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Chapter 13
Difference Equations

Thomas Robert Malthus (1766– 1834) Leonardo di Pisa (c. 1170 – c. 1250) 

© 2022, Raul Susmel. For private use, not to be posted/shared online).

13.1 Difference Equations: Definitions

• We start with a time series {𝑦 } = {𝑦 , 𝑦 , 𝑦 , ..., 𝑦 , 𝑦 }

• Difference Equation – Procedure for calculating a term (𝑦 ) from the 
preceding terms: 𝑦 , 𝑦 ,.,...  A starting value, 𝑦 , is given.

Example: 𝑦 = 𝑓 𝑦 , 𝑦 , ..., 𝑦 , given 𝑦 .

• If 𝑓 . is linear, we have a linear difference equation. Our focus.

• The number of preceding terms of y determines the order: 

- First-Order Linear Difference Equation Form: 

𝑦 = a 𝑦 + b (a, b: constants)

- Similarly, an kth-Order Linear Difference equation:

𝑦 = an-1 𝑦 + an-2 𝑦 + ... + an-k 𝑦 + b

(an-1, an-2, ..., b: constants) 2
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13.1 Difference Equations: Famous Example

• Originated in India. It has been attributed to Indian writer Pingala
(200 BC). In the West, Leonardo of Pisa (Fibonacci) studied it in 1202.

• Fibonacci studied the (unrealistic) growth of  a rabbit population. 

• Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, ... (each number represents 
an additional pair of rabbits.

• This series can be represented as a linear difference equation.

• Let 𝑓 𝑛 be the rabbit population at the end of month n. Then,

𝑓 𝑛 = 𝑓 𝑛 1 + 𝑓 𝑛 2 , with initial values 𝑓 0 0, 
𝑓 1 1.

3

13.1 Difference Equations: Example 1

• The number of rabbits on a farm increases by 8% per year in addition 
to the removal of 4 rabbits per year for adoption.  The farm starts out 
with 35 rabbits.  

Let 𝑦 be the population after 𝑛 years. We can write the difference 
equation:  

𝑦 = 1.08 𝑦 – 4; 𝑦 = 35

Initial Value

What you add or subtract every year. (b)
Percentage change 
every year. (a)

4
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13.1 Difference Equations: Example 1 – A Few 
Terms

• Generate the first few terms - This gives us a feeling for how 
successive terms are generated.
• Graph the terms - Plot the points (0, 𝑦 ), (1, 𝑦 ), (2, 𝑦 ), etc.  

Example:   𝑦 = 1.08 𝑦 – 4, with 𝑦 = 35

a.  Generate y0, y1, y2, y3, y4, ...
𝑦 = 35
𝑦 = 1.08(35) – 4 = 37.8 – 4 = 33.8
𝑦 = 1.08(33.8) – 4 = 36.50 – 4 = 32.50
𝑦 = 1.08(32.50) – 4 = 35.1 – 4 = 31.1
𝑦 = 1.08(31.1) – 4 = 33.59 – 4 = 29.59
𝑦 = 1.08(29.59) – 4 = 31.96 – 4 = 27.96

5

13.1 Difference Equations: Example 1 – R

s = 10 #number of repetitions
> y <- rep(0,10)
> a <- 1.08
> b <- -4
> y[1] = 35 # initial value
> i=2
> while (i <= reps){
+ y[i] <- a*y[i-1] + b #generate y
+ i <- i+1
+ } 
> y
[1] 35.00000 33.80000 32.50400 31.10432 29.59267 27.96008 26.19689 24.29264
[9] 22.23605 20.01493

> plot(y)

6
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b.  Graph these first few terms

(0, 35) (1, 33.8) (2, 32.5) (3, 31.1) (4, 29.59)

13.1 Difference Equations: Example 1 - Graphing 
Difference Equations
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13.1 Difference Equations: Example 2

