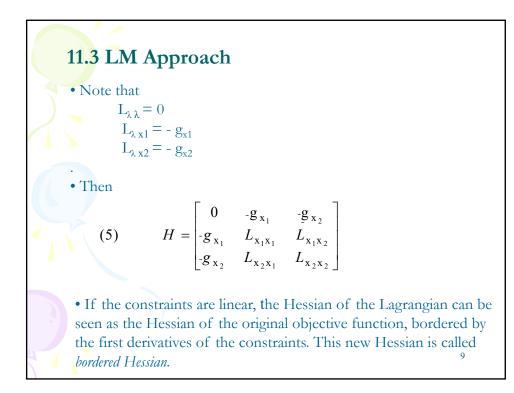
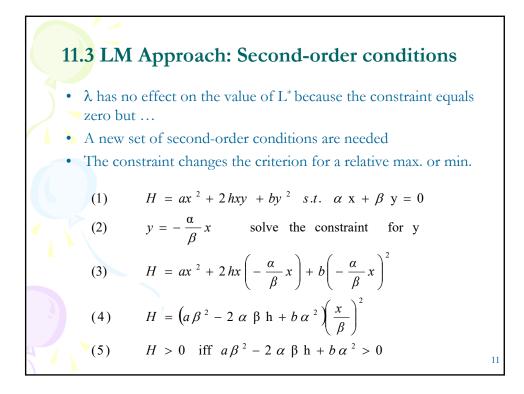
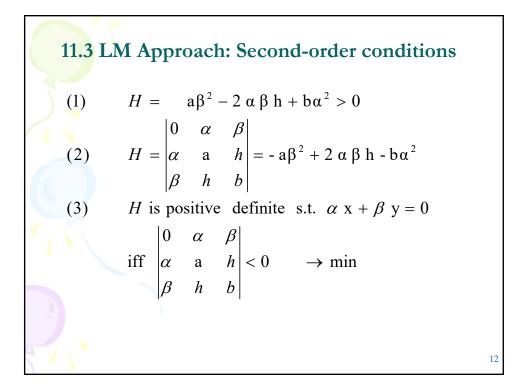


11.3 Lagrange-multiplier Approach • Once we form the Lagrangian function, the Lagrange function becomes the new objective function. (1) $L = f(x_1, x_2) + \lambda [B - g(x_1, x_2)]$ (2) $L_{\lambda} = B - g(x_1, x_2) = 0$ (3) $L_{x_1} = f_{x_1} - \lambda g_{x_1} = 0$ (4) $L_{x_2} = f_{x_2} - \lambda g_{x_2} = 0$ (5) $H = \begin{bmatrix} L_{\lambda\lambda} & L_{\lambda x_1} & L_{\lambda x_2} \\ L_{x_1\lambda} & L_{x_1 x_1} & L_{x_1 x_2} \\ L_{x_2\lambda} & L_{x_2 x_1} & L_{x_2 x_2} \end{bmatrix}$



11.3 LM Approach: Example
Maximize Utility
$$U = U(x,y)$$
 where $U_x, U_y > 0$
Subject to the budget constraint $B = xP_x + yP_y$
 $L = U(x, y) + \lambda (B - xP_x - yP_y)$
 $L_x = \beta - xP_x - yP_y = 0$
 $L_x = U_x - \lambda P_x = 0$
 $L_y = U_y - \lambda P_y = 0$
 $L_B = \lambda = \frac{U_x}{P_x} = \frac{U_y}{P_y}$
 $|H| = \begin{vmatrix} L_{\lambda\lambda} & L_{\lambda x} & L_{\lambda y} \\ L_{x\lambda} & L_{xx} & L_{xy} \\ L_{y\lambda} & L_{yx} & L_{yy} \end{vmatrix} = \begin{vmatrix} 0 & -P_x & -P_y \\ -P_x & U_{xx} & U_{xy} \\ -P_y & U_{yx} & U_{yy} \end{vmatrix}$





