Asset Valuation with known cash flows

- Annuities and Perpetuities
- care loan, saving for retirement, mortgage

Simple Perpetuity

A perpetuity is a stream of cash flows each of the amount of "CF" dollars, that are received at the end of each period forever

- Note:
- Cash flows are the same over time
- There is no cash flow today (i.e. you receive the first cash flow one period from now)

Simple Perpetuity

Valuing a perpetuity

The PV of a perpetuity is,

$$
\begin{aligned}
\mathrm{PV} & =\frac{\mathrm{CF}}{1+\mathrm{r}}+\frac{\mathrm{CF}}{(1+\mathrm{r})^{2}}+\frac{\mathrm{CF}}{(1+\mathrm{r})^{3}}+\ldots \\
& =\sum_{i=1}^{\infty} \frac{\mathrm{CF}}{(1+\mathrm{r})^{\mathrm{i}}}=\frac{C F}{r}
\end{aligned}
$$

Example: You will receive $\$ 100$ forever beginning the next year. The annual interest rate is 10%. Find PV.

PV = \$100/0.1 = \$1,000

Check:

If we invest $\$ 1,000$ then we should be able to "replicate" the stream of cash flows generated by the perpetuity. That is by investing $\$ 1,000$ today we should receive a payment of $\$ 100$ each year forever.

This is how we can do this:

Simple Annuity

An annuity is a stream of cash flows each of the amount of "CF" dollars, that are received at the end of each period for the duration of " n " periods

Note:

- Cash flows are the same over time
- There is no cash flow today (i.e. you receive the first cash flow one period from now)

Simple five year Annuity

Simple annuity formula

The PV of an annuity for n years is,

$$
\begin{aligned}
\mathrm{PV} & =\frac{\mathrm{CF}}{1+\mathrm{r}}+\frac{\mathrm{CF}}{(1+\mathrm{r})^{2}}+\frac{\mathrm{CF}}{(1+\mathrm{r})^{3}}+\ldots+\frac{\mathrm{CF}}{(1+\mathrm{r})^{\mathrm{n}}} \\
& =\sum_{i=1}^{n} \frac{\mathrm{CF}}{(1+\mathrm{r})^{\mathrm{i}}}=\frac{\mathrm{CF}}{\mathrm{r}}\left(1-\frac{1}{(1+r)^{n}}\right)
\end{aligned}
$$

Example: Find the present value of an annuity that pays $\$ 500$ for the duration of 7 years (beginning at the end of the first year). The annual interest rate is 5%.
" n " year annuity versus perpetuity when $r=10 \%$

n

Growing perpetuity

A growing perpetuity is a stream of cash flows that grows over time with growth rate " g " where cash flows are received at the end of each period forever

- Note:
- Cash flows grow over time with rate " g "
- There is no cash flow today (i.e. you receive the first cash flow one period from now)

Growing perpetuity with growth rate of 8%

Growing perpetuity formula

- The first cash flow "CF" is received at the end of the first period and is growing at rate " g " afterwards

In particular, cash flows look like:

$\mathrm{t}=0$	$\mathrm{t}=1$	$\mathrm{t}=2$	$\mathrm{t}=3$	$\ldots \ldots$	$\mathrm{t}=\mathrm{n}$	$\ldots \ldots$
	CF	$\mathrm{CF}(1+\mathrm{g})$	$\mathrm{CF}(1+\mathrm{g})^{2}$	$\ldots .$.	$\mathrm{CF}(1+\mathrm{g})^{\mathrm{n}-1}$	$\ldots \ldots$

$$
\begin{aligned}
\mathrm{PV} & =\frac{\mathrm{CF}}{1+\mathrm{r}}+\frac{\mathrm{CF}(1+\mathrm{g})}{(1+\mathrm{r})^{2}}+\frac{\mathrm{CF}(1+\mathrm{g})^{2}}{(1+\mathrm{r})^{3}}+\ldots \\
& =\sum_{i=1}^{\infty} \frac{\mathrm{CF}(1+\mathrm{g})^{\mathrm{i}-1}}{(1+\mathrm{r})^{\mathrm{i}}}=\frac{\mathrm{CF}}{\mathrm{r}-\mathrm{g}}
\end{aligned}
$$

Growing perpetuity with growth rate " g " and interest rate $\mathrm{r}=10 \%$

g

Growing Annuity

A growing annuity is a stream of cash flows that grows over time with growth rate " g " where cash flows are received at the end of each period for the duration of " n " years.

