Chapter 12-b
 Integral Calculus - Extra

Isaac Newton

Thomas Simpson

BONUS Introduction to Numerical Integration

Numerical Integration

Idea: Do an integral in small parts, like the way we presented integration; i.e., a summation.

Numerical methods just try to make it faster and more accurate.

Basic Numerical Integration

- Idea: Weighted sum of function values to approximate integral

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \sum_{i=0}^{n} c_{i} f\left(x_{i}\right) \\
& =c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)+\cdots \cdots+c_{n} f\left(x_{n}\right)
\end{aligned}
$$

- Task: Find appropriate $c_{i}^{\prime} \mathrm{s}$ (weights) and the $x_{i}^{\prime} \mathrm{s}$ (nodes).

Basic Numerical Integration

- We want to find integration of functions of various forms of the equation known as the Newton-Cotes integration formulas ("rules").
- Newton-Cotes formula

Assume the value of $f(x)$ defined on $[a, b]$ is known at equally spaced points $x_{i}(i=0,1, \ldots, n)$, where $x_{0}=a$, and $x_{n}=b$. Then,

$$
\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

where $x_{i}=h i+x_{0}$, with $h\left(\right.$ "step size") $=\left(x_{n}-x_{0}\right) / n=(b-a) / n$.
The c_{i} 's are called weights. The x_{i} 's are called nodes. The precision of the approximation depends on n.

Note: The N-C rules use nodes equally spaced. But, they do not have to be -unequally spaced nodes are OK too.

Basic Numerical Integration

- Weights

In the N-C formulae, they are derived from an approximation required to be equal for a polynomial of order lower or equal to the degree of the polynomials used to approximate the function. In other methods, weights and nodes can be derived jointly.

- Error analysis

The error of the approximation is the difference between the value of the integral and the numerical result:

$$
\text { error }=\varepsilon=\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

The errors are frequently approximated using Taylor series for $f(x)$. The error analysis gives a strict upper bound on the error, if the derivatives of f are available.

Newton-Cotes Formula

- The weights are derived from the Lagrange polynomials $L(x)$. The weight, $L_{\mathrm{i}}(x)$, depend only on the $x_{i}^{\prime} \mathrm{s}$ (no two $x_{i}^{\prime} \mathrm{s}$ are the same); not on the function f.

$$
L_{i}(x)=\prod_{0 \leq j \leq n, i \neq j} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}=\frac{\left(x-x_{0}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)}
$$

Recall that $\mathrm{L}(\mathrm{x})$ is used for polynomial interpolation of a function $f(x)$, given a set of points $\left(x_{i}, f\left(x_{i}\right)\right)$.

Example: Interpolate $f(x)=2 x^{3}$ over [2, 4], with 3 points: $(2,3,4)$. The interpolating Lagrange is:

$$
\begin{aligned}
L(x) & =16 \frac{(x-3)}{2-3} * \frac{(x-4)}{2-4}+54 \frac{(x-2)}{3-2} * \frac{(x-4)}{3-4}+128 \frac{(x-2)}{4-2} * \frac{(x-3)}{4-3} \\
& =18 x^{2}-52 x+48
\end{aligned}
$$

Newton-Cotes Formula

- Different methods use different polynomials to get the c_{i} 's.
- Newton-Cotes Closed Formulae - Use both end points
- Trapezoidal Rule : Linear
- Simpson's 1/3-Rule : Quadratic
- Simpson's 3/8-Rule : Cubic
- Boole's Rule : Fourth-order
- Newton-Cotes Open Formulae - Use only interior points
- midpoint rule

Trapezoid Rule

- Straight-line approximation

The trapezoid rule approximates the region under the graph of the function $f(x)$ as a trapezoid and calculating its area.

Trapezoid Rule - Derivation

- We use a Lagrange approximation (a polynomial) for $f(x)$ over the interval $\left(x_{\mathrm{n}}-x_{0}\right)$ (Lagrange interpolation), given by

$$
f(x) \approx f\left(x_{0}\right) L_{0}(x)+f\left(x_{1}\right) L_{1}(x)+\ldots+f\left(x_{n}\right) L_{n}(x)
$$

- For the case, $n=2$, with the interval $\left(x_{1}-x_{0}\right)$:

$$
\begin{aligned}
& L(x)=\frac{x-x_{1}}{x_{0}-x_{1}} f\left(x_{0}\right)+\frac{x-x_{0}}{x_{1}-x_{0}} f\left(x_{1}\right) \\
& \text { let } \mathrm{a}=\mathrm{x}_{0}, \mathrm{~b}=\mathrm{x}_{1}, \quad \xi=\frac{x-a}{b-a}, \mathrm{~d} \xi=\frac{\mathrm{dx}}{\mathrm{~h}} ; h=b-a \\
& \left\{\begin{array}{ll}
x=a & \Rightarrow \xi=0 \\
x=b & \Rightarrow \xi=1
\end{array}\right\} \Rightarrow L(\xi)=(1-\xi) f(a)+(\xi) f(b)
\end{aligned}
$$

