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ABSTRACT
We analyze the behavior of time-varying volatility, when structural changes are allowed
in international stock markets. We use a model developed by Hamilton and Susmel
(1994), the SWARCH model, which is a more general specification than the popular
ARCH model. We fit an exponential SWARCH model to eight series of weekly returns
from international stock markets. We find evidence for switching volatility for the U.S.,
Canada, the U.K., and Japan. Under the SWARCH model, we find that ARCH and
asymmetric effects are reduced when a switching regime structure is allowed. We use
the switching model to date volatility states in international stock markets. We compare
these states and conclude that domestic volatility states tend to be independent of foreign
volatility states, with the exception of Japan and the U.K., and the U.S. and Canada. For
these two pairs of series, we find evidence for common volatility states.
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I.- INTRODUCTION

The seminal paper of Engle (1982) introduced the ARCH (autoregressive conditionally

heteroskedastic) model. Later, Bollerslev (1986) generalized the ARCH model by introducing the GARCH

model. The ARCH family of models has been applied successfully to financial data and has become one

of the most popular tools to study financial markets volatility. A usual result of ARCH models is the highly

persistent behavior of shocks to the conditional variance. This persistence, however, is not consistent with

the results of recent papers that analyze the volatility after the Crash of October 1987, see Schwert (1990)

and Engle and Mustafa (1992). Lamoreux and Lastrapes (1990a) argue that the near integrated behavior

of the conditional variance might be due to the presence of structural breaks, which are not accounted for

by standard ARCH models. Rare events such as market crashes, financial panics, changes in government

policies, have a clear effect on many financial series. During these events, the volatility of such series

changes substantially. For example, Schwert (1990) notes that stock volatility is higher during recessions.

Even though the effect of a rare event, like a market crash, might be temporary, the magnitude of a rare

event can have very serious effects on the estimation of time series models. Following the work of

Hamilton (1989) on switching regimes, Hamilton and Susmel (1994) propose a new ARCH model, the

Switching ARCH or SWARCH model. This model captures more realistically the time-series properties of

dramatic economic events such as a stock market crash. In this model, volatility depends on past news and

the state of the economy.

In this paper, we apply the SWARCH model to explain volatility in six international stock markets and

two world stock indices. We use a new SWARCH model, the exponential SWARCH or E-SWARCH

model. Then, we compare the E-SWARCH model with the E-GARCH model proposed by Nelson (1991).

The comparison of both models is very simple. First, we fit different GARCH and SWARCH

specifications. Second, we choose the best model of each class based on likelihood ratio tests. Then, we

calculate out-of-sample variance forecasts for both models. We find evidence for switching volatility in the
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U.S., Canada, the U.K, and Japan. We find that compared to the GARCH-t model, the forecasting

benefits of the SWARCH model are at best marginal. The out-of-sample variance forecasts of the

GARCH-t model tend to be superior to the SWARCH forecasts.

As shown in Hamilton (1989), and pointed out by Goodwin (1993), the most innovative aspect of the

Hamilton switching model is the ability to objectively date the states of the economy. Based on this

observation, we date different volatility states for each series. Then, we use the volatility states to provide

a different perspective on the nature of linkages among international stock markets. Some studies, for

example, von Furstenberg and Jeon (1989), claim that stock markets around the world have become more

integrated. Under the integration hypothesis, markets should experience similar reactions to common

shocks. The simultaneous decline of world stock markets during the October 1987 Crash exemplifies this

increased integration. During the days surrounding the Crash, stock market volatility dramatically

increased in world markets. The effects of the 1987 Crash, however, were temporary and since then, the

evidence of increased international linkages across markets is weak. These studies are based on mean

returns correlations. Instead, we examine variance interrelations. Using the SWARCH estimates we study

the interrelations of volatility states. King and Wadhwani (1990) argue that pricing mistakes might spread

through international financial markets. An important part of their model is that this contagion effect

increases with market volatility. Along these lines, it is possible to observe dependent high volatility states

among countries. Hamao, Masulis and Ng (1990) find evidence of "volatility spillovers" among the U.S.,

Japan and the U.K. This finding seems to confirm a positive correlation of high variances in international

stock markets. We find, however, that among the three biggest stock markets, only Japan and the U.K.

have evidence of dependent volatility states and, among the regional markets, only the U.S. and Canada

seem to have dependent volatility states. For these two pairs we find evidence of common volatility states.

The plan of the paper is as follow. In section II we present the family of Switching ARCH models
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with a two-state example. In section III we describe the model used in this paper and then we present the

empirical results. Section IV summarizes the results.

II.- SWITCHING ARCH MODELS

Consider a simple E-GARCH(p,q) process for yt,

  (1)   yt = f(xt;ß) + et, etΨt-1 ~ D(0,ht),

where f(xt;ß) refers to the conditional mean, xt is a vector of M explanatory variables, that may include

lagged yt's, ß is a Mx1 vector of parameters, Ψt-1 is the information set that contains all information

available through time t-1, and et is the error term, which follows, conditional on Ψt-1, a D distribution. The

conditional errors have a zero mean and a time-varying variance, ht. The conditional variance, ht, follows

an E-GARCH(q,p) process, as given in equation (2). As a conditional distribution, D, the  normal, the

Student-t and the Generalized Error Distribution (GED) are generally used. For example, Bollerslev (1987)

proposed the Student-t and Nelson (1991) used the GED. Equation (2) displays an asymmetric effect of

negative news on the variance, or leverage effect. Black (1976) relates the asymmetric effect of negative

news to the fact that a negative price change increases the leverage ratio of a firm and, thus, increases the

risk of the firm. In equation (2), the leverage effect is captured by the introduction of the level of past

errors relative to their standard deviation.1

                    
     1 A popular GARCH(q,p) model with a leverage effect was proposed by Glosten, Jagannathan
and Runkle (1993), hereafter GJR:
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ARCH models have been successfully applied to financial time series, Bollerslev et al. (1992) cite

over two hundred applications to financial data. Lamoreux and Lastrapes (1990a), however, argue that

ARCH estimates are seriously affected by structural changes. This might explain why ARCH models

show an extremely high degree of persistence, weak forecasting and a poor statistical description of

outliers. As stated in the introduction, many economic series show clear evidence of changes of regime.

