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Abstract 

In this paper, we introduce regime-switching in a two-factor stochastic volatility (SV) model to 
explain the behavior of short-term interest rates. We model the volatility of short-term interest 
rates as a stochastic volatility process whose mean is subject to shifts in regime. We estimate 
the regime-switching stochastic volatility (RSV) model using a Gibbs Sampling-based Markov 
Chain Monte Carlo algorithm. In-sample results strongly favor the RSV model in comparison 
to the single-state SV model and GARCH family of models. Out-of-sample results are mixed 
and, overall, provide weak support for the RSV model.  
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Regime-Switching Stochastic Volatility and Short-term Interest Rates 
 

1. Introduction 

The dynamics of short-term treasury interest rates are central to the pricing of all fixed 

income instruments and their derivatives. Chan,  Karolyi, Longstaff and Sanders (1992) 

compare a variety of single factor continuous-time models of the short-term riskless rate. They 

find that models that allow the volatility of interest changes to be sensitive to the level of the 

risk-free rate outperform other models. Longstaff and Schwartz (1992) present a two-factor 

general equilibrium model, with the level and conditional volatility of short-term rates as 

factors. They show that a two-factor model carries additional information about the term 

structure and leads to better pricing and hedging performance compared to a single factor 

model, which only uses the level of the short rate.  

Brenner, Harjes and Kroner (1996) show that interest rate models that include both a 

level effect (where the interest rate volatility is a function of its level) and a Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) specification outperform those 

models that exclude one of them.  Koedijk, Nissen, Scotchman, and Wolff (1997) find that 

both level and GARCH effects are important determinants of interest rate volatility, and 

ignoring GARCH effects leads to an omitted variables problem for the estimation of the level 

effect. On the other hand, Anderson and Lund (1997) and Ball and Torous (1999)  find that a 

two-factor interest rate model with level and stochastic volatility (SV) factors outperforms the 

GARCH volatility models. Durham (2001) reports that while two-factor models provide a large 

improvement in the likelihood compared to single factor models, they do not provide any 

improvement in bond-pricing performance. 
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Previous studies have also documented strong evidence for regime switching in short-

term interest rates. For example, Gray (1996) presents evidence for i) a mean reverting high-

volatility state with low volatility persistence and  ii) a non-mean reverting low-volatility state 

with high volatility persistence in one-month U.S. T-Bill yields. Regime switching in the drift 

and volatility of the short rate has important implications for yield curve dynamics, 

immunization and hedging strategies. As Litterman, Scheinkman and Weiss (1991) and Brown 

and Schaefer (1995) point out, the volatility of the short-term interest rate affects the curvature 

of the yield curve. When regime switching in volatility is not considered, volatility shocks tend 

to be very persistent. This, in turn, could amplify the hump in the yield curve.  

In this paper, we incorporate regime-switching in SV models and compare the 

performance relative to other popular two-factor models.  In particular, we examine if the 

volatility shocks from regime-switching carry any additional information beyond what is 

already contained in the SV model. We model the volatility of short-term interest rates as a 

stochastic process whose mean is subject to shifts in regime. The motivation behind the 

regime-switching SV model is similar to the intuition behind the jump-diffusion SV processes.1  

We employ a Gibbs Sampling-based Markov Chain Monte Carlo algorithm to 

estimate our model. We find that the usual high volatility persistence is substantially 

reduced by the introduction of regime-switching. In general, SV models outperform 

GARCH models both in-sample and out-of sample. In-sample, the regime-switching SV 

model performs better than the single-state SV model. Out-of-sample, the regime-switching 

SV model performs marginally better than the single-state SV model, especially when, as 
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expected, the out-of–sample period experiences regime-switching. The out-of-sample 

results, however, do not provide overwhelming support for the regime-switching SV model.  

The rest of the paper is structured as follows. Section 2 provides a brief background to 

regime-switching interest rate models. Section 3 describes the regime-switching SV model. 

Section 4 describes the data set used in this paper. Section 5 discusses the results from 

estimation. Section 6 presents the in-sample and out-of-sample comparative performance of the 

RSV model. Section 7 summarizes and presents our conclusions. 

 

2. Regime-Switching Models: Background and Literature  

A common empirical finding in two-factor models is a high persistence in the 

conditional variance. For example, Brenner et al. (1996) and Anderson and Lund (1997) 

estimate the persistence parameter, i.e., the sum of the autoregressive coefficient s, in the 

conditional variance equation to be 0.82 and 0.98, respectively, for the weekly three-month 

U.S. T-Bill yields. Ball and Torous (1999) report the persistence parameter to be 0.928 for the 

monthly one-month U.S. T-Bill yields.  

High persistence in the conditional variance implies that shocks to the conditional 

variance do not die out quickly and that current information has a significant effect on the 

conditional variance for future horizons. Lamoreux and Lastrapes (1990) show that in the 

presence of any structural changes, the variance process may exhibit spuriously high 

persistence. Similar results were documented by Hamilton and Susmel (1994), Cai (1994) and 

So, Lam and Li (1998). Previous research finds strong evidence of regime-switching in U.S. 

