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11.1 General Problem

¢ Now, a constraint is added to the optimization problem:

max, . u(x; ) st xpetypy = 1,
Py Py & I are exogenous prices and income, respectively.

 Different methods to solve this problem:
— Substitution
— Total differential approach
— Lagrange Multiplier

U= sy 2 Uy 427
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11.1 Substitution Approach

 Easy to use in simple 2x2 systems. Using the constraint, substitute
into objective function and optimize as usual.

¢ Example:

U=U(x,x,)=xx,+2x, s.t. 60 =4x,+2x,
1) Solve for x,
x, =30-2x,
2) Substituting into U(x,, X,)
U =x,(30-2x,)+2x, =32x, - 2x]

3)F.o.c.:

dU/dx, =32-4x,=0; =x, =8 and x,=14;
Check s.o.c.:

d*U/dx} =—4 <0 = maximum

4) Calculate maximum Value for U(.): U =128

11.2 Total Differential Approach

* Total differentiation of objective function and constraints:

1-2) U =f(x,y); st. B= g(x,y)
3-4) dU=fudx+f,dy=0; dB=g.dx+g,dy=0
fi 0 |ldx g 0 |ldx
—-6) dU= ; dB=
& [0 fj[dy} [0 gdey}
7-8)  difdy=—1,]fs; dyjdy=-g, /g,
9-10) f,/f.=8,/8: 1y/8y =118

¢ Equation (10) along with the restriction (2) form the basis to solve
this optimization problem.
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11.2 Total Differential Approach

* Example: U(x), x,) = xpx, T 2x s.t. 60 = 4x;, + 2x;,
Taking first-order differentials of U and budget constraint (B):

dU = x,dx; + x,dx, +2dx; =0; dB =—-4dx, —2dx, =0
dx, [dxy = —x, [(x, +2); dx, [dx, =—-1/2
—x;/(x, +2)=-1/2 = x, =(x, +2)/2
60=4(1+1/2x,)+2x, =x,=14; x =8

U™ (8,14)=(8)14+2(8)=128

11.2 Total-differential approach

¢ Graph for Utility function and budget constraint:

U=y +2%% U=y"y +27x

6
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11.3 Lagrange-multiplier Approach

* To avoid working with (possibly) zero denominators, let A denote
the common value in (10). Rewriting (10) and adding the budget

constraint we are left with a 3x3 system of equations:

10") fo=Ag,
10"y f, =A2g,
2) B =g(x,y)
* There is a convenient function that produces (10°), (10”) and (2) as

a set of f.o.c.: The Lagrangian function, which includes the objective
function and the constraint:

L= f(x,x)+\B-g(x,x,)]

* The constraint is multiplied by a variable, A, called the Lagrange
multiplier (LM).

11.3 Lagrange-multiplier Approach

* Once we form the Lagrangian function, the Lagrange function
becomes the new objective function.

(1) L= f(x,x)+MB-g(x,x,)]
(2) Ly =B-g(x,x,)=0
(3) Lxlzfx]_)\‘gxlzo
(4) sz :f‘xz_}\‘gx2 =0
LML L)»xl kaz
(5) H = Lxlk Lxlx1 XX,
szk szx1 szx2
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11.3 LM Approach
* Note that
Li=0
L1 = - 8a
Liw=-80
* Then
0 Bx, Ex,
(5) H = ’gx] Lxlxl Lxlxz

‘gxz szx1 szx2

e If the constraints are linear, the Hessian of the Lagrangian can be
seen as the Hessian of the original objective function, bordered by
the first derivatives of the constraints. This new Hessian is called
bordered Hessian. !

11.3 LM Approach: Example
Maximize Utllity U =U (x,y ) where U ,U >0

Subject to the budget constraint B = xP_+ yP,
L=U(x,y)+ A(B-xP - yP,)
L,=pB-xP,—yP, =0
L =U_-4AP =0
L, =U,-AP =0

U

P, P,
L, L, L, |o -p -P
|H|= Lx/i Lxx ny = _Px Uxx ny
Ly/1 Lyx Lyy _Py ny Uyy

2 2
=2PPU, -PU,_ -PU,
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11.3 LM Approach: Second-order conditions

e A has no effect on the value of L." because the constraint equals
zero but ...

* A new set of second-order conditions are needed

¢ The constraint changes the criterion for a relative max. or min.