11.3 LM Approach: Example
1-2)
$$U = x_1x_2 + 2x_1$$
 s.t. $B = 60 - 4x_1 - 2x_2 = 0$
Form the Lagrangian function
3) $L = x_1x_2 + 2x_1 + \lambda(60 - 4x_1 - 2x_2)$
FOC
4) $L_{\lambda} = 60 - 4x_1 - 2x_2 = 0$
5-6) $L_{x_1} = x_2 + 2 - \lambda 4 = 0;$ $\lambda = (1/4)x_2 + 1/2$
7-8) $L_{x_2} = x_1 - \lambda 2 = 0;$ $\lambda = (1/2)x_1$
9-10) $(1/4)x_2 + 1/2 = (1/2)x_1;$ $x_2 = 2x_1 - 2$
11-12) $60 = 4x_1 + 2(2x_1 - 2);$ $x_1^* = 8$
13-14) $60 = 4(8) - 2x_2;$ $x_2^* = 14$
15-17) $U = (8)(14) + 2(8);$ $U^* = 128;$ $\lambda^* = 4$

11.3 LM Approach: Restricted Least Squares
• The Lagrangean approach

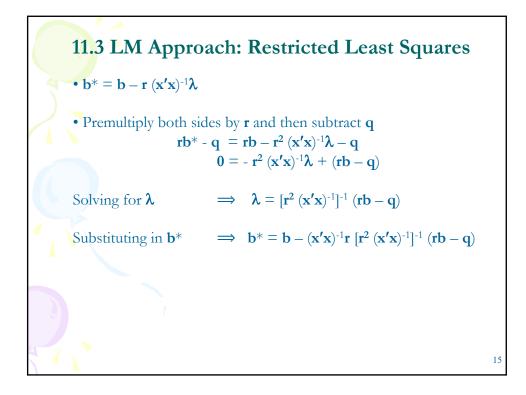
$$Min_{\beta,\lambda} \quad L(\beta,\lambda \mid y,x) = \sum_{t=1}^{T} (y_t - x_t\beta)^2 + 2\lambda(r\beta - q)$$
foce

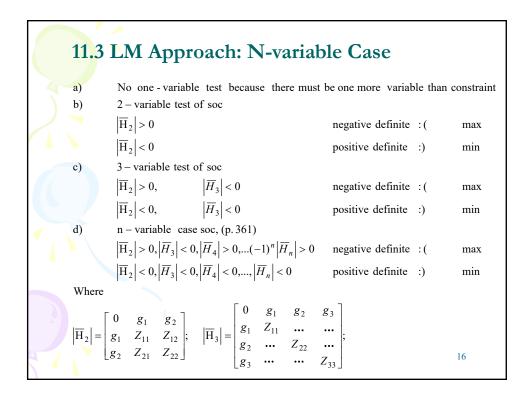
$$\frac{\partial L}{\partial \beta} = \sum_{t=1}^{T} 2(y_t - x_tb^*)(-x_t) + 2\lambda r = 0 \qquad \Rightarrow -\sum_{t=1}^{T} (y_tx_t - x_t^2b^*) + \lambda r = 0$$

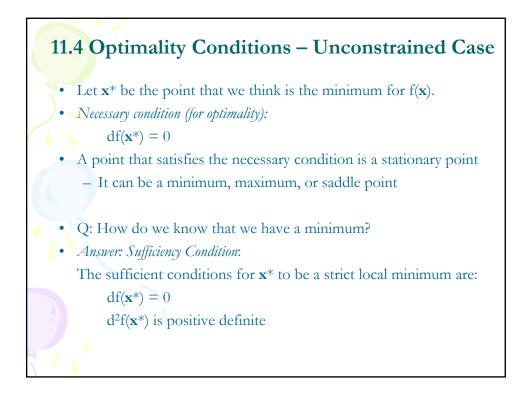
$$\frac{\partial L}{\partial \lambda} = 2(rb^* - q) = 0 \qquad \Rightarrow (rb^* - q) = 0$$
• Then, from the 1st equation:

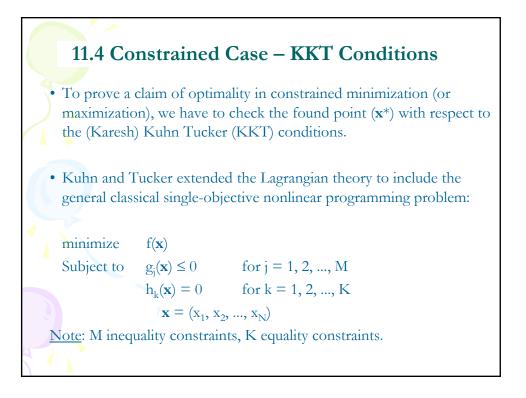
$$-(x^ty - x^txb^*) + \lambda r = 0 \qquad \Rightarrow b^* = (x^tx)^{-1}x^ty - (x^tx)^{-1}\lambda r$$

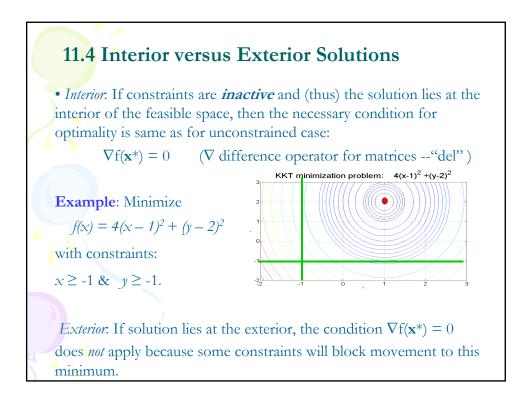
$$= b - (x^tx)^{-1}\lambda r$$

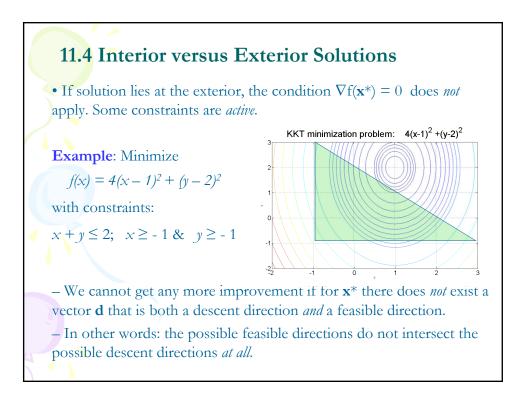


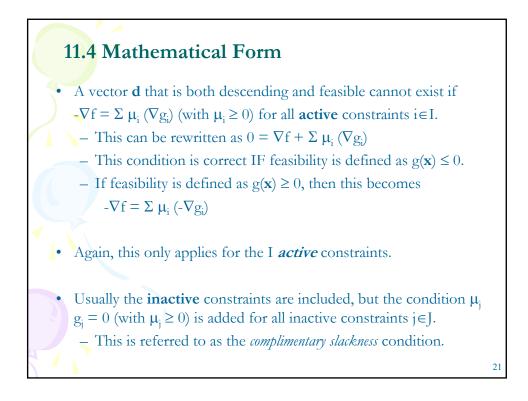












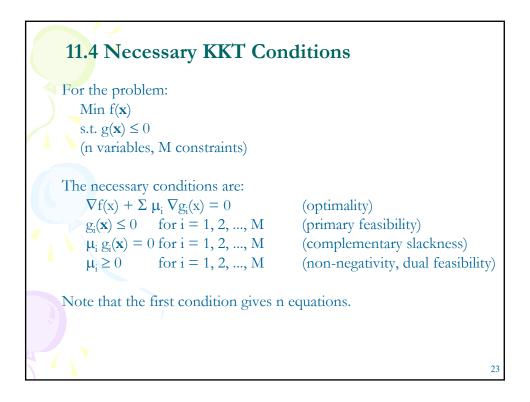
11.4 Mathematical Form

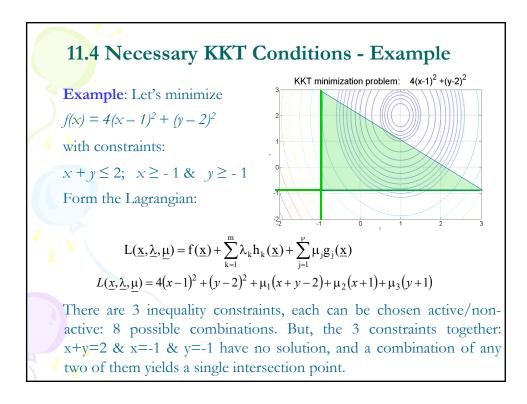
• Note that the slackness condition is equivalent to stating that $\mu_j = 0$ for **inactive** constraints -i.e., zero price for non-binding constraints!

• That is, each inequality constraint is either **active**, and in this case it turns into equality constraint of the Lagrange type, or **inactive**, and in this case it is void and does not constrains the solution.