                                                                                                                                                                                                             
1 For example, Eraker, Johannes and Polson (2003), Bates (2000), Duffie, Singleton and Pan (2000) and Pan 

(2001) show, in the context of stock returns, that jumps in volatility may remove possible misspecifications in 
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short-term interest rates (see Hamilton (1988), Driffill (1992), Albert and Chib (1993) and Cai 

(1994)). Both Gray (1996) and Bekaert, Hodrick and Marshal (2001) find evidence of a high 

(low) volatility regime with high (low) mean reversion in short-term interest rates. Various 

macro-economic events (such as oil shocks, the monetary experiment of late 70’s, the October 

1987 crash and wars involving the U.S.) were responsible for regime-switching in U.S. interest 

rates. When short-term risk-free rates switch randomly between regimes, with different means 

and variances, one may find high persistence in the volatility when data is averaged across 

these regimes.  

Gray (1996) reports that a generalized regime-switching interest rate model with 

state-dependent mean reversion and conditional heteroscedasticity effects outperforms 

GARCH-type models. Naik and Lee (1998) show that the regime-switching model 

generates an empirically more reasonable term structure of volatilities, fat tails, and 

persistence in volatility compared to the SV models. Ang and Bekaert (2002a) find that 

regime-switching models of interest rates replicate non- linear patterns in the drift and 

volatility functions of short rates found in non-parametric approaches. Ang and Bekaert 

(2002b) find that regime-switching models forecast better than one-regime models out-of 

sample. Bekaert, Hodrick and Marshal (2001) find that that the term-premium dynamics 

coupled with regime-switching effects, which proxy peso problems, lead to small-sample 

distributions more consistent with the data. Evans (2003) finds that the regime-switching 

model with three states has a good fit for the U.K. interest rates. Bansal and Zhou (2002) 

show that both the Cox, Ingersoll and Ross (1985) model and a three-factor affine model are 

                                                                                                                                                                                                             
diffusive stochastic volatility models and  help explain the volatility smile and smirk issues in the option data. 
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sharply rejected in favor of the regime-switching model, where regime shifts affect the 

market price of risk.  

In summary, earlier literature shows strong evidence for regime-switching in short-

term interest rates. In this paper, we focus on the relevance of regime-switching for SV 

models. Our choice for a regime-switching process is motivated by the evidence for regime 

changes in interest data. 

 

3. Regime-switching Stochastic Volatility (RSV) model 

In this section, we describe an SV model that incorporates regime-switching. 

Consider the short-term interest rate process described below: 

 In model (1), rt is the short rate, ht is the conditional variance of the short rate, α 

captures the levels effect in the model, 
tsµ  is the stationary mean of the natural log of  ht, φ1 

measures the degree of persistence of ln(ht), ε t and ηt represent shocks to the mean and 

volatility respectively, 2
ησ  is the variance of the volatility shock and xt is a vector of 

explanatory variables (in our model, xt is a vector of ones). Both shocks are white noise 

errors, which are assumed to be distributed independently of each other. The parameter γ 

measures the sensitivity of the mean variable with respect to the underlying state and is 

constrained to be positive. The transition probability parameter pij, where i and j = {0,1}, 

represents the transition probability of going from state i to j. 

( ) ( )
{ }

[ ]
                                                          

(1)                                                 prob

 k1,2,...,      0          

 )ln()ln

5.0        ,

1

1
2

11

2
11101

1

 pisjs

ss

 h(h

rhraarr

ijt-t

tts

tstst

tttttt

t

tt

===

=>+=

+−=−

=++=−

−−

−−−

−

γγβµ

ησµφµ

αε

η

α



 8 

Note that µ is a function of the latent state st, which follows a k-state ergodic 

discrete first-order Markov process as in Hamilton (1988). The underlying state st can 

assume k possible states, i.e., one of {1,2, .....,k}, where higher values of st lead to higher 

intercept terms in the log variance equation. As an identification condition, we require each 

regime to correspond to at least one time point. A k-state stationary transition probability 

matrix governs the dynamics of the transition from one state to the next state. We can also 

think of our latent volatility as a mixture of k densities, where each density corresponds to a 

single state. The latent volatility at a given time comes from a single density, which is 

decided by an underlying k-state Markov process.  Following the existing switching 

literature, we limit ourselves to two states:  a high volatility state and a low volatility state, 

i.e., we set k=2. 

Model (1) is referred to as a Regime-switching Stochastic Volatility (RSV) model. The 

RSV model specification combines a level effect and a conditional volatility process that is 

driven by two shocks, st and ηt. The estimation of the RSV model involves estimation of mean 

parameters {a0, a1}, variance parameters {α, β , γ, 2
ησ , φ1}, and transition probability 

parameters {p01, p10}. The RSV model reduces to the Single-state Stochastic Volatility (SSV) 

model when µ is state independent, that is, when γ is equal to zero. The SSV model is a 

commonly used SV model; see, for example, Ball and Torous (1999) and Anderson and Lund 

(1997). The SSV model also reduces to the Brenner et al. (1996) model when the conditional 

volatility is specified as a GARCH process. In the RSV specification, the drift term of the 

conditional variance is a function of both current and previous period states, while in the So et 

al. (1998) model, the conditional variance is a function only of the current period state.  
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 The estimation of the RSV model involves estimating two latent variables, i.e., ht and st, 

in addition to the model parameters. In the presence of two latent variables, the likelihood 

function for the model needs to be integrated over all the possible states of the two latent 

variables. Jacquier, Polson and Rossi (1995) show that maximum likelihood-based methods 

tend to fail under complex specifications of the likelihood function. Consequently, we resort to 

Monte Carlo Markov Chain (MCMC) methods to estimate the RSV model.2 MCMC methods 

have been widely used in the estimation of unobserved component models. See for example, 

Jones (2003), Lamoreux and Witte (2002) and Eraker (2001). 

