Chapter 11 Optimization with Equality Constraints

Harold William Kuhn (1925)

11.1 General Problem

- Now, a constraint is added to the optimization problem:

$$
\max _{\mathrm{x}, \mathrm{y}} \mathrm{u}(x, y) \quad \text { s.t } x \mathrm{p}_{\mathrm{x}}+y \mathrm{p}_{\mathrm{y}}=\mathrm{I}
$$

$\mathrm{P}_{x}, \mathrm{p}_{y} \& \mathrm{I}$ are exogenous prices and income, respectively.

- Different methods to solve this problem:
- Substitution
- Total differential approach
- Lagrange Multiplier

$u=x^{*} y^{+2^{*} x}$

11.1 Substitution Approach

- Easy to use in simple 2 x 2 systems. Using the constraint, substitute into objective function and optimize as usual.
- Example:
$U=U\left(x_{1}, x_{2}\right)=x_{1} x_{2}+2 x_{1} \quad$ s.t. $\quad 60=4 x_{1}+2 x_{2}$

1) Solve for X_{2}
$x_{2}=30-2 x_{1}$
2) Substituting into $U\left(x_{1}, x_{2}\right)$
$U=x_{1}\left(30-2 x_{1}\right)+2 x_{1}=32 x_{1}-2 x_{1}^{2}$
3) F.o.c.:
$d U / d x_{1}=32-4 x_{1}=0 ; \quad \Rightarrow x_{1}^{*}=8 ;$ and $x_{2}^{*}=14 ;$
Check s.o.c.:
$d^{2} U / d x_{1}^{2}=-4<0 \Rightarrow$ maximum
4) Calculate maximum Value for $\mathrm{U}($.$) : \quad U^{*}=128$

11.2 Total Differential Approach

- Total differentiation of objective function and constraints:

$$
\begin{aligned}
& \text { 1-2) } \quad U=f(x, y) ; \quad \text { s.t. } \quad B=g(x, y) \\
& \text { 3-4) } \quad d U=f_{x} d x+f_{y} d y=0 ; \quad d B=g_{x} d x+g_{y} d y=0 \\
& \text { 5-6) } \quad d \mathrm{U}=\left[\begin{array}{cc}
f_{x} & 0 \\
0 & f_{y}
\end{array}\right]\left[\begin{array}{l}
d x \\
d y
\end{array}\right] ; \quad d \mathrm{~B}=\left[\begin{array}{cc}
g_{x} & 0 \\
0 & g_{y}
\end{array}\right]\left[\begin{array}{l}
d x \\
d y
\end{array}\right] \\
& \text { 7-8) } \quad d x / d y=-f_{y} / f_{x} ; \quad d x / d y=-g_{y} / g_{x} \\
& \text { 9-10) } f_{y} / f_{x}=g_{y} / g_{x} ; \quad f_{y} / g_{y}=f_{x} / g_{x}
\end{aligned}
$$

- Equation (10) along with the restriction (2) form the basis to solve this optimization problem.

Ch. 11-Optimization with Equality Constraints

11.2 Total Differential Approach

- Example: $\mathrm{U}\left(x_{1}, x_{2}\right)=x_{1} x_{2}+2 x_{1} \quad$ s.t. $60=4 x_{1}+2 x_{2}$ Taking first-order differentials of U and budget constraint (B):

$$
\begin{array}{ll}
d U=x_{2} d x_{1}+x_{1} d x_{2}+2 d x_{1}=0 ; & d B=-4 d x_{1}-2 d x_{2}=0 \\
d x_{1} / d x_{2}=-x_{1} /\left(x_{2}+2\right) ; & d x_{1} / d x_{2}=-1 / 2 \\
-x_{1} /\left(x_{2}+2\right)=-1 / 2 & \Rightarrow x_{1}=\left(x_{2}+2\right) / 2 \\
60=4\left(1+1 / 2 x_{2}\right)+2 x_{2} \quad \Rightarrow x_{2}^{*}=14 ; x_{1}^{*}=8 \\
U^{*}(8,14)=(8) 14+2(8)=128 &
\end{array}
$$

11.2 Total-differential approach

- Graph for Utility function and budget constraint:

$U=x^{*} y+2^{*} x$

11.3 Lagrange-multiplier Approach

- To avoid working with (possibly) zero denominators, let λ denote the common value in (10). Rewriting (10) and adding the budget constraint we are left with a 3×3 system of equations:

$$
\begin{array}{ll}
\left.10^{\prime}\right) & f_{x}=\lambda g_{x} \\
\left.10^{\prime \prime}\right) & f_{y}=\lambda g_{y} \\
2) & B=g(x, y)
\end{array}
$$

- There is a convenient function that produces $\left(10^{\prime}\right),\left(10^{\prime \prime}\right)$ and (2) as a set of f.o.c.: The Lagrangian function, which includes the objective function and the constraint:

$$
L=f\left(x_{1}, x_{2}\right)+\lambda\left[B-g\left(x_{1}, x_{2}\right)\right]
$$

- The constraint is multiplied by a variable, λ, called the Lagrange multiplier (LM).