- Then, we integrate the Lagrange polynomial to obtain the trapezoid rule

Trapezoid Rule - Derivation

- Integrating: $\int_{a}^{b} f(x) d x \approx \int_{a}^{b} L(x) d x=h \int_{0}^{1} L(\xi) d \xi$

$$
\begin{aligned}
& =f(a) h \int_{0}^{1}(1-\xi) d \xi+f(b) h \int_{0}^{1} \xi d \xi \\
& =\left.f(a) h\left(\xi-\frac{\xi^{2}}{2}\right)\right|_{0} ^{1}+\left.f(b) h \frac{\xi^{2}}{2}\right|_{0} ^{1}=\frac{h}{2}[f(a)+f(b)]
\end{aligned}
$$

\Rightarrow The weights depend only on $h!$

- This approximation may be poor. The approximation error is:

$$
\begin{aligned}
\varepsilon & =\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} c_{i} f\left(x_{i}\right) \\
& =-(b-a)^{3} /(12) f^{\prime \prime}(\eta), \quad \eta \in[a, b] .
\end{aligned}
$$

- Thus, if the integrand is convex -i.e., positive second derivative-, the error is negative. That is, the trapezoidal rule overestimates the true value of the integral.

Trapezoid Rule - Example

Evaluate the integral $\int_{0}^{4} x e^{2 x} d x$

- Exact solution

$$
\begin{aligned}
\int_{0}^{4} x e^{2 x} d x & =\left[\frac{x}{2} e^{2 x}-\frac{1}{4} e^{2 x}\right]_{0}^{4} \\
& =\left.\frac{1}{4} e^{2 x}(2 x-1)\right|_{0} ^{1}=5216.926477
\end{aligned}
$$

- Graph

Trapezoid Rule - Example

Evaluate the integral $\int_{0}^{4} x e^{2 x} d x$

- Trapezoidal Rule: Approximation Error
$\varepsilon=-(b-a)^{3} /(12) f^{\prime \prime}(\eta),(\eta$ is a number between a and $b)$.
Let's take $\eta=2$. Then

$$
\begin{aligned}
\varepsilon & =-4^{3} / 12 *\left[2 * \exp (2 * 2)+2 * \exp (2 * 2)+4^{*}(2) * \exp (2 * 2)\right] \\
& =-3494.282
\end{aligned}
$$

- Trapezoidal Rule

$$
\begin{aligned}
I=\int_{0}^{4} x e^{2 x} d x & \approx \frac{4-0}{2}[f(0)+f(4)]=2\left(0+4 e^{8}\right)=23847.66 \\
\varepsilon & =\frac{5216.926-23847.66}{5216.926}=-357.12 \%
\end{aligned}
$$

Simpson's 1/3-Rule (Kepler's Rule)

- Approximate the function by a parabola

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \sum_{i=0}^{2} c_{i} f\left(x_{i}\right)=c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right) \\
& =\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
\end{aligned}
$$

Simpson's 1/3-Rule - Derivation

- Use a quadratic Lagrange interpolation:

Simpson's 1/3-Rule - Derivation

- Integrate the Lagrange interpolation

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx h \int_{-1}^{1} L(\xi) d \xi=f\left(x_{0}\right) \frac{h}{2} \int_{-1}^{1} \xi(\xi-1) d \xi \\
& +f\left(x_{1}\right) h \int_{0}^{1}\left(1-\xi^{2}\right) d \xi+f\left(x_{2}\right) \frac{h}{2} \int_{-1}^{1} \xi(\xi+1) d \xi \\
& =\left.f\left(x_{0}\right) \frac{h}{2}\left(\frac{\xi^{3}}{3}-\frac{\xi^{2}}{2}\right)\right|_{-1} ^{1}+\left.f\left(x_{1}\right) h\left(\xi-\frac{\xi^{3}}{3}\right)\right|_{-1} ^{1} \\
& +\left.f\left(x_{2}\right) \frac{h}{2}\left(\frac{\xi^{3}}{3}+\frac{\xi^{2}}{2}\right)\right|_{-1} ^{1}
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

- Again, the weights depend only on h !