• Note that I + J = M, the total number of (inequality) constraints.

• Analysis of the constraints can help to rule out some combinations. However, in general, a 'brute force' approach in a problem with J inequality constraints must be divided into 2^{J} cases. Each case must be solved independently for a minima, and the obtained solution (if any) must be checked to comply with the constrains. A lot of work!





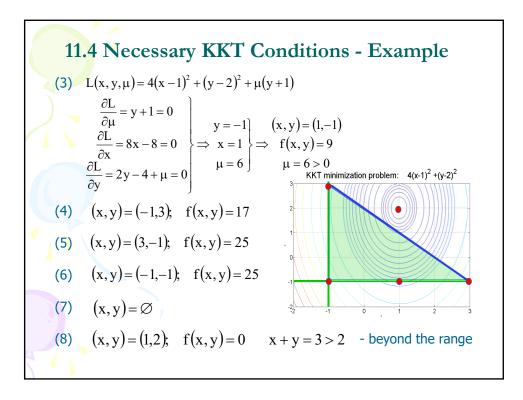
11.4 Necessary KKT Conditions - Example
The general case is:

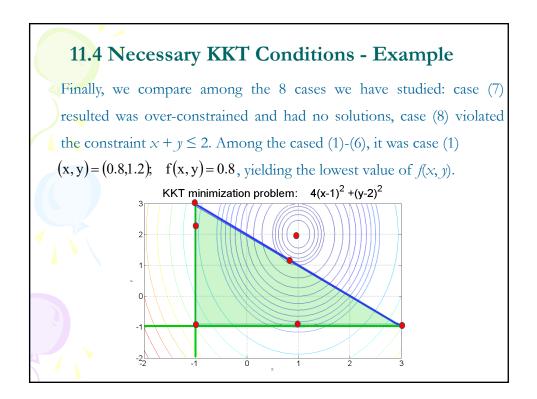
$$L(\underline{x}, \underline{\lambda}, \underline{\mu}) = 4(x-1)^2 + (y-2)^2 + \mu_1(x+y-2) + \mu_2(x+1) + \mu_3(y+1)$$

