∞=b/a

14.2 Linear first-order ODE: Phase Diagram

14
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• Solution: 𝑥 𝑡 = 𝐶∗ 𝑒ି௔௧ + 
௕

௔

Example: 𝑢′ 𝑡 ൅ 0.5 𝑢 𝑡 ൌ 2 .
Solution:

𝑢 𝑡 = 𝐶∗ 𝑒ି଴.ହ + 4 (Solution is stable ⇒ a=0.5>0)

Steady state: 𝑢∞ = 𝑏/𝑎 = 2/0.5 = 4
If 𝑢(0) = 20 ⇒ 𝐶∗ = 16, ⇒ Definite solution: 𝑢 𝑡 = 16 e-.5t 

-+ 4. 

Example: 𝑣′ 𝑡 ൅ 0.5 𝑣 𝑡 ൌ 2.
Solution:

𝑣 𝑡 = 𝐶∗ 𝑒ଶ௧ + 2 (Solution is unstable ⇒ 𝑎 =-2<0)

Steady state: v∞ = 𝑏/𝑎 = -4/-2 = 2
If 𝑣(0) = 3 ⇒ 𝐶∗ = 1, ⇒ Definite solution: 𝑣 𝑡 = 1 𝑒ଶ௧ + 2. 

14.2 Linear first-order ODE: Examples

15

16

Figure 14.1 Phase Diagrams for Equations 
(14.6) and (14.7)
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• Let p be the price of a good.

• Total demand: 𝐷ሺ𝑝ሻ = 𝑐 − 𝑑 𝑝
• Total supply: 𝑆ሺ𝑝ሻ = α + β 𝑝, 

• 𝑐, 𝑑, α, and β are positive constants. 

• Price dynamics: 𝑝ᇱ 𝑡 =  [𝐷ሺ𝑝ሻ − 𝑆ሺ𝑝ሻ], with  > 0. 

• Replacing supply and demand: 

𝑝ᇱ 𝑡 +  (𝑑 ൅ β) 𝑝 𝑡 =  (𝑐 − α)     (a 1st-order linear ODE)

• Solution: 𝑥 𝑡 = 𝐶∗ 𝑒ି௔௧ + 
௕

௔

𝑝 𝑡 = 𝐶∗ 𝑒ିሺௗାஒሻ௧ + (𝑐 − α)/(𝑑 ൅ β). 

𝑝∞= 
௕

௔
= (𝑐 − α)/(𝑑 ൅ β), 

Given 𝑎 ൌ  (𝑑 ൅ β) > 0, this equilibrium is globally stable. 

14.2 Linear first-order ODE: Price Dynamics

17

• Case II. 𝑎ሺ𝑡ሻ ≠ 𝑎 (𝑎 is a function!)
- Then, 𝑥ᇱ 𝑡 ൅ 𝑎 𝑡  𝑥 𝑡 ൌ 𝑏ሺ𝑡ሻ ∀𝑡. 
- Recall we need to recreate f (t)x(t) to apply product rule:
- We need 𝑓ሺ𝑡ሻ = 𝑔ሺ𝑡ሻ and 𝑓ᇱ 𝑡 = 𝑎ሺ𝑡ሻ 𝑔ሺ𝑡ሻ ∀𝑡:

- Try: 𝑔ሺ𝑡ሻ = 𝑒׬ ௔ ௦ ௗ௦
೟
బ (the derivative of ׬ 𝑎 𝑠 𝑑𝑠 ൌ 𝑎ሺ𝑡ሻ

௧
଴ ).

- Multiplying the ODE equation by g(t):

𝑒׬ ௔ ௦ ௗ௦
೟
బ  𝑥ᇱ 𝑡 ൅ 𝑎 𝑡  𝑒׬ ௔ ௦ ௗ௦

೟
బ  𝑥 𝑡 ൌ 𝑒׬ ௔ ௦ ௗ௦

೟
బ  𝑏ሺ𝑡ሻ

⇒ ௗ

ௗ௧
𝑒׬ ௔ ௦ ௗ௦

೟
బ  𝑥 𝑡 ൌ  𝑒׬ ௔ ௦ ௗ௦

೟
బ 𝑏ሺ𝑡ሻ.

⇒ 𝑒׬ ௔ ௦ ௗ௦
೟
బ  𝑥 𝑡 ൌ 𝐶 ൅ ׬ 𝑒׬ ௔ ௦ ௗ௦

೟
బ  𝑏 𝑢 𝑑𝑢

௧
଴

⇒ 𝑥 𝑡 ൌ 𝑒ି ׬ ௔ ௦ ௗ௦
೟
బ  ሾ𝐶 ൅ ׬ 𝑒׬ ௔ ௦ ௗ௦

೟
బ  𝑏 𝑢 𝑑𝑢ሿ

௧
଴

18

14.2 Linear first-order ODE: Case II - a(t) ് a
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• Solution: 𝑥 𝑡 ൌ 𝑒ି ׬ ௔ ௦ ௗ௦
೟
బ ሾ𝐶 ൅ ׬ 𝑒׬ ௔ ௦ ௗ௦

೟
బ 𝑏 𝑢 𝑑𝑢ሿ

௧
଴

Example: 𝑥ᇱ 𝑡 ൅ ଵ

௧
𝑥 𝑡 ൌ  𝑒௧

Note: 𝑎 𝑡 ൌ ଵ

௧
׬ ⇒

ଵ

௦
𝑑𝑠 ൌ lnሺ𝑡ሻ

௧
଴ ⇒ 𝑒׬

భ
ೞ

 ௗ௦
೟
బ ൌ 𝑡.

Solution:   

𝑥 𝑡 = (1/t)(𝐶 ׬ + 𝑢 𝑒௨ 𝑑𝑢
௧
଴ ) 

= (1/t)(𝐶 + 𝑡 𝑒௧ ׬ − 𝑒௨ 𝑑𝑢
௧
଴ ) (use integration by parts.)

= (1/t)(𝐶 + 𝑡 𝑒௧ − 𝑒௧) = 𝐶/𝑡 + 𝑒௧ − 𝑒௧/𝑡.

We can check that this solution is correct by differentiating: 

x'(t) + x(t)/t = [−𝐶/t2 + 𝑒௧ − 𝑒௧/𝑡 + 𝑒௧/t2 ] + 𝐶/t2 + 𝑒௧/𝑡 − et/t2 = 𝑒௧

As usual, an initial condition determines the value of C. 

14.2 Linear first-order ODE: Case II - Example

19

20

• Suppose, we have the following form: 

x"(t) + ax'(t) + bx(t) = f (t) (a and b are constants) 

• Let x1 be a solution of the equation. For any other solution of this 
equation x, define z = x − x1. 

• Then z is a solution of the homogeneous equation:

x"(t) + ax'(t) + bx(t) = 0.

 z"(t) + az'(t) + bz(t) = [x"(t) + ax'(t) + bx(t)] − [x1"(t) + ax1'(t)
+ bx1(t)] = f (t) − f (t) = 0. 

• Further, for every solution z of the homogeneous equation, x1 + z
is clearly a solution of original equation. 

• That is,  the set of all solutions of the original equation may be 
found by finding one solution of this equation and adding to it the 
general solution of the homogeneous equation. 

14.2 Linear ODE: Analytic Solution Revisited 



RS - Lec 14 - ODE

(c) 2022. Not be shared/posted without written authorization from authot 11

• Thus, we can follow the same strategy used for difference equations 
to generate an analytic general solution

• Steps:
1) Solve homogeneous equation (constant term is equal to zero.)
2) Find a particular solution, for example x∞.
3) Add homogenous solution to particular solution

Example: 𝑥ᇱ 𝑡 ൅ 2 𝑥 𝑡 ൌ 8.

Step 1: Guess a solution to homogeneous equation:   𝑥 𝑡 =𝐶 𝑒ିଶ௧

Step 2: Find a particular solution, say 𝑥∞ = 
଼

ଶ
ൌ 4

Step 3: Add both solutions: 𝑥 𝑡 =𝐶 𝑒ିଶ௧ ൅ 8

14.2 Linear ODE: Analytic Solution Revisited 

21

22

14.3 Non-linear ODE: Back to Population Model

• The population model presented before was very simple. Let’s 
complicate the model: 
1. If the population is small, growth is proportional to size.
2. If the population is too large for its environment to support, it will 
decrease.
Now, we have quantities: t = time, P = population, k = growth-rate 
coefficient for small populations, N = “carrying capacity.”

• Let’s restate 1. and 2. in terms of derivatives:
1. dP/dt is approximately kP when P is “small.”
2. dP/dt is negative when P > N.

• Logistic Model (Pierre-François Verhulst):
dP

dt
 k 1 

P

N







P

Pierre François Verhulst (1804 – 1849, Belgium)
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• Let’s divide both sides of the equation by N:

• Let x(t) = P/N ⇒ x'(t) = k[1 − x(t)] x(t) = k x(t) − k x(t)2

• The logistic equation can be integrated and has a solution (the logistic 
function).

