FX Derivatives

2. FX Options

Options: Brief Review

• Terminology

Major types of option contracts:

- calls gives the holder the right to buy the underlying asset
- puts gives the holder the right to sell the underlying asset.

The complete definition of an option must specify:

- Exercise or strike price (X): price at which the right is "exercised."
- Expiration date (T): date when the right expires.
- When the option can be exercised: anytime (*American*) at expiration (*European*).

The right to buy/sell an asset has a price: the *premium* (X), paid upfront.

• More terminology:

- An option is in-the-money (ITM) if, today, we would exercise it.

For a call: $X < S_t$ (better to buy at a cheaper price than S_t) For a put: $S_t < X$ (better to sell at a higher price than S_t)

- An option is at-the-money (ATM) if, today, we would be indifferent to exercise it.

For a call: $X = S_t$ (same to buy at X or S_t) For a put: $S_t = X$ (same to sell at X or S_t)

In practice, you never exercise an ATM option, since there are some small brokerage costs associated with exercising an option.

- An option is out-of-the-money (OTM) if, today, we would not exercise it.

For a call: $X > S_t$ (better to buy at a cheaper price than X) For a put: $S_t > X$ (better to sell at a higher price than X)

• The Black-Scholes Formula

• Options are priced using variations of the Black-Scholes formula:

$$C = \text{call premium} = e^{-i_f T} S_t N(\text{d1}) - X e^{-i_d T} N(\text{d2})$$

• Fischer Black and Myron Scholes (1973) changed the financial world by introducing their Option Pricing Model. At the time, both were at the University of Chicago.

• The model, or formula, allows an investor to determine the fair value of a financial option. Almost all financial securities have some characteristics of financial options, the model can be widely applied.

- The Black-Scholes formula is derived from a set of assumptions:
 - Risk-neutrality
 - Perfect markets (no transactions costs, divisibility, etc.)
 - Log-normal distribution with constant moments
 - Constant risk-free rate
 - Continuous pricing
 - Costless to short assets
- According to the formula, FX premiums are affected by six factors:

Variable	Euro Call	Euro Put	Amer. Call	Amer. Put
S_{t}	+	-	+	-
X	-	+	-	+
T	?	?	+	+
σ	+	+	+	+
i_d	+	-	+	-
$i_{\rm f}$	-	+	-	+

- The Black–Scholes does not fit the data. In general:
 - It overvalues deep OTM calls and undervalue deep ITM calls.
 - It misprices options that involve high-dividend stocks.
- The Black-Scholes formula is taken as a useful approximation.
- <u>Limitations of the Black-Scholes Model</u>
 - Log-normal distribution: Not realistic (& cause of next 2 limitations).
 - Underestimation of extreme moves: *left tail risk* (can be hedged)
 - Constant moments: *volatility risk* (can be hedged)
 - Trading is not cost-less: *liquidity risk* (difficult to hedge)
 - No continuous trading: *gap risk* (can be hedged)

Trading in FX Options

- Markets for foreign currency options
- (1) Interbank (OTC) market centered in London, New York, and Tokyo. OTC options are tailor-made as to amount, maturity, and exercise price.
- (2) Exchange-based markets centered in Philadelphia (PHLX, now NASDAQ), NY (ISE, now Eurex) and Chicago (CME Group).
- PHLX options are on spot amounts of 10,000 units of FC (MXN 100K, SEK 100K, JPY 1M).
- PHLX maturities: 1, 3, 6, and 12 months.
- PHLX expiration dates: March, June, Sept, Dec, plus 2 spot months.
- Exercise price of an option at the PHLX or CME is stated as the price in USD cents of a unit of foreign currency.

			OPTIONS			
PHILADELPHIA EXCHANGE						
		Calls	Puts			
	Vol.	Last	Vol.	Last		
Euro				135.54		
10,000 Euro	o-cents	s per unit	. .			
132 Feb		0.01	3	0.38		
132 Mar	3	0.74	90	0.15		
134 Feb	3	1.90				
134 Mar		0.01	25	1.70		
136 Mar	8	1.85	12	2.83		
138 Feb	75	0.43		0.01		
142 Mar	1	0.08	1	7.81		
Swedish Krona 15.37						
100,000 Swedish Krona -cents per unit.						

• Note on the value of Options

For the same maturity (T), we should have:

value of ITM options > value of ATM options > value of OTM options

ITM options are more expensive, the more in-the-money they are.

Example: Suppose $S_t = 1.3554$ USD/EUR. We have two ITM Dec puts $X_{put} = 1.36$ USD/EUR

 $X_{\text{put}}^{\text{put}} = 1.42 \text{ USD/EUR}.$

premium (X=1.36) = USD 0.0170 premium (X=1.42) = USD 0.0781. \P

Using FX Options

• Iris Oil Inc., a Houston-based energy company, will transfer CAD 300 million to its USD account in 90 days. To avoid FX risk, Iris Oil decides to use a USD/CAD option contract.