In the RSV model (1), we need to estimate the parameter vector θ ={β , γ, 2
ησ , φ1, p01, 

p10} along with the two latent variables, Ht =  {h1,...,ht} and St ={s1,….,st}. The parameter set 

therefore consists of ω = {Ht, St, θ} for all t. Bayes theorem is used to decompose the joint 

posterior density as follows: 

)()(),()(),,( θθθθ fSfSHfHYfSHf nnnnnnn ∝  

 We draw the marginals f(Ht| Yt, St ,θ), f(St|Yt,Ht,θ) and f(θ|Yt, Ht St) using the Gibbs sampling 

algorithm. We first draw the underlying volatility f(Ht|Yt, St ,θ) using the multi-move simulation 

sampler based on De Jong and Shephard (1995). Representing the conditional mean as a 

mixture of normal variates as in  Kim, Shephard and Chib (1998), we then draw from the seven 

underlying normals. We next draw the underlying Markov-state f(St|Yt,  Ht, θ) as in Carter and 

Kohn (1994). Then, we cycle through the conditionals of parameter vector θ for the volatility 

equation following Albert and Chib (1993)  and Chib (1993). For the Gibbs estimation, we set 

the burn–in iterations as 4,000. We sample from the next 6,000 draws and choose every fifth 

                                                                 
2 Details of the MCMC estimation and simulation experiments are in two Appendices, A and B, which are 

available upon request or on the web at www.bauer.uh.edu/~rsusmel/Academic/KSAppendix.pdf. 
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observation to minimize possible correlation in the draws. We construct 95% confidence 

intervals and the standard errors for the parameters. We estimate the density functions for the 

parameters based on the Gaussian kernel estimator (Silverman (1986)).  

 

4. Data 

 The data consist of annualized yields based on weekly observations of three-month 

U.S. T-bill data for the period 01/06/60 to 06/03/98 (2,003 weekly observations) and are 

obtained from the Chicago Federal Reserve’s database. Wednesday’s rates are used, and if 

Wednesday is a trading holiday, then Tuesday’s rates are used. Similar three-month T-Bill 

yields have been previously used by Brenner et al. (1996) and Anderson and Lund (1997) to 

proxy the short rate. Using one-month or three-month maturity T-Bill yields as proxies for 

instantaneous short rates leads to biases when pricing short-tem maturity bonds. Chapman, 

Long and Pearson (1999) show that such biases are generally negligible. 

Table 1 presents the summary statistics of the data. Changes in yields, ∆rt, seem to be 

left-skewed, indicating that yield increases were less common than yield decreases on a weekly 

basis. There is also strong evidence of kurtosis in the return series. The Ljung-Box statistic 

suggests that there is a high degree of autocorrelation for the raw yields (rt). On the other hand, 

∆rt series seems to be much less persistent and is characterized by low autocorrelations. The 

last row of Table 1 presents the Ljung-Box statistic for the squared residuals (RESt
2) at various 

lags. The null of no ARCH effects is strongly rejected by the data. This indicates high auto-

correlations in the data that imply time dependence in higher order moments.  
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5. Estimation of the Stochastic Volatility models 

Following Pagan and Schwert (1990) and Ball and Torous (1995, 1999), we fit the RSV 

model (1) to the residuals (RESt) from regressing ∆rt on a constant and rt-1. We set the level 

parameter α as 0.5.3 For the purpose of estimation and comparison to alternative volatility 

models, we write our mean adjusted version of the RSV model as: 

where all the assumptions on the error terms made in (1) still hold.   

To benchmark our results, first, we ignore the possibility of regime-switching in the 

data. When we set γ to zero, the RSV model (2) reduces to the SSV model. The results from 

                                                                 
3 Anderson and Lund (1997), Brenner et al. (1996) and Ball and Torous (1995, 1999) find that α is not 

significantly different from 0.5, providing evidence consistent with the Cox, Ingersoll and Ross (CIR) (1985) 

model. Gray (1996) sets α as 0.5, arguing that “fixing α =0.5… facilitates interpretation in terms of CIR model.” 

However, Chan et al. (1992) and Coonly et al. (1997) estimate a level parameter that is close to 1.5. Further, Bliss 

and Smith (1998) show that the Chan et al. (1992) finding that the level parameter is 1.5 is tied to their assumption 

that no structural break has occurred in their sample. They show that once regime switching is factored in, the α 

estimate drops to levels assumed by the CIR process. In our estimation, the level parameter is estimated as 0.67, 

0.68 and 0.46, respectively, in the SSV, RSV and EGARCH models (all estimates are not significantly different 

from 0.5 at the 1% level). The SV model estimates are close to those reported in Ball and Torous (1999). 

Moreover, we find that the comparative performance and the ordering of the models are unchanged (in Table 5) 

when α is estimated as a free parameter. Given these results, and the stated purpose of comparing alternative 

models in terms of their volatility forecasts, we set α =0.5.  
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the MCMC estimation of the SSV model are presented in Table 2, where the parameter set is θ 

= {β , φ, 2
ησ }. The persistence parameter φ is very high, indicating that the half- life of a 

volatility shock, measured as - ln(2)/ln(φ), is about 14 weeks. Standard errors for the parameters 

are small, indicating that parameters are highly significant.  Figure 1 plots the posterior 

densities of the parameters. All the parameters have symmetric densities, while half- life 

density is right-skewed (with mean and median of, respectively, 14.28 and 13.79). That is, we 

are more likely to observe half- lives less than the mean value of 14 weeks. 