Solution:

where C = 1/P(0) − 1/N, with P(0) = initial condition.

Note: Analytic solutions to non-linear ODEs are rare.

N

P

N

P
k

N

P

dt

d






  1

.)(lim;
1

)( NtP
CNe

N
tP tkt




 

14.3 Non-linear ODE: Back to Population Model

14.4 Second-order Differential Equations

• A second-order ordinary differential equation is a differential 
equation of the form:

Gሺ𝑡, 𝑥 𝑡 ,  𝑥ᇱ 𝑡 , 𝑥ᇱᇱ 𝑡 ሻ ൌ 0 ∀ 𝑡,
involving only 𝑡, 𝑥 𝑡 , and the first and second derivatives of 𝑥. 

• We can write such an equation in the form: 

𝑥ᇱᇱ 𝑡 = 𝐹 𝑡, 𝑥 𝑡 , 𝑥ᇱ 𝑡

• Note that equations of the form 𝑥ᇱᇱ 𝑡 = 𝐹 𝑡, 𝑥 𝑡 , 𝑥ᇱ 𝑡 can be 
reduced to a first-order equation by making the substitution: 

𝑧 𝑡 = 𝑥ᇱ 𝑡 .

24
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• The function ρ(w) = −wu"(w)/u'(w) is the Arrow-Pratt measure of relative 
risk aversion, where u(w) is the utility function for wealth w.

• Question: What u(w) has a degree of risk-aversion that is independent 
of the level of wealth? Or, for what u do we have 

a = −wu"(w)/u'(w) for all w? 

This is a 2nd-order ODE in which the term u(w) does not appear. (The 
variable is w, rather than t.)  It can be solved by 1st-order methods.

• Let z(w) = u'(w)  a = −wz'(w)/z(w) (a 1st-order ODE)

 az(w) = −wz'(w) (a separable equation)

 a·z = −w dz/dw. 

 a·dw/w = −dz/z. 

14.4 2nd Order ODE: Risk Aversion Application

25

14.4 Second Order Differential Equations: Risk 
Aversion Application

 a·dw/w = −dz/dz. 

• Solution: a·ln w = −ln z(w) + C, or 

z(w) = C* w-a (C*=exp(C)) 

• Now, z(w) = u'(w), so to get u we need to integrate: 

 u(w) = C* ln w + B if a = 1

= C* w1−a/(1 − a) + B if a ≠ 1

• That is, a utility function with a constant degree of relative risk-aversion 

(CRRA) equal to a takes this form.

26
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14.4 Linear 2nd-order ODE with constant 
coefficients: Finding a Solution

• Based on the solutions for first-order ODE, we guess that the 
homogeneous equation has a solution of the form x(t) = Aert. 

• Check: x(t) = Aert

x'(t) = rAert

x"(t) = r2Aert,

 x"(t) + ax'(t) + bx(t) = r2Aert + arAert + bAert = 0

 Aert (r2 + ar + b) = 0.

• For x(t) to be a solution of the equation we need r2 + ar + b = 0.

• This equation is the characteristic equation of the ODE.

• Similar to second-order difference equations, we have 3 cases:
- If a2 > 4b ⇒ 2 distinct real roots

- If a2 = 4b ⇒ 1 real root

- If a2 < 4b ⇒ 2 distinct complex roots.

28

14.4 Linear 2nd-order ODE with constant 
coefficients: Finding a Solution

• Case 1: If a2 > 4b  Two distinct real roots: r and s.

 x1(t) = Aert &  x2(t) = Best, for any values of A and B, are solutions. 

 also x(t) = Aert + Best is a solution. (It can be shown that every
solution of the equation takes this form.) 

• Case 2: If a2 = 4b  One single real root: r 

 (A + Bt)ert is a solution (r = −(1/2)a is the root). 

• Case 3: If a2 < 4b  Two complex roots: rj= α±i β j=1,2. 

 x1(t) = e(α+iβ)t and x2(t) = e(α-iβ)t (α=−a/2, β=√(b−a2)/4)

Use Euler’s formula to eliminate complex numbers: eiθ= cos(θ) + i sin(θ). 
Adding both solutions and after some algebra:

 x(t) = A e(α+iβ)t + B e(α-iβ)t = A eαt cos(βt) + B eαt sin(βt). 
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14.4 Linear second-order equations with constant 
coefficients: Finding a Solution

Example 1: x"(t) + x'(t) − 2x(t) = 0. (a2 > 4b = 1 > 4*(-2)=8) 
Characteristic equation: r2 + r − 2 = 0  roots are 1 and −2. 

Solution: x(t) = Aet + Be−2t.

Example 2: x"(t) + 6x'(t) + 9x(t) = 0. (a2 = 4b = 62 = 4*9 
Characteristic equation: r2 + 6r + 9 = 0  unique root is −3. 

Solution: x(t) = (A + Bt)e−3t.

Example 3: x"(t) + 2x'(t) + 17x(t) = 0. (a2 < 4b = 4<4*(17)=68) 
Characteristic equation: r2 + 2r  + 17 = 0  roots are complex 

with α = −a/2 = -1 and   β = √(b − a2/4) = 4.

Solution: [A cos(4t) + B sin(4t)]e−t.

30

14.4 Linear second-order equations with constant 
coefficients: Stability

• Consider the homogeneous equation x"(t) + ax'(t) + bx(t) = 0. 

If b ≠ 0, there is a single equilibrium, namely 0 –i.e., the only 
constant function that is a solution is equal to 0 for all t. 

• 3 cases:

- Characteristic equation with two real roots: r and s.
Solution: x(t) = Aert + Best  equilibrium is stable iff r < 0 and s < 0.

- Characteristic equation with one single real root: r

Solution: (A + Bt)ert  equilibrium is stable iff r < 0.

- Characteristic equation with  complex roots 

Solution: (A cos(βt) + B sin(βt))eαt, where α = −a/2, the real part of 
each root.  equilibrium is stable iff α<0 (or a>0). 
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14.4 Linear second-order equations with constant 
coefficients: Stability

• The real part of a real root is simply the root. We can combine the 
three cases: 

The equilibrium is stable if and only if the real parts of both roots 
of the characteristic equation are negative. A bit of algebra shows that 
this condition is equivalent to a > 0 and b > 0. 

• Proposition 

An equilibrium of the homogeneous linear second-order differential 
equation x"(t) + ax'(t) + bx(t) = 0 is stable if and only if the real parts of 
both roots of the characteristic equation r2 + ar + b = 0 are negative, or, 
equivalently, if and only if a > 0 and b > 0. 

32

• Stability of a macroeconomic model. 

• Let Q be aggregate supply, p be the price level, and π be the expected 
rate of inflation. 

• Q(t) = a − bp + cπ,  where a > 0, b > 0, and c > 0. 

– Let be Q* the long-run sustainable level of output. 

– Assume that prices adjust according to the equation: 

p'(t) = h(Q(t) − Q*) + π(t), where h > 0. 

– Finally, suppose that expectations are adaptive: 

π'(t) = k(p'(t) − π(t)) for some k > 0. 

Question: Is this system stable? 

14.4 Linear second-order equations with 
constant coefficients: Example
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Question: Is this system stable? 

– Reduce the system to a second-order ODE:

1) Differentiate equation for p'(t)  get  p"(t) 

2) Substitute in for π'(t) and π(t). 

– We obtain: p"(t) − h(kc − b) p'(t) + khb p(t) = kh(a − Q*)

 System is stable iff kc < b. (khb > 0 as required.) 

Note: 

If c = 0 −i.e., expectations are ignored−   system is stable. 

If c ≠ 0 and k is large −inflation expectations respond rapidly to 
changes in the rate of inflation−  system may be unstable. 

14.4 Linear second-order equations with 
constant coefficients: Example

34

14.5 System of Equations: 1st-Order Linear ODE 
- Substitution
• Consider the 2x2 system of  linear homogeneous differential 
equations (with constant coefficients) 

x'(t) = ax(t) + by(t)
y'(t) = cx(t) + dy(t) 

• We can solve this system using what we know:
1. Isolate y(t) in the first equation  y(t) = x'(t)/b − ax(t)/b.
2. Differentiate this y(t) equation  y'(t) = x"(t)/b − ax'(t)/b.
3. Substitute for y(t) and y'(t) in the second equations in our system:

x"(t)/b − ax'(t)/b = cx(t) + d[x'(t)/b − ax(t)/b], 
 x"(t) − (a + d)x'(t) + (ad − bc)x(t) = 0.

This is a linear second-order ODE in x(t). We know how to solve it. 
4. Go back to step 1. Solve for y(t) in terms of  x'(t) and x(t). 
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• Example:
x'(t) = 2x(t) + y(t)
y'(t) = −4x(t) − 3y(t).