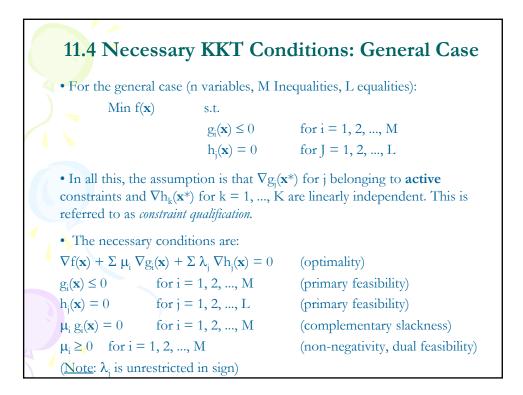
We must consider all the combinations of active / non active constraints:
(1) $x + y = 2 \Rightarrow L(x, y, \mu) = 4(x-1)^2 + (y-2)^2 + \mu(x+y-2)$
(2) $x = -1 \Rightarrow L(x, y, \mu) = 4(x-1)^2 + (y-2)^2 + \mu(x+1)$
(3) $y = -1 \Rightarrow L(x, y, \mu) = 4(x-1)^2 + (y-2)^2 + \mu(y+1)$
(4) $x + y = 2$ and $x = -1 \Rightarrow (x, y) = (-1, 3)$
(5) $x + y = 2$ and $y = -1 \Rightarrow (x, y) = (3, -1)$
(6) $x = -1$ and $y = -1 \Rightarrow (x, y) = (-1, -1)$
(7) $x + y = 2$ and $x = -1$ and $x = -1 \Rightarrow (x, y) = \emptyset$
(8) Unconstrained: $L(x, y) = 4(x-1)^2 + (y-2)^2$

11.4 Necessary KKT Conditions - Example
(1)
$$L(x,y,\mu) = 4(x-1)^2 + (y-2)^2 + \mu(x+y-2)$$

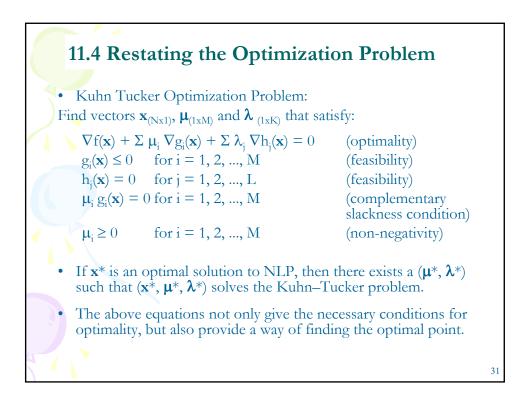
 $\frac{\partial L}{\partial \mu} = x+y-2=0$
 $\frac{\partial L}{\partial x} = 8x-8+\mu=0$
 $\frac{\partial L}{\partial y} = 2y-4+\mu=0$
 $\Rightarrow \qquad x=2-y$
 $(x,y) = (0.8,1.2)$
 $\Rightarrow \qquad f(x,y) = 0.8$
 $(2) L(x,y,\mu) = 4(x-1)^2 + (y-2)^2 + \mu(x+1)$
 $\frac{\partial L}{\partial \mu} = x+1=0$
 $\frac{\partial L}{\partial x} = 8x-8+\mu=0$
 $\frac{\partial L}{\partial y} = 2y-4=0$
 $\Rightarrow \qquad x=-1$
 $\Rightarrow \qquad x=-1$
 $(x,y) = (-1,2)$
 $\mu = 16>0$
 $(x,y) = (-1,2)$
 $\mu = 16>0$