• 𝑦 = 0.5 𝑦 – 1,  𝑦 = 10

a.  Generate y0, y1, y2, y3, y4

𝑦 = 10
𝑦 = 0.5 (10) –1 = 5 –1 = 4
𝑦 = 0.5 (4) –1 = 2 – 1 = 1
𝑦 = 0.5 (1) – 1 = 0.5  – 1 = -1/2
𝑦 = 0.5 (-1/2) – 1 = -0.25  – 1 = -5/4

b.  Graph these first few terms

(0, 10) (1, 4) (2, 1) (3, -1/2) (4, -5/4)

8
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13.1 Difference Equations: Example 3 (in R)
• In economics we think of  data as realizations of  random variables. We 
modify Example 2 by introducing a random error term, ε. That is, in 
time series terminology, we have an autoregressive model, an AR(1):

𝑦 = 0.5 𝑦 – 1 + ε , ε ~ N(0 ,1)

• We generate the first 10 terms and graph them:

> reps=10 #number of  repetitions

> y <- rep(0,10)

> a <-.5; b <- -1;

> ep <- rnorm(10,0,1) #generate errors, ep

> y[1] = 10

> i=2

> while (i <= reps){

+ y[i] <- a*y[i-1] + b + ep[i] #generate y

+ i <- i+1 }

> y

[1] 10.0000 3.71451 1.45935 -0.16354 -1.61239 -0.26786 -1.2914981 -0.53511 -1.13426 -0.5712
9
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Example: The population of a country is currently 70 million, but is 
declining at the rate of 1% per year.  Let 𝑦 be the population after 𝑛
years.   Difference equation showing how to compute 𝑦 from 𝑦 :

𝑦 = .99 𝑦 ,   with 𝑦 = 70,000,000 (initial value)

Example: We borrow $150,000 at 6% APR compounded monthly for 
30 years to purchase a home.  The monthly payment is determined to 
be $899.33.  The difference equation for the loan balance (𝑦 ) after 
each monthly payment has been made:

𝑦 = 1.005 𝑦 – 899.33, with 𝑦 = 150,000

13.1 Difference Equations: More Examples

10
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13.1 Difference Equations: The Steady State

• The steady state or long-run value represents an equilibrium, where there 
is no more change in yn. We call this value y∞ : 

.1;
11 


  a
a

b
ybayy nn

• Example 1:  𝑦 = 1.08 𝑦 – 4, 

 𝑦∞ = b/(1 – a) = -4/(1 – 1.08) = 50

Check: 𝑦 = 1.08 (50) – 4 = 50 

• Example 2: 𝑦 = 0.5 𝑦 – 1, 

 𝑦∞ = b/(1 – a) = -1/(1 – 0.5) = -2

Check: 𝑦 = 0.5 (-2) – 1 = -2 11

13.2 Solving Difference Eq’s – Repeated Iteration

• We want to generate a formula from which we can directly calculate 
any term without first having to calculate all the terms preceding it.

• Repeated Iteration Method (Backward Solution):
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• Solution:
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• We have 3 cases:

a) If   |a|< 1  𝑦∞ = b/(1-a) = finite; 𝑦 converges

b) If  |a| > 1  𝑦∞ indefinite; 𝑦 diverges

c) If  |a|= 1  𝑦∞ indefinite; 𝑦 diverges

13.2 Solving Difference Eq’s – Repeated Iteration

• Solve for  𝑦 in  𝑦 = a 𝑦 + b       𝑦 = (1/a) 𝑦 – b/a.

• Or 𝑦 = (1/a) 𝑦 – b/a.
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 where

• If    |   |= |(1/a)| < 1  𝑦 converges (|a|>1)

• When |a|>1, equation is divergent, the forward solution works.
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13.2 Solving Difference Eq’s – Forward Solution
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• Steps:

1) Get a solution to the homogenous equation (b = 0)

2) Get a particular solution, for example 𝑦
3) General solution: Add both solutions

• Step 1) Homogenous equation: 𝑦 = 𝑎 𝑦 ,

– Guess a solution: 𝑦 = A 𝑘 , 

– Check the guessed solution:  𝑦 = A 𝑘
= 𝑎 𝑦 = a (A 𝑘 )   a=𝑘
= A 𝑎

• Step 2) Particular solution: 𝑦 = b/(1 - 𝑎), 𝑎 ≠ 1

• Step 3) General Solution: 
a

b
AayAay nn

n 
  1

13.2 Solving Difference Eq’s – General Solution

• Step 3) General Solution:

• We can determine A, if we have some values for yt. Say y0.

