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Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap

Prices

ABSTRACT

Based on a multivariate extension of the constrained locally polynomial estimator of A��t-Sahalia

and Duarte (2003), we provide nonparametric estimates of the probability densities of LIBOR rates

under forward martingale measures and the state-price densities (SPDs) implicit in interest rate cap

prices conditional on the slope and volatility factors of LIBOR rates. Both the forward densities and

the SPDs depend signi�cantly on the volatility of LIBOR rates, and there is a signi�cant impact of

mortgage prepayment activities on the forward densities. The SPDs exhibit a pronounced U-shape

as a function of future LIBOR rates, suggesting that the state prices are high at both extremely

low and high interest rates, which tend to be associated with periods of economic recessions and

high inations, respectively. Our results provide nonparametric evidence of unspanned stochastic

volatility and suggest that the unspanned factors could be partly driven by re�nancing activities in

the mortgage markets.



Over-the-counter interest rate derivatives, such as caps and swaptions, are among the most widely

traded interest rate derivatives in the world. According to the Bank for International Settlements,

in recent years, the notional value of caps and swaptions exceeds $ 10 trillion, which is many times

larger than that of exchange-traded options. Although the extensive term structure literature of

the last decade has mainly focused on explaining bond yields and swap rates,1 prices of caps and

swaptions are likely to contain richer information on term structure dynamics because their payo�s

are nonlinear functions of underlying interest rates. As a result, in a recent survey of the term

structure literature, Dai and Singleton (2003) suggest that there is an \enormous potential for new

insights from using (interest rate) derivatives data in (term structure) model estimations."

Our paper contributes to the fast-growing literature on interest rate derivatives by providing one

of the �rst nonparametric studies that extracts the rich information on term structure dynamics

contained in prices of interest rate caps. Speci�cally, we provide nonparametric estimates of the

probability densities of LIBOR rates under forward martingale measures and the SPDs using caps

with a wide range of strike prices and maturities.2 The nonparametric forward densities of LIBOR

rates can be useful for many purposes. For example, the forward densities estimated using caps,

which are among the simplest and the most liquid OTC interest rate derivatives, allow consistent

pricing of more exotic and/or less liquid OTC interest rate derivatives based on the forward measure

approach.3 The nonparametric forward densities also can reveal potential misspeci�cations of most

existing term structure models, which rely on parametric assumptions to obtain closed-form pricing

formulae for interest rate derivatives. As a result, these models are likely to be misspeci�ed and

therefore may not be able to fully capture the prices of interest rate derivatives.4 Furthermore,

by combining the physical and forward densities of LIBOR rates, we can estimate the SPDs or the

1See Dai and Singleton (2003) and Piazzesi (2003) for excellent surveys of the literature.
2In our paper, state-price density is de�ned as state price per unit of physical probability, following the de�ntion

in Du�e (2001) (see Section 1.F). This is slightly di�erent from that of A��t-Sahalia and Lo (1998, 2000), which is

essentially the risk-neutral density.
3Under a risk-neutral measure, the price of any security discounted by the money market account is a martingale.

Similarly under a forward measure, the price of any security discounted by a zero-coupon bond associated with the

forward measure is a martingale.
4For example, the popular LIBOR (Swap) market model assumes that LIBOR forward (swap) rates follow the

log-normal distribution and prices caps (swaptions) using the Black (1976) formula. The models of Collin-Dufresne

and Goldstein (2002), Han (2002), and Jarrow, Li, and Zhao (2006) rely on the a�ne jump-di�usion models of Du�e,

Pan, and Singleton (2000), while the models of Li and Zhao (2006) rely on the quadratic term structure models of Ahn,

Dittmar, and Gallant (2002) and Leippold and Wu (2003).
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intertemporal marginal rate of substitutions of the representative investor implicit in cap prices. This

allows us to study investor preferences from a perspective that is di�erent from that of most existing

studies in the literature, which are mainly based on S&P 500 index options.

The contributions of our paper to the existing literature are both methodological and empirical.

Methodologically, we extend the constrained locally polynomial approach of A��t-Sahalia and Duarte

(2003) to a multivariate setting. Building on the insights of Breeden and Litzenberger (1978), A��t-

Sahalia and Duarte (2003) provide nonparametric estimates of risk-neutral densities using index

options. Compared to the nonparametric kernel regression approach of A��t-Sahalia and Lo (1998,

2000) and others, the locally polynomial approach of A��t-Sahalia and Duarte (2003) has superior �nite

sample performance and guarantees that the estimated risk-neutral densities satisfy the necessary

theoretical restrictions. Our multivariate extension of A��t-Sahalia and Duarte (2003) preserves all

the advantages of the original method and makes it possible to estimate the forward densities and

the SPDs conditional on multiple economic variables.

Based on the newly extended method, we provide nonparametric estimates of the forward LIBOR

densities and the SPDs conditional on the slope and volatility factors of LIBOR rates.5 The SPDs are

estimated as the ratio between the forward and physical densities of LIBOR rates, where the latter

is estimated using the kernel method of A��t-Sahalia and Lo (2000). We include the two conditioning

variables in our analysis because of the important roles they play for term structure modeling.

For example, existing studies, such as Litterman and Scheinkmen (1991), have widely documented

that the level and slope factors can explain close to 99% of the variations of LIBOR rates. Many

studies, such as Han (2002), Jarrow, Li, and Zhao (2007), and Trolle and Schwartz (2007), also

have documented the importance of stochastic volatility for pricing interest rate caps. While the

level factor is automatically incorporated in existing methods, our new extension of A��t-Sahalia

and Duarte (2003) is needed to incorporate the slope and volatility factors in our nonparametric

estimation. Interestingly, despite the overwhelming evidence of stochastic volatility in index returns,

most existing nonparametric estimates of the SPDs using index options do not allow for stochastic

volatility.6

Empirically, we �nd that the forward densities deviate signi�cantly from the log-normal distri-

bution assumed by the standard LIBOR market models and are strongly negatively skewed. More

5In this paper, the volatility factor is the �rst principal component of EGARCH-�ltered spot volatilities of LIBOR

rates at all maturities. We obtain similar results using GARCH-�ltered spot volatilities.
6Boes, Drost, and Werker (2005) estimate a two-dimensional SPD as a function of index return and its EGARCH

volatility using index options.
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important, we �nd that both the forward densities and the SPDs depend signi�cantly on the slope

and volatility factors of LIBOR rates. We also document a pronounced U-shape of the SPDs as a

function of future LIBOR rates. This result suggests that investors attach high values to payo�s when

interest rates are either extremely high or low. This is consistent with the notion that extremely

low interest rates tend to be associated with economic slowdowns or even recessions, while extremely

high interest rates tend to be associated with hyper inations. This pattern di�ers signi�cantly from

that of the SPDs estimated from index options, which is typically a declining function of the level

of the equity market. Therefore, unlike most existing studies, our analysis provides new evidence on

how the SPDs depend on important term structure factors. Moreover, while the index options used

in most existing studies tend to have very short maturities (less than one or two years), the interest

rate caps we consider allow us to estimate the SPDs over longer horizons.

Most interestingly, we document an important impact of mortgage prepayment activities on

the forward LIBOR densities. Speci�cally, we �nd that the forward densities at most maturities

(especially for 5 and 7 years, which are most relevant for mortgage hedging) are more negatively

skewed following a sharp increase in prepayment activities even after controlling for both the slope

and volatility factors. In an important study, Duarte (2006) shows that by allowing the volatility of

LIBOR rates to be a function of prepayment speed in the string model of Longsta�, Santa-Clara, and

Schwartz (2001), one can signi�cantly reduce the pricing errors of at-the-money (ATM) swaptions.

Our analysis extends Duarte (2006) in several important aspects. First, while Duarte (2006) focuses

on the impact of prepayment on implied volatilities, we focus on its impact on the entire forward

densities. It is possible that investors may hedge prepayment options using ATM or OTM interest

rate options based on cost-bene�t analysis. Therefore, our results show that prepayment a�ects not

only the price of ATM options, but also the relative pricing of interest rate options across moneyness.

Second, while the benchmark models in Duarte (2006) have either a constant or CEV volatility, we

allow the forward densities to explicitly depend on the slope and volatility factors. While the slope

factor is an important determinant of prepayment activities, the volatility factor is important for

pricing interest rate options. Therefore, our results further strengthen the �ndings of Duarte (2006)

because we show that even after controlling for stochastic volatility, prepayment still signi�cantly

a�ects the forward densities.