- Note:
- Cash flows grow over time with rate " g "
- There is no cash flow today (i.e. you receive the first cash flow one period from now)

Five year growing Annuity with growth rate of 8%

Growing annuity formula

The PV of a growing annuity for n years is,

$$
\begin{aligned}
\mathrm{PV} & =\frac{\mathrm{CF}}{1+\mathrm{r}}+\frac{\mathrm{CF}(1+\mathrm{g})}{(1+\mathrm{r})^{2}}+\frac{\mathrm{CF}(1+\mathrm{g})^{2}}{(1+\mathrm{r})^{3}}+\ldots+\frac{\mathrm{CF}(1+\mathrm{g})^{\mathrm{n}-1}}{(1+\mathrm{r})^{n}} \\
& =\sum_{i=1}^{n} \frac{\mathrm{CF}(1+\mathrm{g})^{\mathrm{i}-1}}{(1+\mathrm{r})^{i}}=\frac{\mathrm{CF}}{\mathrm{r}-\mathrm{g}}\left(1-\frac{(1+\mathrm{g})^{n}}{(1+r)^{n}}\right)
\end{aligned}
$$

Growing annuity with growth rate " g " and interest rate $\mathrm{r}=10 \%$

g

Growing annuity formula for $\mathrm{r}=\mathrm{g}$

$$
\begin{aligned}
\mathrm{PV} & =\frac{\mathrm{CF}}{1+\mathrm{r}}+\frac{\mathrm{CF}(1+\mathrm{g})}{(1+\mathrm{r})^{2}}+\frac{\mathrm{CF}(1+\mathrm{g})^{2}}{(1+\mathrm{r})^{3}}+\ldots+\frac{\mathrm{CF}(1+\mathrm{g})^{\mathrm{n}-1}}{(1+\mathrm{r})^{\mathrm{n}}} \\
& =\frac{\mathrm{CF}}{1+\mathrm{r}}+\frac{\mathrm{CF}}{(1+\mathrm{r})}+\frac{\mathrm{CF}}{(1+\mathrm{r})}+\ldots+\frac{\mathrm{CF}}{(1+\mathrm{r})} \\
& =\frac{\mathrm{n} \cdot \mathrm{CF}}{1+\mathrm{r}}
\end{aligned}
$$

- Example 1: if you save $\$ 1,000$ each year for 35 years, how much will you have in your bank account after 35 years if the interest rate is 10% ?
- How much would you need to save each year in order to accumulate $\$ 300,000$ after 35 years?

- What is the present value of your installments if you save $\$ 1,000$ each year for (a) 35 years and (b) forever?
- What is the present value of your installments if the interest rate changes to 9% ?
- What is the future value of your installments if the interest rate changes to 9% ?

- Example 2: You want to rent an apartment in Houston for one year. The landlord is not willing to reduce the monthly rent of $\$ 1,000$ but offers the first month for no charge. You can also stay in your old apartment and pay rent of $\$ 915$ (at the beginning of each month). What should you do? Assume an interest rate of 1% per month.
$\mathrm{PV}($ current rent payments $)=$
$P V($ alternative rent payments $)=$

Would your choice be the same if you got the last month free?

- Example 3: You need a parking space for the period of two years. You can either buy a parking space for $\$ 10,000$ and then sell it in two years for $\$ 10,500$, or rent a parking space for the period of 2 years. The monthly rent is currently $\$ 75$ and is expected to rise by 0.5% each month (starting from the next). What should you do? Assume an interest rate of 1% per month.
$\mathrm{PV}($ buy parking space $)=$
$\mathrm{PV}($ rent parking space $)=$
- Example 4: You have just earned a Federal tax return and are thinking to donate $\$ 2,000$ to the Museum of Contemporary Art in Houston. In return Museum offers free annual membership (\$100 per year paid at the beginning of the year) forever or a growing perpetuity of $\$ 70$ with growth rate of 3% per year (the first payment of $\$ 70$ is in one year). What should you do? Assume an interest rate of 7% per year.
$P V($ free membership offer $)=$
$\mathrm{PV}($ growing perpetuity $)=$

- Example 5: 30 years ago, André François Raffray agreed to pay the 90 year old Jeanne Calment 2,500 francs ($\$ 500$) per month (end) until she dies. In return he will receive her apartment when she dies. The apartment is worth $\$ 184,000$. Suppose the monthly interest rate is 1%. Assuming M. Raffray thought this was a good deal, how long did he think Jeanne Calment would live?

Mr. Raffray will break even if Jeanne Clament lives less than n additional months

This implies that

Example 6: An insurance agent offers you the following contract: you pay $\$ 5,000$ per year (end) for the next 15 years and in return you will receive $\$ 7,000$ a year (end) for the following 15 years. Suppose interest rates are 9%. Should you buy this contract?

- Example cont'd: suppose that the insurance agent sweetens the deal and says that the payments that you receive will grow at 3% per year. Would you take the contract now?

