Chapter 13

 Difference Equations

Leonardo di Pisa (c. 1170 - c. 1250)

Thomas Robert Malthus (1766-1834)

13.1 Difference Equations: Definitions

- We start with a time series $\left\{y_{n}\right\}=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}, y_{n}\right\}$
- Difference Equation - Procedure for calculating a term $\left(y_{n}\right)$ from the preceding terms: $y_{n-1}, y_{n-2,}, \ldots$ A starting value, y_{0}, is given.
Example: $y_{n}=f\left(y_{n-1}, y_{n-2}, \ldots, y_{n-k}\right)$, given y_{0}.
- If $f($.$) is linear, we have a linear difference equation. Our focus.$
- The number of preceding terms of y determines the order:
- First-Order Linear Difference Equation Form:

$$
y_{n}=a y_{n-1}+b \quad(a, b: \text { constants })
$$

- Similarly, an $k^{\text {th }}$-Order Linear Difference equation:

$$
y_{n}=a_{\mathrm{n}-1} y_{n-1}+a_{\mathrm{n}-2} y_{n-2}+\ldots+a_{\mathrm{n}-\mathrm{k}} y_{n-k}+b
$$

($a_{\mathrm{n}-1}, a_{\mathrm{n}-2}, \ldots, b$: constants)

13.1 Difference Equations: Famous Example

- Originated in India. It has been attributed to Indian writer Pingala (200 BC). In the West, Leonardo of Pisa (Fibonacci) studied it in 1202.
- Fibonacci studied the (unrealistic) growth of a rabbit population.
- Fibonacci numbers: $0,1,1,2,3,5,8,13, \ldots$ (each number represents an additional pair of rabbits.
- This series can be represented as a linear difference equation.
- Let $f(n)$ be the rabbit population at the end of month n. Then,

$$
\begin{array}{r}
f(n)=f(n-1)+f(n-2), \quad \text { with initial values } f(0)=0, \\
f(1)=1 .
\end{array}
$$

13.1 Difference Equations: Example 1

- The number of rabbits on a farm increases by 8% per year in addition to the removal of 4 rabbits per year for adoption. The farm starts out with 35 rabbits.

Let y_{n} be the population after n years. We can write the difference equation:

$$
y_{n}=1.08 y_{n-1}-4 ; \quad y_{0}=35
$$

Percentage change
every year. (a)

What you add or subtract every year. (b)

13.1 Difference Equations: Example 1 - A Few
 Terms

- Generate the first few terms - This gives us a feeling for how successive terms are generated.
- Graph the terms - Plot the points $\left(0, y_{0}\right),\left(1, y_{1}\right),\left(2, y_{2}\right)$, etc.

Example: $y_{n}=1.08 y_{n-1}-4, \quad$ with $y_{0}=35$
a. Generate $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, \ldots$

$$
\begin{aligned}
& y_{0}=35 \\
& y_{1}=1.08(35)-4=37.8-4=33.8 \\
& y_{2}=1.08(33.8)-4=36.50-4=32.50 \\
& y_{3}=1.08(32.50)-4=35.1-4=31.1 \\
& y_{4}=1.08(31.1)-4=33.59-4=29.59 \\
& y_{5}=1.08(29.59)-4=31.96-4=27.96
\end{aligned}
$$

13.1 Difference Equations: Example 1 - R

```
s=10
>y<- rep(0,10)
>a<-1.08
> b <- -4
y[1] = 35
> i=2
>while (i <= reps) {
+y[i]<-a*y[i-1] + b
+i<- i+1
+ }
>y
[1] 35.00000 33.80000 32.50400 31.10432 29.59267 27.96008 26.19689 24.29264
[9] 22.23605 20.01493
> plot(y)
```


13.1 Difference Equations: Example 1 - Graphing Difference Equations

b. Graph these first few terms

$$
(0,35)(1,33.8)(2,32.5)(3,31.1)(4,29.59)
$$

Index

13.1 Difference Equations: Example 2

- $y_{n}=0.5 y_{n-1}-1, \quad y_{0}=10$
a. Generate $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}$
$y_{0}=10$
$y_{1}=0.5(10)-1=5-1=4$
$y_{2}=0.5(4)-1=2-1=1$
$y_{3}=0.5(1)-1=0.5-1=-1 / 2$
$y_{4}=0.5(-1 / 2)-1=-0.25-1=-5 / 4$
b. Graph these first few terms
$(0,10)(1,4)(2,1)(3,-1 / 2)(4,-5 / 4)$

13.1 Difference Equations: Example 3 (in R)

- In economics we think of data as realizations of random variables. We modify Example 2 by introducing a random error term, ε. That is, in time series terminology, we have an autoregressive model, an $\operatorname{AR}(1)$:

$$
y_{n}=0.5 y_{n-1}-1+\varepsilon_{n}, \quad \varepsilon_{n} \sim \mathrm{~N}(0,1)
$$

- We generate the first 10 terms and graph them:

13.1 Difference Equations: More Examples

Example: The population of a country is currently 70 million, but is declining at the rate of 1% per year. Let y_{n} be the population after n years. Difference equation showing how to compute y_{n} from y_{n-1} :

$$
y_{n}=.99 y_{n-1}, \text { with } y_{0}=70,000,000 \text { (initial value) }
$$

Example: We borrow $\$ 150,000$ at 6% APR compounded monthly for 30 years to purchase a home. The monthly payment is determined to be $\$ 899.33$. The difference equation for the loan balance $\left(y_{n}\right)$ after each monthly payment has been made:

$$
y_{n}=1.005 y_{n-1}-899.33, \quad \text { with } y_{0}=150,000
$$

13.1 Difference Equations: The Steady State

- The steady state or long-run value represents an equilibrium, where there is no more change in y_{n}. We call this value y_{∞} :

$$
y_{n}=a y_{n-1}+b \quad \Rightarrow y_{\infty}=\frac{b}{1-a} ; \quad a \neq 1
$$