Our empirical results have important implications for one of the most important issues in the

current term structure literature, namely the unspanned stochastic volatility (USV) puzzle. Most

existing dynamic term structure models (DTSMs) assume that the same set of risk factors drive both

3



bond yields and interest rate derivative prices. This assumption implies that �xed income markets

are complete and that DTSMs can simultaneously price bonds and interest rate options. However,

Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), and Li and Zhao (2006) document the

existence of systematic stochastic volatility factors in interest rate derivatives markets that cannot be

spanned by bond market factors. These studies demonstrate the limitations of existing DTSMs and

suggest that models with USV factors are needed to price interest rate options. The evidence of USV,

however, is not without controversy. There are concerns that the results in the above studies, which

are mainly based on parametric methods, such as linear regression or model-based hedging, may not

be robust to alternative parametric speci�cations.7 Our paper complements the above studies by

providing nonparametric and model-independent evidence of USV. More important, our results on

the impact of prepayment on forward densities suggest that the unspanned factors could be partially

driven by re�nancing activities in the mortgage markets.

Our paper is closely related to A��t-Sahalia (1996 a&b), which are among the earliest studies

on nonparametric pricing of interest rate derivatives. While A��t-Sahalia (1996 a&b) price interest

rate derivatives based on nonparametrically estimated di�usion processes for spot interest rates, we

provide nonparametric estimates of the forward densities of LIBOR rates conditional on the slope

and volatility factors of LIBOR rates, and thus explicitly allows for USV in interest rate derivatives

markets. Beber and Brandt (2006) is one of the few papers that estimates investor preferences using

interest rate option prices. Our paper, however, di�ers from Beber and Brandt (2006) in several

important aspects. First, while Beber and Brandt (2006) use the Edgeworth expansion method of

Jarrow and Rudd (1982) to estimate the SPDs, we use the extended locally polynomial method

of A��t-Sahalia and Duarte (2003). Second, the nonparametric method allows us to estimate the

SPDs conditional on important term structure factors, such as the slope and volatility of LIBOR

rates. In contrast, Beber and Brandt (2006) do not account for stochastic volatility in interest

rates. Third, while Beber and Brandt (2006) consider only short-term interest rate options with

maturities typically less than one year, we consider interest rate caps with maturities up to ten

years. Most important, the main focus of Beber and Brandt (2006) is on the change of the SPDs

around macroeconomic announcements, which is very di�erent from the focus of our paper.

The rest of the paper is organized as follows. In Section 1, we discuss how to obtain the forward

7Fan, Gupta, and Ritchken (2003) argue that the linear regression approach of Collin-Dufresne and Goldstein (2002)

and Heidari and Wu (2003) cannot fully capture the time-varying hedge ratios of interest rate options.
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densities and the SPDs from interest rate cap prices. In Section 2, we discuss our multivariate

extension of the constrained locally linear estimator of A��t-Sahalia and Duarte (2003), which is used

for estimating the forward densities and the SPDs. In Section 3, we present the data and document

a volatility smile in interest rate cap markets. Section 4 reports the empirical �ndings and Section

5 concludes. The appendix provides the mathematical proof.

1. Forward and State-Price Densities Implicit in Interest Rate Cap Prices

In this section, we discuss the general idea of estimating the forward densities and the SPDs from

cap prices. Interest rate caps are portfolios of call options on LIBOR rates. Speci�cally, a cap gives

its holder a series of European call options, called caplets, on LIBOR forward rates. Each caplet has

the same strike price as the others, but with di�erent expiration dates. For example, a �ve-year cap

on three-month LIBOR struck at 6% represents a portfolio of 19 separately exercisable caplets with

quarterly maturities ranging from six months to �ve years, where each caplet has a strike price of

6%.

Throughout our analysis, we restrict the cap maturity T to a �nite set of dates 0 = T0 < T1 <

::: < TK < TK+1; and we assume that the intervals Tk+1 � Tk are equally spaced by �, a quarter of

a year as in the U.S. cap markets. Let Lk (t) = L (t; Tk) be the LIBOR forward rate for the actual

period [Tk; Tk+1] ; and let Dk (t) = D (t; Tk) be the price of a zero-coupon bond maturing at Tk: We

then have

L (t; Tk) =
1

�

�
D (t; Tk)

D (t; Tk+1)
� 1
�
; for k = 1; 2; :::;K: (1)

A caplet for the period [Tk; Tk+1] struck at X pays � (Lk (Tk)�X)+ at Tk+1: Although the cash ow

of this caplet is received at time Tk+1; the LIBOR rate is determined at time Tk and there is no

uncertainty about the caplet's cash ow after Tk.

For LIBOR-based instruments such as caps, oors, and swaptions, it is convenient to consider

pricing using the forward measure approach. We will therefore focus on the dynamics of LIBOR

forward rate Lk (t) under the forward measure Qk+1, which is essential for pricing caplets maturing

at Tk+1. Under this measure, the discounted price of any security using Dk+1 (t) as the numeraire is

a martingale. Thus, the time-t price of a caplet maturing at Tk+1 with a strike price of X is

Caplet (Lk (t) ; X; �k) = �Dk+1 (t)E
Qk+1
t

�
(Lk (Tk)�X)+

�
; (2)

where EQ
k+1

t is taken with respect to Qk+1 given the information set at t and �k = Tk � t, the time

horizon over which Lk (t) can randomly uctuate. The key to valuation is the distribution of Lk (t)
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under Qk+1: Once we know this distribution, we can price any security whose payo� on Tk+1 depends

only on Lk (t) by discounting its expected payo� under Qk+1 using Dk+1 (t) :

Existing term structure models rely on parametric assumptions on the distribution of Lk (t) to

obtain closed-form pricing formulae for caplets. For example, the standard LIBOR market models

of Brace, Gatarek, and Musiela (1997) and Miltersen, Sandmann, and Sondermann (1997) assume

that Lk (t) follows a log-normal distribution and price caplet using the Black formula. The models

of Jarrow, Li, and Zhao (2007) assume that Lk (t) follows a�ne jump-di�usions of Du�e, Pan, and

Singleton (2000).

In this paper, we estimate the distribution of Lk (t) under Qk+1 using the prices of a cross section

of caplets that mature at Tk+1 and have di�erent strike prices. Breeden and Litzenberger (1979) show

that the density of Lk (t) under Qk+1 is proportional to the second derivative of Caplet (Lk (t) ; �k; X)

with respect to X: Speci�cally, de�ne

C (Lk (t) ; X; �k) = E
Qk+1
t

�
(Lk (Tk)�X)+

�
=

Z 1

X
(y �X) pQk+1 (Lk (Tk) = yjLk (t)) dy: (3)

Then the conditional density of Lk (Tk) under the forward measure Qk+1 equals

pQ
k+1
(Lk (Tk) jLk (t)) =

@2C (Lk (t) ; �k; X)

@X2
jX=Lk(Tk): (4)

We assume that in (3)-(4) the conditional density of Lk (Tk) depends only on the current LIBOR

rate, i.e., pQ
k+1
(Lk (Tk) jFt) = pQ

k+1
(Lk (Tk) jLk (t)) ; where Ft represents the information set at t.

This assumption, however, can be overly restrictive given the multifactor nature of term structure

dynamics. For example, while the level factor can explain a large fraction (between 80-90%) of

the variations of LIBOR rates, the slope factor still has signi�cant explanatory power of interest

rate variations. Moreover, there is overwhelming evidence that the volatility of interest rates are

stochastic,8 and it has been suggested that interest rate volatility are unspanned in the sense that

they can not be fully explained by the yield curve factors such as the level and slope factors.

One important innovation of our study is that we allow the volatility of Lk (t) to be stochastic and

the conditional density of Lk (Tk) to depend on not only the level, but also the slope and volatility

factors of LIBOR rates. That is, we assume that

pQ
k+1
(Lk (Tk) jFt) = pQ

k+1
(Lk (Tk) jLk (t) ; Z (t)) ; (5)

8See Andersen and Lund (1997), Ball and Torous (1999), Brenner, Harjes, and Kroner (1996), Chen and Scott

(2001), and many others.
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where Z (t) = fs(t); v (t)g; s(t) is the slope factor of the LIBOR forward curve, and v (t) is the

common volatility factor of all LIBOR rates. Speci�cally, s (t) is the di�erence between the 10- and

2-year LIBOR forward rates, and v (t) is the �rst principal component of EGARCH-�ltered spot

volatilities of LIBOR rates across all maturities.