1. Isolate y(t) in the first equation:  y(t) = x'(t) − 2x(t).

2. Differentiate in 1.  y'(t) = x"(t) − 2x'(t). 

3. Substitute these expressions into the second equation:  
x"(t) − 2x'(t) = −4x(t) − 3x'(t) + 6x(t), or 
x"(t) + x'(t) − 2x(t) = 0. 

Solution:
x(t) = Aet + Be−2t. 

4. Using the expression y(t) = x'(t) − 2x(t) we get 
y(t) = Aet − 2Be−2t − 2Aet − 2Be−2t = −Aet − 4Be−2t.

14.5 System of Equations: 1st-Order Linear ODE 
- Substitution
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14.5 System of Equations: 1st-Order Linear ODE 
- Diagonalization
• Consider the 2x2 system of  linear differential equations (with 
constant coefficients) 

x'(t) = ax(t) + by(t) + m
y'(t) = cx(t) + dy(t) + n

• Let’s rewrite the system using linear algebra:
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• Diagonalize the system (A must have independent eigenvectors): 
H-1 z’(t) = H-1 A (H H-1) z(t) + H-1 κ
H-1 A H = Λ
H-1 z(t) = u(t) and H-1 κ = s
u’(t) = Λ u(t) + s  u’1(t) =  u1(t) + s1

u’2(t) =  u2(t) + s2
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14.5 System of Equations: First-Order Linear 
Differential Equations - Diagonalization

• Now, we have u’(t) = Λ u(t) + s
 u’1(t) =  u1(t) + s1

u’2(t) =  u2(t) + s2

• Solution:
u1(t) = e-t [u1(0) − s1/] + s1/
u2(t) = e-t [u2(0) − s2 /] + s2/
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14.5 System of Equations: First-Order Linear 
Differential Equations – General Approach

• We start with an nxn system z’(t) = A z(t) + b(t). 
• First, we solve the homogenous system:

Theorem: Let z’ = Az be a homogeneous linear first-order system. If  
z = veλt is a solution to this system (where v = [v1, v2, ..., vn]), then λ is 
an eigenvalue of  A and v is the corresponding eigenvector.

Proof: Start with z = veλt  z’ = λ veλt

Substitute for z and z’ in z’ = Az,  λ veλt = Aveλt

Divide eλt both sides  λ v = Av or  (A − λ I)v = 0.

Thus, for a non-trivial solution, it must be that |A − λI| = 0, which is 
the characteristic equation of  matrix A. Thus, λ is an eigenvalue of  A
and v is its associated eigenvector. ■
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14.5 System of Equations: First-Order Linear 
Differential Equations – General Approach

• A has n eigenvalues, λ1, .., λ n and n eigenvectors, v1, v2, .., vn
 each term          is a solution to  z’ = Az. 

• Any linear combination of  these terms are also solutions to z’ = Az.
Thus, the general solution to the homogeneous system z’ = Az is:

where c1, .., cn are arbitrary, possibly complex, constants. 

• If  the eigenvalues are not distinct, things get a bit complicated but 
nonetheless, as repeated roots are not robust, or "structurally unstable" 
−i.e., do not survive small changes in the coefficients of  A−, then 
these can be generally ignored for practical purposes. 
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14.5 System of Equations: First-Order Linear 
Differential Equations – General Approach

Example: x'(t) = x(t) + 2 y(t)
y'(t) = 3 x(t) + 2 y(t) x(0) = 0, y(0) = -4

• Rewrite system:


















 

 3

2

1

1 4
211

ttni

i

t
ii ececec(t) iv z

)(
)(

)(

23

21

)('

)('
)(' tAz

ty

tx

ty

tx
tz 



























• Eigenvalue equation:  2 − 3 − 4 = 0  
• Find Eigenvectors: = -1  v1 = (v1,1 v1,2) v1,1 = -v1,2

Let v1,2 = 1  v1 = (-1, 1)
= 4  v2 = (v2,1 v2,2) v2,1= (2/3) v2,2

Let v2,2 = 3  v2 = (2, 3)
• Solution:
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14.5 System of Equations: First-Order Linear 
Differential Equations – General Approach
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• Find constants:

 2x2 system: c1 = −(8/5);   c2 = −(4/5)

• Definite solution:
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14.5 System of Equations: First-Order Linear 
Differential Equations – Phase Plane

• In the single ODE we sketch the solution, x(t), in the x-t plane. This 
will be difficult in this case since our solutions are actually vectors. 

• Think of  the solutions as points in the x-y plane. Plot the points. The 
steady state corresponds to (x∞, y∞). The x-y plane is called the phase plane.

• Phase diagrams are particularly useful for non-linear systems, where 
analytic solution may not possible. Phase diagrams provides qualitative 
information about the solution paths of  nonlinear systems.

• For the linear case, plot points in the x-y plane when z’(t) = 0.
Trajectories of  z(t) are easy to deduce from the parameters a, b, c, and d.

• For the non-linear case, we need to be more creative.
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• First, we start with the non-linear system:
x'(t) = f(x(t), y(t))
y'(t) = g(x(t), y(t))

• Second, we establish the slopes of  the singular curves by totally 
differentiating the singular curves:

x y

x y

x x

x 0 y 0y y

f (x, y)dx f (x, y)dy 0

g (x, y)dx g (x, y)dy 0

y f y g
0 say 0 say

x f x g 

 

 

 
     

  

14.5 System of  Equations: First-Order Linear 
Differential Equations – Phase Plane

44

y(t)

x(t)x∞

y∞

• Now, establish the directions of  motion.  Suppose that 

14.5 System of  Equations: First-Order Linear 
Differential Equations – Phase Plane

x'(t) = 0 

y'(t) = 0 

x'(t) = fx < 0 
y'(t) = gy < 0 
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y

x

y

x

y

x

y*

x*

y'(t) = 0 

y'(t) = 0 

x'(t) = 0 

x'(t) = 0 
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Saddlepath y

x

Focus y

x

y'(t) = 0 

y'(t) = 0 

x'(t) = 0 

x'(t) = 0 
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Limit Cycle
y

x

x'(t) = 0 

y'(t) = 0 
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14.5 System of Equations: First-Order Linear 
Differential Equations – Phase Plane

• Example: 
x'(t) = x(t) + 2 y(t)
y'(t) = 3 x(t) + 2 y(t) x(0) = 0, y(0) = -4 ( = (-1, 4))

Plot some points in the x-y plane: (-2, 4); (1, 0); (2, -2); (-3, -1)
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14.5 System of Equations: First-Order Linear 
Differential Equations – Phase Plane

• Plot the trajectories of  the solutions in black and blue. In blue, the 
lines that follow the direction of  the eigenvectors:

• With the exception of  two trajectories, the trajectories in red move 
away from the equilibrium solution (0, 0). 
• These equilibrium points are called saddle point, which is unstable.

50

14.5 System of Equations: First-Order Linear 
Differential Equations – Stability

• The general solution of  the homogeneous equation:

• The stability depends on the eigenvalues. Recall eigenvalue equation:
2 − tr(A) + |A| = 0

• Three cases:
• 1. [tr(A)]2 > 4|A|  2 real distinct roots

- signs of   1)  if  tr(A)<0,|A|>0
2)  if  tr(A)>0,|A|>0
3) i j if  |A|<0

• Under Situation 1 ( the system is globally stable. 
There is convergence towards (x∞, y∞), which is called a tangent node.
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14.5 System of Equations: First-Order Linear 
Differential Equations – Stability

• Example: x'(t) = -5(t) + 1 y(t)
y'(t) = 4 x(t) − 2 y(t) x(0)=1, y(0)=2

Eigenvalue equation:  2 − 7 + 6 = 0   
Eigenvectors:

= -6  v1 = (v1,1 v1,2) v1,1 = -v1,2

Let v1,2 = 1  v1 = (1, -1)
= −1  v2 = (v2,1 v2,2) v2,1 = (1/4)v2,2

Let v2,2 = 4  v2 = (1, 4)

51

14.5 System of Equations: First-Order Linear 
Differential Equations – Stability

• Under Situation 2 (), the system is globally unstable. 
There is no convergence towards (x∞, y∞). A shock will move the 
system away from the tangent node, unless we are lucky and the system 
jumps to the new tangent node.

• Under Situation 3 (i j), the system is saddle path unstable. 
We need Ci = 0 when i .

