Optimal debt with unobservable investments: Web-Appendix

Paul Povel*

Michael Raith**

This is the Web-Appendix for Povel, Paul and Michael Raith, “Optimal Debt with Unobservable Investments,” RAND Journal of Economics, Volume 35, No. 3 (Autumn), 2004

* Carlson School of Management, University of Minnesota, Minneapolis, MN 55455; phone: (612) 624 0266; email: povel@umn.edu.

** William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, NY 14627, USA; phone: (585) 275 8380; email: raith@simon.rochester.edu
Appendix B: \(\pi \) as a function of \(k \)

In this appendix we discuss how our results change if we allow \(\pi \) to depend on \(k \). Define \(\pi(k) \) with \(\pi(0) \geq 0, \pi' > 0, \pi'' < 0, \text{ and } \lim_{k \to \infty} y'(k) + \pi'(k) < 1 \). A small investment is now associated with a small \(\pi \), which in turn may affect \(E \)'s incentives to repay his debt. We show that a debt contract, though not necessarily a simple debt contract, remains optimal.

B.1 Optimality of a debt contract

Proposition 2 holds as stated, with \(\pi \) replaced by \(\pi(k^*(W,T,\beta)) \). The only part of the proof affected by this change is step 3. By construction, switching from \((W,T,\beta)\) to \((W,T^1,\beta^1)\) (with \(\pi \) replaced by \(\pi(k^*(W,T,\beta)) \)) leaves \(E \)'s payoff unchanged for all \((R,\hat{R})\), as long as \(k^*(W,T^1,\beta^1) = k^*(W,T,\beta) \). However, if \(\pi \) is not constant, then switching to \((W,T^1,\beta^1)\) is not payoff-neutral for \(E \) if \(k \neq k^*(W,T,\beta) \), and \(k^*(W,T^1,\beta^1) \) may differ from \(k^*(W,T,\beta) \). We can show that \((W,T^1,\beta^1)\) nevertheless Pareto-dominates \((W,T,\beta)\).

Let \(u^1(R,\hat{R},k) = R - T^1(\hat{R}) + \beta(\hat{R})\pi(k) \), and define \(u^0(R,\hat{R},k) \) analogously for contract \((W,T,\beta)\).

For \(\hat{R} \in \rho_\alpha \), we have

\[
\begin{align*}
u^1(R,\hat{R},k) &= R - \hat{R} + \left[\beta(\hat{R}) + \frac{\hat{R} - T(\hat{R})}{\pi(k^*)}\right]\pi(k) - [\hat{R} - T(\hat{R})] \left(1 - \frac{\pi(k)}{\pi(k^*)}\right).
\end{align*}
\]

Similarly, for \(\hat{R} \in \rho_\beta \),

\[
\begin{align*}
u^1(R,\hat{R},k) &= R - T(\hat{R}) - [1 - \beta(\hat{R})]\pi(k^*) + \pi(k) - [\pi(k^*) - \pi(k)][1 - \beta(\hat{R})].
\end{align*}
\]

For \(\hat{R} \notin \rho \), we have \(u^1(R,\hat{R},k) = u^0(R,\hat{R},k) \). If \(E \) chooses \(k < k^* \), then \(\pi(k) < \pi(k^*) \) and hence \(u^1(R,\hat{R},k) < u^0(R,\hat{R},k) \) for all \(\hat{R} \in \rho \). By definition of \(k^* \), we then have

\[
\begin{align*}
\mathbb{E}_\theta[\max_{\hat{R}} u^1(R(k^*,\theta),\hat{R},k^*)] - k^* &= \mathbb{E}_\theta[\max_{\hat{R}} u^0(R(k^*,\theta),\hat{R},k^*)] - k^* \\
&\geq \mathbb{E}_\theta[\max_{\hat{R}} u^0(R(k,\theta),\hat{R},k)] - k \geq \mathbb{E}_\theta[\max_{\hat{R}} u^1(R(k,\theta),\hat{R},k)] - k.
\end{align*}
\]
(Notice that we are not assuming truth-telling for any \(k \neq k^* \) under either contract.) This means that \(E \) would never choose \(k < k^* \) under \((W, T^1, \beta^1)\); hence \(k^*(W, T^1, \beta^1) \geq k^*(W, T, \beta) \), possibly with strict inequality since for \(k > k^* \) the second inequality above is reversed. The contract \((W, T^1, \beta^1)\) is incentive compatible if for all \(R \) and \(\hat{R} < R \),

\[
 u^1(R, R, k) - u^1(R, \hat{R}, k) = \hat{R} - R + [\beta^1(R) - \beta^1(\hat{R})] \pi(k) \geq 0. \tag{B1}
\]

The term \(\beta^1(R) - \beta^1(\hat{R}) \) must be nonnegative. Suppose not: then \(\beta^1(R) < \beta^1(\hat{R}) \) would imply \(\beta^1(R) < 1 \) and therefore \(T^1(R) = R \), as well as \(T^1(R) < T^1(\hat{R}) < R \), a contradiction. Hence, since (B1) holds for \(k = k^* \), it must also hold for any larger \(k \).