Thomas Simpson (1710-1761, England)

$$
\begin{aligned}
& L(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right) \\
& \text { let } \quad x_{0}=a, x_{2}=b, x_{1}=\frac{a+b}{2} \\
& h=\frac{b-a}{2}, \xi=\frac{x-x_{1}}{h}, d \xi=\frac{d x}{h} \\
& \left\{\begin{array}{l}
x=x_{0} \Rightarrow \xi=-1 \\
x=x_{1} \Rightarrow \xi=0 \\
x=x_{2} \Rightarrow \xi=1
\end{array}\right. \\
& L(\xi)=\frac{\xi(\xi-1)}{2} f\left(x_{0}\right)+\left(1-\xi^{2}\right) f\left(x_{1}\right)+\frac{\xi(\xi+1)}{2} f\left(x_{2}\right)
\end{aligned}
$$

Simpson's 3/8-Rule

- Approximate by a cubic polynomial

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \sum_{i=0}^{3} c_{i} f\left(x_{i}\right)=c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right) \\
& =\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]
\end{aligned}
$$

Simpson's 3/8-Rule

- Lagrange interpolation

$$
\begin{aligned}
L(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} f\left(x_{0}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} f\left(x_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} f\left(x_{2}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} f\left(x_{3}\right)
\end{aligned}
$$

- Integrate to obtain the rule

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \int_{a}^{b} L(x) d x ; h=\frac{b-a}{3} \\
& =\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]
\end{aligned}
$$

Simpson's Rule: Example

Evaluate the integral $\int_{0}^{4} x e^{2 x} d x$

- Simpson's 1/3-Rule: Approximation Error
$\varepsilon=-(b-a)^{5} /(2880) f^{(4)}(\eta) \quad(\eta \in[a, b])$.
Since $f^{(4)}(\eta)>0$, the error is negative (overshooting).
Let's take $\eta=2.5$. Then,

$$
\varepsilon=-4^{5} /(2880)\left[\left\{\exp \left(2^{*} 2.5\right)^{*}\left[16^{*}(2.5)+32\right]\right\}=-3799.3769\right.
$$

- Simpson's 1/3-Rule

$$
\begin{aligned}
I & =\int_{0}^{4} x e^{2 x} d x \approx \frac{h}{3}[f(0)+4 f(2)+f(4)] \\
& =\frac{2}{3}\left[0+4\left(2 e^{4}\right)+4 e^{8}\right]=8240.411 \\
\varepsilon & =\frac{5216.926-8240.411}{5216.926}=-57.96 \%
\end{aligned}
$$

Simpson's Rule: Example

Evaluate the integral $\int_{0}^{4} x e^{2 x} d x$

- Simpson's 3/8-Rule
$I=\int_{0}^{4} x e^{2 x} d x \approx \frac{3 h}{8}\left[f(0)+3 f\left(\frac{4}{3}\right)+3 f\left(\frac{8}{3}\right)+f(4)\right]$
$=\frac{3(4 / 3)}{8}[0+3(19.18922)+3(552.33933)+11923.832]=6819.209$
$\varepsilon=\frac{5216.926-6819.209}{5216.926}=-30.71 \%$
- Simpson's 3/8-Rule: Approximation Error

$$
\varepsilon=-(b-a)^{5} /(6480) f^{(4)}(\eta) \quad(\eta \in[a, b]) .
$$

Midpoint Rule

- Newton-Cotes Open Formula

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx(b-a) f\left(x_{m}\right) \\
& =(b-a) f\left(\frac{a+b}{2}\right)+\frac{(b-a)^{3}}{24} f^{\prime \prime}(\eta)
\end{aligned}
$$

where $\eta \in[a, b]$.

- Note: This rule does not make any use of the end points.

Two-point Newton-Cotes Open Formula

- Approximate by a straight line

Three-point Newton-Cotes Open Formula

- Approximate by a parabola

Better Numerical Integration

- Composite integration
- Composite Trapezoidal Rule
- Composite Simpson's Rule
- Richardson Extrapolation
- Romberg integration

Composite Trapezoid Rule

To improve the Trapezoid Rule, first splits the interval of integration $[a, b]$ into N smaller, uniform subintervals, and then applies the trapezoidal rule on each of them.

Two segments

Four segments

Three segments

Many segments

Composite Trapezoid Rule

- Use the Trapezoid Rule in n intervals. Then, add them together.
$\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots \cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x$
$=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{h}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\cdots+\frac{h}{2}\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
$=\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{i}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$