52



RS - Lec 14 - ODE

(c) 2022. Not be shared/posted without written authorization from authot 27

y(t)

x(t)

14.5 System of  Equations: First-Order Linear 
Differential Equations – Stability - Application
• In economics, it is common to assume that the economy is stable. If  a 
model determines an equilibrium with a saddle path, the saddle path 
trajectory is assumed. If  the equilibrium is perturbed, the economy 
jumps to the new saddle path.

y0,∞

y1,∞

• This model displays 
“overshooting” in y(t).
The economy jumps 
from y0,∞ to yJ

immediately, then it 
converges to y1,∞.

yJ
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𝑦ሶ ൌ 0

𝑦ሶଵ ൌ 0

𝑥ሶ ൌ 0

14.5 System of Equations: First-Order Linear 
Differential Equations – Stability

• 2. [tr(A)]2 = 4|A|  1 real root, equal to = tr(A)/2 = (a+d)/2
System  cannot be diagonalized (eigenvectors are the same!).

x(t) = C1 eλt + C2 t eλt +x∞
y(t) = [(- a)/b (C1 + C2 t ) + C2/b]eλt + y∞

The stability of  the system depends on . If  <0, the system is 
globally stable.
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14.5 System of Equations: First-Order Linear 
Differential Equations – Stability

• 3. [tr(A)]2 > 4|A|  2 complex roots ri = λ ± iμ
Two solutions:
Similar to what we did for second-order DE, we can use Euler’s 
formula to transform the eiλt part and eliminate the complex part:

eiθ =  cos(θ) + i sin(θ).

Example: x'(t) = 3x(t) − 9 y(t)
y'(t) = 4 x(t) − 3 y(t) x(0) = 2, y(0) = −4

Eigenvalue equation:  2 + 27= 0  33i, -33i
Eigenvectors: = 33i  v1,2 = 1/3(1 − 3i)v1,1

Let v1,1 = 3  v1 = (1, (1 − 3i))
= −1  v2 = (v2,1, v2,2) v2,1= (1/4)v2,2

Let v2,2 = 4  v2 = (1, 4)
The solution from the first eigenvalue = 33i: z1(t) = v1 e33it

14.5 System of Equations: First-Order Linear 
Differential Equations – Stability

• Using Euler’s formula:
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• It can be shown that both u(t) and v(t) are independent solutions. We 
can use them to get a general solution to the homogeneous system:

z(t) = c1u(t) + c2v(t)
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14.5 System of Equations: First-Order Difference 
Equations - Example
• Now, we have a system

x'(t) = 4 x(t) + 5 y(t) + 2
y'(t) = 5 x(t) + 4 y(t) + 4

• Let’s rewrite the system using linear algebra.
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• Eigenvalue equation:  2 - 8  - 9 = 0  
u’1(t) = 9 u1(t) + s1 (unstable equation)
u’2(t) = -1 u2(t) + s2 (stable equation)

• Solution:
u1(t) = e9t [u1(0) − s1/9] + s1/9
u2(t) = e-t [u2(0) − s2 /(-1)] + s2 /(-1) 57

14.5 System of Equations: First-Order Difference 
Equations - Example

• Use the eigenvector matrix, H, to transform the system:
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• We need [x(0), y(0)] = (x0, y0) to obtain u1(0) and u2(0).
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14.6 Analytical Solutions

• A function y is called a solution in the extended sense of  the differential 
equation y'(t) = f(t,y) with y(t0) = y0 if  y is absolutely continuous, y
satisfies the differential equation a. e. and y satisfies the initial condition.

• Theorem: Carathéodory's existence theorem
Consider the differential equation y'(t) = f(t, y), y(t0) = y0, 
with f(t, y) defined on the rectangular domain  

R = {(t, y)| |t − t0|≤ a, |f(t, y)|≤ m(t)}

If  the function f(t,y) satisfies the following three conditions:
- f(t, y) is continuous in y for each fixed t, 
- f(t, y) is measurable in t for each fixed  y, 
- there is an L-integrable function m(t), |t − t0|≤ a, such that 

|f(t,y)|≤ m(t) for all (t, y) ∈ R, 

then, the differential equation has a solution in the extended sense in a 
neighborhood of  the initial condition.

• The Carathéodory's existence theorem states than an ODE has a 
solution, under some mild conditions.

• It is a generalization of  the Peano’s existence theorem, which requires the 
right hand side of  the first-order ODE to be continuous. Peano’s
theorem also applies to higher dimensions, when the domain of  f(.) is 
an open subset of  RxRn.

• These theorems are general, imposing mild restrictions on f(.). The 
Picard–Lindelöf theorem (or Cauchy–Lipschitz theorem) establishes 
conditions for the existence of  a uniqueness of  solutions to first-order 
equations with given initial conditions. Under this theorem, f(.) is 
Lipschitz continuous (with bounded derivatives) in y and continuous in 
t.
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• As the previous theorems show, under mild conditions, an ODE has a 
solution, though it may not be easy to find it. For these cases, we have 
to satisfy ourselves with an approximation to the solution.

• Numerical ordinary differential equations is the part of  numerical analysis 
which studies the numerical solution of  ODE. This field is also known 
under the name numerical integration, but some people reserve this term 
for the computation of  integrals.

• There are several algorithms to compute an approximate solution to 
an ODE. 

• A simple method is to use techniques from calculus to obtain a series 
expansion of  the solution. An example is the Taylor Series Method.

61

14.6 Numerical Solutions

• We focus on solving a first degree ODE, with a boundary condition. 
That is, we will be given an ODE with the derivative a function of  the 
dependent and independent variable and an initial condition (point):

• The solution y(x) can be pictured graphically. The point (x0,y0) must 
be on the graph. The function y(x) would also satisfy the differential 
equation if  you plugged y(x) in for y:

00 )(),( yxyandyxf
dx

dy


y0

x0

(x0,y0)

y(x)

))(,()(' xyxfxy 

initial point

• Now, given x1, we want to find y1. 

Problem: y1 can only be estimated. 
x1
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• Simple (Euler’s) idea: follow the tangent! That is, use the usual discrete 
estimation of  the slope to approximate y1 (a 1st-order Taylor 
expansion):

• Depending on the curvature of  f(.) and how far x1 is from x0 , this 
approximation may not work well. We can do better.

y0

x0

(x0,y0)

y(x)

initial point
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14.6 Numerical Solutions
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• The Taylor series method is a simple adaptation of  classic calculus to 
develop the solution as an infinite series.  The method is not strictly a 
numerical method but it is used in conjunction with numerical schemes.

• Problem: Computers usually cannot be programmed to construct the 
terms and the order of  the expansion is a priori unknown.

• From the Taylor series expansion:

The step size is defined as:

• Using the ODE to get all the derivatives and the initial conditions, a 
solution to the ODE can be approximated. 
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• There are two errors in numerical methods: truncation error 
(practitioner related, from the discretization process) and rounding 
error (computer related). 

• The truncation error is estimated using the remainder in Taylor’s 
theorem. For example, if  we decide to truncate at n, then:

• This error is a local error, it occurs at each point. The accumulation of  
local errors is the global error, more difficult to compute.

  hy
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14.6 Numerical Solutions: Taylor Series Method
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Example: ODE y’(x) = x + y x = 0,  y0 = 1,

Analytical solution: y(x) = 2 ex – x – 1

• We are interested in y(1) (exact solution: 2*exp(1) – 1 – 1 = 3.43656)

Let’s try to approximate y(x) using a Taylor series expansion.

- First, we need the jth-order derivatives for j=1, 2, 3, ...
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- Second, replace in the Taylor series expansion

Note: The Taylor series is a function of  x0 and Δh. Plug in the initial 
conditions (n=4):

Resulting in the equation:

• Then, 

y(1) =  1 + 1 + 12 + 13/3 + 14/12 = 3.41667 (< 3.43656)
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14.6 Numerical Solutions: Taylor Series Method

⋯

• The results (x=0)
Second Third Fourth Exact 

h y(h ) y(h ) y(h ) Solution
0 1.00000 1.00000 1.00000 1.00000

0.1 1.11000 1.11033 1.11034 1.11034
0.2 1.24000 1.24267 1.24280 1.24281
0.3 1.39000 1.39900 1.39968 1.39972
0.4 1.56000 1.58133 1.58347 1.58365
0.5 1.75000 1.79167 1.79688 1.79744
0.6 1.96000 2.03200 2.04280 2.04424
0.7 2.19000 2.30433 2.32434 2.32751
0.8 2.44000 2.61067 2.64480 2.65108
0.9 2.71000 2.95300 3.00768 3.01921
1 3.00000 3.33333 3.41667 3.43656

1.1 3.31000 3.75367 3.87568 3.90833
1.2 3.64000 4.21600 4.38880 4.44023
1.3 3.99000 4.72233 4.96034 5.03859
1.4 4.36000 5.27467 5.59480 5.71040
1.5 4.75000 5.87500 6.29688 6.46338
1.6 5.16000 6.52533 7.07147 7.30606
1.7 5.59000 7.22767 7.92368 8.24789
1.8 6.04000 7.98400 8.85880 9.29929
1.9 6.51000 8.79633 9.88234 10.47179
2 7.00000 9.66667 11.00000 11.77811
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Taylor Series Example
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Note that the last set of  terms, 
we start to lose accuracy for 
the 4th order with big h:

Difficult to estimate. All we 
know is that it is in the range 
of  0 < < h.