(1) H:ax2+2hxy +by2 st ax+pBy=0
(2) y=- %x solve the constraint for y
2
3) H :ax2+2hx(—a—xJ+b(_a_xJ
B B
2
(4) H=(aﬂ2—2aﬁh+ba2(%j

(5) H >0 iff afp>-2aBh+ba’>0

11.3 LM Approach: Second-order conditions

(1) H= ap’-2aBph+ba’>0

0 o p
(2) H=|la a h|=-ap’+2aPBh-ba’
g h b
(3) H is positive definite s.t. a x+ fy=0
0 a p
iff @ a h|<O0 — min

B h b
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11.3 LM Approach: Example

1-2) U = xx,+2x, s.t. B=60-4x-2x, =0
Form the Lagrangian function
3)  L=uxx,+2x +4(60—4x, - 2x,)

FOC

4)  L,=60-4x —2x,=0

5-6) L, =x,+2-M=0; A=(1/4)x, +1/2

7-8) L, =x-)2=0; 2=(1/2)x,

9-10) (1/4)x, +1/2=(1/2)x,; X, =2x, -2

11-12) 60 = 4x, +2(2x, - 2); X =

13-14) 60 =4(8) - 2x,; x, =14

15-17) U = (8)14)+2(8); U'=128 1 =4

11.3 LM Approach: Restricted Least Squares

¢ The Lagrangean approach
. T
Min,, L(B,Aly,x)=2, (v, =xB) +2A(rf~q)

f.o.c:

oL
55 L 20 XN 2 =0 Y () 2 =0

%zz(rb*_q):o = (rb*—q)=0

* Then, from the 1** equation:
—(x'y—=x'xb*)+Ar=0 = b*=(x'x)"x'y—(x'x)" Ar
=b-(x'x)" Ar
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11.3 LM Approach: Restricted Least Squares
*b*=b-r (x'x)'A
* Premultiply both sides by r and then subtract q
th*-q =tb—r? x'x)A —q
0=-r2x'x)A+ (tb-q)
Solving for A = A=[?xx)"!@tb-q)

Substituting in b* = b*=b- %)t [t? x'x) ]! (tb-q)

11.3 LM Approach: N-variable Case

a) No one - variable test because there must be one more variable than constraint
b) 2 —variable test of soc
|ﬁ2| >0 negative definite :( max
|ﬁ2| <0 positive definite :) min
c) 3 — variable test of soc
|ﬁ2| >0, |I7 3| <0 negative definite :( max
|ﬁ2| <0, |I-73| <0 positive definite :) min
d) n — variable case soc, (p.361)
|ﬁ2| > 0,|173| < 0,|ﬁ4| >0,..(=1)"|H,|>0 negative definite :( max
[FL| < 0,|H,| < 0,|H,| <0,... |, | < 0 positive definite :) min
Where
0 g g g
0 & &
— | sl & Zy o ... )
|H2|— & Zu Znf |H3|— 7 >
&2 22
8 Zy Zp 16

gy e e Iy
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11.4 Optimality Conditions — Unconstrained Case

e Let x* be the point that we think is the minimum for f(x).
*  Necessary condition (for optimality):
df(x*) =0
* A point that satisfies the necessary condition is a stationary point

— It can be a minimum, maximum, or saddle point

* Q: How do we know that we have a minimum?
o Answer: Sufficiency Condition:
The sufficient conditions for x* to be a strict local minimum are:
df(x*) =0

d?f(x*) is positive definite

11.4 Constrained Case — KKT Conditions

 To prove a claim of optimality in constrained minimization (or
maximization), we have to check the found point (x*) with respect to
the (Karesh) Kuhn Tucker (KKT) conditions.

¢ Kuhn and Tucker extended the Lagrangian theory to include the
general classical single-objective nonlinear programming problem:

minimize f(x)
Subject to  gi(x) <0 forj=1,2,..,M
h (x) =0 fork=1,2,.,K
X = (Xqp Xpy eey X)

Note: M inequality constraints, K equality constraints.
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11.4 Interior versus Exterior Solutions

e Interior: 1f constraints are inactive and (thus) the solution lies at the
interior of the feasible space, then the necessary condition for
optimality is same as for unconstrained case:

Vix*) =0 (V difference operator for matrices --“del”)

KKT

Example: Minimize 2
Jo) == 1P+ =28

with constraints:

xZ1& y=-1. A T —

Excterior: 1f solution lies at the exterior, the condition V{(x*) = 0

does not apply because some constraints will block movement to this
minimum.