11.3 Lagrange-multiplier Approach

- Once we form the Lagrangian function, the Lagrange function becomes the new objective function.

$$
\begin{equation*}
L=f\left(x_{1}, x_{2}\right)+\lambda\left[B-g\left(x_{1}, x_{2}\right)\right] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
L_{x_{1}}=f_{x_{1}}-\lambda \mathrm{g}_{\mathrm{x}_{1}}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
L_{\lambda}=B-g\left(x_{1}, x_{2}\right)=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
L_{x_{2}}=f_{x_{2}}-\lambda \mathrm{g}_{\mathrm{x}_{2}}=0 \tag{4}
\end{equation*}
$$

$$
H=\left[\begin{array}{ccc}
L_{\lambda \lambda} & \mathrm{L}_{\lambda \mathrm{x}_{1}} & \mathrm{~L}_{\lambda \mathrm{x}_{2}} \tag{5}\\
L_{\mathrm{x}_{1} \lambda} & L_{\mathrm{x}_{1} \mathrm{x}_{1}} & L_{\mathrm{x}_{1} \mathrm{x}_{2}} \\
L_{\mathrm{x}_{2} \lambda} & L_{\mathrm{x}_{2} \mathrm{x}_{1}} & L_{\mathrm{x}_{2} \mathrm{x}_{2}}
\end{array}\right]
$$

11.3 LM Approach

- Note that

$$
\begin{aligned}
& L_{\lambda \lambda}=0 \\
& L_{\lambda \times 1}=-g_{x 1} \\
& L_{\lambda \times 2}=-g_{x 2}
\end{aligned}
$$

- Then

$$
H=\left[\begin{array}{ccc}
0 & -g_{\mathrm{x}_{1}} & -\mathrm{g}_{\mathrm{x}_{2}} \tag{5}\\
-g_{\mathrm{x}_{1}} & L_{\mathrm{x}_{1} \mathrm{x}_{1}} & L_{\mathrm{x}_{1} \mathrm{x}_{2}} \\
-g_{\mathrm{x}_{2}} & L_{\mathrm{x}_{2} \mathrm{x}_{1}} & L_{\mathrm{x}_{2} \mathrm{x}_{2}}
\end{array}\right]
$$

- If the constraints are linear, the Hessian of the Lagrangian can be seen as the Hessian of the original objective function, bordered by the first derivatives of the constraints. This new Hessian is called bordered Hessian.

11.3 LM Approach: Example

Maximize Utility $U=U(x, y)$ where $U_{x}, U_{y}>0$
Subject to the budget constraint $B=x P_{x}+y P_{y}$
$L=U(x, y)+\lambda\left(B-x P_{x}-y P_{y}\right)$
$L_{\lambda}=\beta-x P_{x}-y P_{y}=0$
$L_{x}=U_{x}-\lambda P_{x}=0$
$L_{y}=U_{y}-\lambda P_{y}=0$
$L_{B}=\lambda=\frac{U_{x}}{P_{x}}=\frac{U_{y}}{P_{y}}$
$|H|=\left|\begin{array}{lll}L_{\lambda \lambda} & L_{\lambda x} & L_{\lambda y} \\ L_{x \lambda} & L_{x x} & L_{x y} \\ L_{y \lambda} & L_{y x} & L_{y y}\end{array}\right|=\left|\begin{array}{ccc}0 & -P_{x} & -P_{y} \\ -P_{x} & U_{x x} & U_{x y} \\ -P_{y} & U_{y x} & U_{y y}\end{array}\right|$
$=2 P_{x} P_{y} U_{x y}-P_{y}^{2} U_{x x}-P_{x}^{2} U_{y y}$

11.3 LM Approach: Second-order conditions

- λ has no effect on the value of L^{*} because the constraint equals zero but...
- A new set of second-order conditions are needed
- The constraint changes the criterion for a relative max. or min.
(1) $\quad H=a x^{2}+2 h x y+b y^{2}$ s.t. $\alpha \mathrm{x}+\beta \mathrm{y}=0$
(2) $y=-\frac{\alpha}{\beta} x \quad$ solve the constraint for y
(3)

$$
H=a x^{2}+2 h x\left(-\frac{\alpha}{\beta} x\right)+b\left(-\frac{\alpha}{\beta} x\right)^{2}
$$

$$
\begin{equation*}
H=\left(a \beta^{2}-2 \alpha \beta \mathrm{~h}+b \alpha^{2}\right)\left(\frac{x}{\beta}\right)^{2} \tag{4}
\end{equation*}
$$

(5) $H>0$ iff $a \beta^{2}-2 \alpha \beta \mathrm{~h}+b \alpha^{2}>0$

11.3 LM Approach: Second-order conditions

(1) $\quad H=a \beta^{2}-2 \alpha \beta \mathrm{~h}+\mathrm{b} \alpha^{2}>0$
(2) $\quad H=\left|\begin{array}{lll}0 & \alpha & \beta \\ \alpha & \mathrm{a} & h \\ \beta & h & b\end{array}\right|=-\mathrm{a} \beta^{2}+2 \alpha \beta \mathrm{~h}-\mathrm{b} \alpha^{2}$
(3) $\quad H$ is positive definite s.t. $\alpha \mathrm{x}+\beta \mathrm{y}=0$

$$
\operatorname{iff}\left|\begin{array}{lll}
0 & \alpha & \beta \\
\alpha & \mathrm{a} & h \\
\beta & h & b
\end{array}\right|<0 \quad \rightarrow \min
$$

11.3 LM Approach: Example

1-2) $\quad U=x_{1} x_{2}+2 x_{1}$
s.t. $\quad B=60-4 x_{1}-2 x_{2}=0$

Form the Lagrangian function
3) $L=x_{1} x_{2}+2 x_{1}+\lambda\left(60-4 x_{1}-2 x_{2}\right)$

