
Ch. 11 - Optimization with Equality Constraints

1

1

Chapter 11
Optimization with Equality Constraints

Harold William Kuhn (1925)Albert William Tucker (1905-1995)

Joseph-Louis (Giuseppe Lodovico), comte de 
Lagrange (1736-1813)

11.1 General Problem

• Now, a constraint is added to the optimization problem:

maxx,y u(x, y) s.t  x px + y py = I, 

px, py, & I are exogenous prices and income, respectively.

• Different methods to solve this problem:

– Substitution

– Total differential approach

– Lagrange Multiplier
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11.1 Substitution Approach

• Easy to use in simple 2x2 systems. Using the constraint, substitute 
into objective function and optimize as usual.

• Example:
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11.2 Total Differential Approach

• Total differentiation of  objective function and constraints:

• Equation (10) along with the restriction (2) form the basis to solve 
this optimization problem.

4



Ch. 11 - Optimization with Equality Constraints

3

 
   
 

    12882148)14,8(

8;142211460

22212

21;2

024;02

*
1

*
222

2121

212121

2112112










*U

xxxx

xxxx

dxdxxxdxdx

dxdxdBdxdxxdxxdU

11.2 Total Differential Approach

• Example: U(x1, x2) = x1x2 + 2x1 s.t. 60 = 4x1 + 2x2

Taking first-order differentials of  U and budget constraint (B):
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11.2 Total-differential approach

• Graph for Utility function and budget constraint:
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11.3 Lagrange-multiplier Approach

• To avoid working with (possibly) zero denominators, let λ denote 
the common value in (10). Rewriting (10) and adding the budget 
constraint we are left with a 3x3 system of  equations:

• There is a convenient function that produces (10’), (10’’) and (2) as 
a set of  f.o.c.: The Lagrangian function, which includes the objective 
function and the constraint:

• The constraint is multiplied by a variable, λ, called the Lagrange 
multiplier (LM). 

 ),(λ),( 2121 xxgBxxfL 
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11.3 Lagrange-multiplier Approach

 



























22122

21111

21

222

111

xxxxλx

xxxxλx

λxλxλλ

x

x

21

2121

LL

)5(

0λg)4(

0λg)3(

0),()2(

),(λ),()1(

LLL

LLL

L

H

fL

fL

xxgBL

xxgBxxfL

xx

xx

• Once we form the Lagrangian function, the Lagrange function 
becomes the new objective function.
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11.3 LM Approach
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• Note that 
Lλ λ = 0
Lλ x1 = - gx1

Lλ x2 = - gx2

.
• Then

• If  the constraints are linear, the Hessian of  the Lagrangian can be 
seen as the Hessian of  the original objective function, bordered by 
the first derivatives of  the constraints. This new Hessian is called 
bordered Hessian.
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11.3 LM Approach: Second-order conditions

•  has no effect on the value of L* because the constraint equals 
zero but …

• A new set of second-order conditions are needed

• The constraint changes the criterion for a relative max. or min.
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11.3 LM Approach: Restricted Least Squares

• The Lagrangean approach

f.o.c:

• Then, from the 1st equation:
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11.3 LM Approach: Restricted Least Squares

• b* = b – r (xx)-1

• Premultiply both sides by r and then subtract q
rb* - q = rb – r2 (xx)-1 – q

0 = - r2 (xx)-1 + (rb – q)

Solving for  ⟹  = [r2 (xx)-1]-1 (rb – q)

Substituting in b* ⟹ b* = b – (xx)-1r [r2 (xx)-1]-1 (rb – q)
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11.4 Optimality Conditions – Unconstrained Case

• Let x* be the point that we think is the minimum for f(x).

• Necessary condition (for optimality):

df(x*) = 0

• A point that satisfies the necessary condition is a stationary point

– It can be a minimum, maximum, or saddle point

• Q: How do we know that we have a minimum?

• Answer: Sufficiency Condition:

The sufficient conditions for x* to be a strict local minimum are: 

df(x*) = 0

d2f(x*) is positive definite 

11.4 Constrained Case – KKT Conditions11.4 Constrained Case – KKT Conditions

• To prove a claim of optimality in constrained minimization (or 
maximization), we have to check the found point (x*) with respect to 
the (Karesh) Kuhn Tucker (KKT) conditions.