Taylor Series Example
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14.6 Numerical Solutions: Taylor Series Method
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• Numerical analysis is an art.  The number of  terms, we chose is a 
mater of  judgment and experience.

• We usually truncate the Taylor series, when the contribution of  the 
last term is negligible to the number of  decimal places to which we 
are working.

• Things can get complicated for higher-order ODE.

• Example: y’’(x) = 3 + x – y2, y(0) = 1, y’(0) = −2
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• The higher order terms can be calculated from previous values and 
they are difficult to calculate. Euler method can be used in these cases.

14.6 Numerical Solutions: Taylor Series Method
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• One feature of  the Taylor series method is that the error is small 
when Δh is small and only a few terms are need for good accuracy. 

• The Euler method may be thought of  an extreme of  the idea for a 
Taylor series having a small error when Δh is extremely small.  The 
Euler method is a 1st-order Taylor series with each step having an 
upgrade of  the derivative and y term changed:

14.6 Numerical Solutions: Euler Method
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• The Euler method’s algorithm upgrades the coefficients in each 
time step:
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Straight line approximation

14.6 Numerical Solutions: Euler Method

• The first derivative and the initial y values are updated for each 
iteration.
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• Consider: y’(x) = x + y

The initial condition is: y(0) = 1

The step size is: Δh = .02

The analytical solution is: y(x) = 2 ex − x – 1

• The algorithm has a loop using the initial conditions (x= 0; y(0)=1) 
and definition of  the derivative:  yi’(x) = [ yi+1(x) − yi ]/ Δh

Loop:

The derivative is calculated as: yi’(x) = yi + xi

The next y value is calculated: yi+1(x) = yi + Δh yi’(x) 

Take the next step: xi+1 = xi + Δh

14.6 Numerical Solutions: Euler Method

73

14.6 Numerical Solutions: Euler Method

• First iterations: yi’(x) = yi + xi & yi+1(x) = yi + Δh yi’(x) 

- #1: x(1) = 0; y(0) = 1; y’(0) = 1 + 0 = 1 

 y(1) = 1 + 0.02*1 = 1.02 & error = 1.02 – 1.020403 = –.020403

exact solution: y(x=.02) = 2e.02 – .02 – 1 = 1.020403

- #2: x(2) = 0.02;  y(1) = 1.02; y’(1) = 1.02 + .02 = 1.04

 y(2) = 1.02 + 0.02*1.04 = 1.0408 & error = – .00082 

- #3: x(3) = 0.04; y(2) = 1.0408;  y’(2) = 1.0408 + .04 = 1.0808

 y(3) = 1.0408 + 0.02*1.0808 = 1.062416   & error = – .00126 74
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• Code in R and results
dif_sol <- function(N,x0,y0,dh){

Z <- matrix(0, N, 4) 

Z[1,1] <- x0          #initialize x

Z[1,2] <- y0          #initialize y

Z[1,3] <- y0 + x0       #initialize derivative

Z[1,4] <- 2*exp(Z[1,1]) + Z[1, 1] -1 #exact solution

for (i in 2:N) {

Z[i, 1] <- Z[i-1, 1] + dh

Z[i, 2] <- Z[i-1, 2] + dh * Z[i-1, 3]

Z[i, 3] <- Z[i, 1] + Z[i, 2]

Z[i, 4] <- 2*exp(Z[i,1]) - Z[i, 1] - 1 

}

return(Z)

}

14.6 Numerical Solutions: Euler Method

xy <- dif_sol(51,0,1,0.02)
xy

[,1]        [,2]        [,3]         [,4]
[1,] 0.00 1.000000 1.000000 1.000000
[2,] 0.02 1.020000 1.040000 1.020403
[3,] 0.04 1.040800 1.080800 1.041622
[4,] 0.06 1.062416 1.122416 1.063673
[5,] 0.08 1.084864 1.164864 1.086574
[6,] 0.10 1.108162 1.208162 1.110342
[7,] 0.12 1.132325 1.252325 1.134994
[8,] 0.14 1.157371 1.297371 1.160548
[9,] 0.16 1.183319 1.343319 1.187022
[10,] 0.18 1.210185 1.390185 1.214435

[50,] 0.98  3.297624 4.27762 3.348912
[51,] 1.00 3.383176 4.38317 3.436564

y(1) = 3.297624 + .02* (4.27762) = 
3.383176
error(1)= 3.436564 - 3.383176 = 0.053388

75

• Recall exact solution: y(1) = 2*exp(1) – 1 – 1= 3.43656

• With Δh=.02  (N=50)

 y(1) = 3.297624 + .02* (4.27762) = 3.383176

• With Δh=.01 (N=100)

 y(1) = 3.366067  + .02* (4.356067) = 3.409628 

• With Δh=.005 (N=200)

 y(1) = 3.401054   + .02* (4.396054 ) = 3.423034 

Remark:  As h gets smaller, we get a lower error.

14.6 Numerical Solutions: Euler Method
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Euler Example Problem
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• Compare the error at y(0.1) 
with a h=0.02

Error   = 1.1103 - 1.1081
= 0.0022

If  we want the error to be 
smaller than 0.0001

We need to reduce the step size 
by 22 to get the desired error.

22
0001.0

0022.0
 Reduction 

14.6 Numerical Solutions: Euler Method
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• The trouble with this method is 

– Small step size to get good accuracy.

– Numerical unstable for stiff equations –i.e., diff. equations where 
numerical solutions only work well for very small step sizes. 

Example: y’(x) = -2 y, y(0) = 1, & h = 1.

• Euler method only uses the previously computed value yn to 
determine yn+1. This can be generalized to include more past values.  
These methods are called multi-steps.

Note: For the simple Euler method, we use the slope at the beginning 
of the interval  yn’, to determine the increment to the function, but this 
is always wrong.  One way to reduce this error is to evaluate the 
derivative at the midpoint of the interval.

14.6 Numerical Solutions: Euler Method - Notes 
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• We want to calculate the slope, y’i+1, not at beginning of the interval 
(xi, yi), but at midpoint (xi+Δh/2, yi+Δh/2). But, we do not know y’i+Δh/2 at 
that point, since we need (xi+Δh/2, yi+Δh/2) to calculate it. 

• But, we can approximate the value of  at midpoint, yi+Δh/2 , as usual:
yi+Δh/2 = yi + yi’(x) Δh/2. 

• Then, we use this approximation to compute the slope at midpoint. 
Using the previous example,  yi’(x) = yi + xi, we find:

y’i+Δh/2 = yi+Δh/2 + xi+Δh/2 = [ yi + yi’(x) Δh/2] + [xi + Δh/2].

• Finally, we use this approximation to calculate yi+1:
yi+1 = yi + y’i+Δh/2 Δh. 

14.6 Numerical Solutions: Midpoint Method
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• Code in R and results
dif_sol <- function(N,x0,y0,dh){

Z <- matrix(0, N, 4) 

Z[1,1] <- x0          #initialize x

Z[1,2] <- y0          #initialize y

Z[1,3] <- y0 + x0       #initialize derivative

Z[1,4] <- 2*exp(Z[1,1]) + Z[1, 1] -1 #exact solution

for (i in 2:N) {

Z[i, 1] <- Z[i-1, 1] + dh

Z[i, 3] <- (Z[i-1, 3]*dh/2 + Z[i-1, 2]) + (Z[i-1, 1] + dh/2)

Z[i, 2] <- Z[i-1, 2] + dh*Z[i, 3]

Z[i, 4] <- 2*exp(Z[i,1]) - Z[i, 1] -1 

}

return(Z)

}

14.6 Numerical Solutions: Midpoint Method

xy <- dif_sol(51,0,1,0.02)
xy

[,1]        [,2]        [,3]         [,4]
[1,] 0.00 1.000000 1.000000 1.000000
[2,] 0.02 1.020400 1.020000 1.020403
[3,] 0.04 1.041612 1.060600 1.041622
[4,] 0.06 1.063656 1.102218 1.063673
[5,] 0.08 1.086550 1.144679 1.086574
[6,] 0.10 1.110310 1.187997 1.110342
[7,] 0.12 1.134954 1.232190 1.134994
[8,] 0.14 1.160499 1.277276 1.160548
[9,] 0.16 1.186965 1.323272 1.187022
[10,] 0.18 1.214369 1.370197 1.214435

[50,] 0.98 3.348063 4.274276 3.348912
[51,] 1.00 3.435680 4.380806 3.436564

y(1) = 3.348063 + .02* (4.274276) = 
3.435680
error(1)= 3.436564 - 3.435680 = 0.000884 
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• We have presented two simple methods within a simple example. But, 
there  are more advanced methods, which are more complex to derive, 
but are based on the ideas we have introduced. 

• The standard workhorses for solving ODEs is the called the Runge-
Kutta method. This method is simply a higher order approximation to the 
midpoint method. 

• Instead of relying to the midpoint to estimating the derivative, we can 
do better, by using more points in the interval to calculate an average. 