Under this generalization, we have

C (Lk (t) ; X; �k; Z (t)) =

Z 1

X
(y �X) pQk+1 (Lk (Tk) = yjLk (t) ; Z (t)) dy: (6)

And the conditional density of Lk (Tk) under the forward measure Qk+1 is given by

pQ
k+1
(Lk (Tk) jLk (t) ; Z (t)) =

@2C (Lk (t) ; X; �k; Z (t))

@X2
jX=Lk(Tk): (7)

Next we discuss how to estimate the SPDs by combining the forward and physical densities of

LIBOR rates. Given a SPD function H, the price of the caplet can be calculated as

Caplet (Lk (t) ; X; �k; Z (t)) = �E
P
t

�
H � (Lk (Tk)�X)+

�
; (8)

where the expectation is taken under the physical measure. In general, H depends on multiple

economic factors, and it is impossible to estimate it using interest rate caps alone. Given the

available data, all we can estimate is the projection of H onto the future spot rate Lk (Tk). De�ne

Hk (Lk(Tk);Lk(t); Z(t)) = E
P
t [HjLk(Tk);Lk(t); Z(t)] ; (9)

then by iterated expectation,

Caplet (Lk (t) ; Z(t); �k; X) = �EPt
�
Hk (Lk(Tk);Lk(t); Z(t)) (Lk (Tk)�X)+

�
(10)

= �

Z 1

X
Hk (y) (y �X) pP (Lk (Tk) = yjLk (t) ; Z (t)) dy:

Comparing the above equation with the forward measure approach, we have

Hk (Lk(Tk);Lk(t); Z(t)) = Dk+1 (t)
pQ

k+1
(Lk (Tk) jLk (t) ; Z (t))

pP (Lk (Tk) jLk (t) ; Z (t))
: (11)

Therefore, by combining the densities of Lk (Tk) under Qk+1 and P; we can estimate the projection

of H onto Lk(Tk):

Another interpretation of Hk is the intertemporal rate of substitution of consumption of the

representative investor. For an economy where the representative agent has a time-additive utility

function, we have

Hk (Lk(Tk);Lk(t); Z(t)) = E
P
t

"
U 0
�
cTk+1

�
U 0 (ct)

jLk(Tk);Lk(t); Z(t)
#

(12)
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where U 0 (�) is the marginal utility of consumption, and cTk+1 and ct are optimal consumptions at

Tk+1 and t; respectively. Therefore, we can estimate the dependence of future consumption cTk+1

on future spot interest rate Lk(Tk) using a model-free approach based on the physical and forward

densities of LTk (Tk).
9 The SPDs contain rich information on how risks are priced in �nancial markets.

While A��t-Sahalia and Lo (1998, 2000), Jackwerth (2000), Rosenberg and Engle (2002), and others

estimate the SPDs using index options (i.e., the projection of H onto index returns), our analysis

based on interest rate caps documents the dependence of the SPDs on term structure factors.

Similar to many existing studies, to reduce the dimensionality of the problem, we assume that

the caplet price is homogeneous of degree 1 in the current LIBOR rate. That is,

C (Lk (t) ; X; �k; Z (t)) = Lk (t)CM (Mk(t); �k; Z (t)) ; (13)

where the moneyness of the caplet Mk(t) = X=Lk (t). Hence, for the rest of the paper we estimate

the forward density of Lk (Tk) =Lk (t) as the second derivative of the price function CM with respect

to M :

pQ
k+1

�
Lk (Tk)

Lk (t)
jZ (t)

�
=
@2CM (Mk(t); �k; Z (t))

@M2
jM=Lk(Tk)=Lk(t): (14)

We also estimate the physical density of Lk (Tk) =Lk (t) using the kernel method of A��t-Sahalia and

Lo (2000).

2. Nonparametric Estimation of Forward and State-Price Densities

In this section, we discuss nonparametric estimation of the forward densities and the SPDs

implicit in cap prices. We �rst provide a brief introduction to the locally polynomial approach of

A��t-Sahalia and Duarte (2003).10 Then we discuss how to extend the method of A��t-Sahalia and

Duarte (2003) to a multivariate setting to estimate the forward densities conditional on the slope and

volatility factors of LIBOR rates. We also discuss how to combine the forward and physical densities

of LIBOR rates to estimate the SPDs at di�erent maturities. Finally, we provide simulation evidence

on the accuracy of the newly extended nonparametric method.

2.1. A Brief Review of Locally Polynomial Estimation

Most existing nonparametric studies on SPDs typically estimate the option pricing formula

CM (Mk(t); Z (t) ; �k) nonparametrically, and then di�erentiate it twice with respect to M to ob-

tain @2C=@M2 and pQ
k+1
(Lk (Tk) jLk (t) ; Z (t)) : Nonparametric estimation of the derivatives of a

9Here we ignore the small horizon di�erence between the consumption and spot interest rate and treat them as

contemporaneous. The time di�erence is the tenor of the interest rate caps, which is three months.
10The discussion here relies heavily on A��t-Sahalia and Duarte (2003), which contains much more detailed descriptions

of the local polynomial approach.
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regression function, however, requires much more data than estimating the regression function itself.

The increase of the dimensionality of the problem due to the conditioning variables Z (t) further

worsens the problem. Therefore, for a given sample size, the choice of the estimation method is

crucial.

In our analysis, we adopt and extend the constrained locally polynomial method of A��t-Sahalia

and Duarte (2003). Compared to the traditional kernel regression method, the locally polynomial

approach has several important advantages. First, it has been well-established in the statistics and

econometrics literature that the locally polynomial approach is superior to the kernel method in

estimating the derivatives of nonlinear functions (See, for example, Fan and Gijbels (1996)). Second,

the constrained locally polynomial approach of A��t-Sahalia and Duarte (2003) guarantees that the

nonparametric option pricing function ĈM (�) satis�es the necessary theoretical restrictions. For

example, to guarantee the absence of arbitrage across moneyness and the positivity of the density

function, we must have �1 � @Ĉ=@M � 0 and @2Ĉ=@M2 � 0, which we refer to as the shape

restrictions on ĈM (�) : Finally, A��t-Sahalia and Duarte (2003) show that the locally polynomial

estimation coupled with constrained least square regression also has better �nite sample performance

than existing models. Below we provide a brief review of the locally polynomial approach.

Suppose we have observations f(yi; xi)gni=1 generated from the following relation

y = f (x) + �; (15)

where f (x) is an unknown nonlinear function and � is a zero-mean error term. Suppose the (p+ 1)th

derivative of f (�) at x exists. Then a Taylor expansion gives us an approximation of the unknown

function f (�) in a neighborhood of x

f (z) � f (x) + f 0 (x) (z � x) + :::+ f
(p) (x)

p!
(z � x)p

=

pX
k=0

�k;p (x)� (z � x)k ; (16)

where �k;p (x) = f
(k) (x) =k! and f (k) (x) = @fk(z)

@zk
jz=x:

This representation of f (�) suggests that we can model f (z) around x by a polynomial in z; and

to use the regression of f (z) on powers of (z � x) to estimate the coe�cients �k;p: To ensure the local

nature of the representation, we weight the observations by a kernelKh (xi � x) = K ((xi � x) =h) =h;

where h is a bandwidth. Then the estimates of the coe�cients �̂k;p (x) are the minimizers of

nX
i=1

(
yi �

pX
k=0

�k;p (x)� (xi � x)k
)2
Kh (xi � x) : (17)
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At each �xed point x; this is a generalized least squares regression of the yis on the powers of

(xi � x)s with diagonal weight matrix formed by the weights Kh (xi � x) : This regression is \local"

in the sense that the regression coe�cients are only valid in a neighborhood of each point x:

The optimal way to estimate f (k) (x) based on asymptotics is to choose p = k + 1 and use the

estimator

f̂ (k) (x) = f̂ (k)p (x) = k!�̂k;p (x) : (18)