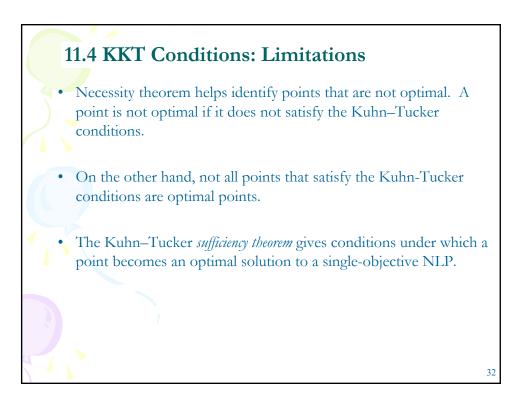


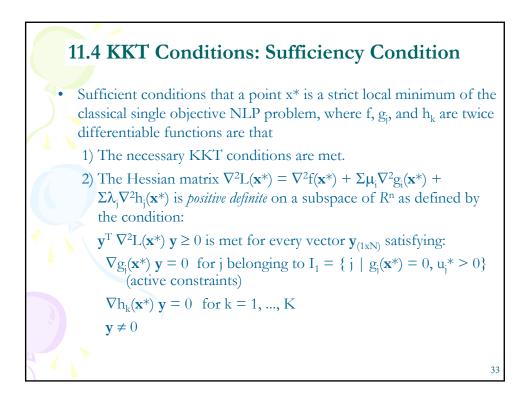


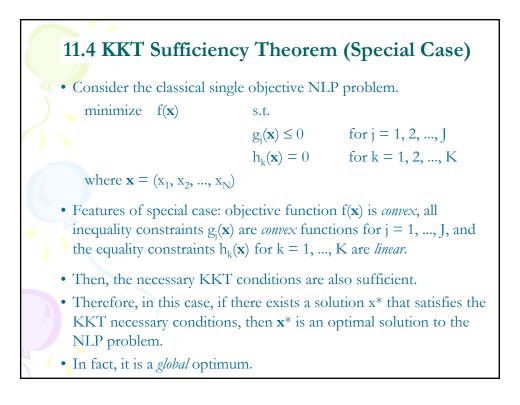


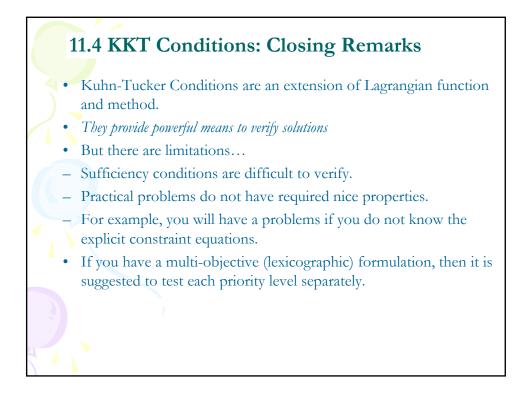
11.4 Necessary KKT Conditions (if $g(x) \ge 0$)	
• If the definition of feasibility changes, the optimality and feasibility conditions change. For example, $g_i(\mathbf{x}) \ge 0$. Then,	
$\operatorname{Min} f(\mathbf{x}) \qquad \qquad \text{s.}$	t.
3	$f_{i}(\mathbf{x}) \ge 0$ for $i = 1, 2,, M$
h	$m_j(\mathbf{x}) = 0$ for J = 1, 2,, L
	,
• The necessary conditions become:	
$\nabla f(\mathbf{x}) - \Sigma \mu_i \nabla g_i(\mathbf{x}) + \Sigma \lambda_i \nabla h_i(\mathbf{x}) = 0$ (optimality)	
$g_i(\mathbf{x}) \ge 0$ for $i = 1, 2,, M$	(feasibility)
$h_j(\mathbf{x}) = 0$ for $j = 1, 2,, L$	(feasibility)
$\mu_i g_i(\mathbf{x}) = 0$ for $i = 1, 2,, M$	(complementary slackness)
$\mu_i \ge 0$ for $i = 1, 2,, M$	(non-negativity, dual feasibility)
	30