• Kuhn and Tucker extended the Lagrangian theory to include the 
general classical single-objective nonlinear programming problem:

minimize f(x)

Subject to gj(x)  0 for j = 1, 2, ..., M

hk(x) = 0 for k = 1, 2, ..., K

x = (x1, x2, ..., xN)

Note: M inequality constraints, K equality constraints.
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11.4 Interior versus Exterior Solutions

• Interior: If constraints are inactive and (thus) the solution lies at the 
interior of the feasible space, then the necessary condition for 
optimality is same as for unconstrained case: 

f(x*) = 0 ( difference operator for matrices --“del” )

Example: Minimize

f(x) = 4(x – 1)2 + (y – 2)2

with constraints:

x ≥ -1 & y ≥ -1.

Exterior: If solution lies at the exterior, the condition f(x*) = 0 

does not apply because some constraints will block movement to this 
minimum.

11.4 Interior versus Exterior Solutions

• If solution lies at the exterior, the condition f(x*) = 0 does not
apply. Some constraints are active. 

Example: Minimize

f(x) = 4(x – 1)2 + (y – 2)2

with constraints:

x + y ≤ 2; x ≥ - 1 & y ≥ - 1.

– We cannot get any more improvement if for x* there does not exist a 
vector d that is both a descent direction and a feasible direction.

– In other words: the possible feasible directions do not intersect the 
possible descent directions at all.
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11.4 Mathematical Form

• A vector d that is both descending and feasible cannot exist if 

-f =  i (gi) (with i  0) for all active constraints iI.

– This can be rewritten as 0 = f +  i (gi) 

– This condition is correct IF feasibility is defined as g(x)  0.

– If feasibility is defined as g(x)  0, then this becomes 

-f =  i (-gi)

• Again, this only applies for the I active constraints.

• Usually the inactive constraints are included, but the condition j

gj = 0 (with j  0) is added for all inactive constraints jJ.

– This is referred to as the complimentary slackness condition.

21

• Note that the slackness condition is equivalent to stating that j = 0 
for inactive constraints -i.e., zero price for non-binding constraints!

• That is, each inequality constraint is either active, and in this case it 
turns into equality constraint of the Lagrange type, or inactive, and 
in this case it is void and does not constrains the solution.

• Note that I + J = M, the total number of (inequality) constraints.

• Analysis of the constraints can help to rule out some combinations. 
However, in general,  a ‘brute force’ approach in a problem with J
inequality constraints must be divided into 2J cases. Each case must 
be solved independently for a minima, and the obtained solution (if 
any) must be checked to comply with the constrains. A lot of work!

11.4 Mathematical Form
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11.4 Necessary KKT Conditions

For the problem:
Min f(x)
s.t. g(x)  0
(n variables, M constraints)

The necessary conditions are:
f(x) +  i gi(x) = 0 (optimality)
gi(x)  0 for i = 1, 2, ..., M  (primary feasibility)
i gi(x) = 0 for i = 1, 2, ..., M (complementary slackness) 
i  0 for i = 1, 2, ..., M (non-negativity, dual feasibility)

Note that the first condition gives n equations.

23

11.4 Necessary KKT Conditions - Example

Example: Let’s minimize

f(x) = 4(x – 1)2 + (y – 2)2

with constraints:

x + y ≤ 2; x ≥ - 1 & y ≥ - 1.

Form the Lagrangian:

There are 3 inequality constraints, each can be chosen active/non-
active: 8 possible combinations. But, the 3 constraints together:
x+y=2 & x=-1 & y=-1 have no solution, and a combination of any
two of them yields a single intersection point.
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The general case is:
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We must consider all the combinations of active / non active constraints:
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11.4 Necessary KKT Conditions - Example

Finally, we compare among the 8 cases we have studied: case (7)

resulted was over-constrained and had no solutions, case (8) violated

the constraint x + y ≤ 2. Among the cased (1)-(6), it was case (1)

, yielding the lowest value of f(x, y).      8.0y,xf;2.1,8.0y,x 

11.4 Necessary KKT Conditions - Example
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11.4 Necessary KKT Conditions: General Case

• For the general case (n variables, M Inequalities, L equalities):

Min f(x) s.t.

gi(x)  0 for i = 1, 2, ..., M

hj(x) = 0 for J = 1, 2, ..., L 

• In all this, the assumption is that gj(x*) for j belonging to active
constraints and hk(x*) for k = 1, ..., K are linearly independent. This is 
referred to as constraint qualification.