Data:

 $S_t = .8451 \text{ USD/CAD}$

Available Options for the following 90-day options

<u>X</u>	<u>Calls</u>	<u>Puts</u>
.82 USD/CAD		0.21
.84 USD/CAD	1.58	0.68
.88 USD/CAD	0.23	

Iris Oil decides to use the .84 USD/CAD put \Rightarrow Cost of USD 2.04M.

• Iris Oil decides to use the .84 USD/CAD put \Rightarrow Cost of USD 2.04M.

At T = t+90, there will be two situations: Option is ITM (exercised) or OTM (not exercised):

Option CF:

 S_{t+90} CAD 300M S_{t+90} CAD 300M Plus **Total**

Net CF in 90 days:

 $\label{eq:usd} { \text{USD 252M - USD 2.04 = USD 249.96M} } \quad {\text{for all S}_{t+90} < .84 \text{ USD/CAD} }$ S_{t+90} CAD 300M – USD 2.04M for all $S_{t+90} > .84$ USD/CAD

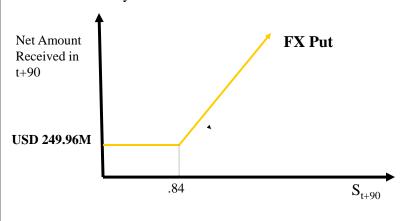
Worst case scenario (floor): USD 249.96M (when put is exercised.)

Remark: The final CFs depend on S_{t+90} !

The payoff diagram shows that the FX option limits FX risk, Iris Oil has established a floor: USD 249.96M.

But, FX options, unlike Futures/forwards, have an upside:

⇒ At time t, the final outcome is unknown. There is still (some) uncertainty!



- With options, there is a choice of strike prices (premiums). A feature not available in forward/futures.
- Suppose, Iris Oil also considers the .82 put => Cost of USD .63M.

At T = t+90, there will be two situations: Option is ITM (exercised) or OTM (not exercised):

Option CF:

Plus **Total**

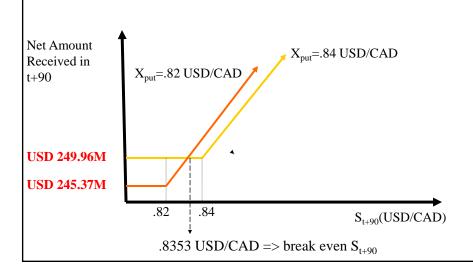
Net CF in 90 days:

USD 246M - USD .63 = USD 245.37M for all $S_{t+90} < .82$ USD/CAD for all $S_{t+90} > .82$ USD/CAD S_{t+90} CAD 300M – USD .63M

Worst case scenario (floor): USD 245.37M (when put is exercised).

- Both FX options limit Iris Oil FX risk:
 - X_{put} =.84 USD/CAD \Rightarrow floor: USD 249.96M (cost: USD 2.04 M)
 - X_{nut} =.82 USD/CAD \Rightarrow floor: USD 245.37M (cost: USD .63M)

Note: Higher premium, higher floor (better coverage).



Hedging with FX Options

• Hedging with Options is Simple

Situation 1: Underlying position: long in foreign currency.

Hedging position: long in foreign currency puts.

Situation 2: Underlying position: short in foreign currency.

Hedging position: long in foreign currency calls.

OP = underlying position (UP) + hedging position (HP-options)

Value of OP = Value of UP + Value of HP + Transactions Costs (TC)

Profit from OP = Δ UP + Δ HP-options + TC

- Advantage of options over futures:
- \Rightarrow Options simply expire if S_t moves in a beneficial way.
- Price of the asymmetric advantage of options: The TC (insurance cost).
- We will present a simple example, where the size of the hedging position is equal to the hedging options (A Naive or Basic Approach)

```
Example: A U.S. investor is long GBP 1 million.
```

She hedges using Dec put options with X = USD 1.60 (ATM).

Underlying position: $V_0 = GBP 1,000,000$.

 $S_{t=0} = 1.60 \text{ USD/GBP}.$

Size of the PHLX contract: GBP 10,000.

X = USD 1.60

 $P_{t=0}$ = premium of Dec put = USD .05.

TC = Cost of Dec puts = 1,000,000 x USD .05 = USD 50,000.

Number of contracts = GBP 1,000,000/ GBP 10,000 = 100 contracts.