• This is what the (2nd-Order) Runge-Kutta method does: It takes four 
steps (one quarter of the interval, the midpoint, etc.) to estimate the 
derivative.

14.6 Numerical Solutions: Midpoint Methods
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Extra 
Introduction to Stochastic Processes 

and Calculus
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Preliminaries: Sigma-algebra

Definition: A sigma-algebra F is a set of subsets ω of Ω s.t.:

• Φ ∈ F.

• If ω ∈ F, then ωc ∈ F. 

• If ω1, ω2,…, ωn,… ∈ F, then U(I >= 1) ωi ∈ F.

(A σ-algebra is a mathematical model of a state of partial knowledge 
about an outcome of a “probability experiment”).

– The set (Ω, F ) is called a measurable space.

• There may be certain elements in Ω that are not in F.

– A filtration is an increasing sequence of σ-algebras on a measurable 
space. Usually, filtratrions are used to form conditional expectations.

83

Preliminaries: Probability Measure 

Definition: Probability measure 

A probability measure is the triplet (Ω, F, P) where P: F → [0,1] is a 
function from F to [0,1].

• P(Ø) = 0 and P(Ω) = 1 always.

• The elements in Ω that are not in F have no probability.

–We can extend the probability definition by assigning a probability 
of zero to such elements.
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Preliminaries: Stochastic Process

Definition: Random variable x (or X) w.r.t. (Ω, F, P)

– x : F → Rn is a measurable function (i.e. x -1(z) є F for all z in Rn).

– Hence, P: F → [0,1] is translated to an equivalent function 

μx : Rn → [0,1], which is the distribution of x.

Definition: Stochastic Process X(t, ω)

A stochastic process is a parameterized collection of random variables x(t), 
or X(t, ω) = {x(t)}t.

– Normally, t is taken as time.

– Think of ω as one outcome from a set of possible outcomes of an 
experiment. Then, X(t, ω) is the state of an outcome ω of the 
experiment at time t.

Stochastic Process - Illustration

Time

X(t,ω1)

X(t,ω2)

X(t,ω3)

Y1 = X(t1, ω)

Y2 = X(t2, ω)
Y1 & Y2 are 2 different random 
variables.

Stochastic Process X(t, ω) is a 
collection of  these Yi’s
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Stochastic Process: Brownian motion (or Wiener 
process)

• Long history: In 1827 the botanist Robert Brown observed that 
grains of pollen suspended in water have a continuous jittery, erratic 
movement, now known as Brownian motion (BM), Bt. 

• We think of  Brownian motion (also called Wiener 
process) as a model of  random continuous motion.

87Robert Brown (1773–1858, Scotland)

• Einstein (1905) show that that the probability of the pollen to be in 
an interval [a; b] at time t is given by:

• Note:  Einstein derived the pdf: 

as a solution to the diffusion equation: 

• That is, a BM has increments driven by the standard normal 
distribution.

Typical notation: Wt, Bt; W(t), B(t); z(t). 
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Stochastic Process: Brownian motion – Normal
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Stochastic Process: Brownian motion - Definition

• Definition. Brownian motion (or Wiener process)

A BM{W(t)} is a family of RVs W(t): Ω→ R, where Ω is a probability 
space, satisfying the following properties:

1. W(0) = 0. (A convenient assumption; can be relaxed.)

2. Continuous path. The function t → W(t) is a continuous function of t.

3. Stationary increments. W(t) − W(s) ~ N(0, t – s), where t>s.

4. Independent increments. If s < t, the random variable W(t) - W(s) is

independent of the values W(r) for r ൑ s.

• Note: The sample paths are continuous, but they are nowhere 
differentiable since increments are random (“normally distributed”). 
Brownian motions are a special case of Lévy processes, which can be 
discountinuous. 89

90

• A stochastic process is a function of a continuous variable (most 
often: time).

• The question now becomes how to determine the continuity and 
differentiability of a stochastic process?

– It is not simple as a stochastic process is not deterministic.

• We use the same definitions of continuity, but now look at the 
expectations and probabilities.

– A deterministic function f(t) is continuous if:

–║f(t1) – f(t2)║ ≤ δ ║t1 – t2║.

– To determine if a stochastic process X(t,ω) is continuous, we need to 
determine:

–P(║X(t1, ω) – X(t2, ω)║) ≤  δ ║t1 – t2║ or 

E(║X(t1, ω) – X(t2, ω)║) ≤  δ ║t1 – t2║ 

Stochastic Process: A few considerations
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Stochastic Process: Kolomogorov Continuity 
Theorem

• If for all T > 0, there exist a, b, δ > 0 such that: 

E(|X(t1, ω) – X(t2, ω)|a) ≤ δ |t1 – t2|(1 + b)

Then X(t, ω) can be considered as a continuous stochastic process.

• Summary:

– BM is a continuous stochastic process.

– BM (Wiener process): W(t, ω) is almost surely continuous, has 
independent normal distributed (N(0, t − s)) increments and  
W(t=0, ω) =0. 

– The limit of random walks. Informally, we say

“continuous random walk (motion).”

Andrey Kolmogorov (1903-1987, Russia/USSR)

92

• A stochastic process W(t) is called a (one-dimensional) Brownian 
motion (generalized Wiener process) with drift m and variance (parameter) σ2

starting at the origin if it satifies the following:

- W(t=0)=0. 

- For s<t, the distribution of W = W(t) - W(s) ~ N(m(t – s), σ2 (t – s)).

- The values of W for any 2 different (non-overlapping) periods of 
time are independent.

- With probability 1, the function t →W(t) is a continuous function of t.

If m = 0; σ2 = 1, then W(t) is called a standard BM or, just, 

a Wiener process.

Stochastic Process: W(t) – Drift and Variance

Norbert Wiener (1894 – 1964, USA) 
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• A property of the normal distribution is invariance under addition: 

If Z 〜 N ⇒ Y = σ Z + μ〜 N. 

In particular, if Z 〜 N(0,1) ⇒ Y 〜 N(μ ; σ2).

• Then, if W(t) is a standard BM and Y(t) = σ W(t) + μ , then, Y(t) is a 
BM with drift m and variance σ2. 

Stochastic Process: W(t) – Drift and Variance

• In finance and economics, a Brownian motion is used to describe the 
continuous process behind the change in value of  financial assets. For 
example, stocks or bonds. 

For example, we say that IBM returns, Y(t), follow a BM with drift 10% 
and variance (15%)2. 

94

• Properties of a BM:
– E[W] = 0  &  Var[W] = t (standard deviation is √t).
– Let N = T/t, and εi 〜 N(0,1) then 

• Thus, W(t) has independent increments, W, with W 〜 N(0, t).

Note: We denote the continuous change with the operator d. 

Example: x follows a BM with a drift rate μ and a variance rate σ2 if

dx = μ dt + σ dW

Interpretation: - Mean change in x in time T is μT
- Variance of change in x in time T is σ 2T

Stochastic Process: W(t) - Properties
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• In an Itô process the drift and the variance rates are functions of time

dx = a(x,t) dt + b(x,t) dz

(the discrete time equivalent is only true in the limit as Δt tends to 0.)

Example: Itô process for stock prices (S)

dS= μ S dt +  S dz

where μ is the expected return and  is the volatility.

• The discrete time equivalent is

where  S/S ~(t, t)

ttxbttxax  ),(),(

         tStSS 

Stochastic Process: W(t) - Itô process 
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Theorem (Levy): Quadratic variation. 
As the partition of [0,T] becomes finer (a smaller norm), say ║P║→ 0,

That is, in the limit (Riemann integral), the sum of square increments is 
equal to T.

Intuition: As time passes, we observe the random changes W(t) − W(t-1). 
The  accumulation of squared random changes is equal to T. This is the 
internal clock of a random process. It is a special feature of a BM that 
the internal clock works keeps up with normal time.

In fact, a BM is almost entirely defined by this property: If a continuous 
martingale has quadratic variation, then it is a BM.

Stochastic Process: W(t) - Properties
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Stochastic Processes: Applications (1)

• We saw several systems expressed as differential equations.

Example: Population growth, say  dN/dt = a(t)N(t).
There is no stochastic component to N(t), given initial conditions, we 
can derive without error the evolution of N(t) over time. 

• However, in real world applications, several factors introduce a 
random factor in such models:

a(t) = b(t) + σ(t) x “Noise” = b(t) + σ(t) W(t),

where W(t) is a stochastic process that represents the source of 
randomness (for example, “white noise”).

• A simple differential equation becomes a stochastic differential 
equation.

97

• Other applications where stochastic processes are used :

– Filtering problems (Kalman filter)

• Minimize the expected estimation error for a system state.

– Optimal Stopping Theorem

– Financial Mathematics

• Theory of option pricing uses the differential heat equation applied 
to a geometric Brownian motion or GBM (eμt+σW(t)).