FOC
4) $\quad L_{\lambda}=60-4 x_{1}-2 x_{2}=0$

5-6) $\quad L_{x_{1}}=x_{2}+2-\lambda 4=0 ; \quad \lambda=(1 / 4) x_{2}+1 / 2$
$7-8) \quad L_{x_{2}}=x_{1}-\lambda 2=0 ; \quad \lambda=(1 / 2) x_{1}$
$9-10)(1 / 4) x_{2}+1 / 2=(1 / 2) x_{1} ; \quad x_{2}=2 x_{1}-2$
11-12) $\quad 60=4 x_{1}+2\left(2 x_{1}-2\right) ; \quad x_{1}^{*}=8$
13-14) $\quad 60=4(8)-2 x_{2} ; \quad x_{2}^{*}=14$
15-17) $\quad U=(8)(14)+2(8) ; \quad U^{*}=128 ; \quad \lambda^{*}=4$

11.3 LM Approach: Restricted Least Squares

- The Lagrangean approach

$$
\operatorname{Min}_{\beta, \lambda} L(\beta, \lambda \mid y, x)=\sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t}-x_{t} \beta\right)^{2}+2 \lambda(r \beta-q)
$$

f.o.c:

$$
\begin{array}{ll}
\frac{\partial L}{\partial \beta}=\sum_{t=1}^{\mathrm{T}} 2\left(y_{t}-x_{t} b^{*}\right)\left(-x_{t}\right)+2 \lambda r=0 & \Rightarrow-\sum_{\mathrm{t}=1}^{\mathrm{T}}\left(y_{t} x_{t}-x_{t}^{2} b^{*}\right)+\lambda r=0 \\
\frac{\partial L}{\partial \lambda}=2\left(r b^{*}-q\right)=0 & \Rightarrow\left(r b^{*}-q\right)=0
\end{array}
$$

- Then, from the $1^{\text {st }}$ equation:

$$
\begin{aligned}
-\left(x^{\prime} y-x^{\prime} x b^{*}\right)+\lambda r=0 \quad \Rightarrow b^{*} & =\left(x^{\prime} x\right)^{-1} x^{\prime} y-\left(x^{\prime} x\right)^{-1} \lambda r \\
& =b-\left(x^{\prime} x\right)^{-1} \lambda r
\end{aligned}
$$

11.3 LM Approach: Restricted Least Squares

- $\mathrm{b}^{*}=\mathrm{b}-\mathbf{r}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} \lambda$
- Premultiply both sides by \mathbf{r} and then subtract \mathbf{q}

$$
\begin{aligned}
\mathbf{r b}^{*}-\mathbf{q} & =\mathbf{r b}-\mathbf{r}^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} \lambda-\mathbf{q} \\
0 & =-\mathbf{r}^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} \lambda+(\mathbf{r b}-\mathbf{q})
\end{aligned}
$$

Solving for $\lambda \quad \Rightarrow \lambda=\left[\mathbf{r}^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1}(\mathbf{r b}-\mathbf{q})$
Substituting in $\mathbf{b}^{*} \quad \Longrightarrow \mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} \mathbf{r}\left[\mathbf{r}^{\mathbf{2}}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1}(\mathbf{r b}-\mathbf{q})$

11.3 LM Approach: N-variable Case

a) No one - variable test because there must be one more variable than constraint
b) $2-$ variable test of soc

$$
\left|\overline{\mathrm{H}}_{2}\right|>0
$$

$$
\text { negative definite }:(\quad \max
$$

$$
\left|\overline{\mathrm{H}}_{2}\right|<0 \quad \text { positive definite :) } \quad \min
$$

c) 3-variable test of soc

$\left\|\overline{\mathrm{H}}_{2}\right\|>0$,	$\left\|\bar{H}_{3}\right\|<0$	negative definite :(\max
$\left\|\overline{\mathrm{H}}_{2}\right\|<0$,	$\left\|\bar{H}_{3}\right\|<0$	positive definite :)	\min

d) $\quad \mathrm{n}$ - variable case soc, (p.361)
$\left|\overline{\mathrm{H}}_{2}\right|>0,\left|\bar{H}_{3}\right|<0,\left|\bar{H}_{4}\right|>0, \ldots(-1)^{n}\left|\bar{H}_{n}\right|>0 \quad$ negative definite :(max
$\left|\overline{\mathrm{H}}_{2}\right|<0,\left|\bar{H}_{3}\right|<0,\left|\bar{H}_{4}\right|<0, \ldots,\left|\bar{H}_{n}\right|<0 \quad$ positive definite :) $\quad \mathrm{min}$
Where
$\left|\overline{\mathrm{H}}_{2}\right|=\left[\begin{array}{ccc}0 & g_{1} & g_{2} \\ g_{1} & Z_{11} & Z_{12} \\ g_{2} & Z_{21} & Z_{22}\end{array}\right] ; \quad\left|\overline{\mathrm{H}}_{3}\right|=\left[\begin{array}{cccc}0 & g_{1} & g_{2} & g_{3} \\ g_{1} & Z_{11} & \cdots & \cdots \\ g_{2} & \cdots & Z_{22} & \cdots \\ g_{3} & \cdots & \cdots & Z_{33}\end{array}\right] ;$