On December $S_t = 1.50 \text{ USD/GBP} \Rightarrow \text{option is exercised (put is ITM)}$

 $\Delta UP = V_0 \times (S_t - S_0) = GBP \ 1M \ (1.50 - 1.60) \ USD/GBP = - \ USD \ 0.1M.$

 $\Delta HP = V_0 \times (X - S_t) = GBP \ 1M \times (1.60 - 1.50) \ USD/GBP = USD \ 0.1M.$

 $\Delta OP = -USD 100,000 + USD 100,000 - USD 50,000 = -USD 50,000.$

Example:

If at T, $S_T = 1.80 \text{ USD/GBP}$ => option is not exercised (put is OTM).

 $\Delta UP = GBP \ 1M \ x \ (1.80 - 1.60) \ USD/GBP = USD \ 0.2M$

 $\Delta HP = 0$ (No exercise)

 $\Delta OP = USD \ 200,000 - USD \ 50,000 = USD \ 150,000. \ \P$

The price of this asymmetry is the premium: USD 50,000 (a sunk cost!).

FX Options: Hedging Strategies

- Hedging strategies with options can be more sophisticated:
 - ⇒ Investors can play with several exercise prices with options only.

Example: Hedgers can use:

- Out-of-the-money (least expensive)
- At-the-money (expensive)
- In-the-money options (most expensive)
- Same *trade-off* of car insurance:
 - Low premium (high deductible)/low floor or high cap: Cheap
 - High premium (low deductible)/high floor or low cap: Expensive

		0	PTIONS	
	Pł	HILADELPH	IIA EXCH	IANGE
		Calls	Puts	
	Vol.	Last	Vol.	Last
Euro				135.54
10,000 Euro	-cent	s per unit.		
132 Feb		0.01	3	0.38
132 Mar	3	0.74	90	0.15
134 Feb	3	1.90		
134 Mar		0.01	25	1.70
136 Mar	8	1.85	12	2.83
138 Feb	75	0.43		0.01
142 Mar	1	80.0	1	7.81
Swedish Kr	ona			15.37
100,000 Sw	edish	Krona -cen	ts per ur	nit.

```
UP = Long bond position EUR 1,000,000.
HP = EUR Mar put options: X = 134 and X = 136.
S_{t} = 1.3554 \text{ USD/EUR}.
(A) Out-of-the-money Mar 134 put.
Total cost = USD .0170 \times 1,000,000 = USD 17,000
Floor = 1.34 USD/EUR x EUR 1,000,000 = USD 1,340,000.
Net Floor = USD 1.34M - USD .017M = USD 1.323M
(B) In-the-money Mar 136 put.
Total cost = USD .0283 \times 1,000,000 = USD 28,300
Floor = 1.36 USD/EUR x EUR 1,000,000 = USD 1,360,000
Net Floor = USD 1.36M - USD .0283M = USD 1.3317M

    As usual with options, under both instruments there is some uncertainty

  about the final cash flows. ¶
• Both FX options limit FX risk:
  - X_{\text{nut}}=1.34 USD/EUR \Rightarrow floor: USD 1.323M (cost: USD .017 M)
  - X_{\text{nut}}=1.36 USD/EUR \Rightarrow floor: USD 1.3317M (cost: USD .0283M)
Typical trade-off: A higher minimum (floor) amount for the UP (USD
1,060,000) is achieved by paying a higher premium (USD 28,300).
Net Amount
                X<sub>put</sub>=1.34 USD/EUR
                                           X<sub>put</sub>=1.36 USD/EUR
Received in
March if
position sold
```

Example: It is February 2, 2011.

USD 1.3317M

USD 1.323M

1.34

1.36

1.3487 USD/EUR

 $S_{March}(USD/EUR)$

 \Rightarrow break even S_{March}

Exotic Options

Exotic options: options with two or more option features.

Example: a compound option (an option on an option).

Two popular exotic options: knock-outs and knock-ins.

• Barrier Options: Knock-outs/ Knock-ins

Barrier options: the payoff depends on whether S_t reaches a certain level during a certain period of time.

Knock-out: A standard option with an "insurance rider" in the form of a second, out-of-the-money strike price.

This "out-strike" is a stop-loss order: if the out-of-the-money X is crossed by S_t , the option contract ceases to exist.

Knock-ins: the option contract does not exist unless and until S_t crosses the out-of-the-money "in-strike" price.

Example: Knock-out FX options

Consider the following European option:

1.65 USD/GBP March GBP call knock-out 1.75 USD/GBP.

 $S_t = 1.60 \text{ USD/GBP}.$

If in March S_t = 1.70 USD/GBP, the option is exercised

 \Rightarrow writer profits: USD (1.65-1.70) + premium per GBP sold.

If in March $S_t \ge 1.75$ USD/GBP, the option is cancelled

 \Rightarrow writer profits are the premium. ¶

Q: Why would anybody buy one of these exotic options?

A: They are cheaper.