11.4 Interior versus Exterior Solutions

* If solution lies at the exterior, the condition V{(x*) = 0 does not
apply. Some constraints are actzve.

KKT minimization problem:  4(x-1)? +(y-2)°

Example: Minimize
J0) =4(x—= 1P+ (=27

with constraints:

x+y=2 x2-1& y=2-1

— We cannot get any more improvement if for x* there does nof exist a
vector d that is both a descent direction and a feasible direction.

— In other words: the possible feasible directions do not intersect the
possible descent directions az all.
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11.4 Mathematical Form

* A vector d that is both descending and feasible cannot exist if
-VE=2, (Vg) (with w, 2 0) for all active constraints i€l.
— This can be rewritten as 0 = Vf + X p, (Vg)
— This condition is correct IF feasibility is defined as g(x) < 0.
— If feasibility is defined as g(x) = 0, then this becomes
VE=Zy (Ve

* Again, this only applies for the I active constraints.

* Usually the inactive constraints are included, but the condition
g = 0 (with p, > 0) is added for all inactive constraints j€J.

— This is referred to as the complimentary slackness condition.

21

11.4 Mathematical Form

* Note that the slackness condition is equivalent to stating that p, = 0
for inactive constraints -i.c., zero price for non-binding constraints!

* That is, each inequality constraint is either active, and in this case it
turns into equality constraint of the Lagrange type, or inactive, and
in this case it is void and does not constrains the solution.

* Note that I + ] = M, the total number of (inequality) constraints.

* Analysis of the constraints can help to rule out some combinations.
However, in general, a ‘brute force’ approach in a problem with |
inequality constraints must be divided into 2/ cases. Each case must
be solved independently for a minima, and the obtained solution (if
any) must be checked to comply with the constrains. A lot of work!

11
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11.4 Necessary KKT Conditions

For the problem:
Min f(x)
s.t. g(x) <0
(n variables, M constraints)

The necessary conditions are:
Vix) + 2, Ve (x) =0 (optimality)
gx)<0 fori=1,2,.. (primary feasibility)
W gx) =0fori=1,2,.. (complementary slackness)
pn=0 fori=1,2, .. (non-negativity, dual feasibility)

b

b

===

b

Note that the first condition gives n equations.

23

11.4 Necessary KKT Conditions - Example

KKT minimization problem:  4(x-1)? +(y-2)°
Example: Let’s minimize | RRERA

Jo) = 4= 1P+ (=2 ’

with constraints:

x+y=2; x=2-1& y=2-1

Form the Lagrangian:

LOx2p) = FG0 + Y Ay ()4 Y iy ()

Lok =4(x =10 +(y =2 +p, (x+ y=2)+ py (x + 1)+ py (y+1)

There ate 3 inequality constraints, each can be chosen active/non-
active: 8 possible combinations. But, the 3 constraints together:
x+y=2 & x=-1 & y=-1 have no solution, and a combination of any
two of them yields a single intersection point.

12
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11.4 Necessary KKT Conditions - Example

The general case is:
L(x A ) = 40— 1)+ (y=2) +p, (x +y = 2)+ 1, (x+ 1)+ 3y +1)

We must consider all the combinations of active / non active constraints:

1H x+y=2 = L(x,y,p)=4(x—1)2+(y—2)2+p(x+y—2)
2 x=-1 = L(x, Y, u) = 4(X - 1)2 +
3 y=—1 = L(x,y,u)=4(x-1f+
@ x+y=2 and x=-1 = (x,y
5) x+y=2 and y=-1 = (x,y
¢ x=-1 and y=-1 = (X, y) = (— 1,—1)

7 Xx+y=2 and x=-1 and x=-1= (X,y):®

(8) Unconstrained: L(X, y) = 4(X — ])2 + (y — 2)2

11.4 Necessary KKT Conditions - Example

() ZL(x, yop) =4x—17 +(y-2) +plx+y-2)

oL

— :x+y—2=0

u x=2-y (x,7)=(0812)
%sz—8+u=O = 1=8—8x = f(xy)=08
a 2y—4+8-82-y)=0 n=16>0
5 =2y—4+p=0

(2) L(x, . p) = 4x =17 + (v =2 +plx+1)

% I\ 1 _ O KKT minimization problem: 4()(—1)2 *(Y'z)z
aLa“ x=-1 (ny)=(-12) . )
a=8x_8+l'l=0 3M=8—8x=16 = f(x7y)=16
=2 =16>0
¥

13
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11.4 Necessary KKT Conditions - Example

(3) L{x.y.n)=4(x-1f +(y—2) +u(y+1)
oL

—=y+1=0
iy y=-1  (xy)=0-1)
AL gx-8=0 l= x=1!t= f(x,y)=9
X
=6 =6>0
a—L=2y—4+p=0 H H KKT minimization problem: 4(x—1)2

+y-2)?