11.4 Optimality Conditions - Unconstrained Case

- Let \mathbf{x}^{*} be the point that we think is the minimum for $\mathrm{f}(\mathbf{x})$.
- Necessary condition (for optimality):
$\operatorname{df}\left(\mathbf{x}^{*}\right)=0$
- A point that satisfies the necessary condition is a stationary point
- It can be a minimum, maximum, or saddle point
- Q: How do we know that we have a minimum?
- Answer: Sufficiency Condition:

The sufficient conditions for \mathbf{x}^{*} to be a strict local minimum are:

$$
\operatorname{df}\left(\mathbf{x}^{*}\right)=0
$$

$d^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite

11.4 Constrained Case - KKT Conditions

- To prove a claim of optimality in constrained minimization (or maximization), we have to check the found point (\mathbf{x}^{*}) with respect to the (Karesh) Kuhn Tucker (KKT) conditions.
- Kuhn and Tucker extended the Lagrangian theory to include the general classical single-objective nonlinear programming problem:

$$
\begin{array}{lll}
\operatorname{minimize} & f(\mathbf{x}) & \\
\text { Subject to } & g_{j}(\mathbf{x}) \leq 0 & \text { for } j=1,2, \ldots, M \\
& h_{k}(\mathbf{x})=0 & \text { for } k=1,2, \ldots, K \\
& \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)
\end{array}
$$

Note: M inequality constraints, K equality constraints.

11.4 Interior versus Exterior Solutions

- Interior: If constraints are inactive and (thus) the solution lies at the interior of the feasible space, then the necessary condition for optimality is same as for unconstrained case:

$$
\nabla \mathrm{f}\left(\mathbf{x}^{*}\right)=0 \quad(\nabla \text { difference operator for matrices --"del" })
$$

Example: Minimize

$$
f(x)=4(x-1)^{2}+(y-2)^{2}
$$

with constraints:
$x \geq-1 \& y \geq-1$.

Exterior. If solution lies at the exterior, the condition $\nabla \mathrm{f}\left(\mathbf{x}^{*}\right)=0$ does not apply because some constraints will block movement to this minimum.

11.4 Interior versus Exterior Solutions

- If solution lies at the exterior, the condition $\nabla \mathrm{f}\left(\mathbf{x}^{*}\right)=0$ does not apply. Some constraints are active.

Example: Minimize

$$
f(x)=4(x-1)^{2}+(y-2)^{2}
$$

with constraints:

$$
x+y \leq 2 ; \quad x \geq-1 \& y \geq-1
$$

- We cannot get any more improvement if for \mathbf{x}^{*} there does not exist a vector \mathbf{d} that is both a descent direction and a feasible direction.
- In other words: the possible feasible directions do not intersect the possible descent directions at all.

11.4 Mathematical Form

- A vector \mathbf{d} that is both descending and feasible cannot exist if $-\nabla \mathrm{f}=\Sigma \mu_{\mathrm{i}}\left(\nabla \mathrm{g}_{\mathrm{i}}\right)\left(\right.$ with $\left.\mu_{\mathrm{i}} \geq 0\right)$ for all active constraints $\mathrm{i} \in \mathrm{I}$.
- This can be rewritten as $0=\nabla \mathrm{f}+\Sigma \mu_{\mathrm{i}}\left(\nabla \mathrm{g}_{\mathrm{i}}\right)$
- This condition is correct IF feasibility is defined as $g(x) \leq 0$.
- If feasibility is defined as $g(x) \geq 0$, then this becomes

$$
-\nabla \mathrm{f}=\Sigma \mu_{\mathrm{i}}\left(-\nabla \mathrm{g}_{\mathrm{i}}\right)
$$

- Again, this only applies for the I active constraints.
- Usually the inactive constraints are included, but the condition μ_{j} $g_{j}=0$ (with $\mu_{j} \geq 0$) is added for all inactive constraints $j \in J$.
- This is referred to as the complimentary slackeness condition.

11.4 Mathematical Form

- Note that the slackness condition is equivalent to stating that $\mu_{\mathrm{j}}=0$ for inactive constraints -i.e., zero price for non-binding constraints!
- That is, each inequality constraint is either active, and in this case it turns into equality constraint of the Lagrange type, or inactive, and in this case it is void and does not constrains the solution.
- Note that I + J = M, the total number of (inequality) constraints.
- Analysis of the constraints can help to rule out some combinations. However, in general, a 'brute force' approach in a problem with J inequality constraints must be divided into 2^{J} cases. Each case must be solved independently for a minima, and the obtained solution (if any) must be checked to comply with the constrains. A lot of work!

11.4 Necessary KKT Conditions

For the problem:
$\operatorname{Min} f(\mathbf{x})$
s.t. $\mathrm{g}(\mathbf{x}) \leq 0$
(n variables, M constraints)
The necessary conditions are:

$$
\begin{array}{ll}
\nabla \mathrm{f}(\mathrm{x})+\Sigma \mu_{\mathrm{i}} \nabla \mathrm{~g}_{\mathrm{i}}(\mathrm{x})=0 & \text { (optimality) } \\
\mathrm{g}_{\mathrm{i}}(\mathrm{x}) \leq 0 \quad \text { for } \mathrm{i}=1,2, \ldots, \mathrm{M} & \text { (primary feasibility) } \\
\mu_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}(\mathbf{x})=0 \text { for } \mathrm{i}=1,2, \ldots, \mathrm{M} & \text { (complementary slackness) } \\
\mu_{\mathrm{i}} \geq 0 \quad \text { for } \mathrm{i}=1,2, \ldots, \mathrm{M} & \text { (non-negativity, dual feasibility) }
\end{array}
$$

Note that the first condition gives n equations.