During these changes of regime, the behavior of the series sometimes changes dramatically. Suppose that

large volatility shocks are infrequent and short-lived. We can think as these series having two states: a

short-lived high volatility state and a long-lived normal volatility state. An ARCH model cannot capture

these sudden volatility changes, given the autoregressive nature of the ARCH process. It underestimates

the conditional variance at the time of the change from a normal volatility state to a high volatility state and

overestimates the conditional variance when the economy goes back to the normal state.

Work by Hamilton (1989) offers a more realistic approach to modeling time series with changes of

regime. In his simple, two state process, Hamilton assumes the existence of an unobserved variable, st,

which can take two values: one or two. The variable st describes the state of the economy. He postulates

a Markov chain for the evolution of the unobserved variable:

p(st =1 |st-1 =1) = p11

p(st =2 |st-1 =1) = p12

p(st =1 |st-1 =2) = p21

p(st =2 |st-1 =2) = p22,

where pij is the probability that the economy switches at time t from state i to state j. It is convenient to

summarize this transition probabilities in a (2x2) matrix P.

Within this change of regime framework, Cai (1994), Brunner (1991), Hamilton and Susmel (1994),

                                                     
and Ng (1993) find that the GARCH(1,1)-L and the E-GARCH(1,1) are the best models to describe the
leverage effect on the variance. 
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and Hall and Sola (1996) modify the conditional variance equation (3) to make the conditional variance

dependent on the state of the economy. In particular, Hamilton and Susmel (1994) reformulate equation

(3) as follows:

where the �'s are scale parameters that capture the change in regime. One of the switching parameters,

the �'s, is unidentified and, hence, �1 is set equal to 1. In equation (3), the conditional variance depends on

past shocks and the present and past states of the economy. Equation (3) also includes GJR-leverage state

dependent effect. Inclusion of exogenous variables whose coefficients also depend on the state of the

economy is straightforward.

Equation (3) represents a SWARCH(K,q) model, which allows for two states and q autoregressive

lags. Equation (3) allows for sudden changes both in the constant and in the ARCH coefficients. Suppose

there are only 2 volatility states. A sudden change to a high volatility state, with �2 >1, will increase the

constant and the weights on past news. Under this specification, past shocks will have a bigger weight in

the presence of a change to a high variance state. This approach has a limitation. The conditional variance

should follow an ARCH(q)-L process and not a GARCH(p,q) process because the conditional density can

only depend on a finite number of past values of yt and st.

A more general formulation, allowing for K states, is the SWARCH(K,q) model. Suppose that st can

be described by a Markov chain:

 (4) Prob(st=j|st-1=i,st-2=l,..,yt-1,yt-2,..)=Prob(st=j|st-1=i)=pij,  for i,j = 1,2,...,K.

Now, let the conditional variance equation be given by (3) but �k, where k=1,...,K, with �k set equal to

zero.

Hamilton and Susmel (1994) describe the algorithm used to evaluate the sample log likelihood function,

which is maximized numerically. The distribution of the conditional errors can be the normal, the Student-t
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or the GED.

An E-GARCH like formulation of the SWARCH(K,q) model can be achieved by rewriting equation

(3),

As in the E-GARCH framework, no nonnegativity restrictions are necessary. Nonnegativity restrictions

are important in the SWARCH model. Hamilton and Lin (1996), for example, impose �1=0 in their

SWARCH-L model for U.S. stock returns. We call the model in equation (5) E-SWARCH(K,q). In the E-

SWARCH(K,q) model, the conditional variance also should follow an E-ARCH(q) process and not E-

GARCH(q,p) process. Thus, the E-SWARCH model and the E-GARCH model are not nested. Moreover,

in this E-SWARCH formulation, the autoregressive terms are not the standardized residuals. The E-

GARCH model has a longer memory, given by the inclusion of ht-1, than the E-SWARCH model.

Hamilton (1989) describes how to make inferences about the particular state the economy was in at

date t. The filter probabilities, p(st,st-1,....,st-q|yt,yt-1,..,y-3), denote the  conditional probability that the date t

state was the value st, the date t-1 state was the value st-1, ..., and the date t-q state was the value st-q.

These probabilities are conditional on the values of y observed through date t. It is also possible to

calculate smooth probabilities, p(st|yT,yT-1,...,y-3), which are based on the full sample. The smooth

probabilities give us K numbers for each date t.

In this paper, we find that some autoregressive terms in the SWARCH(K,q)-L model hit the non-

negative boundary. This is mainly due to the presence of a strong leverage effect that drives the ARCH(1)

coefficient, �1, to zero. Thus, we favor the E-SWARCH model, which does not require nonnegativity

constraints.

.e  + 
|e|   +  + )( = )h(   (5)

s

1-t

s

i-t
i

q
=1i0st

1-t-it

t γ
ε

γ
ααγ ∑lnln



8

III. SWITCHING VOLATILITY IN INTERNATIONAL STOCK MARKETS

A.- A Model of Stock Market Volatility

In this section, we present a model of asset returns and conditional volatility for eight series of

international stock returns. We use the model developed in Section II for the conditional variance process.

Then, we briefly discuss the estimation aspects of the SWARCH model.

The model for stock returns, rt, is a simple AR(1) process:

 (6) rt = a + b rt-1 + et, etΨt-1 ~ D(0,ht),

where st describes the state of the economy and its evolution is given by the Markov matrix P. In this

model, we are implicitly assuming that the conditional mean does not depend on st. This assumption

simplifies the estimation and allows us to focus solely on time-variation in the conditional variance process.