• We replace A in the general solution to get a definite solution, with no 
unknown values:
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which is just the backward solution! 
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13.2 Solving Difference Eq’s – General Solution
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• Example: Solve the difference equation:
𝑦 = 0.5 𝑦 – 1,  𝑦0 = 10

Steady state: 𝑦∞ = b/(1-a) = -1/.5 = -2

Solution:

Q: What is the value of y at n=10?
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-1.988281
10
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13.2 Solving Difference Eq’s – General Solution

18

• In the difference equation yn = a yn-1 + b, let a = 1

 yn = yn-1 + b

• Solution (Repeated Iteration):  yn = y0 + b n             

There is only a change in b (constant change per period).

• Example: Solve yn = yn-1 + 5,  with y0 = 10.

Solution:     yn = 10 + 5 n 

13.2 Special Case - a=1 (“Random Walk”)



RS - Ch 13 - Difference Equations

(c) 2022. Not be posted/shared without written authorization from author 10

19

• Simple Interest:    yn = yn-1 + (y0 i)

• Compound Interest: yn = (1 + i) yn-1

• Increasing Annuities: yn = (1 + i) yn-1 + b (PMT)

• Decreasing Annuities:  yn = (1 + i) yn-1 – b (PMT)

• Loans:    yn = (1 + i) yn-1 – b (PMT)

• Compound Interest Solution: yn = y0 (1 + i)n

This equation is the same as FV = PV * (1 + i)n

13.2 Simple Financial Difference Equations

20

• Vertical Direction – The up-and-down motion of successive 
terms.

– Monotonic: The graph heads in one direction (up-increasing, 
down-decreasing)

– Oscillating: The graph changes direction with every term.

– Constant: The graph always remains at the same height.

13.3 Graphing Difference Eq’s: Definitions 
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• Monotonic: The graph heads in one direction (up – increasing, down 
– decreasing). The constant a is positive (a > 0).

• Example: 

yn = 2 yn-1 + 3,  y0 = 0

a > 1

13.3 Graphing Difference Eq’s: Vertical Direction 

0 < a < 1

yn = 0.2 yn-1 + 3,  y0 = 10

22

• Oscillating: The graph changes direction with every term. The 
constant a is negative (a < 0).

• Example:

-1< a < 0 a < -1

yn = -0.2 yn-1 + 3,  y0 = 0 yn = -2 yn-1 + 3,  y0 = 0

13.3 Graphing Difference Eq’s: Vertical Direction 
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• Constant: The graph always remains at the same height

 yn = y∞ (a variation, constant trend)

• Example:

yn = yn-1 + 0,  y0 = 0 

a =1; b=0

yn = yn-1 + 3,  y0 = 0 

a =1; b=3

13.3 Graphing Difference Eq’s: Vertical Direction 

24

• Long-run Behavior – The eventual behavior of the graph.

– Attracted or Stable: The graph approaches a horizontal line 
(asymptotic or attracted to the line).

– Repelled or Unstable: The graph goes infinitely high or infinitely 
low (unbounded or repelled from the line).

• In general, we say a system is stable if its long-run behavior is not 
sensitive to the initial conditions. Some “unstable” system maybe 
“stable” by chance: when y0=y∞.