- Example 1: $y_{n}=1.08 y_{n-1}-4$,

$$
\Rightarrow y_{\infty}=b /(1-a)=-4 /(1-1.08)=50
$$

Check: $y_{n}=1.08(50)-4=50$

- Example 2: $y_{n}=0.5 y_{n-1}-1$,

$$
\Rightarrow y_{\infty}=b /(1-a)=-1 /(1-0.5)=-2
$$

Check: $y_{n}=0.5(-2)-1=-2$

13.2 Solving Difference Eq's - Repeated Iteration

- We want to generate a formula from which we can directly calculate any term without first having to calculate all the terms preceding it.
- Repeated Iteration Method (Backward Solution):

$$
\begin{aligned}
y_{n} & =a y_{n-1}+b=a\left(a y_{n-2}+b\right)+b=a^{2} y_{n-2}+a b+b= \\
& =a^{2}\left(a y_{n-3}+b\right)+a b+b=a^{3} y_{n-3}+a^{2} b+a b+b= \\
& =a^{n} y_{0}+a^{n-1} b+a^{n-2} b+\ldots+a b+b \\
& =a^{n} y_{0}+\left(\frac{1-a^{n}}{1-a}\right) b ; \quad a \neq 1
\end{aligned}
$$

13.2 Solving Difference Eq's - Repeated Iteration

- Solution: $y_{n}=a^{n} y_{0}+\left(\frac{1-a^{n}}{1-a}\right) b ; \quad a \neq 1$

$$
\text { or } \quad y_{n}=a^{n} y_{0}+\left(1-a^{n}\right) y_{\infty}
$$

- The steady state is:

$$
y_{\infty}=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} a^{n} y_{0}+\lim _{n \rightarrow \infty}\left(\frac{1-a^{n}}{1-a}\right) b
$$

- We have 3 cases:
a) If $|a|<1 \Rightarrow y_{\infty}=b /(1-a)=$ finite; y_{n} converges
b) If $|a|>1 \quad \Rightarrow y_{\infty}$ indefinite; y_{n} diverges
c) If $|a|=1 \quad \Rightarrow y_{\infty}$ indefinite; y_{n} diverges

13.2 Solving Difference Eq's - Forward Solution

- Solve for y_{n-1} in $y_{n}=a y_{n-1}+b \quad \Rightarrow y_{n-1}=(1 / a) y_{n}-b / a$.
- Or $y_{n}=(1 / a) y_{n+1}-b / a$.

$$
\begin{aligned}
y_{n} & =\frac{1}{a} y_{n+1}-\frac{b}{a}=\frac{1}{a}\left(\frac{1}{a} y_{n+2}-\frac{b}{a}\right)-\frac{b}{a}=\left(\frac{1}{a}\right)^{2} y_{n+2}-\left[\left(\frac{1}{a}\right)^{2} b+\frac{1}{a} b\right]= \\
& =\left(\frac{1}{a}\right)^{t} y_{n+t}-\left[\left(\frac{1}{a}\right)^{t} b+\left(\frac{1}{a}\right)^{t-1} b+\ldots+\left(\frac{1}{a}\right)^{2} b+\frac{b}{a}\right] \\
& =\theta^{t} y_{n+t}-\left(\frac{1-\theta^{t+1}}{1-\theta}\right) b ; \quad \text { where } \theta=\frac{1}{a} ; a \neq 1
\end{aligned}
$$

- If $|\theta|=|(1 / a)|<1 \quad \Rightarrow y_{n}$ converges $\quad(|a|>1)$
- When $|a|>1$, equation is divergent, the forward solution works.

13.2 Solving Difference Eq's - General Solution

- Steps:

1) Get a solution to the homogenous equation $(b=0)$
2) Get a particular solution, for example y_{∞}
3) General solution: Add both solutions

- Step 1) Homogenous equation: $y_{n}=a y_{n-1}$,
- Guess a solution: $\quad y_{n}=\mathrm{A} k^{n}$,
- Check the guessed solution: $y_{n}=\mathrm{A} k^{n}$

$$
=a y_{n-1}=a\left(\mathrm{~A} k^{n-1}\right) \Rightarrow a=k
$$

$$
=\mathrm{A} a^{n}
$$

- Step 2) Particular solution:
$y_{\infty}=\mathrm{b} /(1-a), \quad a \neq 1$
- Step 3) General Solution: $y_{n}=A a^{n}+y_{\infty}=A a^{n}+\frac{b}{1-a}$

13.2 Solving Difference Eq's - General Solution

- Step 3) General Solution: $\quad y_{n}=A a^{n}+y_{\infty}=A a^{n}+\frac{b}{1-a}$
- We can determine A, if we have some values for y_{t}. Say y_{0}.

$$
y_{0}=A a^{0}+y_{\infty}=A+\frac{b}{1-a} \quad \Rightarrow A=y_{0}-y_{\infty}=y_{0}-\frac{b}{1-a}
$$

- We replace A in the general solution to get a definite solution, with no unknown values:

$$
y_{n}=\left(y_{0}-\frac{b}{1-a}\right) a^{n}+\frac{b}{1-a} \quad \text { (definite solution) }
$$

which is just the backward solution!

$$
y_{n}=\left(y_{0}-\frac{b}{1-a}\right) a^{n}+\frac{b}{1-a}=a^{n} y_{0}+\left(1-a^{n}\right) y_{\infty}
$$

13.2 Solving Difference Eq's - General Solution

- Example: Solve the difference equation:

$$
y_{n}=0.5 y_{n-1}-1, \quad y_{0}=10
$$

Steady state: $\quad y_{\infty}=b /(1-a)=-1 / .5=-2$
Solution:

$$
\begin{aligned}
y_{n} & =y_{\infty}+\left(y_{o}-y_{\infty}\right) a^{n} \\
& =-2+(10-(-2))(.5)^{n}=-2+12(.5)^{n}
\end{aligned}
$$

Q : What is the value of y at $\mathrm{n}=10$?

$$
y_{n=10}=-2+12(.5)^{10}=-1.988281
$$

13.2 Special Case - $a=1$ ("Random Walk")

- In the difference equation $\mathrm{y}_{\mathrm{n}}=a \mathrm{y}_{\mathrm{n}-1}+b, \quad$ let $a=1$

$$
\Rightarrow \mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}-1}+b
$$

- Solution (Repeated Iteration): $\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{0}+b \mathrm{n}$

There is only a change in b (constant change per period).