For example, a locally linear regression serves to estimate the regression function f̂
(0)
1 (x) ; a locally

quadratic regression for the �rst derivative f̂
(1)
2 (x) ; and a locally cubic regression for the second

derivative f̂
(2)
3 (x) :

A��t-Sahalia and Duarte (2003) show that in small samples the asymptotically optimal solution

may not have the best performance. Instead, they consider the following alternative approach, which

has superior �nite sample performances than the asymptotic approach. Speci�cally, they estimate

f (�) using a locally linear regression

f̂ (z) = �̂0;1 (x) + �̂1;1 (x) (z � x) : (19)

Hence, the regression function, the �rst and the second derivatives are estimated as, respectively,

f̂ (x) = �̂0;1 (x) ; f̂
(1) (x) = �̂1;1 (x) ; and f̂

(2) (x) =
@�̂1;1 (x)

@x
= �̂

0
1;1 (x) : (20)

2.2. A Multivariate Extension of the Constrained Locally Linear Estimator

In this section, we extend the constrained locally polynomial method of A��t-Sahalia and Duarte

(2003) to a multivariate setting to incorporate the conditioning variables Z (t) in our analysis. The

main objective of A��t-Sahalia and Duarte (2003) is to estimate risk-neutral densities using a small

sample of option data, typically one day's observations. This means that they essentially estimate the

option price as a univariate function of the strike price. In our analysis, we would like to estimate the

caplet price as a function of its moneyness conditional on the slope and volatility factors of LIBOR

rates. The basic idea behind our approach is that we group observations on di�erent dates that

share similar values of the conditioning variables, and then within each group we solve a univariate

problem similar to that of A��t-Sahalia and Duarte (2003).

For ease of exposition, we describe the extended method in a bivariate setting, although the

description can be easily generalized to higher dimensions. Suppose we have a set of n observa-

tions y1; y2; :::; yn and their corresponding explanatory variables (x11; x12) ; (x21; x22) ; :::; (xn1; xn2) :

Throughout the paper, we assume that the observations are ordered by the �rst explanatory variable,
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i.e., xi1 � xj1 if i > j; 1 � i; j � n: Suppose we want to estimate the yi's as a function of xi1's for a

�xed x2 subject to the necessary shape restrictions. De�ne

D
�
x2; �h

�
,
�
ijxi2 2

�
x2 � �h; x2 + �h

�
; for 1 � i � n

	
; (21)

where �h > 0: Basically, D
�
x2; �h

�
contains the subsample of observations whose second explanatory

variables are grouped around x2.

A��t-Sahalia and Duarte (2003) point out that nonparametric estimates of ĈM using the original

data are not guaranteed to be arbitrage-free in �nite samples. To address this problem, they �rst

�lter the data by solving the following constrained optimization problem:

min
m2R�

X
i2D(x2;�h)

(mi � yi)2 (22)

subject to the slope and convexity constraints:

�1 � mi+1 �mi

xi+1;1 � xi1
� 0 for all i = 1; :::; d� 1; (23)

mi+2 �mi+1

xi+2;1 � xi+1;1
� mi+1 �mi

xi+1;1 � xi;1
for all i = 1; :::; d� 2; (24)

where � is the number of elements in D
�
x2; �h

�
: Note that the solution m depends on the �xed

value x2 and the window size �h: This means that the �ltering has to be done for each grid point

of x2 for nonparametric estimation. The basic restriction on �h is that it should be no smaller than

the bandwidth used in the nonparametric smoothing along the second dimension. A��t-Sahalia and

Duarte (2003) provide a fast computational algorithm for solving the above constrained optimization

problem. The �ltered data m closely resembles the original data y and satis�es the shape restrictions

imposed by the theory. It is important to note that the �ltering is done after obvious data errors

have been removed.

To estimate the option pricing function bm (x1; x2) ; and its �rst and second partial derivatives,
@ bm (x1; x2)

@x1
and

@ bm2 (x1; x2)

@x21
; we minimize the following weighted sum of squared errors

nX
i=1

fmi � �0 (x1; x2)� �1 (x1; x2)� (x1i � x1)g2Kh (xi1 � x1; xi2 � x2) ; (25)

where Kh (xi1 � x1; xi2 � x2) is the joint kernel function. We have the following proposition which

extends the analysis of A��t-Sahalia and Duarte (2003) to a bivariate setting.

Proposition 1. Consider a set of n observations of the dependent variables, y1; y2; :::; yn and

the corresponding bivariate independent variables, (x11; x12) ; (x21; x22) ; :::; (xn1; xn2) : Without loss
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of generality, let xi1 � xj1 if i > j; 1 � i; j � n: For any given pair (xi1; xi2) ; the estimators
@ bm (x1; x2)

@x1
and

@ bm2 (x1; x2)

@x21
satisfy the required constraints in sample: �1 � @ bm (x1; x2)

@x1
� 0 and

@ bm2 (x1; x2)

@x21
� 0; provided that

1. The transformed data mi (x1; x2) ; i = 1; 2; :::; d; are obtained through the constrained least

squares algorithm based on the original data in D
�
x2; �h

�
;

2. The joint kernel function can be written as a product of two univariate kernel functions

Kh (xi1 � x1; xi2 � x2) = K1;h (xi1 � x1)K2;h (xi2 � x2) ;

3. The kernel function K1;h (�) is log-concave;

4. The bandwidth for the kernel function K2;h (�) ; h�2; satis�es h�2 � �h; and K2;h (z) = 0 for

jzj > �h:

Proof. See the appendix.

This proposition can be easily extended to higher dimensions. The key di�erence from the

univariate case is that for the bivariate case we need to apply the constrained least square procedure

at each grid point of x2. The ideal choice of �h should be h�2: However, the choice of h
�
2 often

depends on the �ltered observations, which depend on the choice of �h. Therefore, in practice a two-

stage procedure should be used in estimation. We can �rst conduct an unconstrained estimation to

obtain the bandwidth h�2; which will be used later as the �ltering window width in the second-stage

constrained estimation.

In our implementation, x1 represents the moneyness of the option, while x2 and x3 represent the

slope and volatility factors, respectively. Following Proposition 1, we choose Epanechnikov kernels

for the slope and volatility factors and the Gaussian kernel for the moneyness.

While the choices of kernels are relatively straightforward, the choices of bandwidths are much

more complicated. The data are relatively evenly distributed along the moneyness dimension. There-

fore, a global bandwidth (constant across moneyness) is acceptable in terms of the mean squared

error (MSE) criterion. On the other hand, the observations of the slope and volatility factors are

rather unevenly distributed. This makes a simple global bandwidth an inappropriate choice, be-

cause a global bandwidth will likely be too large and oversmooth the regions with dense observations

and too small and undersmooth the regions with sparse observations. To address this problem, we
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perform a monotonic transformation of the slope and volatility factors data via their empirical dis-

tribution functions and apply a global bandwidth to the transformed data. We �rst start with a

preliminary bandwidth selection from the following relation

hj = cj�(xj)n
�1=(4+d); j = 1; 2; 3; (26)

where cj is a constant that is close to one, �(xj) is the sample standard deviation of xj ; and n is the

sample size. Then we �ne tune cj to minimize the MSE via cross validation procedures.

The asymptotic and �nite sample distributions of the constrained locally polynomial estimator are

not known analytically. We obtain �nite sample distribution of the estimator using bootstrap. In our

estimation, the sample is divided into cells around certain slope and volatility grids. The estimator

for a particular cell does not depend on the data outside that cell. We generate bootstrap samples

by randomly drawing observations with replacements from a cell.11 Conducting the estimation on

all bootstrap samples, we obtain the �nite sample distribution of the estimator.