The AR(1) component allows for autocorrelation induced by nonsynchronous trading in the stocks making

up the index, as suggested by Lo and MacKinlay (1990). GARCH models have been estimated using as

conditional distributions the normal, Student-t, and the GED. The empirical literature tends to find that the

Student-t distribution does a better job at describing the fat tails of the conditional errors. Therefore, we

use as D the normal distribution and the Student-t distribution.

In general GARCH(q,p) applications, a GARCH(1,1) model seems to be sufficient to capture the

symmetric dynamics of the variance. The GARCH(1,1) has an implicit infinite lag, which cannot be

generated in a SWARCH model. However, using an autoregressive model for squared residuals, Schwert

(1990) employs an AR(12) with monthly variables. Computational constraints force us to use a shorter lag

structure. Hamilton and Susmel (1994) use a model with two lags. We estimate different models, with

different lags. We find that, in general, only the first two terms are needed to capture the ARCH effect. In

only two cases a third autoregressive term seemed to be necessary on the conditional variance equation.
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Therefore, equation (7) is restricted to an E-SWARCH(K,3) process, which will also reduce

computations.2 Again, note that the E-SWARCH(K,q) model does not nest an E-GARCH(p,q) model.

Although an ARCH(q) model can be seen as a special case of a SWARCH(K,q) model, a likelihood ratio

test is not an appropriate test. The usual regularity conditions do not hold, since the pij's are not identified

under the null hypothesis that the ARCH parameters are constant across states. we take these likelihood

ratio tests only as a quick check of the model.

We estimate different SWARCH(K,q) specifications. We estimate models with K=2 to K=3 states

and q=1 to q=3 autoregressive terms, and with and without leverage effects. We use Normal and Student-

t distributions for the conditional errors. We find that a leverage effect is significant on the conditional

variance equation. As discussed before, in some series the presence of a strong leverage effect drives the

ARCH(1) coefficient, �1, to the boundary in the SWARCH(K,q)-L formulation. This is not a problem in

the E-SWARCH(K,q) since there are no nonnegativity restrictions on the parameters. For both SWARCH

specifications, however, the likelihood function, the mean, transition probabilities and switching parameters

are of similar magnitude. Since the parameters are similar, the volatility states are also similar.

B.- Empirical Results: GARCH and SWARCH models

In our empirical application, we use weekly returns from six international stock markets and two

international stock market indices compiled by Morgan Stanley Capital International Perspective. The six

international markets considered are U.S., Canada, U.K., Germany, Japan and Australia. All trading time

zones are represented in this sample. The market indices are the World Index and the EAFE (Europe,

Australia and the Pacific) Index. The eight indices have been constructed so as not to double count those

stocks multiple-listed on foreign stock exchanges. The indices are value weighted indexes and they cover

at least 80% of each country's stock market capitalization. The sample covers the period from the first

                    
2 In Table 6, we use the Ljung-Box statistic to test if there is further autocorrelation of
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week of January 1980 to the fourth week of July 1991. The last 25 observations are only used for out-of-

sample forecasting. These stock market indices are transformed into weekly (Thursday to Thursday) rates

of return. U.S. returns have a correlation of .80 with the S&P 500. We should mention that each of these

markets have different regulations, trading systems and transaction costs --see Roll (1988), for a summary

of the characteristics of each market.  

Table 1 provides univariate statistics for the six countries and two world indices in our sample. First

order autocorrelations, Ljung-Box test statistics for serial correlation and ARCH tests are also calculated.

The ARCH(4) tests are LM-type tests of the type described in Engle (1984). There is strong evidence for

first order autocorrelation and ARCH effects in all markets except for the U.S. and the U.K.3

Table 2 reports the Gaussian E-GARCH(1,1) estimation. All series, with the exception of the U.K.

and the U.S. markets show evidence of a positive first order autocorrelation, as expected from Table 1.

There is evidence of ARCH effects on all the series except for the U.K. stock market. The leverage

effect is negative and, in general, significant. We also report the log likelihood of the GARCH(1,1)-L

model, LF-GJR. The likelihood functions LF and LF-GJR are extremely similar; however as noted before,

some of the �1's hit the nonnegativity restriction. We also report the likelihood of an E-GARCH(1,1) model

estimated under the assumption of a t distribution for the conditional residuals, or E-GARCH-t estimation.

There is strong evidence for the E-GARCH model with a t-distribution, which is consistent with previous

studies (see Bollerslev (1987) and Baillie and DeGennaro (1990) for a non-switching specification and

Hamilton and Susmel (1994) for a switching model).

Table 3 reports the E-SWARCH(2,2) estimation. First, note that a standard ARCH-L specification is

obtained as a special case of the Markov-switching model by setting γ2=1. The switching parameter, γ2, is

                                                     
the standardized squared residuals.

     3 The ARCH(4) tests for a linear relation between past and present squared residuals. Therefore, the
ARCH(4) might not be able to detect asymmetric effects or non-linear relations, such as the one implied
by the SWARCH model.
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significantly different than one at the 5% level, with the exception of the World Index, the EAFE Index

and the U.K. The lack of significance for the World Index, the EAFE Index and the U.K. is probably due

to the fact that the high volatility state is composed of a few observations and dominated by the October

1987 crash. Thus, for these series, the estimate of γ2 is imprecise. Australia presents the highest γ2, this is

due to the presence of two consecutive extraordinary observations in October 1987. On the other markets,

volatility is three to six times bigger when the economy moves to the high volatility state. Second, Black's

(1976) leverage effect is significant only for the World Index, the EAFE Index, the U.S. and Japan. Third,

the ARCH effects, the �1's and �2's, are reduced and, in general, they are non significant. Therefore, the

usual ARCH effect seems to be driven by a switching constant and the leverage effect.