- Example: Solve $y_{n}=y_{n-1}+5$, with $\mathrm{y}_{0}=10$.

Solution: $\mathrm{y}_{\mathrm{n}}=10+5 \mathrm{n}$

13.2 Simple Financial Difference Equations

- Simple Interest:

$$
\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}-1}+\left(\mathrm{y}_{0} \mathrm{i}\right)
$$

- Compound Interest:
$y_{n}=(1+i) y_{n-1}$
- Increasing Annuities:
$\mathrm{y}_{\mathrm{n}}=(1+\mathrm{i}) \mathrm{y}_{\mathrm{n}-1}+\mathrm{b}$ (PMT)
- Decreasing Annuities:
$\mathrm{y}_{\mathrm{n}}=(1+\mathrm{i}) \mathrm{y}_{\mathrm{n}-1}-\mathrm{b}$ (PMT)
- Loans:
$\mathrm{y}_{\mathrm{n}}=(1+\mathrm{i}) \mathrm{y}_{\mathrm{n}-1}-\mathrm{b}$ (PMT)
- Compound Interest Solution:

$$
\begin{aligned}
& y_{\mathrm{n}}=\mathrm{y}_{0}(1+\mathrm{i})^{\mathrm{n}} \\
& \mathrm{FV}=P V *(1+\mathrm{i})^{\mathrm{n}}
\end{aligned}
$$

13.3 Graphing Difference Eq's: Definitions

- Vertical Direction - The up-and-down motion of successive terms.
- Monotonic: The graph heads in one direction (up-increasing, down-decreasing)
- Oscillating: The graph changes direction with every term.
- Constant: The graph always remains at the same height.

13.3 Graphing Difference Eq's: Vertical Direction

- Monotonic: The graph heads in one direction (up - increasing, down - decreasing). The constant a is positive $(a>0)$.
- Example:
$\mathrm{y}_{\mathrm{n}}=2 \mathrm{y}_{\mathrm{n}-1}+3, \mathrm{y}_{0}=0 \quad \mathrm{y}_{\mathrm{n}}=0.2 \mathrm{y}_{\mathrm{n}-1}+3, \mathrm{y}_{0}=10$

$a>1$
$0<a^{\text {lndex }}<1$

13.3 Graphing Difference Eq's: Vertical Direction

- Oscillating: The graph changes direction with every term. The constant a is negative ($a<0$).
- Example:

$$
\mathrm{y}_{\mathrm{n}}=-0.2 \mathrm{y}_{\mathrm{n}-1}+3, \mathrm{y}_{0}=0 \quad \mathrm{y}_{\mathrm{n}}=-2 \mathrm{y}_{\mathrm{n}-1}+3, \mathrm{y}_{0}=0
$$

13.3 Graphing Difference Eq's: Vertical Direction

- Constant: The graph always remains at the same height

$$
\left.\Rightarrow y_{\mathrm{n}}=\mathrm{y}_{\infty} \quad \text { (a variation, constant trend }\right)
$$

- Example:

13.3 Graphing Difference Eq's: Definitions 2

- Long-run Behavior - The eventual behavior of the graph.
- Attracted or Stable: The graph approaches a horizontal line (asymptotic or attracted to the line).
- Repelled or Unstable: The graph goes infinitely high or infinitely low (unbounded or repelled from the line).
- In general, we say a system is stable if its long-run behavior is not sensitive to the initial conditions. Some "unstable" system maybe "stable" by chance: when $y_{0}=y_{\infty}$.

13.3 Graphing Difference Eq's: Long-run

13.3 Graphing Difference Eq's: Long-run

Summary:

- $|a|>1$ unstable or unbounded -repelled from line $[b /(1-a)]$
- $|a|<1$ stable or bounded -attracted or convergent to $[b /(1-a)]$
- $a<0$ oscillatory
- $a>0$ monotonic
- $a=-1$ bounded oscillatory
- $a=1, b=0$ constant
- $a=1, b>0$ constant increasing
- $a=1, b<0$ constant decreasing

Note: All of this can be deduced from the solution:

$$
y_{n}=\left(y_{0}-\frac{b}{1-a}\right) a^{n}+\frac{b}{1-a}
$$

Figure 13.1 Stable Difference Equations (13.2) and (13.3)

Figure 13.2 Unstable Difference Equations (13.5) and (13.6)

Figure 13.3 Phase Diagram for Equation (13.2)

Figure 13.4 Phase Diagrams for Difference Equations (13.3), (13.5), and (13.6)

13.3 Difference Equations: Application 1

- Solow's Growth Model
- k_{t} : capital per capita (K/L)
- y_{t} : income/production per capita: $f\left(k_{\mathrm{t}}\right)=\mathrm{A}\left(k_{\mathrm{t}}\right)^{\alpha}$
- δ : depreciation
- i_{t} : investment per capita: capital accumulation: $k_{\mathrm{t}}-(1-\delta) k_{\mathrm{t}-1}$
- s_{t} : savings per capita: $\sigma f\left(k_{\mathrm{t}}\right) \quad$ ($\sigma:$ propensity to save)
- Equilibrium condition: $\mathrm{s}_{\mathrm{t}}=\mathrm{i}_{\mathrm{t}} \quad \Rightarrow k_{\mathrm{t}}-(1-\delta) k_{\mathrm{t}-1}=\sigma f\left(k_{\mathrm{t}}\right)$
- Difference equation: $k_{\mathrm{t}}-\sigma f\left(k_{\mathrm{t}}\right)=(1-\delta) k_{\mathrm{t}-1}$

13.3 Difference Equations: Application 2

- Half-life PPP

Half-life: how long it takes for the initial deviation from y_{0} and y_{∞} to be cut in half.