 Next, we estimate the RSV model for our weekly interest data set. Table 3 presents the 

prior and posterior parameter estimates of the parameter set θ in our model, where θ = {β , γ, φ, 

2
ησ , p01, p10}. Standard errors for the parameters are small, as before. The persistence 

parameter, φ, drops significantly to 0.628 from 0.951 in the SSV model. This implies that a 

switch in the latent regime creates a high persistence in volatility and confirms the earlier 

results in the literature. The distribution of φ is left-skewed with mean and median of 0.628 and 

0.647 respectively (see Figure 2), implying that persistence greater than 0.628 is more 

common. The transition probabilities, p00 and p11, are estimated as 0.994 and 0.966. These 

estimates are comparable to 0.9896 and 0.9739, respectively, reported in Gray (1996) and 

0.9878 and 0.9402, respectively, reported in Cai (1994). Our results imply that the effect of a 

volatility shock is much more persistent in the low volatility state than in the high volatility 

state. A volatility shock lasts about 100 weeks in the low volatility state compared to about 30 

weeks in the high volatility state, where duration of the shock in state i is obtained as (1-pii)-1. 

Table 3 also shows that high volatility states tend to be associated with higher long-run mean 

of ln(ht) compared to low volatility states.  
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Figure 2 plots the densities for the posterior parameter estimates using a Gaussian 

kernel. The posterior densities seem to be right-skewed for 2
ησ , p01 and p10 (with medians 0.897, 

0.005 and 0.032, respectively) and symmetric for β  and γ. The autocorrelation functions for 

parameters (not shown) become insignificant at very early lags. We also estimate the 

correlations between the parameters. Both SSV and RSV models have a strong negative 

correlation (-0.551 and –0.776 respectively) between φ and 2
ησ , suggesting that there is a 

tradeoff between volatility persistence and volatility of volatility. The RSV model is also 

characterized by strong positive correlations between β  and γ   (0.606) and β  and 2
ησ  (0.501) 

and a negative correlation between β  and  φ  (-0.53).  These findings suggest that high volatility 

periods are associated with high volatility regimes, high kurtosis and low persistence. The 

finding of low persistence in high volatility periods is consistent with Gray (1996).  

The third and fourth panels in Figure 3 plot the latent annualized volatility and the 

smoother probabilities, respectively, of high-volatility states from the RSV model. Following 

Hamilton (1988), we consider an observation as belonging to state one if the smoothed 

probability is higher than 0.5. The simulation smoother shows periods of high volatility during 

the oil shocks of 1969 and 1973, the 1979-83 Federal Reserve monetary experiment, and the 

market crash of 1987. The smoother probabilities indicate that there is a large probability that 

the T-Bill yields during 1969, 1973, 1979-82, and 1987-88 belong to a high volatility regime. 

These high volatility dates are similar to the high volatility dates reported by Cai (1994) and 

Gray (1996). 

   



 14 

Performance of the RSV Model 

6.1. In-sample forecasts 

In this section, we conduct an extensive evaluation of the in-sample performance of the 

SV models in comparison to the GARCH family of models. We consider three popular 

GARCH models with normally distributed innovations: a GARCH(1,1) model, a 

GARCH(1,1)-L model (i.e., GARCH(1,1) with an asymmetry effect of negative lagged error, 

to capture the leverage effect) and an EGARCH(1,1) model. We also consider the Markov 

switching ARCH model, proposed by Hamilton and Susmel (1994), with two states and one 

autocorrelation lag or SWARCH(2,1) model. All the GARCH models are specified to include a 

level effect (for specifications see Table 4). The maximum likelihood estimation results for the 

three GARCH models are reported in Table 4. There is evidence for a leverage effect based on 

the significant t-statistic for κ in the GARCH(1,1)-L model and the significant t-statistic for δ2 

in the EGARCH(1,1) model. The leverage effect, however, is small relative to the usual size 

found in equity returns. All the estimates in the conditional variance equation are significant 

for the three models. Note that the estimates show the previously documented high persistence 

in the conditional variance.  

Next we present the in-sample metrics of the competing models for different in-sample 

periods. In addition to the full sample period, 01/06/60-06/03/98, we consider three sub-sample 

periods: (1) 01/06/60-12/31/78, (2) 01/06/60-12/31/82, and (3) 01/06/60-12/31/91. The first 

sample includes the oil shocks, the second sample includes the Fed Reserve experiment of 

1979-82, and the third sample includes the October1987 stock market crash. We also include a 

fourth and a much shorter sample from 01/01/76-12/31/87; this sample has two well-defined 

spells of high volatility: the Fed experiment and the October 1987 stock market crash.  
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Tables 5 and 6 present the results. We include a constant variance model as a 

benchmark for conditional volatility models. In general, the SV models have higher log-

likelihood values, adjusted R2s and AIC/SBC values compared to the competing ARCH 

models. Within the SV models, RSV fares better than SSV based on these metrics. The 

posterior odds ratio captures the relative performance of each model with respect to the 

constant variance model (see Kim and Kon (1994)). If the odds ratio for a model is positive, 

then that model is “more likely” to have generated the data than the constant variance model. 