Table 3 also reports the likelihood of an E-SWARCH(2,2) model calculated under the assumption of a

t-distribution, LFt, and the likelihood of an E-SWARCH(2,3) model, LF2,3. We take the Gaussian E-

SWARCH(2,2) model as the restricted model and perform a likelihood ratio test for the E-SWARCH(2,2)-

t model and the E-SWARCH(2,3) model. This likelihood ratio test follows a chi-squared distribution with

one degree of freedom. Hamilton and Susmel (1994) find that for weekly CRSP returns, a conditional t-

distribution significantly improves the likelihood function of the SWARCH model. Unlike the E-GARCH

estimation, however, assuming a t-distribution for the conditional residuals does not result in a significantly

higher likelihood than a normal distribution, with the marginal exception of Canada. That is, contrary to

Hamilton and Susmel (1994), once switching in variance is allowed, the t-distribution does not help in

explaining the fat tail distribution of conditional returns. Also, with the exception of the two market indexes,

the E-SWARCH(2,3) is rejected in favor of the E-SWARCH(2,2) model. We tested for further

autoregressive ARCH effects, using a Ljung-Box test, for the standardized square residuals, with six lags.

This test statistic, LBS(6), is reported in Table 6. We do not find evidence of autocorrelation in the

standardized squared residuals.

In Figures 1 to 6 we plot the weekly stock returns series for each country on the first panel and in the
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other panel the smoothed probabilities, Prob(st=1|yT,yT-1,...,y-3). The second panel plots the smoothed

probability that the economy was at state 1 at time t. The smoothed probability that the economy was at

state 2 at time t is the mirror image of the second panel. For brevity, we present figures for Canada, U.S.,

Germany, the U.K, Japan, and Australia.4 The dating of the states is not very revealing. At first glance,

using the dating of the business cycles in Goodwin (1993), reported in Table 6, for Canada, the U.S.,

Germany, the U.K. and Japan, there does not seem to be any consistent relation between volatility regimes

and business cycles. Similar conclusion can be drawn for the relation between volatility regimes and

exchange rate regimes using the dates in Engel and Hamilton (1990) for the DM and the BP. Since we

have weekly data for exchange rates, we test the relation between exchange rates and volatility regimes.

We estimate the two-state model in Engel and Hamilton (1990) for weekly exchange rates and we date

the exchange rate regimes for the CAD/USD, DM/USD, BP/USD, JPY/USD, AUD/USD and a trade-

weighted USD rate. Then, using a Lagrange multiplier test, as described in Hamilton (1996), we test for

the inclusion of an exchange regime dating dummy in the model for each national market. These LM-tests

are reported in Table 6 (LM-ER). All the LM-tests cannot reject the null hypothesis of no-relation

between volatility regimes and the regime for the local currency.

There are, however, two clear conclusions from Figures 1 to 6. First, the economy tends to have

longer stays in the low volatility state.5 The low volatility state has the longest expected duration. For

example, the expected duration of the low volatility state in Canada and the U.S. is the same, 83 weeks.

Also, note the extremely short duration of one state in the U.K., Australia and the EAFE (not shown),

which indicates the impact of few observations in those states. Second, with the exception of Japan, the

Crash of October 1987 was unexpected, in the sense that the market was in the low volatility state the

                    
4 All graphs are available from the author, upon request.

     5 In Table 3 we report the expected duration of state i, given by di=(1-pii)
-1.
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week before the 1987 Crash.6 As pointed out by Engle and Mustafa (1992), Roll (1989) and Albert et al.

(1993), among others, the Crash did not have long-lasting volatility implications. This is demonstrated in

Figure 2, which corresponds to the U.S. Index. The 1987 Crash comes "unexpectedly" after the economy

was for a long period in the low volatility state. Then, after eight weeks in the high volatility state, the

economy reverts to the low volatility state.

As mentioned above, the second state in Figure 4 -corresponding to the U.K. market-, in Figure 6 -

Australia- and in the EAFE Figure (not shown) is dominated by the October 1987 Crash. This suggests

that for these three markets a third state is necessary. Table 4 reports the results for the E-

SWARCH(3,2) estimation for the U.K., Australia and the EAFE Index. Under the null hypothesis of a E-

SWARCH(2,2) model, the E-SWARCH(3,2) has unidentified parameters. Thus, the usual asymptotic �2

distribution for the likelihood ratio test does not hold.7  We can only take the small improvement of the

likelihood function of the three state model as an indication that two states might be enough for the

Markov-switching model. For dating volatility states, however, it might be useful to estimate a third state.

In Figures 7 to 8 we plot the weekly returns along with the smooth probabilities for the first and second

states for the U.K and Australia. The third state is dominated by the Crash of October 1987. For the U.K.

and Australia, the picture is closer to the one presented by Japan, with long periods where the economy

stays in the second state, the high volatility state. For these series, the predominant state is the high

volatility state. These figures illustrate the effect of outliers on the estimation of the states. The

                    
     6 Moreover, if we fit a SWARCH(3,2) model to the Japanese data, the third state is composed by a
single observation, a big positive return from the second half of 1985.

     7 When we test a SWARCH(K-1,q) model against a SWARCH(K,q) model, standard likelihood tests
are not valid. Under the null hypothesis of K-1 states, the parameters that describe the Kth state are not
identified and therefore standard test statistics do not have the usual asymptotic distribution. Similar
problems arise when test a SWARCH(2,q) model against an ARCH(q) model, which could be described
as a special case of a SWARCH(2,q) with K=1, since under the null hypothesis the parameter γ2 is not
identified (see Davies (1977) or Hamilton (1996) for tests that get around this problem). We take the p-
values as a raw approximation.
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SWARCH(3,2) formulation assigns a special state for these extraordinary observations and therefore this

state acts as an intervention variable -in this case a pulse variable, since the `intervention' takes place at

only one point in time- defined by Box and Tiao (1975). In the cases where a few observations dominate

the third state, it is possible to obtain a description of the volatility states using a SWARCH(2,2) model.