- r_{t} real exchange rate $\left(=\mathrm{S}_{\mathrm{t}} \mathrm{P}_{\mathrm{d}} / \mathrm{P}_{\mathrm{f}}\right)$
$-\mathrm{r}_{\mathrm{t}}$ follows an $\operatorname{AR}(1)$ process: $\mathrm{r}_{\mathrm{t}}=a \mathrm{r}_{\mathrm{t}-1}+b$
$-\mathrm{r}_{\mathrm{H}}=\left(\mathrm{r}_{0}+\mathrm{r}_{\infty}\right) / 2$
- Recall solution to $\mathrm{r}_{\mathrm{t}}: \quad r_{t}=a^{t} r_{0}+\left(1-a^{t}\right) r_{\infty} ; \quad r_{\infty}=\frac{b}{1-a} ; a \neq 1$
$\mathrm{r}_{\mathrm{H}}=a^{\mathrm{H}} \mathrm{r}_{0}+\left(1-a^{\mathrm{H}}\right) \mathrm{r}_{\infty} \quad \Rightarrow\left(\mathrm{r}_{0}+\mathrm{r}_{\infty}\right) / 2=a^{\mathrm{H}} \mathrm{r}_{0}+\left(1-a^{\mathrm{H}}\right) \mathrm{r}_{\infty}$ $\Rightarrow\left(1-2 a^{\mathrm{H}}\right) \mathrm{r}_{0}=\left(1-2 a^{\mathrm{H}}\right) \mathrm{r}_{\infty}$
$\Rightarrow 1-2 a^{\mathrm{H}}=0 \quad 1=2 a^{\mathrm{H}}$
$\Rightarrow \mathrm{H}=-\ln (2) / \ln (a)$
- Interesting cases: If $a=0.9 \Rightarrow \mathrm{H}=-\ln (2) / \ln (0.9)=6.5763$

$$
\text { If } a=0.95 \Rightarrow \mathrm{H}=-\ln (2) / \ln (0.95)=13.5135
$$

$$
\text { If } a=0.99 \Rightarrow \mathrm{H}=-\ln (2) / \ln (0.95)=68.9675
$$

13.4 2nd-Order Difference Equations: Example

- We want a general solution to $\mathrm{y}_{\mathrm{n}}=a_{1} \mathrm{y}_{\mathrm{n}-1}+a_{2} \mathrm{y}_{\mathrm{n}-2}+c$
- Steps:

1) Guess a solution to the homogenous equation ($c=0$)
2) Get a particular solution, for example y_{∞}
3) General solution: Add both solutions

- To get a definite solution-i.e., with no unknowns-, we need initial values.

13.4 2nd-Order Difference Equations: Example

- Step 1: Homogenous equation: $\mathrm{y}_{\mathrm{n}}=a_{1} \mathrm{y}_{\mathrm{n}-1}+a_{2} \mathrm{y}_{\mathrm{n}-2}$

Guess a solution: $y_{n}=k^{n}$

- Check the guessed solution: $\quad k^{\mathrm{n}}=a_{1} k^{\mathrm{n}-1}+a_{2} k^{\mathrm{n}-2}$

$$
\begin{aligned}
& \Rightarrow\left(k^{2}-a_{1} k^{1}-a_{2}\right) k^{\mathrm{n}-2}=0 \quad \text { (quadratic equation) } \\
& k_{1}, k_{2}=1 / 2\left(a_{1} \pm\left[a_{1}{ }^{2}+4 a_{2}\right]^{1 / 2}\right) \\
& -3 \text { cases: } a_{1}^{2}+4 a_{2}>0 \quad \Rightarrow k_{1}, k_{2} \text { are real and distinct. } \\
& a_{1}^{2}+4 a_{2}=0 \quad \Rightarrow k_{1}=k_{2} \text { real and repeated. } \\
& a_{1}^{2}+4 a_{2}<0 \quad \Rightarrow k_{1}, k_{2} \text { are complex and distinct. }
\end{aligned}
$$

Note: Similar to the $1^{\text {stt-order case, the stability of the equation depends }}$ on the roots, $k_{1} \& k_{2}$.

13.4 2nd-Order Difference Equations: Example

- Case 1: If $a_{1}^{2}+4 a_{2}>0 \quad \Rightarrow k_{1}, k_{2}$ are real and distinct.

The general solution of the homogeneous equation is:
$A k_{1}{ }^{\mathrm{t}}+B k_{2}{ }^{\mathrm{t}}$, where k_{1} and k_{2} are the two roots.
Stability: If $\left|k_{1}\right|>1$ or $\left|k_{2}\right|>1$, the equation is divergent.

- Case 2: If $a_{1}^{2}+4 a_{2}=0 \quad \Rightarrow k_{1}=k_{2}$ real and repeated.

The general solution of the homogeneous equation is
$(A+B t) k^{t}$, where $k=-(1 / 2) a_{1}$ is the root.
Stability: If $|k|>1$.