13.3 Graphing Difference Eq’s: Definitions 2 
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Attracted  (Stable) Repelled (Unstable)

Example: yn = 0.5yn-1+300,  y0 = 400 yn = 2yn-1+300,  y0 = 300

monotonic, increasing, stable monotonic, increasing, unstable 

|a|<1; y0 < b/(1 – a) |a|>1; y0 > b/(1 – a) 

13.3 Graphing Difference Eq’s: Long-run

26

Summary:

• |a| > 1 unstable or unbounded –repelled from line [b/(1-a)]

• |a| < 1 stable or bounded –attracted or convergent to [b/(1-a)]

• a < 0 oscillatory

• a > 0 monotonic

• a = -1 bounded oscillatory

• a = 1, b = 0 constant

• a = 1, b > 0 constant increasing

• a = 1, b < 0 constant decreasing

Note: All of this can be deduced from the solution:
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13.3 Graphing Difference Eq’s: Long-run
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Figure 13.1 Stable Difference Equations (13.2) 
and (13.3)

28

Figure 13.2 Unstable Difference Equations 
(13.5) and (13.6)
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Figure 13.3 Phase Diagram for Equation (13.2)

30

Figure 13.4 Phase Diagrams for Difference 
Equations (13.3), (13.5), and (13.6)
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13.3 Difference Equations: Application 1

• Solow’s Growth Model
• kt: capital per capita (K/L)
• yt: income/production per capita: f(kt) = A (kt)α

• δ: depreciation
• it: investment per capita: capital accumulation: kt – (1 – δ) kt-1

• st: savings per capita: σ f(kt) (σ: propensity to save)
• Equilibrium condition: st = it  kt – (1 – δ) kt-1 = σ f(kt)
• Difference equation: kt – σ f(kt)= (1 – δ) kt-1

32

13.3 Difference Equations: Application 2

• Half-life PPP
Half-life: how long it takes for the initial deviation from y0 and y∞ to be 
cut in half.
- rt: real exchange rate (= St Pd/Pf) 
- rt follows an AR(1) process: rt = a rt-1 + b
- rH = (r0 + r∞)/2
• Recall solution to rt:

rH = aH r0 + (1 – aH ) r∞  (r0 + r∞)/2 = aH r0 + (1 – aH ) r∞
 (1 – 2aH) r0 = (1 – 2aH ) r∞
 1 – 2aH = 0 1=2aH 

 H = – ln(2)/ln(a)
• Interesting cases: If  a = 0.9  H=- ln(2)/ln(0.9) =6.5763

If  a = 0.95  H=- ln(2)/ln(0.95) =13.5135
If  a = 0.99  H=- ln(2)/ln(0.95) =68.9675
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• We want a general solution to  yn = a1 yn-1 + a2 yn-2 + c

• Steps:

1) Guess a solution to the homogenous equation (c=0)

2) Get a particular solution, for example y∞
3) General solution: Add both solutions

• To get a definite solution –i.e., with no unknowns-, we need initial 
values.

13.4 2nd-Order Difference Equations: Example

34

• Step 1: Homogenous equation: yn = a1 yn-1 + a2 yn-2

Guess a solution: yn = kn

– Check the guessed solution: kn = a1 kn-1 + a2 kn-2

 (k2 – a1 k1 – a2) kn-2 = 0 (quadratic equation) 
k1, k2 = ½ (a1 ± [a1

2 + 4 a2]1/2)

- 3 cases: a1
2 + 4 a2>0  k1, k2 are real and distinct.

a1
2 + 4 a2=0  k1=k2 real and repeated.

a1
2 + 4 a2<0  k1, k2 are complex and distinct.

Note: Similar to the 1st-order case, the stability of  the equation depends 
on the roots, k1 & k2.

13.4 2nd-Order Difference Equations: Example
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• Case 1: If  a1
2 + 4 a2 > 0  k1, k2 are real and distinct.

The general solution of  the homogeneous equation is: 
A k1

t + B k2
t, where k1 and k2 are the two roots.

Stability: If  |k1|> 1 or |k2 |>1, the equation is divergent.

• Case 2: If  a1
2 + 4 a2 = 0  k1=k2 real and repeated.

The general solution of  the homogeneous equation is 
(A + Bt) kt

t, where k = −(1/2) a1 is the root. 

Stability: If  |k|>1.

13.4 2nd-Order Difference Equations: Example

36

• Case 3: If  a1
2 + 4 a2 < 0  k1, k2 are complex and distinct.