We illustrate this procedure for Australia and the U.K. Since the third state seems to play the role of a

dummy variable, we estimate an E-SWARCH(2,2) model with dummy variables for the observations that

belong to the third state. For the U.K. market, those dates are the first week of October 1981, t=90, and

the third week of October 1987, t=407. This is a pure pulse variable, the impact only affects the

observation at those dates. For the Australian market, the dummy variables cover the third week and the

four week of October 1987, t=407 and t=408. These are also pure pulse variables.8 The results are

reported in Table 5. The parameters are similar to the relevant first and second state parameters for the

E-SWARCH(3,2) model. The switching parameter for the second state is of the same magnitude as the

switching parameter for the second state under the E-SWARCH(3,2) model. Also the estimated smoothed

probabilities (not shown) show the low and high volatility states are also similar to those estimated under

an E-SWARCH(3,2) model.

The evidence from Figures 1 to 8, supports the survey of Roll (1989), with respect to the short-lived

effects of the Crash of October 1987. By January 1988, two months after the Crash, all the markets seem

to be in the low volatility state.

From Table 2, Table 3, and Table 4, we can point out some in-sample E-SWARCH results. In terms

of the likelihood function, the Gaussian E-SWARCH model fits the data substantially better than the

Gaussian E-GARCH formulation, even though, the E-GARCH formulation allows for more dynamics. The

better fit of the E-GARCH(1,1)-t model suggests that the gains from the Switching ARCH model are not

                    
     8 We also use for the Australian case one dummy variable, an intervention step function which lasts
two periods, that is, under this formulation the Crash of October 1987 only lasted two weeks. However,
the states are better described with two intervention dummies.
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that significant and come more from capturing better the fat tails of the unconditional distribution than from

capturing the autoregressive dynamics of the conditional variance.

A more rigorous test of the null hypothesis of no regime-switching can be done by using the likelihood

ratio test proposed by Hansen (1992, 1994). As noted earlier, a likelihood ratio test of this null hypothesis

does not have the usual limiting chi-squared distribution, because the parameters pij are unidentified under

the null. Hansen proposes a test, based on empirical theory process, that is able to provide an upper bound

to the asymptotic distribution of standardized likelihood ratio statistics, even when conventional regularity

conditions (such as unidentified parameters) are violated.9 We calculate Hansen's test for all the series

under the null hypothesis of no regime-switching with a Student-t distribution. The p-values for the Hansen

test are reported in Table 6. Consistent with Hamilton and Lin (1996) the null hypothesis of no regime

switching can be rejected at the 5% level for the U.S. For Canada and the U.K the null hypothesis is also

rejected at the 5% level, while Japan seems to be a borderline case -recall that the Hansen tests provides

an upper bound for the p-value. For the other series, the null hypothesis of no-regime switching cannot be

rejected at the 5% level.

Our next comparison between the GARCH-t and SWARCH models is based on variance forecasts.

In Table 2, Table 3 and Table 4, we report mean squared errors for the in-sample one step ahead variance

forecasts, MSE(1). In four cases the SWARCH model presents a lower MSE(1), and in the other four

                    
9 To get around the problem of no identified parameters under the null, Hansen (1994) defines a function

qt(ζ) = Lt[ζ,λ(ζ)] - Lt[ζ0,λ(ζ0)],
where Lt[ζ,λ(ζ)], represents the conditional log likelihood of the tth observation when evaluated at ζ and
λ(ζ). The parameters ζ and λ represent a partition of the parameter space. For the two-state case
ζ=(p11,p22,γ2). Under the null hypothesis of no regime-switching ζ=ζ0=(1,0,1). We investigated a grid
containing 345 possible parameters for ζ under the alternative hypothesis, with Z consisting of these 345
possibilities considered. For any ζ, λ(ζ) is estimated by maximizing the likelihood with respect to λ, given ζ.
Hansen (1994) proposes the following standardized test:

LR = maxζεZ  T mq(ζ)/[Σ t (qt(ζ) - mq(ζ))2]1/2,
where mq is the mean of qt. Hansen shows that, if the null hypothesis of no regime-change is true, then for
large samples the probability that LR would exceed a critical value z is less than the probability that a
Monte Carlo simulated statistic would exceed the same value z.
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cases the GARCH-t model has a lower MSE(1). In Table 6, we compare both models in terms of out-of-

sample variance forecasts. We report the square error for one week, four weeks, twelve weeks, and

twenty-four weeks ahead variance forecasts. The results are mixed, however, the GARCH-t model tends

to have lower squared variance forecasting errors than the SWARCH model. Out of thirty-two

comparisons, the GARCH-t model outperforms the SWARCH model twenty-one times. These results are

consistent with the findings of Goodwin (1993). In a different context, he finds that the Hamilton (1989)

switching specification does not strongly dominate linear AR representations of GNP growth.

As shown in Hamilton (1989) and pointed out by Goodwin (1993), the most innovative aspect of the

Hamilton (1989) model is the ability to date states. In the next section, we will take this observation into

account. Then, we will analyze and compare the volatility states across the six international markets.

C.- Dependent States

As discussed in the introduction, one common finding of ARCH studies is the high persistence of

shocks to the conditional variance. Bollerslev and Engle (1994) discuss the idea of common persistence. If

two series exhibit co-persistence, a non-trivial linear combination will have no persistence in variance.

Ghose and Kroner (1993) discuss the implications of common persistence for investors. Another related

idea is common volatility, explored by Engle and Susmel (1993). In this section, we extend this idea of

common volatility to volatility states. As pointed out by Roll (1992), world markets seem to react similarly

to big common news. This common reaction might be a reflection of the contagion effect, discussed by

King and Wadhwani (1990), where big mistakes are transmitted from one market to others. King and

Wadhwani (1990) argue that the contagion effect increases with stock market volatility. If we consider

periods of high volatility as periods of high contagion, we should expect the high volatility states to be

correlated. Hamao et al. (1990) find evidence of "volatility spillovers" among the U.S., Japan and the U.K.

This finding seems to confirm a positive correlation of high variances in international stock markets. In this
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section, we take advantage of the dating abilities of the Hamilton (1989) filter to explore these ideas and

test two related hypotheses: first, we test if the volatility states are independent, and second, if

independence is rejected, we test if the volatility states are common states.

To test the above hypotheses, we estimate a multivariate formulation of the E-SWARCH model. In

order to keep the number of parameters tractable , we are going to test the above hypotheses by only using

two series at a time. That is, we estimate a bivariate E-SWARCH model.