2.3. Nonparametric Estimation of State-Price Densities

While we estimate pQ
k+1
(Lk (Tk) jLk (t) ; Z (t)) from caplet prices, we estimate pP (Lk (Tk) jLk (t) ; Z (t))

using the underlying LIBOR rates based on the kernel method of A��t-Sahalia and Lo (2000). Let

L (t; T ) be the time-t three-month LIBOR forward rate with a maturity of T; and L (T; T ) be

the three-month LIBOR spot rate at T: Suppose we have the following time series observations

fL (ti; Ti) ; L (Ti; Ti)gni=1 ; where Ti � ti = T � t: We de�ne the log-return of the LIBOR rates as

uti;Ti = log (L(Ti; Ti))� log (L(ti; Ti)) : (27)

We use Zti to denote the conditioning variables at ti: The joint distribution of the log-return and

the conditioning variables under the physical measure, pPu;Z (ut;T ; Zt) ; can be estimated as

bpPu;Z (u; z) = 1

n

nX
i=1

Khu

�
uti;Ti � u
hu

�
Khz

�
Zti � z
hz

�
; (28)

where Kh (�) = K(�)=h and K(�) is a kernel function. In our estimation, we use the Gaussian kernel

and assume the bivariate kernel is a product of one-dimensional kernels. The joint density of the

conditioning variables under the physical measure can be estimated as

bpPZ (z) = 1

n

nX
i=1

Khz

�
Zti � z
hz

�
; (29)

11For identical observations, our estimator essentially keeps one among them.
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and the density of the log-return conditional on Z (t) is given by

bpPujZ (ujZ) = bpPu;Z (u; z)bpPZ (z) : (30)

The bandwidths are chosen according to the following relation

hj = cj�jn
�1=(4+d); j = u; z (31)

where �j is the unconditional standard deviation of the data, cj is a constant, and d represents the

dimension of the problem (d = 3 for bpPu;Z (u; z) and d = 2 for bpPZ (z)). Since the joint density estimator
converges slower than the marginal one, the speed of convergence for the conditional density estimator

is the same as that of the joint distribution, i.e., O(n�2=(4+d)). In practice, similar to A��t-Sahalia

and Lo (1998), we let the bandwidth converge to zero slightly faster than the MSE-optimal rate

stated above in order to eliminate the asymptotic bias. This makes the asymptotic variance slightly

larger and the MSE convergence speed slightly slower. The asymptotic distribution for the kernel

estimator based on this bandwidth selection method is provided below.

n1=2
dY
j=1

h
1=2
j

hbpPujZ (ujZ)� pPujZ (ujZ)i d! Normal

 
0;
pPujZ (ujZ)
pPZ (z)

�Z
K(z)2dz

�d!
: (32)

The estimator of the SPD equals

bHk (ujZ) = Dk+1 (t) bpQk+1ujZ (ujZ)bpPujZ (ujZ) : (33)

Note that bHk (ujZ) is the projection of H onto the log ratio between the future spot rate and

the current forward rate. Based on similar arguments in A��t-Sahalia and Lo (2000), we obtain

the distribution of the pricing kernel estimator. Intuitively, the estimator of the physical densitybpPujZ (ujZ) converges faster than that of the forward density bpQk+1ujZ (ujZ) ; since the latter involves

estimation of second-order derivatives with the same dimensionality. So, the asymptotic distribution

of
bpQk+1
ujZ (ujZ)bpP
ujZ(ujZ)

is identical to that of
bpQk+1
ujZ (ujZ)
pP
ujZ(ujZ)

; where we replace the true physical density with the

estimate. Since we do not have the asymptotic distribution of the estimator bpQk+1ujZ (ujZ) ; we obtain

�nite sample distribution using bootstrap, which tends to give a larger con�dence interval.

2.4. Simulation Evidence

In this section, we provide simulation evidence on the accuracy of the multivariate extension of

the constrained locally linear estimator. The basic idea of the new approach is to group observations

on di�erent dates whose conditioning variables are within a certain range and to apply the original
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constrained locally linear estimator to the grouped data. Therefore, the data used in estimation

within each group are likely to be more than just one day's data. As a result, we expect the new

method to work well in practice given the excellent �nite sample performance of the original method

of A��t-Sahalia and Duarte (2003) when only one day's observations are used.

Our simulation design is similar to that of A��t-Sahalia and Duarte (2003). That is, we assume

that caplet prices are determined by the Black (1976) formula. To capture the observed volatility

skew in the data and the dependence of forward densities on the conditioning variables, we further

assume that the log of the volatility is a linear function of moneyness, slope, and volatility of LIBOR

rates with observation errors. The parameters used in the following speci�cation are chosen so that

the e�ects of the conditioning variables can be better illustrated:

log � (Mk (t) ; Z (t)) = �0:1� 1:5Mk (t)� 0:75s (t) + 0:75v (t) + � (t) ; (34)

where � (t) � Uniform [�0:5%;+0:5%] :12

We generate 500 random samples of � (Mk (t) ; Z (t)) ; each with 2,000 observations, by producing

random draws of Mk (t) ; s (t) ; and v (t) from three independent uniform distributions with 20, 10,

and 10 grid points, respectively. While we choose �xed grid points for s (t) and v (t), we allow the grid

points ofMk (t) to be random to avoid observations with identical moneyness. Based on the randomly

generated volatilities � (Mk (t) ; Z (t)), we calculate the prices of two-year caplets based on the Black

(1976) formula. A��t-Sahalia and Duarte (2003) consider �xed moneyness grids in their simulations

because they only use one day's observations. Since we have to group caplet prices on di�erent

dates with similar conditioning variables, our simulation design captures the fact that moneyness of

caplets change over time in our sample. While the actual slope and volatility factors do not follow

uniform distributions, in our estimation we work with the transformed conditioning variables via

their empirical distributions, which do follow uniform distributions. Thus, our simulation design is

consistent with this estimation approach. We choose the sample size to be 2,000, because given our

bandwidth, there are roughly 100 observations within each slope-volatility cell, which are similar to

that in our empirical analysis.

Based on the simulated caplet prices, Figure 1 provides nonparametric estimates of the caplet

price function, the �rst derivative of the price function, and the forward density conditional on the

slope and volatility factors using the multivariate constrained locally linear estimator. The two levels

of the slope and volatility factors used in Figure 1 are su�ciently di�erent from each other to better

12The bid-ask spread of ATM caps quoted in implied volatility is 1%.

15



illustrate the e�ects of the conditioning variables, although we obtain similar results for conditioning

variables at other levels. For each of the functions that we are trying to estimate, Figure 1 reports

the true function, the average estimate over the 500 random samples, and the 95% con�dence band

over the 500 estimates. It is clear that our method can accurately recover the forward densities from

the simulated caplet prices even when the two conditioning variables are involved.

3. The Data

In this section, we introduce the two datasets used in our empirical analysis. The �rst one

contains daily LIBOR and swap rates, and the second one contains daily prices of interest rate caps

with di�erent strike prices and maturities.

We obtain daily LIBOR rates with maturities of three, six, and twelve months, as well as daily

two-, three-, four-, �ve-, seven- and ten-year swap rates between August 13, 1990 and December 8,

2005 from Datastream. We bootstrap the swap rates to obtain daily three-month LIBOR forward

rates with maturities beyond one year. Figure 2.A contains the term structure of LIBOR forward

rates during our sample period. Both the level and shape of the LIBOR forward curve have exhibited

rich variations during the 15-year time period, which spans the longest economic boom in U.S. history

as well as the spectacular crash of the technology bubble.

One of the conditioning variables we use is the slope of the term structure, which is de�ned as

the di�erence between the 10- and 2-year LIBOR forward rates. Besides the level factor, the slope

factor has the biggest explanatory power of the variations of LIBOR rates. Figure 2.B contains the

time series plot of the slope factor during the sample period. It is obvious that the slope of the

forward curve has changed quite dramatically during our sample period, producing from very at to

quite steep forward curves. Figure 2.C reports the distribution of the slope factor in terms of both

histogram and nonparametric kernel density estimator. For simplicity, we report the slope factor in

percentage terms in Figure 2.C. In a later part of the paper, we report our empirical results based

on three typical levels of the slope factor (0.6,1.6, and 2.4), which represent at, average, and steep

forward curves, respectively.

We also obtain daily prices of interest rate caps between August 1, 2000 and July 26, 2004 from

SwapPX. Jointly developed by GovPX and Garban-ICAP, SwapPX is the �rst widely distributed

service delivering 24-hour real-time rates, data, and analytics for the world-wide interest rate swaps

market. GovPX, established in the early 1990s by the major U.S. �xed-income dealers in a response

to regulators' demands for increased transparency in the �xed-income markets, aggregates quotes

from most of the largest �xed-income dealers in the world. Garban-ICAP is the world's leading swap
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broker specializing in trades between dealers and trades between dealers and large customers. The

data are collected every day the market is open between 3:30 and 4 p.m. Our data set is one of the

most comprehensive ones available for caps written on dollar LIBOR rates. Other studies in this

area include Gupta and Subrahmanyam (2005), Deuskar, Gupta, and Subrahmanyam (2003), and

Troller and Schwartz (2007).