Composite Trapezoid Rule

$$
\begin{aligned}
& \text { - Evaluate the integral } \\
& I=\int_{0}^{4} x e^{2 x} d x \\
& n=1, h=4 \Rightarrow I=\frac{h}{2}[f(0)+f(4)]=23847.66 \quad \varepsilon=-357.12 \% \\
& n=2, h=2 \Rightarrow I=\frac{h}{2}[f(0)+2 f(2)+f(4)]=12142.23 \quad \varepsilon=-132.75 \% \\
& n=4, h=1 \Rightarrow I=\frac{h}{2}[f(0)+2 f(1)+2 f(2) \\
& +2 f(3)+f(4)]=7288.79 \quad \varepsilon=-39.71 \% \\
& n=8, h=0.5 \Rightarrow I=\frac{h}{2}[f(0)+2 f(0.5)+2 f(1) \\
& +2 f(1.5)+2 f(2)+2 f(2.5)+2 f(3) \\
& +2 f(3.5)+f(4)]=5764.76 \quad \varepsilon=-10.50 \% \\
& n=16, h=0.25 \Rightarrow I=\frac{h}{2}[f(0)+2 f(0.25)+2 f(0.5)+\cdots \\
& +2 f(3.5)+2 f(3.75)+f(4)] \\
& =5355.95 \\
& \varepsilon=-2.66 \%
\end{aligned}
$$

Composite Trapezoid Rule: Unequal Segments

- Evaluate the integral

$$
I=\int_{0}^{4} x e^{2 x} d x
$$

Use the following $h_{\mathrm{i}}{ }^{\text {'s }}:\left\{h_{1}=2, h_{2}=1, h_{3}=0.5, h_{4}=0.5\right\}$

$$
\begin{aligned}
I & =\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{3.5} f(x) d x+\int_{3.5}^{4} f(x) d x \\
& =\frac{h_{1}}{2}[f(0)+f(2)]+\frac{h_{2}}{2}[f(2)+f(3)] \\
& +\frac{h_{3}}{2}[f(3)+f(3.5)]+\frac{h_{4}}{2}[f(3.5)+f(4)] \\
& =\frac{2}{2}\left[0+2 e^{4}\right]+\frac{1}{2}\left[2 e^{4}+3 e^{6}\right]+\frac{0.5}{2}\left[3 e^{6}+3.5 e^{7}\right] \\
& +\frac{0.5}{2}\left[3.5 e^{7}+4 e^{8}\right]=5971.58 \quad \Rightarrow \varepsilon=-14.45 \%
\end{aligned}
$$

Composite Simpon's Rule

- Piecewise Quadratic approximations

Composite Simpon's Rule

- Evaluate the integral $I=\int_{0}^{4} x e^{2 x} d x$
- Using $n=2, h=2$

$$
\begin{aligned}
I & =\frac{h}{3}[f(0)+4 f(2)+f(4)] \\
& =\frac{2}{3}\left[0+4\left(2 e^{4}\right)+4 e^{8}\right]=8240.411 \Rightarrow \varepsilon=-57.96 \%
\end{aligned}
$$

- Using $n=4, h=1$

$$
\begin{aligned}
I & =\frac{h}{3}[f(0)+4 f(1)+2 f(2)+4 f(3)+f(4)] \\
& =\frac{1}{3}\left[0+4\left(e^{2}\right)+2\left(2 e^{4}\right)+4\left(3 e^{6}\right)+4 e^{8}\right] \\
& =5670.975 \Rightarrow \varepsilon=-8.70 \%
\end{aligned}
$$

Composite Simpson's Rule: Unequal Segments

- Evaluate the integral $\boldsymbol{I}=\int_{0}^{4} \boldsymbol{x} \boldsymbol{e}^{2 x} d \boldsymbol{x}$

Using $h_{1}=1.5, h_{2}=0.5$

$$
\begin{aligned}
I= & \int_{0}^{3} f(x) d x+\int_{3}^{4} f(x) d x \\
= & \frac{h_{1}}{3}[f(0)+4 f(1.5)+f(3)] \\
& +\frac{h_{2}}{3}[f(3)+4 f(3.5)+f(4)] \\
= & \frac{1.5}{3}\left[0+4\left(1.5 e^{3}\right)+3 e^{6}\right]+\frac{0.5}{3}\left[3 e^{6}+4\left(3.5 e^{7}\right)+4 e^{8}\right] \\
= & 5413.23 \Rightarrow \varepsilon=-3.76 \%
\end{aligned}
$$

Gaussian Quadratures

- Newton-Cotes Formulae
- Nodes ($x_{i}{ }^{\prime}$ s): Use evenly-spaced functional values
- Weights (c_{i} 's): Derived from an approximation required to be equal for a polynomial of order lower or equal to the degree of the polynomials used to approximate the function. Given nodes, best!
- Problem: Can explode for large n (Runge's phenomenon)
- Q: Can we use more efficient weights and nodes? Yes!
- Gaussian Quadratures
- Gaussian quadrature rules set the nodes and the weights in such a way that the approximation is exact when $f($.) is a low order polynomial. Best choice for both, nodes and weights!