Step 4 of Proposition 2 can be applied to show that \((W, T^1, \beta^1)\) must satisfy (7) and (8). \(I \)'s expected stage-4 payoff can then be written as

\[
 \int_{0}^{D/y(k)} y(k)\theta f(\theta)d\theta + [1 - F(D/(y/k))] \tag{B2}
\]

which is increasing in \(y(k) \). Thus, if \(I \)'s payoff is higher with \((W, T^1, \beta^1)\) than with \((W, T, \beta)\) for \(k = k^* \), the same must be true for any larger \(k \). As before, \(E \) can appropriate this increase by designing a new contract \((W, T^2, \beta^2)\).

B.2 Investment incentives and the optimal contract

Suppose \(E \) and \(I \) write a simple debt contract \((W, T, \bar{\beta})\), where \(\bar{\beta}(R) = 1 - (D - R)/\pi(k_0) \) and \(E \) and \(I \) expect \(E \) to choose \(k_0 \). Clearly, we can restrict our attention to contracts that set \(W = k_0 \). Define \(u(R, \hat{R}, k) = R - T(\hat{R}) + \beta(\hat{R})\pi(k) \). If \(E \) invests \(k \), for \(\hat{R} \geq D \) we have \(u(R, \hat{R}, k) = R - D + \pi(k) \), and for \(\hat{R} < D \)

\[
 u(R, \hat{R}, k) = R - \hat{R} + \left(1 - \frac{D - \hat{R}}{\pi(k_0)} \right) \pi(k) = R - D + \pi(k) + (D - \hat{R}) \left(1 - \frac{\pi(k)}{\pi(k_0)} \right). \tag{B3}
\]

Since \(\pi' > 0 \), inspection of (B3) shows that the contract induces truth-telling if \(k \geq k_0 \). If \(k < k_0 \), however, \(E \) would announce \(\hat{R} = 0 \) and not make any payment to \(I \). For the contract to be feasible, therefore, \(E \) must not have an incentive to choose any \(k < k_0 \).
If in stage 2 \(E \) invests \(k_0 \), he subsequently has an incentive to report his funds truthfully, and thus his expected payoff as of stage 2 is
\[
y(k_0) - D + \pi(k_0)
\] (recall that \(W = k_0 \)). If he invests \(k < k_0 \), he will not repay anything in stage 4, and thus his expected payoff in stage 2 is
\[
y(k) + \pi(k) + k_0 - k - \frac{D}{\pi(k_0)} \pi(k),
\] which coincides with (B4) for \(k = k_0 \). Under our assumptions, (B5) has a unique maximum in \(k \) for given \(k_0 \); denote it by \(\kappa(k_0) \). I would not agree to lend \(k_0 \) if he expected \(E \) subsequently to choose \(k < k_0 \); thus a simple debt contract is feasible only if \(\kappa(k_0) \geq k_0 \). Define the first-best investment as \(k^{FB} = \arg \max y(k) + \pi(k) - k \). Since \(k^{FB} \) maximizes the first four terms in (B5), it follows that \(\kappa(k^{FB}) < k^{FB} \). This means that no simple debt contract can induce \(E \) to choose \(k^{FB} \); and by continuity, the same holds for all \(k \in [\bar{k}, k^{FB}] \) for some \(\bar{k} < k^{FB} \).

Denote by \(k^{SB} \) the solution to \(\max_k y(k) - D(k) + \pi(k) \), where \(D(k) \) solves (A4). If \(\bar{k} \geq k^{SB} \), then the results of Section 5 continue to hold: A simple debt contract with \(W = k^{SB} \) and \(\bar{\beta} = 1 - (D - R)/\pi(k^{SB}) \) induces the choice of \(k^{SB} < k^{FB} \), and is optimal.

If \(\bar{k} < k^{SB} \), it may be optimal to write a non-simple debt contract, such as of the form described in Propositions 4 and 5, to induce \(E \) to choose \(k > \bar{k} \). As in Sections 6 and 7, however, both the benefit and the cost of using a non-simple contract are of first-order magnitude. If the cost of liquidating with higher probability exceeds the benefit of investing \(k > \bar{k} \) even at the margin, then the optimal contract is again a simple debt contract, with \(W = \bar{k} \) and \(\bar{\beta} = 1 - (D - R)/\pi(\bar{k}) \).

1 To illustrate, let \(y(k) = \sqrt{k}, \pi(k) = \alpha y(k) \) for \(\alpha > 0 \), and assume that \(\theta \) is uniformly distributed over \([0,2]\). Then \(\bar{k} \geq k^{SB} \), and a simple debt contract is optimal if and only if \(\alpha \geq 3/2 \). If \(\alpha \) is much smaller than \(3/2 \), then a contract of the form \((19)\) is preferred to a simple debt contract (but it is not necessarily the optimal contract); whereas if \(\alpha \) is not much smaller than \(3/2 \), a simple debt contract where \(E \) invests \(\bar{k} < k^{SB} \) is preferred.