The model with the highest value of posterior odds ratio represents the “most likely” model 

specification. The stochastic volatility models, in general, have higher odds ratios than the 

ARCH models. Within SV models, the RSV performs better.  In particular, the RSV model has 

an odds ratio that is at least 56% higher than the other competing models.  

Table 5, in Panel A, also presents the mean squared error (MSE), the logarithmic loss 

function (LL) of Diebold and Lopez (1996)4, and the Jarque-Bera normality test statistic (JB) 

for alternative models. The RSV model has the lowest MSE and LL values, closely followed 

by the SSV model. The JB statistic rejects the normality assumption for all the models except 

the RSV model. Among the GARCH models, with the exception of the Adjusted R2 criteria, 

the E-GARCH(1,1) performs better than the other models for all the evaluation measures. Note 

also that the E-GARCH(1,1,) has an overall better performance than the SWARCH(2,1) model. 

The E-GARCH(1,1) is also the model used by Ball and Torous (1999) to evaluate the in-

                                                                 
4 Although the MSE metric is used widely to compare alternative volatility models, its limitation lies in 

the fact that it penalizes positive volatility forecasts and negative volatility forecasts symmetrically (Bollerslev, 

Engle and Nelson (1994)). Diebold and Lopez (1996) discuss an alternative loss function called the logarithmic 

loss (LL) function, which penalizes volatility forecasts asymmetrically.  
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sample evaluation of the SSV model. Based on these considerations, we select the E-

GARCH(1,1) model for subsequent out-of-sample tests of the SV models in Section 6.2. 

We now turn to comparing the conditional volatilities implied by the models. The RSV 

model generates conditional volatilities within a tighter range compared to other models.  The 

RSV model also seems to be sensitive to shocks or extreme observations; for example, the 

RSV model picks up an outlier in late 1982, which goes undetected by the other models. When 

we plot the conditional volatilities from the different models, in all high volatility regimes, i.e., 

during 1969, 1973, 1979-82, and 1987-88, the ARCH models tend to overestimate the 

conditional volatility relative to the SV models. There is a close correspondence between the 

RSV and SSV conditional volatilities. The RSV model seems to be more sensitive to shocks 

compared to the SSV. We also compare the two switching models, the RSV and SWARCH 

models. Figure 4 plots the conditional variance in the first panel and the high volatility state as 

estimated by the SWARCH(2,1) model in the second panel. The SWARCH model tends to 

have lower volatility estimates compared to the RSV model. This is because the SWARCH 

model picks up high volatility states in 1968 and during 1991-93. These periods are in fact low 

volatility regimes according to the RSV model. (See the last panel of Figure 3 and the last 

panel of Figure 4.) Thus, in the second state the SWARCH model seems to be picking up the 

effects of some outliers that can be better described with a third state (see Hamilton and 

Susmel (1994) and Evans (2001)). The combination of regime switching and stochastic 

volatility provides a description of volatility states, which is consistent with the results in the 

interest rate literature (see Gray (1996)).  

 We next proceed to consider differences between conditional volatilities based on their 

statistical significance. We follow Diebold and Mariano (1995) who propose two non-
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parametric tests to test the null hypothesis of the equality of forecasts from two competing 

models: the sign test and the Wilcoxon signed rank test.5  The signed test is calculated as 

follows: 
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Panel B in Table 5 presents results for the standard normal z statistic for the two tests. 

We find that the RSV model forecasts are significantly different from the forecasts of the 

competing models for the in-sample period. Note that the negative sign of the test statistic 

implies that the in-sample volatility forecasts from the RSV model are much lower than those 

from the constant volatility and other GARCH models. On the other hand, we find that the 

SSV model has lower in-sample volatility forecasts compared to the RSV model. 

                                                                 
5 Both tests are based on the null hypothesis that the median loss differential, defined as the difference between 

the forecast errors generated by the two competing models, is zero. While the signed test does not require 

distributional symmetry in the loss differential, the Wilcoxon signed rank test is based on the symmetry of loss 

differential functions. Both tests are based on the intuition that if the loss differential series is i.i.d., the number of 

positive loss-differential observations in a sample has a binomial distribution under the null. As the sample size 

increases, the two test statistics converge to standard normal distributions. 
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Next we compare the RSV model with ARCH models based on the Vuong (1989) 

modified likelihood ratio test for comparing non-nested hypotheses.6 In the last column of 

Panel B we present Voung’s statistics for the different models. In general, we find that the 

RSV model performs significantly different from the constant volatility model and the ARCH 

models at the 5% level. 

Finally, the first half of Table 6 presents in-sample results for different sub-periods for 

the four models that are used for out-of-sample tests. Consistent with the in-sample results of 

Table 5, the RSV model once again outperforms competing models based on MSE, LL and 

mean absolute error (MAE) metrics. In-sample, the E-GARCH(1,1) model performs 

marginally better than the SSV model in sub-samples 2 and 3, which is consistent with the 

findings of Ball and Torous (1999). 

Overall, our in-sample results are very supportive of the RSV model. However, given 

the richer parameterization of the RSV model relative to the other models, overfitting might 

play a part in the in-sample success of the RSV model. Thus, to better judge our RSV model, in 

the next section, we do an extensive out-of-sample evaluation of all the models. 