Suppose we have two series, with two volatility states. In this bivariate formulation, the number of

states is four. For instance, with the U.S. and Japan in a system, we have the following four primitive

states, st*:

 st*=1: U.S. - Low volatility,  Japan - Low volatility.

 st*=2: U.S. - Low volatility,  Japan - High volatility.

 st*=3: U.S. - High volatility,  Japan - Low volatility.

 st*=4: U.S. - High volatility,  Japan - High volatility.

The system can be written as:

where rt = [rx
t,r

y
t] is a 2x1 vector of returns, e t =[ex

t,e
y
t] is a 2x1 vector of disturbances, which follow a

bivariate normal distribution, with zero mean and a time varying conditional covariance matrix Ht (for

notational convenience, we drop the dependence of Ht on the states of the economy). The conditional

covariance matrix Ht is specified as a diagonal matrix where the diagonal elements follow an E-SWARCH

process. This specification allows the series rx
t and ry

t to be related through the nonlinearities associated

with dependent states. A = [ax,ay] and B = [bx, by] are 2x1 vectors. 

The probability law that causes the economy to switch among states is given by a K*=4 state Markov

chain, P*, with a typical element given by Prob(st* = j|st-1* = i) = pij*. For the four state model, some of

),,0N(   , +   +  =    (8) s,st,tt1-tt *
1-t

*
tHeerBAr t

~
~ | Ψ
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the pij* are close to zero, in order to get convergence, we treat these parameters as given and equal to

zero. This reduces the number of parameters to be estimated.

As discussed in Hamilton and Lin (1996), this specification is very general and encompasses different

interactions among the volatility states of both countries. That is, the transition probabilities, the pij*'s, could

be restricted to fit different assumptions about the underlying volatility states. For example, focusing on

p24*, if the volatility states of the U.S and Japan are independent, then, p24* = p12
US p22

JAP. On the other

hand, if the U.S. volatility states are shared by Japan, then p24* = 0.

To test the null hypothesis of independent states, we first estimate a bivariate E-SWARCH model,

imposing no restriction on the matrix P*. The log likelihood function of the unrestricted model is denoted as

LF(HA). We also estimate the model by imposing the restricted transition probability matrix, P*, with

elements such as p14*=p12
x p12

y. From this estimation, we keep the log likelihood function of the restricted

model, LF(H0). Then, we calculate a Likelihood Ratio test, LR = -2*(LF(H0)- LF(HA)). Under the null

hypothesis, this test has a χ2 distribution, with k degrees of freedom, where k is given by the number of

additional parameters estimated under the alternative hypothesis. A similar procedure is used to test the

hypothesis of common volatility states.

Note that unlike the other markets, the volatility states for the U.K. market and the Australian market

are better dated by a SWARCH(3,K) model. We avoid joint estimation of different SWARCH(K,2) by

reducing the estimation to a SWARCH(2,2) problem, for the U.K. and Australia. For these two markets,

we use an E-SWARCH(2,2) model with mean dummies, as we do in Table 5. Based on the estimates of

Tables 3 and 5, we impose the independent states constraint and we jointly estimate the system, given by

(8). We estimate the bivariate E-SWARCH system for 6 pairs of series. For the first three pairs, we fit

the bivariate model for the three biggest stock markets in the world: the U.S., Japan and the U.K. These

markets may provide information about a common world volatility state. Then, for the second three pairs,

we look at the regional markets. Table 8 presents the results of the bivariate estimation. The null
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hypothesis of independent volatility states cannot be rejected, with the exception of Japan and the U.K.,

and the U.S. and Canada. Note that these four series are the same series where the Hansen test rejected

the no regime-switching null hypothesis.

For the two cases where we reject the hypothesis of independent states, that is, Japan and the U.K.,

and the U.S. and Canada, we test the null hypothesis of common volatility states. Under this hypothesis,

every time the domestic economy is in the high (low) volatility state, the foreign economy is also in the high

(low) volatility state. Under this hypothesis, we restrict the transition probability matrix, P*. For example,

p13* = p23* = p33* = p34* = 0. Therefore, under the common states hypothesis the sum of the �i pij* = 0

for j=2,3. Under the unrestricted hypothesis these sums should be equal to one. We should note that the

unrestricted model, with no restrictions on P*, and the restricted model are not entirely nested. For the

bivariate system with Japan and the U.K., the restricted model has a likelihood function of -2489.1, with 16

estimated parameters. That is, we observe only a moderate decrease of the restricted likelihood, with five

less estimated parameters. We take this as evidence of common volatility states between Japan and the

U.K.

We follow the above procedure for the case of the U.S. and Canada. We estimate the common

volatility states bivariate E-SWARCH model. The restricted model has a likelihood function of -2262.2,

with 16 estimated parameters. That is, there is a marginal improvement of the likelihood function under this

more restrictive model, which we take as an indication of common volatility states. This finding supports

the results of Mittoo (1992), where he reports that post-1981 the Canadian and the U.S. stock markets are

integrated.

IV. CONCLUSIONS

This paper applies a switching ARCH model to weekly returns from international stock markets. We

use an exponential SWARCH, or E-SWARCH, which provides a state-dependent description of the
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behavior of the conditional variance. We find evidence of switching volatility for Canada, the U.S., the

U.K., and Japan. Under the SWARCH model, we find that pure ARCH effects are significantly reduced

when switching is allowed. Moreover, the ARCH dynamics seem to be driven by a switching constant and

a leverage effect. We find that once switching is allowed, a t-distribution does not help to explain the fat

tails of the conditional errors. We also find that the out-of-sample variance forecasts of the GARCH-t

model tend to be superior to the SWARCH variance forecasts.