13.4 2nd-Order Difference Equations: Example

- Case 3: If $a_{1}^{2}+4 a_{2}<0 \quad \Rightarrow k_{1}, k_{2}$ are complex and distinct. The general solution of the homogeneous equation is

$$
A r^{t} \cos (\theta t+\omega),
$$

where A and ω are constants, $r=\sqrt{ }-a_{2}$, and $\cos \theta=-a_{1} /\left(2 \sqrt{ }-a_{2}\right)$,
Alternatively: $\quad C_{1} r^{t} \cos (\theta t)+C_{2} r^{t} \sin (\theta t)$, where $C_{1}=A \cos \omega$

$$
C_{2}=-A \sin \omega
$$

(using the formula that $\cos (x+y)=(\cos x)(\cos y)-(\sin x)(\sin y)$.
Stability: If $|r|>1$, the equation is divergent.

13.4 2nd-Order Difference Equations: Examples

Example 1: $\quad x_{t+2}+x_{t+1}-2 x_{t}=0$.
$k_{1}, k_{2}: 1,-2$ (real and distinct). The solution is: $A k_{1}{ }^{\mathrm{t}}+B k_{2}{ }^{\mathrm{t}}$.

$$
\Rightarrow x_{t}=A(1)^{t}+B(-2)^{t}=A+B(-2)^{t} .
$$

Example 2: $\quad x_{t+2}+6 x_{t+1}+9 x_{t}=0$.
$k_{1}, k_{2}:-3$ (real and repeated). The solution is: $(A+B t) k^{t}$

$$
\Rightarrow x_{t}=(A+B t)(-3)^{t} .
$$

Example 3: $\quad x_{t+2}-x_{t+1}+x_{t}=0$.
k_{1}, k_{2} : complex, with $r=1 \& \cos \theta=1 / 2$, so $\theta=(1 / 3) \pi$. The solution is: $A r^{t} \cos (\theta t+\omega)$

$$
\Rightarrow x_{t}=A \cos ((1 / 3) \pi t+\omega) .
$$

The frequency is $(\pi / 3) / 2 \pi=1 / 6$ and the growth factor is 1 , so the oscillations are undamped.

13.4 2nd-Order Difference Equations: Example

- Step 2: Get a particular solution, for example, y_{∞}
- Step 3: General Solution: Add homogeneous solution to particular solution.

Example: $\mathrm{y}_{t}=-6 \mathrm{y}_{t-1}-9 \mathrm{y}_{t-2}+16$.
Solution to homogeneous equation: $\mathrm{y}_{t}=(A+B t)(-3)^{t}$.
Particular solution: $\mathrm{y}_{\infty}=16 /(1+6+9)=1$
Solution: $\quad \mathrm{y}_{t}=(A+B t)(-3)^{t}+1$
Note: If we have y_{0} and y_{1}, we can solve for A and B.
Say: $y_{0}=1$ and $y_{1}=2$

$$
\begin{array}{ll}
\mathrm{y}_{0}=1=(A+B 0)(-3)^{0}+1=\mathrm{A}+1 & \Rightarrow \mathrm{~A}=0 \\
\mathrm{y}_{1}=2=(A+B 1)(-3)^{1}+1=-3 \mathrm{x} 0-3 \mathrm{~B}+1 & \Rightarrow \mathrm{~B}=-1 / 3
\end{array}
$$

$$
y_{t}=(-1 / 3 t)(-3)^{t}+1
$$

13.4 2nd-Order Difference Equations: Example

- In R
$>$ reps $=10$ \#number of repetitior
$>y<-\operatorname{rep}(0,10)$
$>a 1<-6$
$>$ a $2<--9$
$>\mathrm{b}<-16$
$>y[1]=1$
$>y[2]=2$
$>\mathrm{i}=3$
$>$ while (i <= reps) \{
$+\mathrm{y}\left[\mathrm{i}<-\mathrm{a} 1^{*} \mathrm{y}[\mathrm{i}-1]+\mathrm{a} 2^{*} \mathrm{y}[\mathrm{i}-2]+\mathrm{b}\right.$

$+\mathrm{i}<-\mathrm{i}+1$
+ \}
$>y$
$\begin{array}{llllllllll}1 & 2 & -5 & 28 & -107 & 406 & -1457 & 5104-17495 & 59050\end{array}$
Note: Explosive series.

13.5 System of Equations: VAR(1)

- Now, we have a system

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t}}=a \mathrm{y}_{\mathrm{t}-1}+b \mathrm{x}_{\mathrm{t}-1}+\mathrm{m} \\
& \mathrm{x}_{\mathrm{t}}=c \mathrm{y}_{\mathrm{t}-1}+d \mathrm{x}_{\mathrm{t}-1}+\mathrm{n}
\end{aligned}
$$

- Let's rewrite the system using linear algebra. We have a vector autoregressive model with one lag, or $\operatorname{VAR}(1)$:

$$
z_{t}=\left[\begin{array}{l}
y_{t} \\
x_{t}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
y_{t-1} \\
x_{t-1}
\end{array}\right]+\left[\begin{array}{l}
m \\
n
\end{array}\right]=\mathbf{A} z_{t-1}+\kappa
$$

- Let's introduce the lag operator, $\mathrm{L}: \quad \mathrm{L}^{\mathrm{q}} \mathrm{y}_{\mathrm{t}}=\mathrm{y}_{\mathrm{t}-\mathrm{q}}$ Then, $L y_{t}=y_{t-1}$.

