![]() Capt. Horatio T.P. Webb |
Version 1 -- 3/20/2016 |
There are 8 Golden Section templates shown on this page.
![]() golden1.png |
![]() golden2.png |
![]() golden3.png |
![]() golden4.png |
![]() golden5.png |
![]() golden6.png |
![]() golden7.png |
![]() golden8.png |
The images above can be used as layout templates. There are two orientations of the Archimedes spiral: landscape (1.618... wide) by (1.000...tall); and portrait (1.618... tall) by (1.000...wide). There are four different rotations and flips for each of the the two orientations.
These 8 images are the results. Now for the theory.
The Golden spiral is based on the Fibonnacci sequence of numbers (see for example: https://en.wikipedia.org/wiki/Fibonacci_number). This sequence of numbers is:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...
or
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...
Starting with the numbers 0 and 1 (or 1 and 1), successive numbers in the sequence are obtained by adding the two previous numbers together. The general formula for the nth number is:
Fn = Fn-1 + Fn-2
where F0 = 0 and F1 = 1. The mathematics is attributed to the Italian Leonardo of Pisa (aka Fibonacci) in 1202 but was known earlier in India in the second century BC.
![]() | We can construct the spiral by starting with two squares -- each with side=1. The result is a sequence sizes of squares. The sizes are shown below. We can use this sequence as a scale for making squares with values for:
|
Ratio of successive sides: |
This ratio 1.6180339... of the lengths of two sides of a rectangle can be seen in the 8 templates above. The resulting rectangular shape is generally conceded to be the most pleasing rectangular shape and has been used for many artistic and architectural purposes.
The spiral itself is contructed by connecting successive 90o arcs from the center of the spiral. These arcs define the successsively larger squares as can be seen in the corresponding image "golden3.png" above.
For the purposes of page design we would need to employ absolute positioned DIV blocks to define the work space for the page content.
Suppose we start with a workable sized HTML square DIV like 600 pixels. This would be the size of the largest square. The shape that will result will be 600 pixels tall and 600+(600*0.6189...) or about 971 pixels wide. So we want square DIV blocks with the sides:
600,370,229,141,87,54,33,20 as shown below.
The HTML would then be:
height 600
width 600
top 0
left 0
The small red box (number ten) is only 8 pixels square →
height 371
width 371
top 0
left 600
ht 229
wid 229
top 371
left 741
The HTML is:
<div style="position:absolute;display:inline-block;border:solid black 1px;height:600px;width:600px;top:0px;left:0px;"><center>1</center></div>
<div style="position:absolute;display:inline-block;border:solid black 1px;height:371px;width:371px;top:0px;left:600px;"><center>2</center></div>
<div style="position:absolute;display:inline-block;border:solid black 1px;height:229px;width:229px;top:371px;left:741px;"><center>3</center></div>
<div style="position:absolute;display:inline-block;border:solid black 1px;height:141px;width:141px;top:459px;left:600px;"><center>4</center></div>
<div style="position:absolute;display:inline-block;border:solid black 1px;height:87px;width:87px;top:371px;left:600px;"><center>5<p></center></div>
<div style="position:absolute;display:inline-block;border:solid black 1px;height:53px;width:53px;top:371px;left:688px;"><center>6<p></center></div>
<div style="position:absolute;display:inline-block;border:solid black 1px;height:33px;width:33px;top:425px;left:708px;"><center>7<p></center></div>
<div style="position:absolute;display:inline-block;border:solid black 1px;height:19px;width:19px;top:439px;left:688px;"><center>8<p></center></div>