11.4 Necessary KKT Conditions - Example

Example: Let's minimize
$f(x)=4(x-1)^{2}+(y-2)^{2}$
with constraints:
$x+y \leq 2 ; \quad x \geq-1 \& y \geq-1$
Form the Lagrangian:

$$
\begin{gathered}
\mathrm{L}(\underline{\mathrm{x}}, \underline{\lambda}, \underline{\mu})=\mathrm{f}(\underline{\mathrm{x}})+\sum_{\mathrm{k}=1}^{\mathrm{m}} \lambda_{\mathrm{k}} \mathrm{~h}_{\mathrm{k}}(\underline{\mathrm{x}})+\sum_{\mathrm{j}=1}^{v} \mu_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}}(\underline{\mathrm{x}}) \\
L(\underline{x}, \underline{\lambda}, \underline{\mu})=4(x-1)^{2}+(y-2)^{2}+\mu_{1}(x+y-2)+\mu_{2}(x+1)+\mu_{3}(y+1)
\end{gathered}
$$

There are 3 inequality constraints, each can be chosen active/nonactive: 8 possible combinations. But, the 3 constraints together: $x+y=2 \& x=-1 \& y=-1$ have no solution, and a combination of any two of them yields a single intersection point.

11.4 Necessary KKT Conditions - Example

The general case is:

$$
\mathrm{L}(\underline{\mathrm{x}}, \underline{\lambda}, \underline{\mu})=4(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}+\mu_{1}(\mathrm{x}+\mathrm{y}-2)+\mu_{2}(\mathrm{x}+1)+\mu_{3}(\mathrm{y}+1)
$$

We must consider all the combinations of active / non active constraints:
(1) $x+y=2 \Rightarrow L(x, y, \mu)=4(x-1)^{2}+(y-2)^{2}+\mu(x+y-2)$
(2) $x=-1 \Rightarrow L(x, y, \mu)=4(x-1)^{2}+(y-2)^{2}+\mu(x+1)$
(3) $\mathrm{y}=-1 \Rightarrow \mathrm{~L}(\mathrm{x}, \mathrm{y}, \mu)=4(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}+\mu(\mathrm{y}+1)$
(4) $x+y=2$ and $x=-1 \Rightarrow(x, y)=(-1,3)$
(5) $x+y=2$ and $y=-1 \Rightarrow(x, y)=(3,-1)$
(6) $x=-1$ and $y=-1 \Rightarrow(x, y)=(-1,-1)$
(7) $x+y=2$ and $x=-1$ and $x=-1 \Rightarrow(x, y)=\varnothing$
(8) Unconstrained: $\mathrm{L}(\mathrm{x}, \mathrm{y})=4(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}$

11.4 Necessary KKT Conditions - Example

(1) $L(x, y, \mu)=4(x-1)^{2}+(y-2)^{2}+\mu(x+y-2)$
$\left.\left.\begin{array}{l}\frac{\partial L}{\partial \mu}=x+y-2=0 \\ \frac{\partial L}{\partial x}=8 x-8+\mu=0 \\ \frac{\partial L}{\partial y}=2 y-4+\mu=0\end{array}\right\} \Rightarrow \begin{array}{c}x=2-y \\ \mu=8-8 x \\ 2 y-4+8-8(2-y)=0\end{array}\right\} \Rightarrow \begin{gathered}(x, y)=(0.8,1.2) \\ f(x, y)=0.8 \\ \mu=1.6>0\end{gathered}$
(2) $L(x, y, \mu)=4(x-1)^{2}+(y-2)^{2}+\mu(x+1)$

$$
\left.\left.\begin{array}{c}
\frac{\partial L}{\partial \mu}=x+1=0 \\
\frac{\partial L}{\partial x}=8 x-8+\mu=0 \\
\frac{\partial L}{\partial y}=2 y-4=0
\end{array}\right\} \Rightarrow \begin{array}{c}
x=-1 \\
y=2
\end{array}\right\} \begin{gathered}
(x, y)=(-1,2) \\
f(x, y)=16 \\
\mu=16>0
\end{gathered}
$$

11.4 Necessary KKT Conditions - Example

(3) $L(x, y, \mu)=4(x-1)^{2}+(y-2)^{2}+\mu(y+1)$

$$
\begin{aligned}
& \left.\left.\begin{array}{c}
\frac{\partial \mathrm{L}}{\partial \mu}=\mathrm{y}+1=0 \\
\frac{\partial \mathrm{~L}}{\partial \mathrm{x}}=8 \mathrm{x}-8=0 \\
\frac{\partial \mathrm{~L}}{\partial \mathrm{y}}=2 \mathrm{y}-4+\mu=0
\end{array}\right\} \Rightarrow \begin{array}{c}
\mathrm{y}=-1 \\
\mathrm{x}=1 \\
\mu=6
\end{array}\right\} \Rightarrow \begin{array}{c}
(\mathrm{x}, \mathrm{y})=(1,-1) \\
\mathrm{f}(\mathrm{x}, \mathrm{y})=9 \\
\mu=6>0 \\
(\mathrm{x}, \mathrm{y})=(-1,3) ; \mathrm{f}(\mathrm{x}, \mathrm{y})=17 \\
(\mathrm{x}, \mathrm{y})=(3,-1) ; \quad \mathrm{f}(\mathrm{x}, \mathrm{y})=25
\end{array} \\
& \begin{array}{l}
\mathrm{x}, \mathrm{y})=(-1,-1) ; \quad \mathrm{f}(\mathrm{x}, \mathrm{y})=25
\end{array} \\
& (\mathrm{x}, \mathrm{y})=\varnothing
\end{aligned}
$$