Now we can write: $\quad z_{\mathrm{t}}=\mathbf{A L} \boldsymbol{z}_{\mathrm{t}}+\boldsymbol{\kappa} \quad \Rightarrow(\mathbf{I}-\mathbf{A L}) \boldsymbol{z}_{\mathrm{t}}=\boldsymbol{\kappa}$
Assuming $(\mathbf{I}-\mathbf{A})$ is non-singular $\quad \Rightarrow \boldsymbol{z}_{\infty}=(\mathbf{I}-\mathbf{A})^{-1} \boldsymbol{\kappa}$

13.5 System of Equations: VAR(1)

- $z_{\infty}=(\mathbf{I}-\mathbf{A})^{-1} \boldsymbol{\kappa}$ is the long-run solution to the system.
- The dynamics of the $\operatorname{VAR}(1)$ depend on the properties \mathbf{A}, which can be understood from the eigenvalues.
- Diagonalizing the system:

$$
\begin{aligned}
& \mathbf{H}^{-1} z_{\mathrm{t}}=\mathbf{H}^{-1} \mathbf{A}\left(\mathbf{H} \mathbf{H}^{-1}\right) z_{\mathrm{t}-1}+\mathbf{H}^{-1} \boldsymbol{\kappa} \\
& \mathbf{H}^{-1} \mathbf{A} \mathbf{H}=\boldsymbol{\Lambda} \\
& \mathbf{H}^{-1} \boldsymbol{\kappa}=\boldsymbol{s} \\
& \mathbf{H}^{-1} z_{\mathrm{t}}=\boldsymbol{u}_{\mathrm{t}} \quad\left(\text { or } z_{\mathrm{t}}=\mathbf{H} \boldsymbol{u}_{\mathrm{t}}\right)
\end{aligned}
$$

Each $\boldsymbol{z}_{\mathrm{t}}$ is a linear combination of the \boldsymbol{u} 's.

- Now, $\quad u_{\mathrm{t}}=\boldsymbol{\Lambda} u_{\mathrm{t}-1}+\boldsymbol{s}$

13.5 System of Equations: VAR(1)

- Diagonalized system: $u_{\mathrm{t}}=\boldsymbol{\Lambda} \boldsymbol{u}_{\mathrm{t}-1}+\boldsymbol{s}$

$$
u_{t}=\left[\begin{array}{l}
u_{1, t} \\
u_{2, t}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1, t-1} \\
u_{2, t-1}
\end{array}\right]+\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} u_{1, t-1}+s_{1} \\
\lambda_{2} u_{2, t-1}+s_{2}
\end{array}\right]
$$

- To solve the system, we need to solve the eigenvalue equation:

$$
\lambda^{2}-(a+d) \lambda+(a d-c b)=0 \quad\left(\lambda^{2}-\operatorname{tr}(\mathbf{A}) \lambda+|\mathbf{A}|=0\right)
$$

- Stability:
- $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|<1 \Rightarrow$ Stable system ("stationary," or z_{t} is $\mathrm{I}(0)$).
- $\left|\lambda_{i}\right|>1 \quad \Rightarrow$ Unstable system ("explosive"). Not typical of macro/finance time series.
- $\left|\lambda_{\mathrm{i}}\right|=1 \quad \Rightarrow$ Unit root system. Common in macro/finance time series.

13.5 System of Equations: VAR(1) - Example

- Now, we have a system

$$
\begin{aligned}
& y_{t}=4 y_{t-1}+5 x_{t-1}+2 \\
& x_{t}=5 y_{t-1}+4 x_{t-1}+4
\end{aligned}
$$

- Let's rewrite the system using linear algebra:

$$
z_{t}=\left[\begin{array}{l}
y_{t} \\
x_{t}
\end{array}\right]=\left[\begin{array}{ll}
4 & 5 \\
5 & 4
\end{array}\right]\left[\begin{array}{c}
y_{t-1} \\
x_{t-1}
\end{array}\right]+\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

- Eigenvalue equation: $\lambda^{2}-8 \lambda-9=0 \quad \Rightarrow \lambda_{1}, \lambda_{2}=(9,-1)$
- Transformed univariate equations:

$$
\begin{array}{ll}
u_{1, \mathrm{t}}=9 \mathrm{u}_{1, \mathrm{t}-1}+\mathrm{s}_{1} & \text { (unstable equation) } \\
\mathrm{u}_{2, \mathrm{t}}=-1 \mathrm{u}_{2, \mathrm{t}-1}+\mathrm{s}_{2} & \text { (unstable equation) }
\end{array}
$$

13.5 System of Equations: VAR(1) - Example

- Two eigenvalues: $\lambda_{1}, \lambda_{2}=(9,-1)$
- Transformed univariate equations:

$$
\begin{array}{rr}
u_{1, t}=9 \mathrm{u}_{1, \mathrm{t}-1}+\mathrm{s}_{1} \quad \text { (unstable equation) } \\
\mathrm{u}_{2, \mathrm{t}}=-1 \mathrm{u}_{2, \mathrm{t}-1}+\mathrm{s}_{2} \quad \text { (unstable equation) }
\end{array}
$$

- Recall solution for linear first-order equation:

$$
y_{n}=a^{t} y_{0}+\left(\frac{1-a^{t}}{1-a}\right) b ; \quad a \neq 1
$$

- Solution for transformed univariate equations:
$\mathrm{u}_{1, \mathrm{t}}=9^{\mathrm{t}} \mathrm{u}_{1,0}+\left(1-9^{\mathrm{t}}\right) /(-8) \mathrm{s}_{1}$
$\mathrm{u}_{2, \mathrm{t}}=(-1)^{\mathrm{t}} \mathrm{u}_{2,0}+\left(1-(-1)^{\mathrm{t}}\right) /(2) \mathrm{s}_{2}$

13.5 System of Equations: VAR(1) - Example

- Use the eigenvector matrix, \mathbf{H}, to transform the system back.
(1) From $\mathbf{H}^{-1} \boldsymbol{\kappa}=\boldsymbol{s}$, get the values for s_{1} and s_{2} :

$$
\begin{aligned}
& H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] ; \quad H^{-1}=\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right](-1 / 2) \\
& s=\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=H^{-1} \kappa=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
\end{aligned}
$$