98

Stochastic Processes: Applications (2)
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Stochastic Process and Calculus: Motivation

• Consider a process which is the square of a BM: 

Y(t) = W(t)2

This process is always non-negative, Y(0) = 0, Y(t) has infinitely many 
zeroes on t > 0 and E[Y(t)] = E[W(t)2] = t. 

Question: What is the stochastic differential of Y(t))? 

• Using standard calculus: dY(t) = 2W(t) dW(t)

 Y(t) =∫t dY = ∫t 2W(t) dW(t)

• Consider ∫t 2W(t) dW(t):

• By definition, the increments of W(t) are independent, with constant 
mean.

• Therefore, the expected value, or mean, of the summation will be 
zero: 

• But the mean of Y (t) = W(t)2 is t which is definitely not zero! The two 
stochastic processes do not agree even in the mean, so something is not 
right! If we want to keep the integral definition and limit processes, 
then the rules of calculus will have to change. 

Stochastic Process and Calculus: Motivation
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Stochastic calculus: Introduction (1)

• Let us consider:
dx/dt = b(t,x) + σ(t,x) W(t)

- White noise assumptions on W(t) would make W(t) discontinuous.

• This is bad news.

• Hence, we consider the discrete version of the equation:
∆xk+1 = xk+1 − xk = b(tk,xk)∆tk + σ(tk,xk)W(tk)∆tk (xk= x(tk,ω) )

- We can make white noise assumptions on Bk, where 
∆Bk = W(tk)∆tk.

- It turns out that Bk can only be a BM

101
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• Now we have another problem:

– x(t) = ∑ b(tk,xk)∆tk + ∑σ(tk,xk) ∆Bk

– As ∆tk→ 0, ∑ b(tk,xk)∆tk → time integral of b(t,x)

• What about lim ∑σ(tk,xk) ∆Bk?

– Hence, we need to find expressions for “integral” and 
“differentiation” of a function of stochastic process.

• Again, we have a problem.

• BM is continuous, but not differentiable (Riemnann integrals will 
not work!)

• Stochastic Calculus provides us a mean to calculate “integral” of a 
stochastic process but not  “differentiation.”

– This is OK, as most stochastic processes are not differentiable.

Stochastic calculus: Introduction (2)
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• We use the definition of “integral” of deterministic functions as a 
base:

∫ σ(t,ω) dB = lim ∑ σ(tk,ω) ∆Bk , where tk є [tk, tk + 1) as 

tk + 1 – tk → 0.

• But, we cannot chose any tk; tk є [tk, tk + 1]. 

Example: if tk = tk, then E(∑ Bk ∆Bk) = 0.

Example: if tk = tk + 1, then E(∑ Bk ∆Bk) = t.

• We need to be careful (and consistent) in choosing tk.

Stochastic calculus: Introduction (3)

103
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Stochastic calculus: Itô and Stratonovich

• Two choices for tk are popular:-

– If tk = tk, then it is called Itô’s integral.

– If tk = (tk + tk + 1)/2, then it is called Stratonovich integral.

• We will concentrate on Itô’s integral as it provides computational and 
conceptual simplicity.

- Itô’s and Stratonovich integrals differ by a simple time integral only. 

- In economics, Stratonovich integrals are not popular, since it 

requires at time tk knowledge of tk+1. In general, we like to 

integrate over values we know.

Kiyoshi Itô (1915–2008, Japan) 
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Stochastic calculus: Itô’s Theorem (1)

• For a given f(t,ω) if:

1. f(t,ω) is Ft adapted (“a process that cannot look into the future”) 

- f(t,ω) can be determined by t and values of Bt(ω) up to t.

- Bt/2(ω) is Ft adapted but B2t(ω) is not Ft adapted.

2. E[∫ f 2(t,ω) dt] < ∞      ( E[ ∫(f(t,ω) – Φn(t,ω))2dt ] → 0  as n → ∞)

- This implication from (2) is a result from measure theory, needed for 
the convergence in L2 of the sequence of Itô integrals.

Then,

∫ f(t, ω) dBt(ω) = ∑ Φ(tk, ω) (Bk + 1 − Bk) and

E[(∫ f(t, ω) dBt(ω))2] = E[∫ f 2(t,ω) dt] (Itô isometry)

 the integral f(t, ω) dB can be defined. f(t, ω) is said to be B-integrable.
105

106

Stochastic calculus: Itô’s Theorem (1)

• Under (1) and (2):
∫ f(t, ω) dBt(ω) = ∑ Φ(tk, ω) (Bk + 1 − Bk) and

E(|∫ f(t, ω) dBt(ω)|2 ) = E(∫ f 2(t,ω) dt ) (Itô isometry)

 the integral f(t, ω) dB can be defined. f(t, ω) is said to be B-integrable

(integrable = bounded integral)

• Remarks:

– Φ(t, ω) are called elementary (simple) functions. Their values are 
constant in the interval [tk, tk + 1].

– E[ ∫|f(t, ω) − Φn(t,ω)|2dt ] → 0 as n → ∞. This result is an 
implication from (2). It is used to get the convergence in L2 of the 
sequence of Itô integrals In(ω) = ∫Φn(t, ω) dBt(ω) to the RV I(ω) =  
∫f(t, ω) dBt(ω).
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Stochastic calculus: Itô’s Theorem (2)

• If f(t,ω) =  B(t,ω)  select Φ(t,ω) = B(tk,ω) when t є [tk,tk + 1)

Then, we have: ∫B(t,ω) dB(t,ω) = lim ∑ B(tk,ω) (B(tk + 1,ω) − B(tk,ω))

Some algebra (recalling 2b(a-b) = a2- b2 - (a-b)2) and results:
(1) B(tk,ω) (B(tk + 1,ω) - B(tk,ω)) = ½ {B2(tk+1,ω) − B2(tk,ω) – [B(tk +1,ω) – B(tk,ω)]2} 

(2) B2(tk+1,ω) − B2(tk,ω) = [B(tk +1,ω) – B(tk,ω)]2 + 2 B(tk,ω) (B(tk + 1,ω) – B(tk,ω))

(3) B2(t) - B2(0) = ∑ B2(tk+1,ω) – B2(tk,ω) (accumulation of Brownian motion)

(4) lim ∆t→0 ∑ [ (B(tk + 1,ω) – B(tk,ω))2] = T (quadratic variation property of B(t)) 

Then,

∫B(t,ω) dB(t,ω) =½ lim ∆t→0 ∑ [B2(tk+1,ω) − B2(tk,ω) – (B(tk + 1,ω) – B(tk,ω))2] 
= B2(t,ω)/2 – t/2. 

• Note: Itô’s integral gives us more than the expected B2(t,ω)/2. This is 
due to the time-variance of the Brownian motion. 108
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Stochastic calculus: Itô’s Theorem (3)

• Simple properties of Itô’s integrals:

- ∫ [a X(t,ω) + b Y(t,ω)] dB(t) = ∫ a X(t,ω) dB(t) + ∫ b Y(t,ω)dB(t)

- E[∫ a X(t,ω) dB(t)] = 0

- ∫ a X(t,ω) dB(t) is Ft measurable

• It will be easier to calculate stochastic integrals using Itô’s lemma, the 
fundamental theorem of stochastic calculus.

109

Stochastic calculus: Review of FTC

• Simple derivation of the FTC through a 1st-order Taylor expansion of 
a function f(t), which is C1 (with continuous 1st derivatives), on [0,1]:

f(t+s) = f(t) + f ’(t) s + o(s) (o(s)/s →0, as s →0)

We write f(1) as an accumulation of n increments starting at f(0): 

f(1) = f(0) + ∑jൌ1 to n { f (j/n) − f ((j-1)/n)} 

Then, using a Taylor expansion for each of the f (j/n)

{ f (j/n) − f ((j − 1)/n)} =  f ’((j − 1)/n) (1/n) + o(n)

Then,   

f(1) = f(0) + limn→∞ ∑jൌ1 to n f ’((j − 1)/n) (1/n) + limn→∞ ∑jൌ1 to n o(n).

Using the definition of Rienmann intergral, we are done: 

f(1) = f(0) + 0׬
t f ’(t) dt. 110
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Stochastic calculus: Itô’s Process (1)

• For a general process x(t,ω), how do we define integral ∫f(t,x) dx? 

– If x can be expressed by a stochastic differential equation, we can 
calculate δf(t,x).

• Definition:

An Itô’s process is a stochastic process on (Ω, F, P), which can be 
represented in the form: 

x(t,ω) = x(0) + ∫ μ(s) ds + ∫ σ(s)dB(s)

where μ and σ may be functions of x and other variables. Both are  
processes with finite (square) Riemann integrals.

Alternatively, we have already said x(t,ω) is called an Itô’s process if 

dx(t) = μ(t) dt + σ(t) dB(t). 111

Stochastic calculus: Itô’s Process and Lemma 

• Itô’s Formula 1

Let B(t) be a standard BM. 

Let f(t,x) be a C2 function –i.e., twice continuously differentiable. 