 
6.2. Out-of-sample forecasts 

Table 6 also reports the out-of-sample performance of the four models. We consider the 

constant volatility model, the best performing ARCH model based on the in-sample period, 

i.e., the E-GARCH(1,1) and both SV models. We keep a constant volatility model in our out-

                                                                 
6 The Vuong statistic is a likelihood ratio statistic adjusted by the standard deviation of the difference in maximum 

log-likelihood functions under the competing models. Under the null hypothesis that the competing models are 

statistically indistinguishable, the Vuong statistic follows a standard normal distribution (see Ball and Torous 

(1999)). 
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of-sample comparison, given the results in Figlewski (1997), where the constant volatility 

performs well relative to GARCH models.  

We use the estimated coefficients from the in-sample period to generate one-week 

(step) ahead conditional volatility estimates for the out-of-sample period.  Using estimates for 

the in-sample period 1 to t, we generate one-step-ahead conditional volatility forecasts for each 

future time period t+k, where {k= 1, 2, 3,…, T-t; T is the sample size}, based on the 

forecasting equations described in Table 6. We report MSE and MAE metrics for four different 

sub-samples in Table 6, under the column titled “fixed sample.” Out-of-sample, the RSV 

model tends to do better than E-GARCH(1,1) in most cases (only in sub-sample 3, are the 

MSEs the same for both models). In fact, the E-GARCH model never performs better than the 

SV models out-of-sample in terms of MAE. The RSV model also outperforms the SSV model 

in sub-sample 1 in terms of MSE and in sub-samples 1 and 2 in terms of MAE. For sub-sample 

3, however, the out-of-sample performance of the RSV model and the SSV model are both 

similar. The results are not surprising because the less switching in the out-of-sample period, 

the less efficient the RSV model should be relative to the SSV model. Note that the out-of- 

sample period for sub–sample 1 includes both the 1979-82 and the 1987-88 high volatility 

regimes, whereas sub–sample 2 has the only 1987-87 regime, and sub-sample 3 has no high-

volatility regimes. That is, the RSV model performs better than the SSV model whenever the 

out-of-sample period has regimes switching between low and high volatility.  Consistent with 

Figlewski (1997), the constant variance model shows a good out-of-sample performance, 

especially in the MSE metric. Note that the constant variance model in the first sub-sample 
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beats all the other models. The last sub-sample presents out-of-sample forecasts for a one year 

period. Again, the RSV model shows superior performance.7 

In Table 6, we present more out-of-sample results under the column titled “increasing 

sample,” using a different forecasting methodology. We forecast the one-step ahead 

conditional volatility using all the competing models.  We obtain the successive forecasts by 

increasing the sample size; i.e., for time period t, the sample size includes observations 1 to t, 

for next time period t+1, the sample size includes observa tions 1 to t+1, and so on. We 

estimate the model each time and generate a forecast for the next period. We present  the LL 

and MAE  metrics for four sub-sample periods. The RSV model has the lowest error based on 

the LL metric. Based on the MAE, the SSV performs as well as the RSV model in sub-samples 

1 and 3 and better than the RSV model in sub-samples 2 and 4. We also calculate a sign test 

and a Wilcoxon signed rank test to compare the RSV model forecasts with others for all the 

sub periods. Although not reported, we find that the RSV model forecasts are significantly 

lower compared to other models.  

In summary, the in-sample results show that the SV models are superior to the ARCH-

type models based on different metrics. Within the ARCH models, the EGARCH(1,1) has the 

best in-sample performance. The SV models have significantly lower conditional volatility 

estimates compared to the ARCH models. Within the SV models, the RSV performs better 

than the SSV model. This in-sample performance of the RSV model is also robust to different 

sub-samples. The out-of-sample results show that the SV models generally outperform the best 

performing ARCH model, the E-GARCH(1,1) model. We notice that the RSV model does 

                                                                 
7 For the fourth sample, we also calculate (not reported) out-of-sample forecasts for a two-year period and a 10-

year period. Overall, the results are similar, although as the out-of-sample forecasting period is extended, the 
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better than the SSV model whenever regime-switching occurs in the out-of–sample period. 

However, there is no overwhelming support for the RSV model in the out-of-sample 

forecasting experiment.  

 

7. Summary and Conclusions  

 In this paper, we introduce regime-switching in a two-factor stochastic volatility model 

to explain the behavior of short-term interest rates. That is, we model the volatility of short-

term interest rates as a stochastic volatility process whose mean is subject to shifts in regime. 

We find that the usual high volatility persistence is substantially reduced by the introduction of 

regime-switching.  We find that stochastic volatility models outperform the ARCH models 

both in-sample and out-of-sample. The in-sample results show that the RSV model 

outperforms the single-state SV model. The out-of-sample results, however, are not that clear. 

The out-of-sample results tend to marginally favor the RSV model, especially whenever that 

period experiences regime-switching. Given that the out-of-sample results are not 

overwhelming in favor of the RSV model, we also evaluate the RSV and SSV models by 

studying their option pricing implications. We find that the RSV model generates significantly 

different prices compared to the single-state SV model. In particular, the RSV model is 

associated with lower option prices in highly volatile periods. Our results are consistent with 

those of Vetzal (1997), who finds that the stochastic volatility models typically generate lower 

historical volatilities and hence lower option prices than constant volatility and GARCH 

models. 