One advantage of our data is that we observe prices of caps over a wide range of strike prices and

maturities. For example, every day for each maturity, there are 10 di�erent strike prices: 4.0, 4.5,

5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, and 10.0% between August 1, 2000 and October 17, 2001; 1.0, 1.5,

2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5% between October 18 and November 1, 2001; 2.5, 3.0, 3.5, 4.0,

4.5, 5.0, 5.5, 6.0, 6.5, and 7.0% between November 2, 2001 and July 15, 2002; 2.0, 2.5, 3.0, 3.5, 4.0,

4.5, 5.0, 5.5, 6.0, and 6.5% between July 16, 2002 and April 14, 2003; and 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,

4.5, 5.0, 5.5 and 6.0% between April 15, 2003 and July 26, 2004. Moreover, caps have 15 di�erent

maturities throughout the whole sample period: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0,

8.0, 9.0, and 10.0 years.

Our analysis uses prices of caplets, although we only observe cap prices. To obtain caplet prices,

we consider the di�erence between the prices of caps with the same strike and adjacent maturities,

which we refer to as di�erence caps. A di�erence cap includes a few caplets between two neighboring

maturities with the same strike. For example, 1.5-year di�erence caps with a speci�c strike represent

the sum of the 1.25-year and 1.5-year caplets with the same strike. We assume all individual caplets

of a di�erence cap share the same Black implied volatility and calculate the price of each individual

caplet using the Black formula.

Due to daily changes in LIBOR rates, caplets realize di�erent moneyness (de�ned as the ratio

between the strike price and the LIBOR forward rate underlying the caplet) each day. Therefore,

throughout our analysis, we focus on the prices of caplets at given �xed moneyness. That is, each

day we interpolate caplet prices with respect to the strike price to obtain prices at �xed money-

ness. Speci�cally, we use locally cubic polynomials to preserve the shape of the original curves

while smoothing over the grid points. We refrain from extrapolation and interpolation over grid

points without nearby observations, and we eliminate all observations that violate various arbitrage

restrictions. We also eliminate observations with zero prices, and observations that violate either

monotonicity or convexity with respect to the strikes.

Figure 3.A contains the average Black implied volatilities of caplets across moneyness and ma-

turity, while Figure 3.B plots the average implied volatilities of ATM caplets over the whole sample
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period. Consistent with the existing literature, the implied volatilities of caplets with a moneyness

between 0.8 and 1.2 have a humped shape with a peak at around a maturity of two years. However,

the implied volatilities of all other caplets decline with maturity. There is also a pronounced volatility

skew for caplets at all maturities, with the skew being stronger for short-term caplets. The pattern

is similar to that of equity options: In-the-money (ITM) caplets have higher implied volatilities than

do out-of-the-money (OTM) caplets. The implied volatilities of the very short-term caplets are more

like a symmetric smile than a skew. Figure 3.C plots the time series of ATM implied volatilities of

1-, 3-, and 5-year caplets. It is clear that the implied volatilities are time varying and have increased

dramatically during our sample period.

Both the volatility skew and the time series of ATM implied volatilities strongly suggest that

LIBOR volatilities are time-varying and stochastic. Due to the evidence of USV and the important

role of stochastic volatility for cap pricing demonstrated by existing studies, such as Jarrow, Li,

and Zhao (2007), we include volatility as the second conditioning variable in our nonparametric

estimation of the forward densities and the SPDs.

We construct the spot volatility factor in the following way. We �rst �lter out spot volatilities

of changes of three-month LIBOR forward rates at di�erent maturities using an EGARCH model.

Then we conduct principal component analysis of the spot volatilities and use the �rst principal

component, which captures most of the variations of the spot volatilities, as the volatility factor.

Figure 3.D reports the �rst three principal components of the spot volatilities, which explain 91.53%,

6.22%, and 1.33% of the variations of spot volatilities, respectively. Interestingly, these principal

components also have an interpretation as the level, slope, and curvature of the spot volatilities.

Figure 3.E contains the time series of the volatility factor, which has been normalized to have a

mean that equals to one, while Figure 3.F reports the distribution of the volatility factor in terms

of both histogram and kernel density estimator. The volatility factor has uctuated within a certain

range and is strongly mean reverting. In later part of the paper, we report our empirical results based

on three typical levels of the volatility factor, which are below, at, and above the sample mean.

Duarte (2006) argues that mortgage re�nancing activities have both an \actual volatility e�ect"

and an \implied volatility e�ect." Dynamic hedging of MBS using either Treasury securities or interest

rate swaps a�ects time series volatility of LIBOR rates, which is the \actual volatility e�ect." Static

hedging of MBS using interest rate options a�ects the implied volatility of LIBOR rates, which is

the \implied volatility e�ect." While we could use either spot or implied volatility as the volatility

factor, we choose spot volatility mainly because we are interested in testing the \implied volatility
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e�ect" of Duarte (2006). As long as the two e�ects are not exactly the same, our approach makes it

possible to test the e�ects of mortgage hedging on LIBOR forward densities.

4. Empirical Results

4.1 Nonparametric Estimates of Forward Densities of LIBOR Rates

The volatility smile or skew documented in the cap markets strongly suggests that the log-normal

assumption of the standard LIBOR market models is violated in the data. Instead of considering

parametric extensions of the log-normal model, we provide nonparametric estimates of the probability

densities of LIBOR rates under forward martingale measures conditional on the slope and volatility

factors of LIBOR rates.

As a preliminary evidence of the importance of the slope and volatility factors for the forward

densities, Figure 4 provides nonparametric estimates of the Black implied volatilities as a function

of moneyness and the slope factor.13 We see clearly that both the level and skewness of implied

volatilities increase with the slope of the term structure. That is, when the slope is at, the implied

volatility curve is rather at for caplets with maturities longer than 3 years. On the other hand,

when the yield curve is steep, the implied volatility curve exhibits a strong volatility skew, with ITM

caplets having much higher implied volatilities than ATM and OTM caplets.

We further plot the implied volatilities as a function of moneyness at three levels of the slope

and volatility factors in Figure 5. The three levels of the slope factor correspond to at, average,

and steep yield curves, while the three levels of the volatility factor correspond to low, medium, and

high levels of volatility. Again, we see clear dependence of the implied volatilities on the volatility

factor after controlling for the slope e�ect. For a at term structure, we see the strongest volatility

skew at the medium level of the volatility factor. We see a similar pattern of volatility skew for an

average-sloped term structure for caplets with maturities less than 3 years. When the slope is steep,

the skewness increases with spot volatility for shorter maturities and remains the same for longer

maturities. Across maturities, the implied volatilities of the 7- and 10-year caplets exhibit similar

behaviors as those of the 2- to 5-year caplets, although the general levels of the implied volatilities

are lower and the volatility skews are not as dramatic. This is consistent with the fact that the

longer maturity LIBOR rates have lower spot volatilities and the longer maturity caplets have less

signi�cant volatility skews.

Figure 6 provides three-dimensional plots of nonparametric forward densities of the log-returns

13While we only consider caplets with maturities of 1, 3, 5, and 7 years, we obtain similar results for all other

maturities.
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of LIBOR rates conditional on the slope factor. Figure 7 plots the same forward densities at three

di�erent levels of the slope and volatility factors. Again we only consider caplets with 1, 3, 5, and 7

year maturities. The 95% con�dence intervals are obtained through bootstrap. Under the forward

measures, the LIBOR rates should be a martingale and the forward densities should have a mean

that is close to zero. The expected log-returns of the LIBOR rates are slightly negative due to an

adjustment from the Jensen's inequality.

Figures 6 and 7 show that one common feature of the forward densities is that the log-normal

assumption underlying the popular LIBOR market models is grossly violated in the data, and the

forward densities across all maturities are signi�cantly negatively skewed. Later results show that the

physical densities of the LIBOR rates are not as negatively skewed. Therefore, the negative skewness

in the forward densities is mostly due to the negative skewness in the SPDs. Another interesting

�nding is that all the forward densities depend signi�cantly on both the slope and volatility factors.