Then, f(Bt) = f(B0) +0׬
t f ’(Bs) dBs + 0׬

t f ’’(Bs) ds 

The theorem is usually written as     ∂f(Bt) = f ’(Bs) dBt + ½ f ’’(Bs) dt.

That is, the process x(t) = f(Bt) at time t evolves like a BM with drift 

f ’’(Bs)/2 and variance [f ’(Bs)]2.

Derivation: Similar to the previous derivation of the FTC. Now, use a 
2nd-order Taylor expansion of f(Bt).

112
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Stochastic calculus: Itô’s Process and Lemma 

• Itô’s Formula 2 (Itô’s Lemma)

Let x(t,ω) be an Itô process: dx(t) = μ(t) dt + σ(t) dB(t).

Let f(t,x) be a C2 function.

Then, f(t,x) is also an Itô process and

∂f(t,x) = (df/dt) dt + (df/dx) dx(t) + ½ d2f/dx2 (dx(t))2

= [(df/dt) + (df/dx) μ(t) + ½ d2f/dx2 σ2(t)]dt + (df/dx) σ(t) dB(t) 

This result is called Itô’s Lemma.

Note: Itô processes is closed under twice continuously differentiable 
transformations.
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Stochastic calculus: Itô’s Process and Lemma 

• To do quick calculations in calculus, we write down differentials

and discard all terms that are of smaller order than dt. In stochastic

calculus, we can do the same using the following rules:

dB(t)*dB(t) = (dB(t))2 = dt

dt*dt = (dt)2 = 0

dt*dB(t) = dB(t)*dt = 0

• Then, applying these rules, we have that Itô’s lemma implies: 
Itô’s lemma: ∂f(t,x) = [(df/dt) + (f’(x) μ(t) + ½ f’’(x) σ2(t)] dt + (df/dx) σ(t) dB(t)

dX(t) = μ(t) dt + σ(t) dB 

 (dX(t))2 = μ(t)2 dt2 + 2 μ(t) dt (t) dB + (t)2 dB2

= 0  +  0  +  (t)2 dt 

Note: Non-stochastic! A square of an Itô process leaves the variance.
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Itô’s Lemma – Check

Itô’s lemma: ∂f(t,x) = (df/dt) dt + (df/dx) dx(t) + ½ d2f/dx2 (dx(t))2

• Check: 

Let B(t,ω) = X(t) (think of μ = 0, σ = 1). 

Define: f(t,ω) = B2(t,ω)/2.

Now,

∂(B2(t,ω)/2) = 0 dt + B(t,ω) dB(t) + ½ d2f/dx2 (dB(t))2

= B(t,ω) dB(t)+ ½ dt

 B2(t,ω)/2 = ∫ B(t,ω) dBt + ∫ ½ dt

or ∫ B(t,ω) dBt = B2(t,ω)/2 - t/2
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Itô’s Lemma – Derivation

• Let x be a small change in x and G be the resulting small change in 
G = f(t,x).
• Let’s do a Taylor expansion of G:

• Note: 
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Itô’s Lemma – Derivation

• Let x be an Itô process: dx = a(x,t) dt  + b(x,t) dz

then,

• Ignoring term of higher order than ∆t in ∆G:

• Let’s focus on the ε2∆t term: 

- Since ε〜 i.i.d. N(0,1)  E[ε2] = 1. Then, E[ε2∆t] = ∆t

- The variance is proportional to ∆t2. As ∆t→0, it collapses to a point. 
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Itô’s Lemma – Derivation

• Now, we take limits as ∆t → 0: 

• Replacing dx = a dt + b dz in dG, we get:

• This is Itô’s Lemma. 
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• Recall Itô’s lemma: 

∂f(t,x) = (df/dt) dt + (df/dx) dx(t) + ½ d2f/dx2 (dx(t))2

Example: Stochastic Discounting I

f(t,ω) = etB(t).

Now, ∂(f(t,ω)) = etB(t) B(t) dt + t etB(t) dB(t) + ½ t2 etB(t)  dB(t))2

= etB(t) (B(t) + ½t2) dt + t etB(t) dB(t)

Example: Stochastic Discounting II

Z(t) = f(t,ω) = ert+σB(t).

Now, ∂(f(t,ω)) = Z(t) r dt + σ Z(t) dB(t) + ½ σ2 Z(t) dt

= (r + ½ σ2) Z(t) dt + σ Z(t) dB(t) 

Itô’s Lemma: Examples – Discounting
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• Recall Itô’s lemma: 

∂f(t,x) = (df/dt) dt + (df/dx) dx(t) + ½ d2f/dx2 (dx(t))2

Let dS = μ S dt +  S dz

Then,
df(t,x) = [(df/dt) + μS(t) (df/dS) + ½ d2f/dS2 σ2S(t)2]dt + (df/dS) σS(t)dB(t)

Example: Forward Contracts

F(t) = f(t,ω) = S(t) er(T-t),

 d(F(t)) = [-r S(t) er(T-t) + μS(t) er(T-t) + ½ 0 σ2S(t)2]dt + er(T-t) σS(t)dz

= (μ –r) F(t) dt + σ F(t) dz

 d(F(t))/F(t) = (μ –r) dt + σ dz

Itô’s Lemma: Examples – Forward Contracts
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Let dS = μ S dt +  S dz and using
df(t,x) = [(df/dt) + μS(t) (df/dS) + ½ d2f/dS2 σ2S(t)2]dt + (df/dS) σS(t)dB(t)

Example: Lognormal Property

G(t) = f(t,ω) = ln S(t), 

 d(G(t)) = [0  + μ S (1/S) + ½ (-1/S2) σ2 S2] dt + (1/S) σ S dz

= (μ – σ2/2) dt + σ dz

Itô’s Lemma: Examples – Lognormal Property
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• Let S(t), a (non-dividend) stock price, follow a geometric BM: 
dS(t) = μ S(t) dt + σ S(t) dB(t).

• The payoff of an option f(S,T) is known at T. 

• Applying Ito’s formula: 

d(f(S,t)) = (df/dt) dt + (df/dS) dS(t) + ½d2f/dS2 (dS(t))2

= [(df/dt) + μS(t) (df/dS) + ½d2f/dS2 σ2S(t)2]dt + (df/dS) σS(t)dB(t)

• Form a (delta-hedge) portfolio: hold one option and continuously trade 
in the stock in order to hold (–df/dS) shares. At t, the value of the 
portfolio: 

π(t) = f(S, t) – S(t) df/dS

• We want to accumulate profits from this portfolio. 

Stochastic calculus: Application – Black-Scholes
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• Let R be the accumulated profits from the portfolio. Then, over the 
time period [t, t + dt], the instantaneous profit or loss is:

dR = df(S, t) – df/dS dS(t)

• Substituting using Itô’s lemma for df(S,t) and for dS(t), we get:

dR = [(df/dt) dt + (df/dS) dS(t) + ½ d2f/dS2 (dS(t))2] – df/dS dS(t)

= [(df/dt) + ½ d2f/dS2 σ2 S(t)2] dt

Note: This is not a SDE (dB(t) has disappeared: riskless portfolio!)

• Since there is no risk, the rate of return of the portfolio should be r, 
the rate on a riskless asset.

Stochastic calculus: Application – Black-Scholes
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• That is,

dR = r π(t) dt = r [f(S,t) – S(t) df/dS] dt

 r [f(S,t) – S(t) df/dS] dt = [(df/dt) +  ½ d2f/dS2 σ2 S(t)2] dt

 (df/dt) +  ½ d2f/dS2 σ2 S(t)2 + r S(t) df/dS – r f(S,t)=0

This is the Black-Scholes PDE. Given the boundary conditions for a 
call option, C(S,t), it can be solved using the standard methods.

• Boundary conditions:

C(0, t) = t for all t

C(S, t) → S, as S → ∞.

C(S, T) = max(S – K, 0); K = strike price

• Solution (already seen in Chapter 7):

𝐶௧ ൌ 𝑆௧ 𝑁 𝑑1 െ 𝐾 𝑒ି௜ሺ்ି௧ሻ𝑁 𝑑2

Stochastic calculus: Application – Black-Scholes
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• Make a guess (Hope you are lucky!)

Example: We want to solve the stochastic DE:

dZ(t) = σ Z(t) dB(t). 

Guess: Y(t) = ert+σB(t) (Stochastic Discounting II example)

with SDE:  dZ(t) = (r + ½ σ2)  Z(t) dt + σ Z(t) dB(t). 

Replace in given SDE:

 (r + ½ σ2)  Z(t) dt + σ Z(t) dB(t) = σ Z(t) dB(t). 

 r = − ½ σ2

Solution: Y(t) = exp(- ½ σ2 t + σ dB(t)) (This solution is called the

Dolèan’s exponential of BM.) 

Note: SDE with solutions are rare.

Stochastic calculus: Solving a stochastic DE
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For Man U fans: The Black Scholes