Gaussian Quadratures

- Gaussian quadrature computes an approximation to the integral:

$$
\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

c_{i} 's are weights, x_{i} 's are the quadrature nodes, also called cusps. These values are not predetermined, but unknowns to be determined in some "optimal" fashion.

Optimal Goal: Get an exact answer if f is a $(2 n-1)^{\text {th }}$-order polynomial With $n=2$, we get an exact answer f is a $3^{\text {th }}$-order polynomial. (With $n=5$, we get an exact answer f is a $9^{\text {th }}$-order polynomial).

Note: A Gauss quadrature rule with 3 points yields exact value of an integral for a polynomial of degree $2 \times 3-1=5$. Simpson's $1 / 3$ rule also uses 3 points, but the order of accuracy is 3 .

Gaussian Quadratures - Features

- Gaussian Quadratures Features
- Select functional values at non-uniformly distributed points. The values are not predetermined, but unknowns determined by Legendre polynomials and integrating over a Lagrange interpolation.
- Several Gauss quadrature rules; we cover the Gauss-Legendre rules, which integrate from $[-1,1]$.
- A change of variables is needed:

$$
t=\frac{b-a}{2} x+\frac{a+b}{h} \Rightarrow \text { the interval of integration is }[-1,1] .
$$

- Gauss-Legendre formulae for nodes and weights can be easily found online up to order $n=100$.
- With n nodes, delivers exact answer if f is $(2 n-1)^{t h}$-order polynomial.
- Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities.

Gaussian Quadratures - Nodes and Weights

Example: For $n=2$, we choose $\left(c_{1}, c_{2}, x_{1}, x_{2}\right)$ such that the method yields "exact integral" for $f(x)=x^{0}, x^{1}, x^{2}, x^{3}$.

$$
\left\{\begin{array}{l}
f=1 \Rightarrow \int_{-1}^{1} 1 d x=2=c_{1}+c_{2} \\
f=x \Rightarrow \int_{-1}^{1} x d x=0=c_{1} x_{1}+c_{2} x_{2} \\
f=x^{2} \Rightarrow \int_{-1}^{1} x^{2} d x=\frac{2}{3}=c_{1} x_{1}^{2}+c_{2} x_{2}^{2} \\
f=x^{3} \Rightarrow \int_{-1}^{1} x^{3} d x=0=c_{1} x_{1}^{3}+c_{2} x_{2}^{3}
\end{array}\right.
$$

We solve this 4 x 4 system of equations to get $\left(c_{1}, c_{2}, x_{1}, x_{2}\right)$.

- By construction we get right answer for

$$
f(x)=1(j=0), f(x)=x(j=1), \ldots ., f(x)=x^{j}(j=2 n-1),
$$

\Rightarrow enough to get the right answer for any polynomial of order $2 n-1$.

Gaussian Quadratures - Nodes and Weights

Example (continuation): $n=2 \Rightarrow$ Solve the 4×4 system:

$$
\left\{\begin{array} { l }
{ f = 1 \Rightarrow \int _ { - 1 } ^ { 1 } 1 d x = 2 = c _ { 1 } + c _ { 2 } } \\
{ f = x \Rightarrow \int _ { - 1 } ^ { 1 } x d x = 0 = c _ { 1 } x _ { 1 } + c _ { 2 } x _ { 2 } } \\
{ f = x ^ { 2 } \Rightarrow \int _ { - 1 } ^ { 1 } x ^ { 2 } d x = \frac { 2 } { 3 } = c _ { 1 } x _ { 1 } ^ { 2 } + c _ { 2 } x _ { 2 } ^ { 2 } } \\
{ f = x ^ { 3 } \Rightarrow \int _ { - 1 } ^ { 1 } x ^ { 3 } d x = 0 = c _ { 1 } x _ { 1 } ^ { 3 } + c _ { 2 } x _ { 2 } ^ { 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=1 \\
x_{1}=\frac{-1}{\sqrt{3}} \\
x_{2}=\frac{1}{\sqrt{3}}
\end{array}\right.\right.
$$

Note: This is not how it is done in practice:

- x_{i} 's are chosen to be zeros of the degree- n Legendre polynomials $P_{n}(x)$ (not trivial to compute, but, they are tabulated).
- Then, find the Lagrange polynomial that interpolates the integral $f(x)$ at the selected $x_{i}{ }^{\prime}$ s and integrate to get c_{i} 's.

Gaussian Quadratures - Change of interval

- Coordinate transformation from $[a, b]$ to $[-1,1]$.