The general solution of  the homogeneous equation is 
Art cos(θt + ω), 

where A and ω are constants, r = √-a2, and cos θ = −a1/(2√-a2), 

Alternatively: C1rt cos(θt) + C2rt sin(θt), 
where C1 = A cos ω 

C2 = − A sin ω 
(using the formula that cos(x + y) = (cos x)(cos y) − (sin x)(sin y).

Stability: If  |r|>1, the equation is divergent.

13.4 2nd-Order Difference Equations: Example
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Example 1: xt+2 + xt+1 − 2xt = 0. 
k1, k2: 1, −2 (real and distinct). The solution is:  A k1

t + B k2
t.

 xt = A (1)t + B(−2)t = A + B(−2)t.

Example 2: xt+2 + 6xt+1 + 9xt = 0. 
k1, k2: −3 (real and repeated). The solution is:  (A + Bt) kt

t

 xt = (A + Bt)(−3)t. 

Example 3: xt+2 − xt+1 + xt = 0. 
k1, k2: complex, with r = 1 & cos θ = 1/2, so θ = (1/3)π. The solution 
is: Art cos(θt + ω) 

 xt = A cos((1/3)πt + ω). 

The frequency is (π/3)/2π = 1/6 and the growth factor is 1, so the 
oscillations are undamped.

13.4 2nd-Order Difference Equations: Examples

38

• Step 2: Get a particular solution, for example, y∞
• Step 3: General Solution: Add homogeneous solution to particular 

solution.

Example: yt = –6yt-1 – 9yt-2 + 16.
Solution to homogeneous equation: yt = (A + Bt)(−3)t. 
Particular solution: y∞= 16/(1+6+9) = 1
Solution: yt = (A + Bt)(−3)t + 1

Note: If  we have y0 and y1, we can solve for A and B.
Say: y0 = 1 and y1 = 2

y0 = 1 = (A + B 0)(−3)0 + 1 = A + 1  A=0
y1 = 2 = (A + B 1)(−3)1 + 1 = -3x0 – 3B + 1  B=-1/3

Definite Solution: yt = (-1/3t)(−3)t + 1

13.4 2nd-Order Difference Equations: Example
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• In R

> reps=10 #number of  repetitions
> y <- rep(0,10)
> a1 <- -6
> a2 <- -9
> b <- 16
> y[1] = 1
> y[2] = 2
> i=3
> while (i <= reps){
+ y[i] <- a1*y[i-1] + a2*y[i-2] + b
+ i <- i+1
+ } 
> y
1      2     -5     28   -107    406  -1457   5104 -17495  59050 

Note: Explosive series.

13.4 2nd-Order Difference Equations: Example

• Now, we have a system
yt = a yt-1 + b xt-1 + m
xt = c yt-1 + d xt-1 + n

• Let’s rewrite the system using linear algebra. We have a vector 
autoregressive model with one lag, or VAR(1):
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• Let’s introduce the lag operator, L: Lq yt =  yt-q

Then, L yt =  yt-1.

Now we can write: zt = AL zt + κ  (I - AL) zt = κ

Assuming (I - A) is non-singular  z∞ = (I - A)-1 κ

13.5 System of Equations: VAR(1)

40
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• z∞ = (I - A)-1 κ is the long-run solution to the system.

• The dynamics of  the VAR(1) depend on the properties A, which can 
be understood from the eigenvalues.

• Diagonalizing the system:
H-1 zt = H-1 A (H H-1) zt-1 + H-1 κ
H-1 A H = Λ
H-1 κ = s
H-1 zt = ut (or  zt = Hut )

Each zt is a linear combination of  the u’s. 