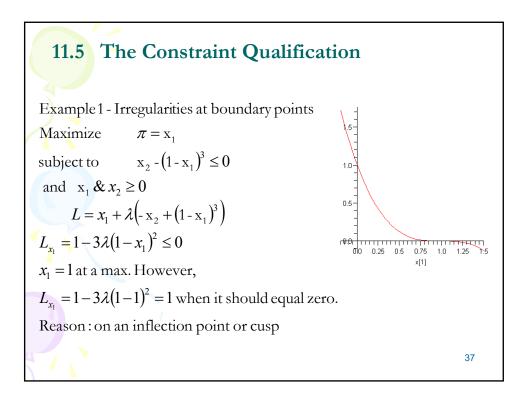


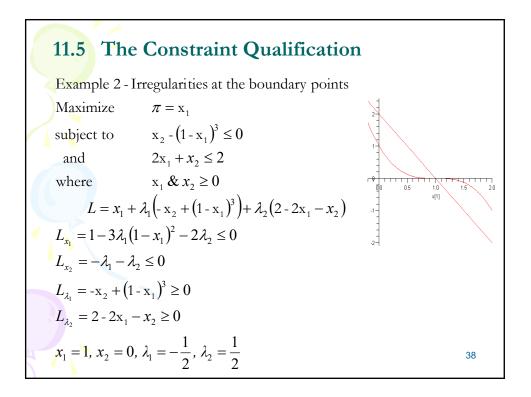




11.4 KKT Conditions: Example

Minimize $C = (x_1 - 4)^2 + (x_2 - 4)^2$ s.t. $2x_1 + 3x_2 \ge 6$; $12 - 3x_1 - 2x_2 \ge 0$; $x_1, x_2 \ge 0$ Form Lagrangian : $L = (x_1 - 4)^2 + (x_2 - 4)^2 + \lambda_1 (6 - 2x_1 - 3x_2) + \lambda_2 (-12 + 3x_1 + 2x_2)$ F.o.c.: 1) $L_{x_1} = 2(x_1 - 4) - 2\lambda_1 + 3\lambda_2 = 0;$ $L_{x_2} = 2(x_2 - 4) - 3\lambda_1 + 2\lambda_2 = 0;$ 2) $L_{\lambda_1} = 6 - 2x_1 - 3x_2 \le 0;$ 3) $L_{\lambda_2} = -12 + 3x_1 + 2x_2 \le 0;$ 4) Case 1: Let $\lambda_2 = 0$, $L_{\lambda_2} < 0$ (2nd Constraint inactive): From 1) and 2) $\Rightarrow \lambda_1 = x_1 - 4 = 2/3(x_2 - 4);$ From 3) $\Rightarrow x_1 = 3 - 3/2 x_2;$ $\Rightarrow 3 - 3/2 x_2 - 4 = 2/3 (x_2 - 4) \qquad \Rightarrow x_2^* = 5/3^* (6/13)$ $x_2^* = 30/39 = 10/13$, $x_1^* = 24/13$, $\lambda_1 = -28/13 < 0$ (Violates KKT conditions) Case 2: Let $\lambda_1 = 0$, $L_{\lambda_1} < 0$ (1st Constraint inactive): From 1) and 2) $\Rightarrow \lambda_2 = -(2/3)(x_1 - 4) = -(x_2 - 4) \Rightarrow x_1 = 3/2(x_2 - 4) + 4$ From 4) $\Rightarrow x_1 = -2/3x_2 + 4$ $\Rightarrow -2/3x_2 + 4 = 3/2(x_2 - 4) + 4;$ $(-2/3 - 3/2)x_2^* = -6$ 36 $x_2^* = 36/13$, $x_1^* = 84/39 = 28/13$, $\lambda_2 = 16/13 > 0$ (Meets KKT conditions)





11.5 The Constraint Qualification

Example 3 - The feasible region of the problem contains no cusp
Maximize
$$\pi = x_2 \cdot x_1^2$$

subject to $-(10 \cdot x_1^2 \cdot x_2)^3 \le 0$ and $-x_1 \ge -2$, where $x_1, x_2 \ge 0$
 $L = x_2 \cdot x_1^2 + \lambda_1 (10 \cdot x_1^2 \cdot x_2)^3 + \lambda_2 (-2 + x_1)$
 $L_{x_1} = -2x_1 - 6\lambda_1 (10 \cdot x_1^2 \cdot x_2)^2 x_1 + \lambda_2$
 $L_{x_2} = 1 - 3\lambda_1 (10 \cdot x_1^2 \cdot x_2)^2$
 $L_{\lambda_1} = (10 \cdot x_1^2 \cdot x_2)^3$
 $L_{\lambda_2} = -2 + x_1$
 $x_1 = 2, \ x_2 = 6, \ \lambda_1 = \lambda_1, \ \lambda_2 = 4$
 $L_{x_2} = 1 - 3\lambda_1 (10 \cdot 2^2 \cdot 6)^2 = 1$, when it should equal zero

39