@ (x,y)=(=13); f(x,y)=17 i
(5) (xy)=0G-1) flx,y)=25
6) (oy)=(-1-1p floy)=25 i
7 (x,y)=2 I B S g
®  (x

)=(1,2); f(x,y)=0 x+y=3>2 -beyond the range

11.4 Necessary KKT Conditions - Example

Finally, we compare among the 8 cases we have studied: case (7)
resulted was over-constrained and had no solutions, case (8) violated
the constraint x + y < 2. Among the cased (1)-(0), it was case (1)

(X, y) = (0.8,1.2); f(x, y) =0.8, yielding the lowest value of f(x; ).
KKT minimization problem: 4(x-1)? +(y-2)?

1
=
FfII;" |

g

14
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11.4 Necessary KKT Conditions: General Case

* For the general case (n variables, M Inequalities, L equalities):

Min f(x) s.t.
g(x) <0 fori=1,2,.. M
h(x) =0 for]=1,2,.., 1

* In all this, the assumption is that Vgi(x*) for j belonging to active
constraints and Vh, (x*) for k = 1, ..., K are linearly independent. This is
referred to as constraint qualification.

* The necessary conditions are:
Vix) + 2w, Vg(x) + A, Vh(x) = 0 (optimality)

g(x) <0 fori=1,2,... M (primary feasibility)

h(x) =0 forj=1,2,..,L (primary feasibility)

W gx) =0 fori=1,2,.,M (complementary slackness)
w=0 fori=1,2,.,M (non-negativity, dual feasibility)

(Note: A, is unrestricted in sign)

11.4 Necessary KKT Conditions (if g(x) = 0)

* If the definition of feasibility changes, the optimality and feasibility
conditions change. For example, g;(x) = 0.Then,

Min f(x) S.t.
g(x) =0 fori=1,2,..,. M
hi(x) =0 for]=1,2,..,L

* The necessary conditions become:
Vi(x) =2 p; Vg(x) + £ A, Vhi(x) = 0 (optimality)

g(x) =0 fori=1,2,..,. M (feasibility)

hi(x) =0 forj=1,2,..,L (teasibility)

wegx =0 fori=1,2,.,M (complementary slackness)

=0 fori=1,2,..,. M (non-negativity, dual feasibility)
30

15
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11.4 Restating the Optimization Problem

¢ Kuhn Tucker Optimization Problem:
Find vectors Xy, W and A (g5 that satisfy:

Vix) + X w, Vg(x) + A Vhi(x) =0 (optimality)

gx)<0 fori=1,2,.,.M (feasibility)

h(x) =0 forj=1,2,..,L (feasibility)

wegx)=0fori=1,2,.,M (complementary
slackness condition)

w, =0 fori=1,2,..,. M (non-negativity)

*

* If x* is an optimal solution to NLP, then there exists a (U*, A¥)
such that (x*, u*, A¥) solves the Kuhn—Tucker problem.

* The above equations not only give the necessary conditions for
optimality, but also provide a way of finding the optimal point.

31

11.4 KKT Conditions: Limitations

* Necessity theorem helps identify points that are not optimal. A
point is not optimal if it does not satisfy the Kuhn—Tucker
conditions.

¢ On the other hand, not all points that satisfy the Kuhn-Tucker
conditions are optimal points.

point becomes an optimal solution to a single-objective NLP.

e The Kuhn—Tucker sufficiency theorem gives conditions under which a

32

16
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11.4 KKT Conditions: Sufficiency Condition

Sufficient conditions that a point x* is a strict local minimum of the

classical single objective NLP problem, where f, g and h, are twice

differentiable functions are that

1) The necessary KKT conditions are met.