For example, when the slope of the term structure is steeper than average, the forward densities

across all maturities become much more dispersed. With a steep term structure, the current spot

rate is low and is expected to rise in the future. This coincides with periods when the Fed lowers

the short rate to spur economic growth. This result reveals a positive relation between the volatility

of future spot rate and the slope of the term structure.

Though the dependence of the forward densities on the volatility factor is not very transparent

when the term structure is very steep, the volatility e�ect is very signi�cant when the slope is around

the average level: When the spot volatility is low, the forward densities are compact with high peaks;

as the spot volatility rises, the forward densities become much more dispersed and negatively skewed.

This pattern holds for all maturities, although the e�ect becomes weaker for longer maturities. This

result suggests that the volatility process is very persistent because current high spot volatility leads

to high future spot volatility. When the term structure is relatively at, the e�ects of the volatility

factor vary across maturities. The 2- and 3-year forward densities are more negatively skewed when

the spot volatility is high. The seven- and ten-year forward densities, however, become more dispersed

when the spot volatility is either below or above the sample mean.

Our nonparametric analysis reveals signi�cant nonlinear dependence of the forward densities on

both the slope and volatility factors of LIBOR rates. These results have important implications for

one of the most important and controversial topics in the current term structure literature, namely the

USV puzzle. While existing studies on USV mainly rely on parametric methods, our results provide

nonparametric evidence on the importance of USV: Even after controlling for important bond market
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factors, such as level and slope, the volatility factor still signi�cantly a�ects the forward densities

of LIBOR rates. Our results also reveal the challenges in modeling volatility dynamics due to their

nonlinear impacts on the forward densities.

4.2 Impact of Mortgage Prepayment on LIBOR Forward Densities

Some recent studies have documented close connections between activities in mortgage and in-

terest rate derivatives markets. For example, in an interesting study, Duarte (2006) shows that

ATM swaption implied volatilities are highly correlated with prepayment activities in the mortgage

market. Duarte (2006) extends the string model of Longsta�, Santa-Clara, and Schwartz (2001) by

allowing the volatility of LIBOR rates to be a function of the prepayment speed in the mortgage

market. He shows that the new model has much smaller pricing errors for ATM swaptions than the

original model with a constant volatility or a CEV model. Duarte's �ndings suggest that if activities

in the mortgage market, notably the hedging activities of government sponsored enterprises, such as

Fannie Mae and Freddie Mac, a�ect the supply/demand of interest rate derivatives, then this source

of risk may not be fully spanned by the factors driving the evolution of the term structure.

In this section, we examine the impact of mortgage prepayment on cap prices using our nonpara-

metric method. Our analysis extends Duarte (2006) in several important dimensions. First, while

Duarte focuses on the impact of prepayment on ATM swaption implied volatilities, we focus on the

entire forward densities, and thus the pricing of caps/oors across moneyness. Second, while the

benchmark models of Duarte (2006) only allow a constant or CEV volatility of LIBOR rates, we ex-

plicitly allow LIBOR forward densities to depend on the slope and volatility factors of LIBOR rates.

While the slope factor can have nontrivial impact on prepayment behavior, the volatility factor is

crucial for pricing interest rate options. Therefore, in the presence of these two factors, it is not clear

whether prepayment still has incremental contributions in explaining interest rate option prices.

Our measure of prepayment activities is the weekly re�nancing index, which is based on the

number of mortgage loan applications from Mortgage Bankers Association of America (MBAA)

during the same sample period of our caplet data. We take �rst-order di�erence of the re�nancing

index. We denote weeks with changes that are in the top 20 percentile of all weekly changes and the

subsequent three weeks after each spike as high prepayment periods. As indicated by Duarte (2003)

it usually takes four weeks for the loans to be approved. We denote the rest of the sample as low

prepayment periods. Figure 8 reports the log of the MBAA index, where the shaded areas denote

periods of high prepayments de�ned above. Interestingly, we �nd that most high (low) prepayment

periods are indeed associated with steep (at) term structures. This illustrates the importance for
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controlling the slope factor in measuring the impact of prepayment on the forward densities.

We obtain nonparametric estimates of the forward densities based on the observations in the

high prepayment periods conditional on di�erent levels of the slope and volatility factors. We then

compare these estimates with that obtained from the low prepayment periods, i.e., the rest of the

sample. The four slope-volatility cells we consider are the ones with most observations. The �rst

column of Figure 9 provides nonparametric estimates of the forward densities during low and high

prepayment periods based on observations within the four slope-volatility cells, while the second

column provides the di�erences between the forward densities during low and high prepayment

periods with 95% bootstrapped con�dence intervals. The impacts of prepayment activities on the

forward densities become very pronounced at 5 and 7 year maturities, which are most relevant

for mortgage hedging. For example, when the slope equals 2.2, the forward densities during high

prepayment periods are much more negatively skewed than those in low prepayment periods, and

these di�erences are statistically signi�cant based on the 95% bootstrapped con�dence bands. This

is consistent with the notion that investors in MBS can hedge their potential losses from prepayment

by buying OTM oors.

Our results con�rm the �ndings of Duarte (2006) and show that prepayment a�ects the entire

forward density and consequently the pricing of interest rate options across moneyness. Given that

our �ndings hold even after controlling for the slope and volatility factors, they suggest that part of

the USV factors could be driven by activities in the mortgage market.

4.3 State-Price Densities Implicit in Cap Prices

In addition to the forward densities, we also estimate the physical densities of LIBOR rates

at di�erent maturities. Combining the forward and physical densities, we provide nonparametric

estimates of the SPDs over di�erent horizons. Figure 10 provides nonparametric estimates of the

physical densities of LIBOR rates at maturities of 2, 3, 4, and 5 years at the three levels of the

slope and volatility factors.14 The 95% con�dence intervals are calculated based on the asymptotic

distribution of the kernel density estimator. The most important result from Figure 10 is that the

physical densities are not as negatively skewed and widely dispersed as the forward densities. This

suggests that the high dispersion and negative skewness of the forward densities are caused by the

SPDs rather than the physical densities.

We still see clear dependence of the physical densities on the slope and volatility factors. Di�erent

14We only report results up to �ve years because we do not have enough data on log-returns of LIBOR rates for

longer maturities.

22



from the forward densities, the physical densities become more compact and closer to being normally

distributed when the term structure is steeper than average. The dispersion of the physical densities

is the largest when the slope is at the average level. This result could be due to mean reversion

in interest rates. Also di�erent from the forward densities, when the spot volatility is above the

average, the physical densities become more compact and symmetric, which suggests a mean reverting

volatility process. The 2- and 3-year LIBOR rates are more widely dispersed than the 4- and 5-year

LIBOR rates. A comparison between the forward and physical densities shows that the slope and

volatility factors are more persistent under the forward measures.

Figure 11 provides nonparametric estimates of the SPDs projected onto LIBOR spot rates at

four di�erent maturities for the three di�erent levels of the slope and volatility factors.15 The most

important �ndings from Figure 11 is that the SPDs exhibit a pronounced U-shape as a function of

future LIBOR rates, especially at the 4- and 5-year maturities. This result suggests that investors

attach high values to payo�s received when future LIBOR rates are either extremely high or low. This

is consistent with the notion that low interest rates tend to be associated with economic slowdowns

or even recessions, while high interest rates tend to be associated with high inations. Investors with

large bond portfolio holdings can hedge their potential losses due to rising interest rates using OTM

caps. On the other hand, investors with large holdings in mortgage-backed securities can hedge their

potential losses due to prepayments resulted from declining interest rates using OTM oors.16 Or

in general, investors can hedge potential losses due to high ination or recession using OTM caps or

oors, respectively. These e�ects could explain the high state prices at both low and high levels of

interest rates. The shape of the SPDs estimated from interest rate options di�er signi�cantly from

that estimated using index options, which is typically a declining function of the level of the equity

market.