This can be done by an affine transformation on t and a change of variables.

$$
d t=\frac{b-a}{2} d x
$$

$$
\begin{cases}x=-1 \Rightarrow & t=a \\ x=1 \Rightarrow & t=b\end{cases}
$$

$$
\int_{a}^{b} f(t) d t=\int_{-1}^{1} f\left(\frac{b-a}{2} x+\frac{b+a}{2}\right)\left(\frac{b-a}{2}\right) d x \approx \frac{b-a}{2} \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

Gaussian Quadrature on $[-1,1]: n=2$

- Gauss Quadrature General formulation:

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+\cdots+c_{n} f\left(x_{n}\right)
$$

- For $n=2$, we have four unknowns: $\left(c_{1}, c_{2}, x_{1}, x_{2}\right)$
- We have already solved this problem:

$$
c_{1}=1 ; c_{2}=1 ; x_{1}=-1 / \sqrt{3} ; \& x_{2}=1 / \sqrt{ } 3 .
$$

Gaussian Quadrature on $[-1,1]: n=3$

Case $n=3: \int_{-1}^{1} f(x) d x=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)$

As for the $n=2$ case, we choose $\left(c_{1}, c_{2}, c_{3}, x_{1}, x_{2}, x_{3}\right)$ such that the method yields "exact integral" for $f(x)=x^{0}, x^{1}, x^{2}, x^{3}, x^{4}, x^{5}$.
(Again, $\left(c_{1}, c_{2}, c_{3}, x_{1}, x_{2}, x_{3}\right)$ are calculated by assuming the formula gives exact expressions for integrating a $5^{\text {th }}$ order polynomial).

Gaussian Quadrature on [-1, 1]: $\boldsymbol{n}=3$

$$
\begin{aligned}
& f=1 \Rightarrow \int_{-1}^{1} 1 \cdot d x=2=c_{1}+c_{2}+c_{3} \\
& f=x \Rightarrow \int_{-1}^{1} x d x=0=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \\
& f=x^{2} \Rightarrow \int_{-1}^{1} x^{2} d x=\frac{2}{3}=c_{1} x_{1}^{2}+c_{2} x_{2}^{2}+c_{3} x_{3}^{2} \\
& f=x^{3} \Rightarrow \int_{-1}^{1} x^{3} d x=0=c_{1} x_{1}^{3}+c_{2} x_{2}^{3}+c_{3} x_{3}^{3} \\
& f=x^{4} \Rightarrow \int_{-1}^{1} x^{4} d x=\frac{2}{5}=c_{1} x_{1}^{4}+c_{2} x_{2}^{4}+c_{3} x_{3}^{4} \\
& f=x^{5} \Rightarrow \int_{-1}^{1} x^{5} d x=0=c_{1} x_{1}^{5}+c_{2} x_{2}^{5}+c_{3} x_{3}^{5}
\end{aligned} \quad \Rightarrow\left\{\begin{array}{l}
c_{1}=5 / 9 \\
c_{2}=8 / 9 \\
c_{3}=5 / 9 \\
x_{1}=-\sqrt{3 / 5} \\
x_{2}=0 \\
x_{3}=\sqrt{3 / 5}
\end{array}\right.
$$

Gaussian Quadrature on [-1, 1]: $n=2 \boldsymbol{\&} \quad n=3$

- Approximation formula for $n=2$:

$$
I=\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

- Approximation formula for $n=3$

$$
I=\int_{-1}^{1} f(x) d x=\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

Gaussian Quadratures: Example

Evaluate

$$
I=\int_{0}^{4} t e^{2 t} d t=5216.926477
$$

First, a coordinate transformation

$$
\begin{aligned}
& t=\frac{b-a}{2} x+\frac{b+a}{2}=2 x+2 ; \quad \mathrm{dt}=2 \mathrm{dx} \\
& I=\int_{0}^{4} t e^{2 t} d t=\int_{-1}^{1}(4 x+4) e^{4 x+4} d x=\int_{-1}^{1} f(x) d x
\end{aligned}
$$

- Two-point formula ($n=2$)
$I=\int_{-1}^{1} f(x) d x=f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)=\left(4-\frac{4}{\sqrt{3}}\right) e^{4-\frac{4}{\sqrt{3}}}+\left(4+\frac{4}{\sqrt{3}}\right) e^{4+\frac{4}{3}}$

$$
=9.167657324+3468.376279=3477.543936 \quad(\varepsilon=33.34 \%)
$$

Gaussian Quadratures: Example

- Three-point formula ($n=3$)

$$
\begin{aligned}
I & =\int_{-1}^{1} f(x) d x=\frac{5}{9} f(-\sqrt{0.6})+\frac{8}{9} f(0)+\frac{5}{9} f(\sqrt{0.6}) \\
& =\frac{5}{9}(4-4 \sqrt{0.6}) e^{4-\sqrt{0.6}}+\frac{8}{9}(4) e^{4}+\frac{5}{9}(4+4 \sqrt{0.6}) e^{4+\sqrt{0.6}} \\
& =\frac{5}{9}(2.221191545)+\frac{8}{9}(218.3926001)+\frac{5}{9}(8589.142689) \\
& =4967.106689 \quad(\varepsilon=4.79 \%)
\end{aligned}
$$