• Now, ut = Λ ut-1 + s

13.5 System of Equations: VAR(1)

• Diagonalized system: ut = Λ ut-1 + s

• To solve the system, we need to solve the eigenvalue equation: 
2 - (a + d) + (ad − cb) = 0 (2 - tr(A) + |A| = 0)

• Stability:
- |  Stable system (“stationary,” or zt is I(0)).
- |i  Unstable system (“explosive”). Not typical of  

macro/finance time series.
- |i  Unit root system. Common in macro/finance time 

series.
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13.5 System of Equations: VAR(1)
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• Eigenvalue equation:  2 − 8 − 9 = 0  

• Transformed univariate equations:
u 1,t = 9 u1,t-1 + s1 (unstable equation)
u 2,t = −1 u2,t-1 + s2 (unstable equation)

• Now, we have a system
yt = 4 yt-1 + 5 xt-1 + 2
xt = 5 yt-1 + 4 xt-1 + 4

• Let’s rewrite the system using linear algebra:

43

13.5 System of Equations: VAR(1) - Example

• Two eigenvalues:  

• Transformed univariate equations:
u 1,t = 9 u1,t-1 + s1 (unstable equation)
u 2,t = -1 u2,t-1 + s2 (unstable equation)

• Recall solution for linear first-order equation:

• Solution for transformed univariate equations:
u 1,t = 9t u1,0 + (1-9t)/(-8) s1

u 2,t = (-1)t u2,0 + (1-(-1)t)/(2) s2
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• Use the eigenvector matrix, H, to transform the system back.
(1) From  H-1 κ = s , get the values for s1 and s2:
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• Plug these values into u1,t and u2,t:
u1,t = 9t u1,0 + (1-9t)/(-8) s1 = 9t u1,0 − 3 (1-9t)/8
u2,t = (-1)t u2,0 + (1-(-1)t)/(2) s2 = (-1)t u2,0 − 1 (1-(-1)t)/2
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(2) From H-1 zt = ut, get the solution in terms of  zt –i.e., xt and yt:
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• If  we are given y0 and x0, we can solve for u1,0 and u2,0 (2x2 system):
y0 = u1,0 + u2,0

x0 = u1,0 − u2,0


u1,0 = (x0 + y0)/2
u2,0 = (y0 - x0)/2 46
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• Q: Suppose we have a unit root system, with 1 and |2Can 
we have cointegration? That is, is there a linear combination of  zt ’s that is 
“stationary” (stable)? 

Consider 

• We know that u2,t is stable, we call [h*21 h*22] a cointegrating (CI) vector. 

• Let’s subtract zt-1 from zt = AL zt + κ:
zt – zt-1 = Δzt =  (I − L) zt = κ – (I – A) zt-1 = κ – Π zt-1

The eigenvalues of  Π are the complements of  the ’s from A: μi =1-i
then μ1=0 & μ2 =1 – 2.  Π is singular with rank 1! 
















































1
*
221

*
21

1
*
121

*
11

1,2

1,1

*
22

*
21

*
12

*
111

tt

tt

t

t

t

t
tt

xhyh

xhyh

u

u

x

y

hh

hh
zHu

47

13.5 System of Equations: VAR(1) - Cointegration

48

• We decompose Π: 
Π = (I – A) =  H H-1 –H Λ H-1 = H(I - Λ) H-1

Or

• Π is factorized into the product of  a row vector and a column vector, 
called an outer product:

- The row vector: β = the CI vector.

- The column vector: α = the loading matrix = the weights with which 
the CI vector enters into each equation of  the VAR.
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• Replacing Π into zt – zt-1 = Δzt =  κ – Π zt-1:

• All variables here are stationary: Δy’s and u2,t. This reformulation is 
called the vector error correction model of  the VAR (or VECM). 

• u2,t is the error correction term. It measures the extent to which y’s 
deviate from their equilibrium long-run value.

Note: If  , we cannot do what we have done above! (zt is I(2)).
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• Eigenvectors are:

• Now, we have a system:
yt = 1.2 yt-1 + 0.2 xt-1 + ey,t

xt = 0.6 yt-1 + 0.4 xt-1 + ex,t

• We find the eigenvalues of  A:
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• We can rewrite the VAR(1) into VECM form:
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• The VECM:
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• Then, the CI loading and the CI vector are:
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