 

                                                                                                                                                                                                             
performance of the SSV model becomes very similar to the performance of the RSV model. 
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Table 1. Univariate Statistics 
 

  rt ∆rτ (∆rt )2 log (∆rt )2 

Mean 6.044 0.000 0.049 -5.672 
(standard error) 0.060 0.005 0.004 0.057 

Variance 7.259 0.049 0.040 6.530 
(standard error) 0.319 0.004 0.008 0.203 

Skewness 1.250 -1.038 8.352 -0.256 
(standard error) 2.070 0.006 0.019 0.712 

Kurtosis 4.878 17.658 88.586 2.941 
(standard error) 22.157 0.009 0.049 6.658 
Ljung-Box (24) 1733.4 12.018 100.96 190.78 

LB-ARCH(24) . 104.47 . . 

LB: Ljung-Box statistic is calculated with 24 lags. The χ2
(24) critical value for a 95% 

confidence level is 36.4.  
LB-ARCH: Ljung-Box statistic is reported for the squared residuals at  lag 24, where residuals 
are obtained from regressing ∆rt on a constant and rt-1.  
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Table 2. Estimation of the SSV Model 
 

Prior Values  Posterior Values Parameters 
mean standard 

deviation 
 mean (std. 

error) 
standard deviation 95% 

confidence 
interval 

β 0.05 1 2.831 (0.020) 0.219 (2.366- 3.235) 
φ  0 10 0.951 (0.000) 0.009 (0.932- 0.969) 

σ2 - - 0.190 (0.002) 0.023 (0.150- 0.241) 

The Single-state Stochastic Volatility (SSV) model estimated above is:  

The sample size is 2,003. Prior distribution of σ2 (inverse gamma) is improper. Details about the 
model estimation are in Section 3. The mean and median of half-life are, respectively, 14.28 and 
13.79 weeks. 
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Table 3. Estimation of the RSV Model 

 
Prior Values  Posterior Values Parameters 

mean standard 
deviation 

 mean (std. 
error) 

standard 
deviation 

95% confidence 
interval 

β 0 50 2.580 (0.001) 0.098 (2.378- 2.769) 
γ 1 50 2.746 (0.022) 0.247 (2.258 -3.220) 

φ  0 1 0.628 (0.001) 0.046 (0.526- 0.708) 

σ2 - - 0.931  (0.002) 0.123 (0.726-1.207) 

p01 0.2 0.16 0.006 (0.001) 0.003 (0.002- 0.013) 
p10 0.2 0.16 0.034 (0.001) 0.013 (0.014- 0.063) 

 The Regime-switching Stochastic Volatility (RSV) model estimated above is: 

The sample size is 2,003. Prior distribution of σ2 (inverse gamma) is improper. Details about the 
model estimation are in Section 3. 
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Table 4. Estimation of ARCH Models 
 
Results from the maximum likelihood estimation of GARCH models using weekly 3-month 
T-Bill rates for the period 01/06/60 to 06/03/98 

  α0 κ γ δ1 δ2 α1 β1 
GARCH(1,1) 0.776 - - - - 0.023 0.851 

 (-5.11)     (-7.164) (-47.012) 
GARCH(1,1)-L 0.787 0.009 - - - 0.019 0.847 

 (-5.15) (-2.566)    (-6.501) (-46.993) 
E-GARCH(1,1) 0.054 - - 0.144 -0.019 - 0.944 

 (-2.802)   (-11.567) (-3.434) - (-128.91) 
SWARCH(2,1) 12.436 - 10.394   0.031  

  (-14.483)   (-10.528)     (-5.121)   
 t-statistics are reported in parenthesis. The general model used is: 
 
 
 
 
The conditional volatility, ht, has four alternative specifications:  
GARCH(1,1): EGARCH(1,1): 

 
GARCH(1,1)-L: 
 

 

SWARCH(2,1): 
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Table 5. In-sample Performance  
 
In-sample comparison of alternative models for the entire sample period 01/06/60  to 
06/03/98 (sample size: 2003) 
Panel A 

  Pars. Log- 
Likelihood 

AIC SBC Adj R2 Posterior 
Odds 
 ratio 

MSE LL JB 

Const. Variance 1 -8589.23 -8590.23 -8593.03 -0.477 - 1.2 28.25 17453.05* 
GARCH(1,1) 3 -7965.81 -7968.81 -7977.22 0.222 615.81 0.9 21.19 641.28* 

GARCH(1,1)-L 4 -7962.05 -7966.05 -7977.25 0.205 615.78 1.02 21.18 614.93* 

EGARCH(1,1) 4 -7953.13 -7957.13 -7968.34 0.220 624.69 0.50 20.94 925.00* 

SWARCH(2,1) 5 -7960.76 -7965.76 -7979.76 0.222 613.27 1.01 21.01 14.30* 

SSV model 3 -7883.92 -7886.92 -7895.33 0.448 697.70 0.21 17.35 230.19* 
RSV model 6 -7397.39 -7401.39 -7412.6 0.602 1180.43 0.19 17.03 5.54 

Panel B 
RSV model  vs. Sign test Wilcoxon signed rank-

test 
Vyoung test 

Constant Variance -27.327* -19.890* -5.160* 

GARCH(1,1) -18.076* -16.046* -6.113* 
GARCH(1,1)-L -17.853* -15.479* -6.614* 
EGARCH(1,1) -18.121* -14.921* -5.788* 
SWARCH(1,1) 43.861* 38.635* -16.838* 

SSV model 3.032 3.956 nc 
Panel A Notes: 
Pars. refers to parameters.  
Const. Variance stands for the Constant Variance model with level effect as described below: 

 
AIC: Akaike Information Criterion. 
SBC: Schwartz Bayesian Criterion. 
Adjusted (Adj) R2: calculated for the regression ),~N(uubhaRES tttt 10  , 2 ++=  and {t= 1,…..,T}where  

RESt are the OLS residuals defined as above,  and  ht  refers to conditional volatility at time t.  
Posterior odds ratio: the difference of the SBC of each model and the SBC of the constant variance model.  