•  The necessary conditions are:

f(x) +  i gi(x) +  j hj(x) = 0 (optimality)

gi(x)  0 for i = 1, 2, ..., M (primary feasibility)

hj(x) = 0 for j = 1, 2, ..., L (primary feasibility)

i gi(x) = 0 for i = 1, 2, ..., M (complementary slackness)

i  0 for i = 1, 2, ..., M (non-negativity, dual feasibility)

(Note: j is unrestricted in sign)

11.4 Necessary KKT Conditions (if g(x)  0)

• If the definition of feasibility changes, the optimality and feasibility 
conditions change. For example, gi(x)  0.Then,

Min f(x) s.t.

gi(x)  0 for i = 1, 2, ..., M

hj(x) = 0 for J = 1, 2, ..., L 

• The necessary conditions become:

f(x) –  i gi(x) +  j hj(x) = 0 (optimality)

gi(x)  0 for i = 1, 2, ..., M (feasibility)

hj(x) = 0 for j = 1, 2, ..., L (feasibility)

i gi(x) = 0 for i = 1, 2, ..., M (complementary slackness)

i  0 for i = 1, 2, ..., M (non-negativity, dual feasibility)

30
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11.4 Restating the Optimization Problem11.4 Restating the Optimization Problem

• Kuhn Tucker Optimization Problem:  
Find vectors x(Nx1), (1xM) and  (1xK) that satisfy:

f(x) +  i gi(x) +  j hj(x) = 0 (optimality)
gi(x)  0 for i = 1, 2, ..., M (feasibility)
hj(x) = 0 for j = 1, 2, ..., L (feasibility)
i gi(x) = 0 for i = 1, 2, ..., M (complementary 

slackness condition)
i  0 for i = 1, 2, ..., M (non-negativity)

• If x* is an optimal solution to NLP, then there exists a (*, *) 
such that (x*, *, *) solves the Kuhn–Tucker problem.

• The above equations not only give the necessary conditions for 
optimality, but also provide a way of finding the optimal point.

31

11.4 KKT Conditions: Limitations11.4 KKT Conditions: Limitations

• Necessity theorem helps identify points that are not optimal.  A 
point is not optimal if it does not satisfy the Kuhn–Tucker 
conditions.

• On the other hand, not all points that satisfy the Kuhn-Tucker 
conditions are optimal points.

• The Kuhn–Tucker sufficiency theorem gives conditions under which a 
point becomes an optimal solution to a single-objective NLP.

32
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11.4 KKT Conditions: Sufficiency Condition11.4 KKT Conditions: Sufficiency Condition

• Sufficient conditions that a point x* is a strict local minimum of the 
classical single objective NLP problem, where f, gj, and hk are twice 
differentiable functions are that

1) The necessary KKT conditions are met.

2) The Hessian matrix 2L(x*) = 2f(x*) + i2gi(x*) + 
j2hj(x*) is positive definite on a subspace of Rn as defined by 
the condition:

yT 2L(x*) y  0 is met for every vector y(1xN) satisfying:

gj(x*) y = 0  for j belonging to I1 = { j | gj(x*) = 0, uj* > 0} 
(active constraints)

hk(x*) y = 0 for k = 1, ..., K

y  0

33

11.4 KKT Sufficiency Theorem (Special Case)11.4 KKT Sufficiency Theorem (Special Case)

• Consider the classical single objective NLP problem.

minimize f(x) s.t.

gj(x)  0 for j = 1, 2, ..., J

hk(x) = 0 for k = 1, 2, ..., K

where x = (x1, x2, ..., xN)

• Features of special case: objective function f(x) is convex, all 
inequality constraints gj(x) are convex functions for j = 1, ..., J, and 
the equality constraints hk(x) for k = 1, ..., K are linear.

• Then, the necessary KKT conditions are also sufficient.

• Therefore, in this case, if there exists a solution x* that satisfies the 
KKT necessary conditions, then x* is an optimal solution to the 
NLP problem.

• In fact, it is a global optimum.
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11.4 KKT Conditions: Closing Remarks11.4 KKT Conditions: Closing Remarks

• Kuhn-Tucker Conditions are an extension of Lagrangian function 
and method.

• They provide powerful means to verify solutions

• But there are limitations…

– Sufficiency conditions are difficult to verify.

– Practical problems do not have required nice properties.

– For example, you will have a problems if you do not know the 
explicit constraint equations.

• If you have a multi-objective (lexicographic) formulation, then it is 
suggested to test each priority level separately.
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