COST OF CAPITAL IN INTERNATIONAL MKTS

Capital Structure and Cost of Capital

• Cost of Capital

- Country Risk affects discount rates
- Different countries will have different risk free rates (k_f).
- High CR, high risk k_f.

Q: How do MNCs set discount rates for projects in foreign countries?

• Brief Review: Capital Structure

- A firm can raise new capital by:
- Issuing new equity (E) –a firm gives away ownership; pays dividends
- Issuing debt (D) -a firm borrows; pays interest.

A firm can also use retained earnings, which we will consider E. (According to the *pecking order theory*, retained earnings are the first source of funds for a company.)

• Trade-off Theory of Capital Structure

- Debt has its (tax) advantages (reduces taxes), but also its disadvantages (cost: bankruptcy).

- Firms will use the E & D mix that minimizes the cost of capital. There is a U-shape relation between cost of capital and the amount of debt relative to the total value of the firm (V=E+D).

- There is an optimal Debt Ratio, $(D/V)^*$. Before $(D/V)^*$, the tax advantage dominates and decrease the cost of capital; after $(D/V)^*$, the increased probability of bankruptcy dominates and increases the cost of capital.

- The capital structure that a firm desires is called their *target structure*. It should be close to $(D/V)^*$.

Measuring the cost of capital
We will use weighted average cost of capital (WACC).
WACC: k_c = D/(E+D) k_d (1-t) + E/(E+D) k_e
k_d
The cost of debt of a project (k_d): the interest a firm has to pay to borrow from a bank or the bond market to fund a project.
Easy to determine: A firm calls a bank or an investment bank to find out the interest rate it has to pay to borrow capital.
Q: How does a bank set the interest rate for a given firm?
A: Base rate (say, a risk free rate like T-bills, k_f) + spread (reflecting the risk of the company/project, which includes CR).
Note: Interest payments are tax deductible ⇒ After-tax cost of debt = k_d*(1-t)

• Measuring the cost of capital

• k_e

- The cost of equity of a project (k_e) : Required (expected) return on equity a firm has to pay to investors.

- A model is needed to determine required (equilibrium) rates of return on equity. There are many models. We can use the CAPM or the popular extended version, with the 3 Fama-French factors.

- Let's use the CAPM to value the cost of equity:

 $\mathbf{k}_{\mathrm{e}} = \mathbf{k}_{\mathrm{f}} + \beta \left(\mathbf{k}_{\mathrm{M}} - \mathbf{k}_{\mathrm{f}} \right)$

 k_{f} : Risk-free rate (in practice, a government rate).

 k_{M} : Expected return on a market portfolio (in practice, the long-run return on a well-diversified market index).

β: Systematic Risk of the project/firm = $Cov(k_e, k_M)/Var(k_M)$ (in practice, a coefficient estimated by a regression against risk premium, $(k_M - k_f)$).

Notes:

- Dividends are not tax deductible. There is an advantage to using debt!
- Time-consistency with k_f. The same maturity should be used for k_e and k_d. That is, if you use long-term bonds to calculate k_d, you should also use long-term bonds to calculate k_e.
- In Chapter 16 we discussed country risk. For practical purposes, many emerging market governments bonds may not be considered risk-free. Thus, the government bond rate includes a default spread, which, in theory, should be subtracted to get k_f.
- β is estimated by the slope of a regression against a market index. There are many issues associated with the estimation of β: choice of index, noisy data, adjustment by leverage, mean reversion, etc. We will not get into these issues..

• <u>Issues</u>:

Q: Real or Nominal?

If CFs are nominal (usual situation) \Rightarrow k_e should be in nominal terms.

Q: Which k_f to use? Local or Foreign?

The k_f that reflects the risk of the cash flows.

Q: Which maturity for k_f to use?

The maturity that reflects the duration of CFs. In practice, the duration of the project is matched to the maturity of k_f (potentially a problem for many emerging markets where there is no long-term debt market).

Q: Which β to use? The β of the company or the β of the project? The β should reflect the systematic risk of the project.

Example: GE wants to do an investment in Brazil. Equity investment: BRR 100M Debt issue: BRR 150 Value of Brazil investment = D + E = BRR 250 Brazilian Tax Rate = t = 35% Risk-free rate in Brazil = $k_f = 7.40\%$ Return of the Brazilian market (BOVESPA) in the past 10 years: 12% ($k_M = 12\%$) Cost of project = $k_c = ?$ • Cost of debt (k_d) GE can borrow in Brazil at 60 bps over Brazilian Treasuries (R_f) $k_d = k_f + \text{spread} = .0740 + .60 = .08$ (8%)

• Cost of debt (k_d) $k_d = k_f + spread = .0740 + .60 = .08 (8\%)$ • Cost of equity (k_e) Similar projects in Brazil have a beta of 1.1 $(\beta_{GE-Brazil} = 1.1)$ $k_e = k_f + \beta (k_m - k_f) = .0740 + 1.1 * (.12 - .0740) = 0.1246 (12.46\%)$ • Cost of Capital –WACC- (ke) $k_e = D/(E+D) k_d (1-t) + E/(E+D) k_e$ $k_c = (.6) \times .08 \times (.65) + (.4) \times 0.1246 = .08104$ (8.104%) <u>Note</u>: This is the discount rate that GE should use to discount the cash flows of the Brazilian project. That is, GE will require an 8.104% rate of return on the investment in Brazil. ¶ <u>Remark</u>: Every time the cost of capital increases, the NPV of projects goes down. Anything that affects k_c , it will also affect the profitability (NPV) of a project.