MSE: Mean squared error defined as [ ]∑
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JB: Jarque-Bera’s normality test statistic, where * indicates significance at 5% level. 
 
Panel B Notes: 
The test statistic for each of the three tests viz., Sign test, Wilcoxon signed test and Voung test, follows a 
standard normal distribution. * indicates significance at 5% level. For the Voung test, nc implies no 
calculation is possible, as models are nested.  
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Table 6. Forecasting Performance 
 

 
In sample and out-of-sample volatility comparison of alternative models for four 
different sample periods  

Sample 1 In-sample (T: 990) 
01/06/60-12/31/78 

 Out-of-sample  
01/01/79-06/03/98 

         fixed sample  increasing sample 
  MSE LL MAE  MSE MAE  LL MAE 

Const. Variance 0.0109 7.5687 0.0266 0.0702 0.0682 7.451 0.0007 
EGARCH(1,1) 0.0104 5.4051 0.0255 0.0707 0.0694 8.302 0.0010 

SSV model 0.0104 4.8049 0.0255 0.0706 0.0688 6.411 0.0007 
RSV model 0.0099 3.9309 0.0243 0.0705 0.0685 6.346 0.0007 
Sample 2 In-sample (T: 1199) 

01/06/60-12/31/82 
 Out-of-sample  

01/01/83-06/03/98  
         fixed sample  increasing sample 
  MSE LL MAE  MSE MAE  LL MAE 

Const. Variance 0.0661 8.7843 0.0714 0.0025 0.0132 7.321 0.00038 
EGARCH(1,1) 0.0621 5.6397 0.0679 0.0027 0.0130 8.079 0.00045 

SSV model 0.0628 5.2738 0.0680 0.0026 0.0126 6.037 0.00036 
RSV model 0.0616 4.2988 0.0668 0.0026 0.0123 5.968 0.00038 
Sample 3 In-sample (T: 1668) 

01/06/60-12/31/91 
 Out-of-sample  

01/01/92-06/03/98  
         fixed sample  increasing sample 
  MSE LL MAE  MSE MAE  LL MAE 

Const. Variance 0.0489 8.1319 0.0561 0.0002 0.0067 8.127 0.00035 
EGARCH(1,1) 0.0461 5.9760 0.0538 0.0001 0.0049 8.690 0.00039 

SSV model 0.0464 5.5601 0.0538 0.0001 0.0047 6.898 0.00033 
RSV model 0.0458 4.9012 0.0532 0.0001 0.0047 6.749 0.00033 
Sample 4 In-sample (T: 626) 

01/01/76-12/31/87 
 Out-of-sample  

01/01/88-12/31/89 
         fixed sample  increasing sample 
  MSE LL MAE  MSE MAE  LL MAE 

Const. Variance 0.1133 7.2008 0.1081 0.0003 0.0119 8.045 0.00032 
EGARCH(1,1) 0.1090 5.9227 0.1054 0.0005 0.0128 8.297 0.00036 

SSV model 0.1082 5.7226 0.1051 0.0005 0.0124 6.606 0.00029 
RSV model 0.1031 4.4926 0.1014 0.0003 0.0115 6.282 0.00030 

• T: refers to the sample size. Const. Variance refers to Constant Variance model. The best model 
is highlighted in each sample. MSE and LL are defined in Table 5. MAE is the mean absolute 

error defined as ∑
=

++
− −

T

t
tt hREST

1
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2
1

1 .  

• For out-of sample forecasts reported under the column “fixed sample”, the estimated coefficients from the in
period 1 to t are used to generate one-step-ahead conditional volatility forecasts for each future  
time period t+k, where {k= 1,2, 3,…,T-t} based on the forecasting equations described below: 
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Table 6 (continued) 
EGARCH(1,1):  

 
RSV  model: 

• For out-of-sample forecasts reported under the column “increasing sample”, the successive 
forecasts are obtained by increasing the sample window, i.e., for time period t, the sample 
size includes observations from 1 to t, for the next time period t+1, the sample size includes 
observations from 1 to t+1, and so on. We estimate for each time window and forecast for 
next period. 
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SSV model: 
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Figure 1. Posterior Density Plots for Parameters of the SSV Model 
 

 
 

Figure 2. Posterior Density Plots for Parameters of the RSV model 
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Figure 3. T-Bill Yields and Corresponding Latent Volatility and States 
(Sample: 01/06/60 to 06/03/98) 
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Figure 4. In-sample Latent Conditional Volatility and  

Probability of High Volatility State from SWARCH(2,1) model 
(Sample: 01/06/60 to 06/03/98) 

 

 
 

 
 

 