We analyze the dating of volatility states provided by the SWARCH model. Only around the Crash of

October 1987, do international markets seem to be in the same volatility state. The effects of the Crash

were short-lived; two months after the Crash all markets had returned to the low volatility state. Finally,

we find that domestic volatility states tend to be independent of foreign volatility states. The exceptions are

Japan and the U.K., and the U.S. and Canada. For these two pairs of markets, we find evidence for

common volatility states.
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TABLE 1. UNIVARIATE STATISTICS

MARKET MEAN SD SKEW EK RHO LB(6) ARCH(4)
                                                    

CANADA .15 2.64 -0.76 5.53 .16 29.43* 21.24*
US .22 2.25 -1.03 8.04 .05 12.68* 7.25
GERMANY .24 2.81 -0.18 1.89 .14 14.65* 39.88*
UK .25 3.03 -1.07 7.29 .00 9.32 .52
JAPAN .46 2.73 0.05 0.94 .10 9.02 16.06*
AUSTRALIA .16 3.70 -2.07 15.55 .18 25.95* 157.47*
WORLD .28 1.91 -1.09 8.36 .12 10.88* 14.51* 
EAFE .34 2.18 -0.54 3.67 .13 12.34* 31.08*

Notes:
* significant at the 5% level.
EK: Excess kurtosis coefficient.
RHO: First order autocorrelation coefficient.
LB(6): Ljung-Box statistic with 6 lags.
ARCH(4): ARCH test with 4 lags for the own squared returns.
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TABLE 2. E-GARCH(1,1) ESTIMATION

  rt = a + b rt-1 + et, etΨt-1 ~ D(0,ht)

CANADA U.S. GERMANY U.K.
a .081 (.05) .254 (.09) .253 (.12) .154 (.13)
b .186 (.04) .073 (.05) .109 (.04) .026 (.05)
�0 .184 (.06) .367 (.17) 2.062 (.77) .154 (.14)
�1 .290 (.08) .307 (.07) .384 (.10) .071 (.04)
ß1 .893 (.03) .755 (.11) -.023 (.38) .932 (.06)
� -.166 (.04) -.175 (.06) -.057 (.07) -.015 (.04)

L: 1174.5 1122.0 1255.4 1307.3
Lt: 1161.0 1115.1 1250.5 1283.1
v: 8.1 (2.65) 9.7 (2.29) 7.8 (2.12) 7.9 (2.03)
L-GJR: 1175.8 1116.2 1256.0 1307.5
MSE(1): 293.4 243.4 201.9 775.2

JAPAN AUSTRALIA WORLD EAFE
a .390 (.12) .170 (.15) .199 (.09) .257 (.09)
b .108 (.05) .107 (.05) .141 (.05) .166 (.05)
�0 .299 (.12) .894 (.28) .513 (.14) .380 (.17)
�1 .222 (.06) .150 (.07) .222 (.10) .164 (.06)
ß1 .850 (.06) .640 (.11) .577 (.12) .752 (.11)
� -.067 (.03) -.197 (.06) -.328 (.06) -.127 (.05)

LF: 1237.1 1375.0 1041.6 1122.4
LFt: 1232.0 1348.2 1025.2 1105.0
v: 11.3 (2.07) 6.1 (2.79) 8.7 (2.66) 8.7 (2.69)
LF-GJR: 1236.3 1378.5 1042.4 1121.1
MSE(1): 152.2 2689.6 129.7 117.3

Notes:
Standard errors in parenthesis.
LF: negative log likelihood for the E-GARCH(1,1) model.
LFt: negative log likelihood when a student-t distribution for the conditional residuals.
v: degrees of freedom of the t-distribution.
LF-GJR: negative log likelihood for the GARCH(1,1)-L.
MSE(1): Mean square error for the one-step ahead in-sample variance forecast for E-GARCH(1,1)-t.
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TABLE 3. SWARCH(2,2) ESTIMATION
  rt = a + b rt-1 + et, etΨt-1 ~ D(0,ht)

CANADA U.S. GERMANY U.K.
a .164 (.09) .216 (.09) .179 (.12) .285 (.13)
b .160 (.05) .020 (.05) .113 (.05) -.001 (.04)
p11 .988 .988 .957 .986
p22 .971 .870 .874 .001
�0 .805 (.17) 1.107 (.18) 1.557 (.20) 1.848 (.16)
�1 .099 (.09) .087 (.08) .058 (.09) .043 (.04)
�2 .156 (.08) -.013 (.07) -.034 (.07) .029 (.05)
� .005 (.05) -.113 (.04) -.052 (.04) .016 (.02)
γ2 5.652 (1.08) 6.020 (1.88) 3.181 (.74) 18.47 (13.58)

LF: 1167.6 1108.5 1248.9 1280.2
LFt: 1165.7 1108.4 1248.9 1279.7
LF2,3: 1167.6 1107.6 1248.7 1280.1
LF3,2: 1164.1 1106.0 1247.5 1277.6
d1: 83.3 83.3 23.3 71.4
d2: 34.5 13.0 7.9 1.0
MSE(1): 306.8 241.1 199 781.8

JAPAN AUSTRALIA WORLD EAFE
a .348 (.12) .391 (.12) .259 (.08) .333 (.09)
b .110 (.05) .053 (.04) .113 (.05) .137 (.05)
p11 .979 .162 .990 .990
p22 .968 .919 .864 .634
�0 1.313 (.19) -.524 (.35) .806 (.16) 1.018 (.13)
�1 .068 (.08) 1.176 (.38) .080 (.07) .095 (.06)
�2 -.005 (.10) .120 (.22) .034 (.08) .107 (.06)
� -.086 (.04) -.142 (.18) -.142 (.05) -.074 (.03)
γ2 3.049 (.52) 13.26 (4.47) 5.933 (3.08) 9.650 (6.71)

LF: 1231.0 1346.7 1026.6 1107.7
LFt: 1230.9 1346.1 1025.9 1107.6
LF2,3: 1229.6 1346.1 1024.7 1105.6
LF3,2: 1229.5 1342.1 1022.3 1103.4
d1: 47.6 1.2 100.0 100.0
d2: 31.2 12.3 7.4 2.7
MSE(1): 153.2 2549.2 126.7 119.8