- Four-point formula ($n=4$)

$$
\begin{aligned}
I=\int_{-1}^{1} f(x) d x & =0.34785[f(-0.861136)+f(0.861136)] \\
& +0.652145[f(-0.339981)+f(0.339981)] \\
& =5197.54375 \quad(\varepsilon=0.37 \%)
\end{aligned}
$$

Gaussian Quadratures: Normal Curve

Evaluate

$$
I=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.64} e^{-\frac{x^{2}}{2}} d x=.44949742
$$

First, a coordinate transformation:

$$
\begin{aligned}
& t=\frac{b-a}{2} x+\frac{b+a}{2}=.82 x+.82=.82(1+x) ; \quad d t=.82 d x \\
& I=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.64} e^{-\frac{t^{2}}{2}} d t=\frac{.82}{\sqrt{2 \pi}} \int_{-1}^{1} e^{\left.-\frac{1}{2} \cdot .82(1+x)\right]^{2}} d x=\frac{.82}{\sqrt{2 \pi}} \int_{-1}^{1} f(x) d x
\end{aligned}
$$

Gaussian Quadratures: Normal Curve

- Two-point formula ($n=2$)

$$
\begin{aligned}
I & =\frac{.82}{\sqrt{2 \pi}} \int_{-1}^{1} f(x) d x=\frac{.82}{\sqrt{2 \pi}}\left(f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)\right)=\frac{.82}{\sqrt{2 \pi}}\left(e^{-\frac{1}{2}\left[.82\left(1-\frac{1}{\sqrt{3}}\right)\right]^{2}}+e^{-\frac{1}{2}\left[.82\left(1+\frac{1}{\sqrt{3}}\right)\right]^{2}}\right) \\
& =0.32713267 *(0.94171147+0.43323413)=.44978962 \quad(\varepsilon=0.065 \%)
\end{aligned}
$$

- Three-point formula ($n=3$)

$$
\begin{aligned}
I & =\frac{.82}{\sqrt{2 \pi}} \int_{-1}^{1} f(x) d x=\frac{.82}{\sqrt{2 \pi}}\left(\frac{5}{9} f(-\sqrt{0.6})+\frac{8}{9} f(0)+\frac{5}{9} f(\sqrt{0.6})\right) \\
& =\frac{.82}{\sqrt{2 \pi}}\left(\frac{5}{9} e^{-\frac{1}{2}[.82(1-\sqrt{0.6})]^{2}}+\frac{8}{9} e^{-\frac{1}{2}[.82(1-0)]^{2}}+\frac{5}{9} e^{\left.-\frac{1}{2} \cdot .82(1+\sqrt{0.6})\right]^{2}}\right) \\
& =.32713267 *(0.54614659+0.63509351+0.19271450) \\
& =0.44946544 \quad(\varepsilon=0.007 \%)
\end{aligned}
$$

Gaussian Quadratures: Normal Curve

- Compare with Integration of Taylor series approximation $(n=6)$

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \approx \frac{1}{\sqrt{2 \pi}}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}\right)
$$

- Integrating Taylor approximation:

$$
\begin{aligned}
& I=\int_{0}^{1.64} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \approx \int_{0}^{1.64} \frac{1}{\sqrt{2 \pi}}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}\right) d x \\
& I \approx \frac{1}{\sqrt{2 \pi}}\left(x-\frac{x^{3}}{3 * 2}+\frac{x^{5}}{5 * 8}-\frac{x^{7}}{7 * 48}\right)+\left.C\right|_{0} ^{1.64} \\
& I \approx \frac{1}{\sqrt{2 \pi}}\left(1.64-\frac{1.64^{3}}{3 * 2}+\frac{1.64^{5}}{5 * 8}-\frac{1.64^{7}}{7 * 48}\right)=.4414171(\varepsilon=0.0179 \%)
\end{aligned}
$$

Not as accurate as Gaussian quadrature with $n=2$ (\& more computations.

Monte Carlo Integration

- In our motivation of integrals, we evaluated a one-dimensional integral by a sum of rectangles, using the end points of each interval to measure the height. Some of these rectangles overestimated the area, some underestimated the area.
- Let's focus on one of those rectangles, say with base $[a, b]$. We can also use as the height a randomly selected interior point, $x_{1} \in[a, b]$ and estimate the integral, say $\mathrm{I}\left(x_{1}\right)$. Of course, it may over- or underestimate the area.
- But, we can randomly select N interiors points and get N estimations of the area. Some points will under-estimate, some points will overestimate, but, statistical intuition suggests that the average may work.
- In fact, as N increases, the average of the integral converges to thee integral.