(8) $(\mathrm{x}, \mathrm{y})=(1,2) ; \mathrm{f}(\mathrm{x}, \mathrm{y})=0 \quad \mathrm{x}+\mathrm{y}=3>2 \quad$ - beyond the range

11.4 Necessary KKT Conditions - Example

Finally, we compare among the 8 cases we have studied: case (7) resulted was over-constrained and had no solutions, case (8) violated the constraint $x+y \leq 2$. Among the cased (1)-(6), it was case (1) $(\mathrm{x}, \mathrm{y})=(0.8,1.2) ; \quad \mathrm{f}(\mathrm{x}, \mathrm{y})=0.8$, yielding the lowest value of $f(x, y)$.

11.4 Necessary KKT Conditions: General Case

- For the general case (n variables, M Inequalities, L equalities):

$$
\begin{array}{lll}
\operatorname{Min} f(\mathbf{x}) & \text { s.t. } & \\
& \mathrm{g}_{\mathrm{i}}(\mathbf{x}) \leq 0 & \text { for } \mathrm{i}=1,2, \ldots, \mathrm{M} \\
& h_{i}(\mathbf{x})=0 & \text { for } \mathrm{J}=1,2, \ldots, \mathrm{~L}
\end{array}
$$

- In all this, the assumption is that $\nabla \mathrm{g}_{\mathrm{j}}\left(\mathbf{x}^{*}\right)$ for j belonging to active constraints and $\nabla h_{k}\left(\mathbf{x}^{*}\right)$ for $\mathrm{k}=1, \ldots, \mathrm{~K}$ are linearly independent. This is referred to as constraint qualification.
- The necessary conditions are:
$\nabla \mathrm{f}(\mathbf{x})+\Sigma \mu_{\mathrm{i}} \nabla \mathrm{g}_{\mathrm{i}}(\mathbf{x})+\Sigma \lambda_{\mathrm{j}} \nabla \mathrm{h}_{\mathrm{i}}(\mathbf{x})=0 \quad$ (optimality)
$\mathrm{g}_{\mathrm{i}}(\mathbf{x}) \leq 0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{M} \quad$ (primary feasibility)
$h_{j}(\mathbf{x})=0 \quad$ for $j=1,2, \ldots, L \quad$ (primary feasibility)
$\mu_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}(\mathbf{x})=0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{M} \quad$ (complementary slackness)
$\mu_{\mathrm{i}} \geq 0$ for $\mathrm{i}=1,2, \ldots, \mathrm{M} \quad$ (non-negativity, dual feasibility)
(Note: λ_{j} is unrestricted in sign)

11.4 Necessary KKT Conditions (if $\mathrm{g}(\mathrm{x}) \geq 0$)

- If the definition of feasibility changes, the optimality and feasibility conditions change. For example, $\mathrm{g}_{\mathrm{i}}(\mathbf{x}) \geq 0$.Then,

$$
\begin{array}{lll}
\operatorname{Min} f(\mathbf{x}) & \text { s.t. } & \\
& g_{i}(\mathbf{x}) \geq 0 & \text { for } i=1,2, \ldots, M \\
& h_{j}(\mathbf{x})=0 & \text { for } J=1,2, \ldots, L
\end{array}
$$

- The necessary conditions become:
$\nabla \mathrm{f}(\mathbf{x})-\Sigma \mu_{\mathrm{i}} \nabla \mathrm{g}_{\mathrm{i}}(\mathbf{x})+\Sigma \lambda_{\mathrm{j}} \nabla \mathrm{h}_{\mathrm{i}}(\mathbf{x})=0$ (optimality)
$\mathrm{g}_{\mathrm{i}}(\mathbf{x}) \geq 0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{M} \quad$ (feasibility)
$h_{j}(\mathbf{x})=0 \quad$ for $\mathrm{j}=1,2, \ldots, \mathrm{~L} \quad$ (feasibility)
$\mu_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}(\mathbf{x})=0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{M} \quad$ (complementary slackness)
$\mu_{\mathrm{i}} \geq 0$ for $\mathrm{i}=1,2, \ldots, \mathrm{M} \quad$ (non-negativity, dual feasibility)

11.4 Restating the Optimization Problem

- Kuhn Tucker Optimization Problem:

Find vectors $\mathbf{x}_{(\mathrm{Nx} 1)}, \boldsymbol{\mu}_{(1 \mathrm{xM})}$ and $\boldsymbol{\lambda}_{(1 \mathrm{xK})}$ that satisfy:

$$
\begin{array}{ll}
\nabla \mathrm{f}(\mathbf{x})+\Sigma \mu_{\mathrm{i}} \nabla \mathrm{~g}_{\mathrm{i}}(\mathbf{x})+\Sigma \lambda_{\mathrm{j}} \nabla \mathrm{~h}_{\mathrm{i}}(\mathbf{x})=0 & \text { (optimality) } \\
\mathrm{g}_{\mathrm{i}}(\mathbf{x}) \leq 0 \quad \text { for } \mathrm{i}=1,2, \ldots, \mathrm{M} & \text { (feasibility) } \\
\mathrm{h}_{\mathrm{j}}(\mathbf{x})=0 \quad \text { for } \mathrm{j}=1,2, \ldots, \mathrm{~L} & \text { (feasibility) } \\
\mu_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}(\mathbf{x})=0 \text { for } \mathrm{i}=1,2, \ldots, \mathrm{M} & \text { (complementary } \\
\mu_{\mathrm{i}} \geq 0 \quad \text { for } \mathrm{i}=1,2, \ldots, \mathrm{M} & \text { slackness condition) } \\
\text { (non-negativity) }
\end{array}
$$