- Plug these values into $\mathrm{u}_{1, \mathrm{t}}$ and $\mathrm{u}_{2, t}$:

$$
\begin{aligned}
& \mathrm{u}_{1, \mathrm{t}}=9^{\mathrm{t}} \mathrm{u}_{1,0}+\left(1-9^{\mathrm{t}}\right) /(-8) \mathrm{s}_{1}=9^{\mathrm{t}} \mathrm{u}_{1,0}-3\left(1-9^{\mathrm{t}}\right) / 8 \\
& \mathrm{u}_{2, \mathrm{t}}=(-1)^{\mathrm{t}} \mathrm{u}_{2,0}+\left(1-(-1)^{\mathrm{t}}\right) /(2) \mathrm{s}_{2}=(-1)^{\mathrm{t}} \mathrm{u}_{2,0}-1\left(1-(-1)^{\mathrm{t}}\right) / 2
\end{aligned}
$$

13.5 System of Equations: VAR(1) - Example

(2) From $\mathbf{H}^{-1} \boldsymbol{z}_{\mathbf{t}}=\boldsymbol{u}_{\boldsymbol{v}}$, get the solution in terms of $\boldsymbol{z}_{\mathrm{t}}$-i.e., x_{t} and y_{t} :

$$
\begin{aligned}
& z_{t}=H u_{t}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
u_{1, t} \\
u_{2, t}
\end{array}\right]=\left[\begin{array}{l}
u_{1, t}+u_{2, t} \\
u_{1, t}-u_{2, t}
\end{array}\right] \\
& {\left[\begin{array}{l}
y_{t} \\
x_{t}
\end{array}\right]=\left[\begin{array}{l}
{\left[9^{t} u_{1,0}-3 \frac{1-9^{t}}{8}\right]+\left[(-1)^{t} u_{2,0}-\frac{1-(-1)^{t}}{2}\right]} \\
{\left[9^{t} u_{1,0}-3 \frac{1-9^{t}}{8}\right]-\left[(-1)^{t} u_{2,0}-\frac{1-(-1)^{t}}{2}\right]}
\end{array}\right]}
\end{aligned}
$$

- If we are given y_{0} and x_{0}, we can solve for $\mathrm{u}_{1,0}$ and $\mathrm{u}_{2,0}(2 \times 2$ system $)$:

$$
\begin{aligned}
& y_{0}=\mathrm{u}_{1,0}+\mathrm{u}_{2,0} \\
& x_{0}=\mathrm{u}_{1,0}-\mathrm{u}_{2,0} \\
\Rightarrow \quad & \\
& \mathrm{u}_{1,0}=\left(x_{0}+y_{0}\right) / 2 \\
& \mathrm{u}_{2,0}=\left(y_{0}-x_{0}\right) / 2
\end{aligned}
$$

13.5 System of Equations: VAR(1) - Cointegration

- Q: Suppose we have a unit root system, with $\lambda_{1}=1$ and $\left|\lambda_{2}\right|<1$. Can we have cointegration? That is, is there a linear combination of z_{t} 's that is "stationary" (stable)?
Consider $\quad u_{t}=H^{-1} z_{t}=\left[\begin{array}{ll}h_{11}^{*} & h_{12}^{*} \\ h_{21}^{*} & h_{22}^{*}\end{array}\right]\left[\begin{array}{l}y_{t} \\ x_{t}\end{array}\right] \Rightarrow\left[\begin{array}{l}u_{1, t-1} \\ u_{2, t-1}\end{array}\right]=\left[\begin{array}{l}h_{11}^{*} y_{t-1}+h_{12}^{*} x_{t-1} \\ h_{21}^{*} y_{t-1}+h_{22}^{*} x_{t-1}\end{array}\right]$
- We know that $\mathrm{u}_{2, \mathrm{t}}$ is stable, we call $\left[\mathrm{h}^{*}{ }_{21} \mathrm{~h}^{*}{ }_{22}\right]$ a cointegrating (CI) vector.
- Let's subtract $\boldsymbol{z}_{\mathrm{t}-1}$ from $\boldsymbol{z}_{\mathrm{t}}=\mathrm{AL} \boldsymbol{z}_{\mathrm{t}}+\boldsymbol{\kappa}$:

$$
z_{\mathrm{t}}-z_{\mathrm{t}-1}=\Delta z_{\mathrm{t}}=(\mathbf{I}-\mathrm{L}) z_{\mathrm{t}}=\boldsymbol{\kappa}-(\mathbf{I}-\mathbf{A}) z_{\mathrm{t}-1}=\boldsymbol{\kappa}-\Pi z_{\mathrm{t}-1}
$$

The eigenvalues of Π are the complements of the λ 's from $\mathbf{A}: \mu_{i}=1-\lambda_{i}$; then $\mu_{1}=0 \& \mu_{2}=1-\lambda_{2} . \quad \Rightarrow \Pi$ is singular with rank 1!

13.5 System of Equations: VAR(1) - Cointegration

- We decompose Π :

$$
\Pi=(\mathbf{I}-\mathbf{A})=\mathbf{H} \mathbf{H}^{-1}-\mathbf{H} \boldsymbol{\Lambda} \mathbf{H}^{-1}=\mathbf{H}(\mathbf{I}-\boldsymbol{\Lambda}) \mathbf{H}^{-1}
$$