Monte Carlo Integration - Example 1

- Example 1: We want to do MC integration for (exact integral = 5,216.92):

$$
\int_{0}^{4} x e^{2 x} d x
$$

$>\mathrm{M}<-200$
$>\mathrm{x}<-\operatorname{runif}(\mathrm{M}, 0,4)$
$>$ All_I <- matrix $(0, \mathrm{M}, 1)$
$>\mathrm{a}<-0$
$>$ b <-4
$>\mathrm{m}<-1$
$>$ while $(\mathrm{m}<=\mathrm{M})$ \{

+ Int $<-(\mathrm{b}-\mathrm{a})^{*}\left(\mathrm{x}[\mathrm{m}] * \exp \left(2^{*} \mathrm{x}[\mathrm{m}]\right)\right)$
$+\mathrm{m}<-\mathrm{m}+1$
+ All_I[m] <- Int
+ \}
> IN <- sum(All_I)/M
$>$ IN
[1] 5489.388

Monte Carlo Integration - Example 2

- MC Integration can be applied to any area, like the area of a circle.
- Example 2: We want to estimate the area of a circle with radius, $r=2$ (exact area $=\pi * r^{2}=\pi * 4=12.56637$):
$>\mathrm{M}<-100$
$>x<-\operatorname{runif}(\mathrm{M},-2,2)$
$>y<-\operatorname{runif}(M,-2,2)$
$>$ \#box is area 16.
$>$ distance.from. $0<-\operatorname{sqrt}\left(\mathrm{x}^{*} \mathrm{x}+\mathrm{y}^{*} \mathrm{y}\right)$
$>$ inside.circle $<-$ (distance.from. $0<2$)
$>$ area $<-16^{*}$ sum(inside.circle) $/ \mathrm{M}$
$>$ area
[1] 12.48

Monte Carlo Integration - Properties

- We formalize this idea with: $\mathrm{F}_{\mathrm{N}}=\frac{1}{N} \sum_{i=1}^{N} I\left(x_{i}\right)$
- This is our basic Monte Carlo (MC) estimator. Very simple.
- It can be shown it has good properties: unbiased, consistent (LLN applies), asymptotic normal (CLT applies).
- This results is very general and applies to many situations, for example, the trapezoid rule. Above, we selected two points to evaluate the integral (a and b). It produced a big over estimation.

We can also randomly select two points between $[a, b]$, say \boldsymbol{x}_{1} and calculate the integral, say $\mathrm{I}\left(\mathbf{x}_{1}\right)$. We repeat this evaluation of the integral at N randomly selected two points $\in[a, b]$: as N increases, the average of the integral converges to the integral.

Monte Carlo Integration - Example 3

- Example 3: Back to the trapezoid example, where we wanted to integrate the following function:

$$
\int_{0}^{4} x e^{2 x} d x
$$

$>\mathrm{M}<-1000$
$>$ All_I <- matrix $(0, \mathrm{M}, 1)$
$>\mathrm{x}<-\operatorname{runif}(\mathrm{M}, 0,4)$
$>y<-\operatorname{runif}(\mathrm{M}, 0,4)$
$>\mathrm{a}<-0$
$>\mathrm{b}<-4$
$>\mathrm{m}<-1$
$>$ while $(\mathrm{m}<=\mathrm{M})$ \{
$+\operatorname{Int}<-((\mathrm{b}-\mathrm{a}) / 2)^{*}\left(\mathrm{x}[\mathrm{m}] * \exp \left(2^{*} \mathrm{x}[\mathrm{m}]\right)+\mathrm{y}[\mathrm{m}] * \exp \left(2^{*} \mathrm{y}[\mathrm{m}]\right)\right)$
$+\mathrm{m}<-\mathrm{m}+1$

+ All_I[m]<- Int
+ \}
$>$ IN <- sum(All_I)/M
$>$ IN
[1] 5134.759
Note: The exact integral is $5,216.93$.

Monte Carlo Integration \& Multiple Integrals

- Q: Why use the MC estimator instead of the also very simple determinist quadrature rules?
- Quadrature rules do not extend very well to higher dimension. An approach is to rewrite the problem in terms of one-dimensional integrals. For two or three dimension it may work well, but for more than four dimensions it becomes imprecise.
- These rules suffer from the curse of dimensionalitily.
- Monte Carlo integration extends well to many dimensions. IT is based on repeated function evaluations, not repeated integrations using one-dimensional methods.

Popular MC algorithm: Markov chain Monte Carlo (MCMC), which include the Metropolis-Hastings algorithm and Gibbs sampling.

Q: What's the integral of (1/cabin)d(cabin)? A: A natural log cabin!