- If \mathbf{x}^{*} is an optimal solution to NLP, then there exists a $\left(\mu^{*}, \lambda^{*}\right)$ such that $\left(\mathbf{x}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\lambda}^{*}\right)$ solves the Kuhn-Tucker problem.
- The above equations not only give the necessary conditions for optimality, but also provide a way of finding the optimal point.

11.4 KKT Conditions: Limitations

- Necessity theorem helps identify points that are not optimal. A point is not optimal if it does not satisfy the Kuhn-Tucker conditions.
- On the other hand, not all points that satisfy the Kuhn-Tucker conditions are optimal points.
- The Kuhn-Tucker sufficiency theorem gives conditions under which a point becomes an optimal solution to a single-objective NLP.

11.4 KKT Conditions: Sufficiency Condition

- Sufficient conditions that a point x^{*} is a strict local minimum of the classical single objective NLP problem, where f, g_{j}, and h_{k} are twice differentiable functions are that

1) The necessary KKT conditions are met.
2) The Hessian matrix $\nabla^{2} \mathrm{~L}\left(\mathbf{x}^{*}\right)=\nabla^{2} \mathrm{f}\left(\mathbf{x}^{*}\right)+\Sigma \mu_{\mathrm{i}} \nabla^{2} \mathrm{~g}_{\mathrm{i}}\left(\mathbf{x}^{*}\right)+$ $\Sigma \lambda_{j} \nabla^{2} h_{j}\left(\mathbf{x}^{*}\right)$ is positive definite on a subspace of R^{n} as defined by the condition:
$\mathbf{y}^{\mathrm{T}} \nabla^{2} \mathrm{~L}\left(\mathbf{x}^{*}\right) \mathbf{y} \geq 0$ is met for every vector $\mathbf{y}_{(1 \mathrm{xN})}$ satisfying:
$\nabla \mathrm{g}_{\mathrm{j}}\left(\mathbf{x}^{*}\right) \mathbf{y}=0$ for j belonging to $\mathrm{I}_{1}=\left\{\mathrm{j} \mid \mathrm{g}_{\mathrm{j}}\left(\mathbf{x}^{*}\right)=0, \mathrm{u}_{\mathrm{j}}^{*}>0\right\}$ (active constraints)

$$
\nabla h_{k}\left(\mathbf{x}^{*}\right) \mathrm{y}=0 \text { for } \mathrm{k}=1, \ldots, \mathrm{~K}
$$

$$
y \neq 0
$$

11.4 KKT Sufficiency Theorem (Special Case)

- Consider the classical single objective NLP problem.
minimize $f(\mathbf{x})$

$$
\begin{array}{ll}
\text { s.t. } \\
g_{\mathrm{j}}(\mathbf{x}) \leq 0 & \text { for } j=1,2, \ldots, \mathrm{~J} \\
\mathrm{~h}_{\mathrm{k}}(\mathbf{x})=0 & \text { for } k=1,2, \ldots, \mathrm{~K}
\end{array}
$$

where $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right)$

- Features of special case: objective function $\mathrm{f}(\mathbf{x})$ is convex, all inequality constraints $g_{j}(\mathbf{x})$ are convex functions for $j=1, \ldots, J$, and the equality constraints $\mathrm{h}_{\mathrm{k}}(\mathbf{x})$ for $\mathrm{k}=1, \ldots, \mathrm{~K}$ are linear.
- Then, the necessary KKT conditions are also sufficient.
- Therefore, in this case, if there exists a solution x^{*} that satisfies the KKT necessary conditions, then \mathbf{x}^{*} is an optimal solution to the NLP problem.
- In fact, it is a global optimum.

11.4 KKT Conditions: Closing Remarks

- Kuhn-Tucker Conditions are an extension of Lagrangian function and method.
- They provide powerful means to verify solutions
- But there are limitations...
- Sufficiency conditions are difficult to verify.
- Practical problems do not have required nice properties.
- For example, you will have a problems if you do not know the explicit constraint equations.
- If you have a multi-objective (lexicographic) formulation, then it is suggested to test each priority level separately.