Or

$$
\left.\begin{array}{rl}
\Pi & =H\left[\begin{array}{cc}
0 & 0 \\
0 & 1-\lambda_{2}
\end{array}\right] H^{-1}=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & 1-\lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
h_{11}^{*} & h_{12}^{*} \\
h_{21}^{*} & h_{22}^{*}
\end{array}\right]=\left[\begin{array}{ll}
0 & h_{12}\left(1-\lambda_{2}\right) \\
0 & h_{22}\left(1-\lambda_{2}\right)
\end{array}\right]\left[\begin{array}{ll}
h_{11}^{*} & h_{12}^{*} \\
h_{21}^{*} & h_{22}^{*}
\end{array}\right] \\
& =\left[\begin{array}{ll}
h_{12}\left(1-\lambda_{2}\right) h_{21}^{*} & h_{12}\left(1-\lambda_{2}\right) h_{22}^{*} \\
h_{22}\left(1-\lambda_{2}\right) h_{21}^{*} & h_{22}\left(1-\lambda_{2}\right) h_{22}^{*}
\end{array}\right]=\left[\begin{array}{ll}
h_{12}\left(1-\lambda_{2}\right) \\
h_{22}\left(1-\lambda_{2}\right)
\end{array}\right]
\end{array}\right]\left[\begin{array}{ll}
h_{21}^{*} & h_{22}^{*}
\end{array}\right]=\alpha \beta^{\prime},
$$

- Π is factorized into the product of a row vector and a column vector, called an outer product:
- The row vector: $\beta=$ the CI vector.
- The column vector: $\alpha=$ the loading matrix = the weights with which the CI vector enters into each equation of the VAR.

13.5 System of Equations: VAR(1) - Cointegration

- Replacing Π into $z_{\mathrm{t}}-\boldsymbol{z}_{\mathrm{t}-1}=\Delta \boldsymbol{z}_{\mathrm{t}}=\boldsymbol{\kappa}-\Pi z_{\mathrm{t}-1}$:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\Delta y_{1, t} \\
\Delta y_{2, t}
\end{array}\right]=\left[\begin{array}{l}
\kappa_{1} \\
\kappa_{2}
\end{array}\right]-\left[\begin{array}{ll}
h_{12}\left(1-\lambda_{2}\right) h_{21}^{*} & h_{12}\left(1-\lambda_{2}\right) h_{22}^{*} \\
h_{22}\left(1-\lambda_{2}\right) h_{21}^{*} & h_{22}\left(1-\lambda_{2}\right) h_{22}^{*}
\end{array}\right]\left[\begin{array}{l}
y_{1, t-1} \\
y_{2, t-1}
\end{array}\right]=} \\
& =\left[\begin{array}{l}
\kappa_{1}-h_{12}\left(1-\lambda_{2}\right)\left(h_{21}^{*} y_{1, t-1}+h_{22}^{*} y_{2, t-1}\right) \\
\kappa_{2}-h_{22}\left(1-\lambda_{2}\right)\left(h_{21}^{*} y_{1, t-1}+h_{22}^{*} y_{2, t-1}\right)
\end{array}\right]=\left[\begin{array}{l}
\kappa_{1}-h_{12}\left(1-\lambda_{2}\right) u_{2, t-1} \\
\kappa_{2}-h_{22}\left(1-\lambda_{2}\right) u_{2, t-1}
\end{array}\right]
\end{aligned}
$$

- All variables here are stationary: $\Delta \mathrm{y}$'s and $\mathrm{u}_{2, \mathrm{t}}$. This reformulation is called the vector error correction model of the VAR (or VECM).
- $\mathrm{u}_{2, \mathrm{t}}$ is the error correction term. It measures the extent to which y's deviate from their equilibrium long-run value.

Note: If $\lambda_{1}=\lambda_{2}=1$, we cannot do what we have done above! $\left(\boldsymbol{z}_{\mathrm{t}}\right.$ is $\left.\mathrm{I}(2)\right)$.

13.5 System of Equations: CI VAR(1) - Example

- Now, we have a system:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t}}=1.2 \mathrm{y}_{\mathrm{t}-1}+0.2 \mathrm{x}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{y}, \mathrm{t}} \\
& \mathrm{x}_{\mathrm{t}}=0.6 \mathrm{y}_{\mathrm{t}-1}+0.4 \mathrm{x}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{x}, \mathrm{t}}
\end{aligned}
$$

- We find the eigenvalues of \mathbf{A} :
$|A-\lambda I|=\left|\begin{array}{cc}1.2-\lambda & -0.2 \\ 0.6 & 0.4-\lambda\end{array}\right|=(1.2-\lambda)(0.4-\lambda)+0.12=0 \quad \Rightarrow \lambda_{1}=1 ; \lambda_{2}=0.6$
- Eigenvectors are: $\quad H=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right] ; \quad H^{-1}=\left[\begin{array}{cc}1.5 & -0.5 \\ -0.5 & 0.5\end{array}\right]$
- We can rewrite the $\operatorname{VAR}(1)$ into VECM form:
$\Delta z_{t}=\left[\begin{array}{l}\kappa_{1}-h_{12}\left(1-\lambda_{2}\right)\left(h_{21}^{*} y_{1, t-1}+h_{22}^{*} y_{2, t-1}\right) \\ \kappa_{2}-h_{22}\left(1-\lambda_{2}\right)\left(h_{21}^{*} y_{1, t-1}+h_{22}^{*} y_{2, t-1}\right)\end{array}\right]=\left[\begin{array}{l}e_{y, t-1}-1(0.4)\left(-0.5 y_{1, t-1}+0.5 y_{2, t-1}\right) \\ e_{x, t-1}-3(0.4)\left(-0.5 y_{1, t-1}+0.5 y_{2, t-1}\right)\end{array}\right]$

13.5 System of Equations: CI VAR(1) - Example

- The VECM:

$$
\Delta z_{t}=\left[\begin{array}{l}
e_{y, t-1}-0.4\left(-0.5 y_{1, t-1}+0.5 y_{2, t-1}\right) \\
e_{x, t-1}-1.2\left(-0.5 y_{1, t-1}+0.5 y_{2, t-1}\right)
\end{array}\right]
$$

- Then, the CI loading and the CI vector are:

$$
\alpha=\left[\begin{array}{l}
-0.4 \\
-1.2
\end{array}\right] ; \quad \beta=\left[\begin{array}{ll}
-0.5 & 0.5
\end{array}\right] .
$$