<u>Application</u>: Argentina defaults in some of its debt. Argentine country risk increases, $k_{f,Arg}$ goes up and $k_{c,Arg}$ also goes up. Then, NPV projects in Argentina can become negative NPV projects.

 \Rightarrow MNCs may suddenly abandon Argentine projects.

Estimating k_M:

We use as many years as possible to build the long-run average. Remember that using averages comes with an associated standard error: More data \Rightarrow lower S.E. -i.e., more precision. This may be a problem for emerging markets, where there is limited reliable data.

For a market with limited return history, say Country J, it is sometimes easier to adjust a k_M from a well-established, mature market, say, the U.S., to estimate that market $k_{M,J}$. Several ways to do this adjustment:

Relative Equity Market Approach:

The U.S. risk premium is modified by the volatility of the Country J's equity market, σ_J , relative to the volatility of the U.S equity market, σ_{US} :

 $(k_M - k_f)_J = (k_M - k_f)_{US} * \sigma_J / \sigma_{US}$

(Potential problem: σ_J is also an indicator of liquidity!)

Estimating k_M:

A similar adjustment can be done using bonds and the implied country risk, CR –i.e., bond spread over a safe yield, say U.S. yields.

Country Bond Approach:
The bond spread is added to the U.S. market risk premium

 $(r_M - r_f)_J = (r_M - r_f)_{US} + CR_J$ (bond spread)

Mixed Approach:

Since we expect equity spreads to be higher than debt spread, we adjust the CR upward using volatilities as a measure of risk:

 $(r_M - r_f)_J = (r_M - r_f)_{US} + CR_J * \sigma_J / \sigma_{J,bond}.$

Note: We may have very different numbers from these three approaches.

<u>Estimating</u> r_M:

 \circ Judgement calls/adjustments may be needed to pick E[r_m - r_f]_J.

• Following the idea of CR from bond markets, a *country equity risk premium* (*CER*) can be easily derived for Country J:

$$CER_{J} = E[r_{m} - r_{f}]_{J} - E[r_{m} - r_{f}]_{US}.$$

• We construct a market risk premium for Country J based on USD rates. To change to a local currency premium, we can use IFE combined with relative PPP to estimate $E[e_f]$. Using the linearized version of both formulas, we get:

 $E[r_m - r_f]_J$ (in local currency) $\approx E[r_m - r_f]_J + (I_J - I_{US}).$

Example: GE's wants to adjust $(r_M - r_f)_{Brazil}$ using different methods, using the U.S. as a benchmark. GE uses the following data: $(r_M - r_f)_{US} = 3.65\%$ $\sigma_{US} = 15.2\%$ $\sigma_{Brazil} = 34.3\%$ (based on past 15 years) $\sigma_{Brazil,bond} = 23.1\%$ (based on past 15 years) $CR_{Brazil} = 2.80\%$ • *Relative Equity Market Approach*: $(r_M - r_f)_{Brazil} = .0365^*.343/.152 = 0.08236$ $\Rightarrow k_{e,Brazil} = k_f + \beta (k_M - k_f)_{Brazil} = .0740 + 1.1 * 0.08236 = 0.1646.$ • *Mixed Approach*: $(r_M - r_f)_{Brazil} = .0365 + .028 * .343/.231 = 0.07807$ $\Rightarrow k_{e,Brazil} = r_f + \beta (r_M - r_f)_{Brazil} = .0740 + 1.1 * 0.07807 = 0.1599.$

• Target Debt-Equity Ratio in Practice

Suppose that GE's target debt-equity ratio is 70%-30%. It is unlikely that GE will raise funds with a 70-30 debt-equity split for every project. For example, for the Brazilian project, GE is using a 60-40 D/E split.

The target $(D/V)^*$ reflects an *average*; it is not a hard target for each project. That is, for other projects GE will use D/E to compensate and be close to the $(D/V)^*$.

Determinants of Cost of Capital for MNCs

<u>Intuition</u>: Economic factors that make the CFs of a firm more stable reduce the k_c .

1) Size of Firm (larger firms get better rates from creditors and have lower β s)

2) Access to international markets (better access, more chances of finding lower rates)

3) Diversification (more diversification, more stable CFs, lower rates. Also, β s closer to β_M)

4) Fixed costs (the higher the proportion of fixed costs, the higher the β)

5) Type of firm (cyclical companies have higher β s)

6) FX exposure (more exposure, less stable CFs, worse rates)

7) Exposure to CR (again, more exposure to CR, less stable CFs, worse rates).

Example: Cost of Capital (Nov 2014): General Electric (GE): Huge, internationally diversified company Disney (DIS): Large, moderate degree of international diversification The GAP (GPS): Medium cap, low international diversification.

US Treasuries (k_f): 1.63% (5-year T-bill rate, from Bloomberg) S&P 500 return (k_m): 8.433% (30 years: 1984-2014, from Yahoo) tax rate (t): 27.9% (effective U.S. tax rate, according to World Bank) Recall: $k_c = D/(E+D) k_d (1-t) + E/(E+D) k_e$

	E	D	Rating	Spread	β	k _d	k _e	WACC
GE	135B	313B	AA-	27	1.24	1.90	10.07	3.99
DIS	45.5B	16.1B	A+	30	0.96	1.93	8.16	6.39
GPS	3B	1.4B	BBB-	168	1.65	3.31	12.86	9.53