11.4 KKT Conditions: Example

Minimize $C=\left(x_{1}-4\right)^{2}+\left(x_{2}-4\right)^{2} \quad$ s.t. $\quad 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 6 ; \quad 12-3 x_{1}-2 x_{2} \geq 0 ; \quad x_{1}, \mathrm{x}_{2} \geq 0$
Form Lagrangian : $\quad L=\left(x_{1}-4\right)^{2}+\left(x_{2}-4\right)^{2}+\lambda_{1}\left(6-2 \mathrm{x}_{1}-3 \mathrm{x}_{2}\right)+\lambda_{2}\left(-12+3 x_{1}+2 x_{2}\right)$
F.o.c.:

1) $\quad L_{x_{1}}=2\left(x_{1}-4\right)-2 \lambda_{1}+3 \lambda_{2}=0$;
2) $\quad L_{x_{2}}=2\left(x_{2}-4\right)-3 \lambda_{1}+2 \lambda_{2}=0$;
3) $\quad L_{\lambda_{1}}=6-2 \mathrm{x}_{1}-3 \mathrm{x}_{2} \leq 0$;
4) $\quad L_{\lambda_{2}}=-12+3 x_{1}+2 x_{2} \leq 0$;

Case 1: Let $\quad \lambda_{2}=0, \quad L_{\lambda_{2}}<0$ (2nd Constraint inactive) :
From 1) and 2) $\quad \Rightarrow \lambda_{1}=x_{1}-4=2 / 3\left(x_{2}-4\right)$;
From 3) $\quad \Rightarrow x_{1}=3-3 / 2 x_{2}$;
$\Rightarrow 3-3 / 2 x_{2}-4=2 / 3\left(x_{2}-4\right) \quad \Rightarrow x_{2}^{*}=5 / 3 *(6 / 13)$
$x_{2}^{*}=30 / 39=10 / 13, \quad x_{1}^{*}=24 / 13, \quad \lambda_{1}=-28 / 13<0 \quad$ (Violates KKT conditions)
Case 2: Let $\quad \lambda_{1}=0, L_{\lambda_{1}}<0$ (1st Constraint inactive) :
From 1) and 2) $\quad \Rightarrow \quad \lambda_{2}=-(2 / 3)\left(x_{1}-4\right)=-\left(x_{2}-4\right) \quad \Rightarrow x_{1}=3 / 2\left(x_{2}-4\right)+4$
From 4) $\quad \Rightarrow x_{1}=-2 / 3 x_{2}+4$
$\Rightarrow-2 / 3 x_{2}+4=3 / 2\left(x_{2}-4\right)+4 ; \quad(-2 / 3-3 / 2) x_{2}^{*}=-6$
36
$x_{2}^{*}=36 / 13, \quad x_{1}^{*}=84 / 39=28 / 13, \quad \lambda_{2}=16 / 13>0 \quad$ (Meets KKT conditions)

11.5 The Constraint Qualification

Example 1- Irregularities at boundary points
Maximize $\quad \pi=\mathrm{x}_{1}$
subject to $\quad \mathrm{x}_{2}-\left(1-\mathrm{x}_{1}\right)^{3} \leq 0$
and $\mathrm{x}_{1} \& x_{2} \geq 0$
$L=x_{1}+\lambda\left(-\mathrm{x}_{2}+\left(1-\mathrm{x}_{1}\right)^{3}\right)$
$L_{x_{1}}=1-3 \lambda\left(1-x_{1}\right)^{2} \leq 0$
$x_{1}=1$ at a max. However,

$L_{x_{1}}=1-3 \lambda(1-1)^{2}=1$ when it should equal zero.
Reason: on an inflection point or cusp

11.5 The Constraint Qualification

Example 2 - Irregularities at the boundary points
Maximize $\quad \pi=\mathrm{x}_{1}$
subject to $\quad x_{2}-\left(1-x_{1}\right)^{3} \leq 0$
and $\quad 2 \mathrm{x}_{1}+x_{2} \leq 2$
where $\quad \mathrm{x}_{1} \& x_{2} \geq 0$
$L=x_{1}+\lambda_{1}\left(-\mathrm{x}_{2}+\left(1-\mathrm{x}_{1}\right)^{3}\right)+\lambda_{2}\left(2-2 \mathrm{x}_{1}-x_{2}\right)$
$L_{x_{1}}=1-3 \lambda_{1}\left(1-x_{1}\right)^{2}-2 \lambda_{2} \leq 0$

$L_{x_{2}}=-\lambda_{1}-\lambda_{2} \leq 0$
$L_{\lambda_{1}}=-\mathrm{x}_{2}+\left(1-\mathrm{x}_{1}\right)^{3} \geq 0$
$L_{\lambda_{2}}=2-2 \mathrm{x}_{1}-x_{2} \geq 0$
$x_{1}=1, x_{2}=0, \lambda_{1}=-\frac{1}{2}, \lambda_{2}=\frac{1}{2}$

11.5 The Constraint Qualification

Example 3 - The feasible region of the problem contains no cusp
Maximize $\pi=x_{2}-x_{1}^{2}$
subject to $-\left(10-x_{1}^{2}-x_{2}\right)^{3} \leq 0$ and $-x_{1} \geq-2$, where $x_{1}, \mathrm{x}_{2} \geq 0$
$L=x_{2}-x_{1}^{2}+\lambda_{1}\left(10-x_{1}^{2}-x_{2}\right)^{3}+\lambda_{2}\left(-2+x_{1}\right)$
$L_{x_{1}}=-2 x_{1}-6 \lambda_{1}\left(10-x_{1}^{2}-x_{2}\right)^{2} x_{1}+\lambda_{2}$
$L_{x_{2}}=1-3 \lambda_{1}\left(10-x_{1}^{2}-x_{2}\right)^{2}$
$L_{\lambda_{1}}=\left(10-x_{1}^{2}-x_{2}\right)^{3}$
$L_{\lambda_{2}}=-2+x_{1}$
$x_{1}=2, x_{2}=6, \lambda_{1}=\lambda_{1}, \lambda_{2}=4$
$L_{x_{2}}=1-3 \lambda_{1}\left(10-2^{2}-6\right)^{2}=1$, when it should equal zero