Notes: Standard errors in parenthesis.
LF2,3: E-SWARCH(2,3) negative log likelihood.
LF3,2: E-SWARCH(3,2) negative log likelihood.
di: duration of state i.
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TABLE 4. SWARCH(3,2) ESTIMATION

U.K. AUSTRALIA EAFE

a .289 (.15) .275 (.13) .371 (.09)
b .014 (.44) .055 (.04) .123 (.05)
�0 1.403 (.29) 1.575 (.29) 1.259 (.16)
�1 .004 (.16) -.025 (.08) .053 (.04)
�2 .007 (.13) -.098 (.08) .083 (.05)
� .020 (.56) -.003 (.06) -.061 (.03)
γ2 2.244 (.78) 2.726 (.56) 3.181 (.14)
γ3 61.886 (173.73)124.680 (103.83) 8.910 (5.78)

LF: 1277.6 1342.1 1103.4
d1: 19.2 16.5 30.0
d2: 32.4 52.1 17.7
d3: 1.0 2.0 1.0
MSE(1) 780.7 2574.5 121.1

SE(4) 80.3 124.7 6.0
SE(12) 59.8 126.6 229.1
SD(24) 69.1 94.0 10.1

Notes: See Table 3.
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TABLE 5. SWARCH(2,2) ESTIMATION WITH INTERVENTION DUMMIES

  rt = a + b rt-1 + d It + et, etΨt-1 ~ N(0,ht)

where It is an intervention variable, It=1 if t=T and zero otherwise. For the U.K. there are two intervention
dummies at T=90 and T=407. For Australia, there are two intervention dummies at T=407 and T=408.

U.K. AUSTRALIA

a .297 (.15) .275 (.13)
b -.015 (.44) .051 (.04)
d1 -23.902 (2.83) -31.320 (3.36)
d2 -12.622 (1.06) -27.248 (3.55)
�0 1.468 (.25) 1.538 (.28)
�1 -.003 (.01) -.022 (.08)
�2 -.004 (.01) -.095 (.08)
� .028 (.48) -.001 (.05)
γ2 2.268 (.45) 2.773 (.57)

LF: 1261.7 1328.7
d1: 20.0 17.7
d2: 48.6 70.4
p-value: 0.003 0.058

Notes: See Table 3.
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TABLE 6. BUSINESS CYCLE DATES AND SPECIFICATION TESTING

CANADA U.S. GERMANY U.K.

Peak 1980:I 1980:I 1979:IV
Through 1980:III 1980:IV 1980:III
Peak 1981:I 1981:I 1981:III 1982:III
Through 1982:II 1982:IV 1983:II 1982:IV
Peak 1985:II
Through 1988:III

p-value: 0.009 0.047 0.122 0.032
LBS(6) 1.149 8.280 5.513 0.961
LM-ER 0.049 0.951 1.460 2.450

JAPAN AUSTRALIA

Through 1975:I N.A.

p-value: 0.055 0.140
LBS(6): 0.997 2.514
LM-ER: 2.157 0.339

Notes:
Through and Peak dates are from a Markov-switching model for quarterly GNP, as reported by Goodwin
(1993).
p-value: p-value of Markov Switching Hansen's (1992) test.
LM-ER: LM-test for inclusion of an exchange rate regime dating dummy variable.
LBS(6): Ljung-Box statistic for squared residuals, with six lags.
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TABLE 7. FORECASTING: SWARCH(2,2) and GARCH(1,1)-t

CANADA U.S.
GARCH SWARCH GARCH SWARCH

SE(1) 0.6E-3 3.1E-6 0.1 0.9
SE(4) 11.5 36.7 16.5 22.5
SE(12) 15.4 33.7 9.4 11.1
SE(24) 0.2 2.7 15.9 17.9

GERMANY U.K.
GARCH SWARCH GARCH SWARCH

SE(1) 136.5 102.4 9.6 12.1
SE(4) 17.0 21.1 65.0 83.7
SE(12) 40.8 39.9 50.7 62.9
SE(24) 159.8 170.0 60.7 73.1

JAPAN AUSTRALIA
GARCH SWARCH GARCH SWARCH

SE(1) 33.8 37.6 102.5 93.9
SE(4) 30.9 39.1 104.8 132.7
SE(12) 647.2 498.3 112.8 131.6
SE(24) 2.3 0.3 75.6 94.2

WORLD EAFE
GARCH SWARCH GARCH SWARCH

SE(1) 1.4 1.2 0.4 0.1
SE(4) 2.2 4.2 3.8 5.3
SE(12) 8.6 4.7 223.3 217.9
SE(24) 4.9 5.4 10.1 9.5

Notes:
SE(j): out-of-sample j-step ahead variance forecast squared error:

where T= sample size.

])rb-a-r(- h[ =    SE(j) 22
1-j+Tj+Tj+T

ˆˆˆ
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TABLE 8. TEST FOR INDEPENDENT STATES

A.- U.S. and U.K.

LF0: -2370.5 (18)
LFA: -2368.3 (22)
LR:4.4 (.35457)

B.- U.S. and Japan

LF0:  -2339.8 (16)
LFA: -2336.5 (21)
LR:6.6 (.25213)

C.- Japan and U.K.

LF0: -2493.0 (18)
LFA: -2488.0 (21)
LR:10.0 (.018566)

D.- U.S. and Canada

LF0: -2278.5 (16)
LFA: -2263.0 (17)
LR:30.1 (4.11E-08)

E.- U.K. and Germany

LF0:  -2510.9 (18)
LFA: -2505.9 (23)
LR:10.0 (.075235)

F.- Japan and Australia

LF0: -2560.7 (17)
LFA: -2556.7 (24)
LR:8.0 (.33259)

Notes:
LF0: Log Likelihood under the null hypothesis of independent volatility states. Number of parameters in
parenthesis.
LFA: Log Likelihood of the unconstrained model. Number of parameters in parenthesis.
LR: Likelihood ratio test. p-values in parenthesis.
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