2) The Hessian matrix V2L(x*) = V2f(x*) + 2y, Vg (x*) +
EAV?h,(x*) is positive definite on a subspace of R” as defined by

the condition:

y' V2L(x*¥) y > 0 is met for every vector Y satisfying:

Vg(x*)y = 0 forjbelonging to I; = {j | g(x*) =0, u* >0}

(active constraints)
Vhx*)y=0 fork=1,..,K
y#0

33

11.4 KKT Sufficiency Theorem (Special Case)

¢ Consider the classical single objective NLP problem.
minimize f(x) s.t.
gj(x) <0 forj=1,2,..]
h, (x) =0 fork=1,2,..,K
where X = (X, Xy, ..., Xy)
e Features of special case: objective function f(x) is convex, all

inequality constraints g(x) ate convex functions forj =1, ..., J, and
the equality constraints h (x) for k = 1, ..., K are /near.

¢ Then, the necessary KKT conditions are also sufficient.

* Therefore, in this case, if there exists a solution x* that satisfies the
KKT necessary conditions, then x* is an optimal solution to the
NLP problem.

e In fact, it is a globa/ optimum.

17



Ch. 11 - Optimization with Equality Constraints

11.4 KKT Conditions: Closing Remarks

¢ Kuhn-Tucker Conditions are an extension of Lagrangian function
and method.

o They provide powerful means to verify solutions

* But there are limitations. ..

— Sufficiency conditions are difficult to verify.

— Practical problems do not have required nice properties.

— For example, you will have a problems if you do not know the
explicit constraint equations.

¢ If you have a multi-objective (lexicographic) formulation, then it is
suggested to test each priority level separately.

11.4 KKT Conditions: Example

Minimize C =(x, —4)2 +(x, —4) s.t. 2x,+3x,26;  12-3x,-2x,20;  x,Xx, 20
Form Lagrangian: L =(x, —4)" +(x, —4)2 +2,(6-2x, —3x2)+ Ay(=1243x, +2x,)

F.o.c.:

) L, =2(x,-4)-24+34,=0;

2) L, =2(x,-4)-34+24,=0;

3) L, =6-2x,-3x,<0;

4) L, =-12+3x,+2x,<0;

Casel: Let A,=0, L, < 0 (2nd Constraint inactive) :
From 1) and 2) =4 =x-4=2/3(x,-4)
From 3) =x,=3-3/2x,;
=3-3/2x,-4=2/3(x,-4) = x; =5/3%(6/13)

x,=30/39=10/13, x, =24/13, 1, =-28/13<0 (Violates KKT conditions)
Case2: Let 4 =0, L, <0 (Ist Constraint inactive) :

From 1) and 2) = 4L =—2/3)x,-4)=—(x,-4) =x=3/2(x,-4)+4
From 4) =>x =-2/3x,+4
=-2/3x,+4=3/2(x,-4)+4;  (-2/3-3/2)x;=-6 36

x, =36/13, x =84/39=28/13, 1,=16/13>0 (Meets KKT conditions)

18
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11.5 The Constraint Qualification

Example1- Irregularities at boundary points

Maximize T =X,

. 3
subject to X, —(1—X1) <0
and x, &x, 20

L=x, +ﬂ,(—x2 +(1—x1)3)
L, =1-3A(1-x)' <0
x, =l ata max. However,

L =1- 32(1-1)° =1 when it should equal zero.

al

Reason : on an inflection point or cusp

0 026 058 075 10 125

11.5 The Constraint Qualification

Example 2 - Irregularities at the boundary points

Maximize T =X,

subject to X, - (l - x1)3 <0
and 2x,+x,<2

where x, &x,20

L=x+4(x,+0x))+ 402 25, -x,)
L, =1-34(1-x)-24,<0
sz =-4-4,<0
L, =x,+(1-x,) 20
L, =2-2x,-x,20
1

1
xlzl’x2:0'/11=_5'/1225

19
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11.5 The Constraint Qualification

Example 3 - The feasible region of the problem contains no cusp

Maximize 7 = x,-x;

subject to — (10-x7-x, ) <0and —x, > —2, where x,,x, > 0
L=x,-x) +, (10—x12—x2)3 + 4, (— 2+ xl)

L, =-2x-64 (10—)612—962 )2 X, + 2,

L, =1-33(10-x3x, ]

Lal = (10-)612-362)3

L, =-2+x

=2, x,=6, 4, =4,4, =4

L, =1-34 (10-22—6)Z =1, when it should equal zero

39
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