The SPDs at the 4- and 5-year maturities have much more pronounced U-shape than those at the

2- and 3-year maturities. This is mainly driven by the fact that the physical densities at the 4- and

5-year maturities are more compact than those at the 2- and 3-year maturities, while the forward

densities at all maturities have similar shapes. By the law of large numbers and mean-reversion in

interest rates, uctuations in interest rates should be canceled out over longer horizons. However,

if interest rates indeed have gone up or down a lot over a longer horizon, it means that the rates

15The estimator of the SPD in (33), bHk (ujZ) ; depends on the discount factor Dk+1 (t) : For ease of comparison of

SPD estimates across maturities, we report that ration between bHk (ujZ) and Dk+1 (t) in Figure 11, i.e.,
bpQk+1
ujZ (ujZ)bpP
ujZ(ujZ)

:

16See Duarte (2006) for excellent discussion on the impacts of mortgage prepayments on interest rate volatility.
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probably have consistently gone up or down over the time period, respectively. This further implies

that extremely high or low interest rates correspond to really bad states of the economy, which lead

to the high prices of risks in those states.

The SPDs at the 2- and 3-year maturities depend more signi�cantly on the level and volatility

factors. For example, at the 3-year maturity, when the slope of the term structure is very steep,

the left arm of the U-shape is much more pronounced. Steep yield curves are typically observed in

recessions when the Fed tends to lower short-term interest rates to spur growth. However, condi-

tioning on a steep yield curve, low realizations of future interest rates mean that the Fed has not

been successful in stimulating the economy, which has probably run into deeper recession. Therefore,

those states with low interest rates are really bad states, which lead to high state prices. On the

other hand, we �nd that the right arm of the U-shape becomes much more pronounced when the

term structure is at. With a at yield curve, the Fed is probably raising short-term interest rate

to slow the growth of the economy and ination. Conditioning on that, if the rate increases a lot,

then it means that the Fed has not been successful and the economy is probably su�ering from high

ination, which again leads to high state prices.

The above analysis reveals some interesting features of the physical and forward densities of

LIBOR rates as well as the SPDs.17 They show that both the physical and forward densities depend

signi�cantly on the slope and volatility factors of LIBOR rates. The SPDs show that interest rate

options allow us to study investor preferences from a di�erent perspective than index options. Given

that each market only contains a subset of information about the pricing kernel, our analysis shows

that we should explore the implications of asset pricing models in di�erent markets.

5. Conclusion

In this paper, we extract the rich information on term structure dynamics contained in the prices

of interest rate caps using nonparametric methods. Methodologically, we extend the constrained

locally polynomial approach of A��t-Sahalia and Duarte (2003) to a multivariate setting and (for the

�rst time) estimate the forward densities of LIBOR rates and the SPDs conditional on the slope

and volatility factors of LIBOR rates. The multivariate constrained locally polynomial approach

has excellent �nite sample performances and guarantees that the nonparametric estimates satisfy

17One should be careful in making inferences based on the asymptotic distribution of the physical densities because

interest rates are highly persistent. However, we believe that this fact is unlikely to a�ect our results on the SPDs

because the U-shape is very pronounced and depends only on the fact that the physical densities are more compact

than the forward densities.
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necessary theoretical restrictions. Empirically, we �nd that the forward densities of LIBOR rates

deviate signi�cantly from the log-normal distribution and are strongly negatively skewed. Both

the forward densities and the SPDs depend signi�cantly on the volatility of LIBOR rates, and

there is a signi�cant impact of mortgage prepayment activities on the forward densities. The SPDs

exhibit a pronounced U-shape as a function of future LIBOR rates, suggesting that the state prices

are high at both extremely low and high interest rates, which tend to be associated with periods

of economic recessions and high inations, respectively. Our results highlight the importance of

unspanned stochastic volatility and especially re�nancing activities in the mortgage markets for

term structure modeling.
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Appendix. Proof of Proposition 1.

For a �xed (x1; x2) ; we �rst augment the sample to the size of the original observations by

including the un�ltered observations that are not in D
�
x2; �h

�
: Next we de�ne

kl;i = Kl;h (xil � xl) ; l = 1; 2;

ki;j = (xi1 � x1)2 k1;ik1;jk2;ik2;j ;

Mi;j = (mi �mj) = (xi1 � x1) :

The estimator of the �rst-order derivative equals

@ bm (x1; x2)
@x1

=

n�1P
i=1

nP
j=i+1

Mi;jki;j

n�1P
k=1

nP
l=k+1

kk;l

:

Since k2;i;j = 0 outside the set D
�
x2; �h

�
; we can reduce the sum on this set only, i.e.,

@ bm (x1; x2)
@x1

=

d�1P
i=1

dP
j=i+1

Mi;jki;j

d�1P
k=1

dP
l=k+1

kk;l

;

@ bm2 (x1; x2)

@x21
=

 
d�1P
i=1

dP
j=i+1

Mi;jk
0
i;j

! 
d�1P
k=1

dP
l=k+1

kk;l

!
�
 
d�1P
i=1

dP
j=i+1

Mi;jki;j

! 
d�1P
k=1

dP
l=k+1

k0k;l

!
 
d�1P
k=1

dP
l=k+1

kk;l

!2

A��t-Sahalia and Duarte (2003) show �1 � @ bm (x1; x2)
@x1

� 0 and @ bm2 (x1; x2)

@x21
� 0 for the univariate

case. It can be easily shown from the de�nition that the same result applies here.
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1.A. Nonparametric Estimate of the Caplet Price Function 
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1.B. Nonparametric Estimate of the First Derivative of the Caplet Price Function 
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1.C. Nonparametric Estimate of the Forward Density 
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Figure 1. Simulation evidence on the finite sample performance of the multivariate constrained locally 
polynomial estimator. We assume that caplet prices are determined by the Black (1976) formula, in which the log 
of the volatility is a linear function of moneyness, slope, and volatility of LIBOR rates with observation errors. We 
generate 500 random samples of the volatility, each with 2,000 observations, by producing random draws of 
moneyness, slope, and volatility from three independent uniform distributions with 20, 10, and 10 grid points, 
respectively. Based on the simulated caplet prices, we provide nonparametric estimates of the caplet price function, 
the first derivative of the price function, and the forward density conditional on the slope and volatility factors using 
the multivariate constrained locally polynomial estimator. For each of the functions that we are trying to estimate, 
we report the true function (solid line), the average estimate over the 500 random samples (thick dashed line), and 
the 95% confidence band over the 500 estimates (thin dashed line). 

 



 
2.A. The Term Structure of LIBOR Forward Rates 
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Figure 2. The term structure of LIBOR forward rates and the slope factor of the term structure. Based on 
daily three-month LIBOR rates with maturities of three, six, and twelve months, as well as daily two-, three-, four-, 
five-, seven- and ten-year swap rates between August 13, 1990 and December 8, 2005 obtained from Datastream, 
we obtain daily term structure of LIBOR forward rates as shown in Figure 2.A. We define the slope factor as the 
difference between the 10- and 2-year LIBOR forward rates and provide its time series plot and distribution in 
Figure 2.B and 2.C, respectively. For convenience, we report the slope factor in percentage terms in Figure 2.C.
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          3.C. Time Series of ATM Black Implied Volatilities 3.D. Principle Components  of Filtered Spot Volatilities 
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    3.E. Time Series of the Volatility Factor           3.F. Distribution of the Volatility Factor 
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Figure 3.  The Black implied volatilities of caplets and the spot volatility factor. Figure 3.A plots the average Black-implied 
volatilities of caplets across moneyness and maturity. Figure 3.B plots the average implied volatilities of ATM caplets. Figure 
3.C plots the time series of ATM implied volatilities of 1-, 3-, and 5-year caplets. Figure 3.D reports the first three principal 
components of EGARCH-filtered spot volatilities of changes of LIBOR rates. Figure 3.E contains the time series of the 
volatility factor, while Figure 3.F reports the distribution of the volatility factor.         
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Figure 4. Nonparametric estimates of the Black implied volatilities of caplets as a function of moneyness and 
the slope factor. The slope factor is defined as the difference between the 10- and 2-year three-month LIBOR 
forward rates. The slope ranges from 0% (flat forward curve) to 3% (steep forward curve). 
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5.B. 3-Year 
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Figure 5. Nonparametric estimates of the Black implied volatilities of caplets as a function of moneyness at three levels 
of the slope and volatility factors. The slope factor is defined as the difference between the 10- and 2-year three-month 
LIBOR forward rates. The volatility factor is defined as the first principal component of EGARCH-filtered spot volatilities and 
has been normalized to a mean that equals one. The three levels of the slope factor correspond to flat, average, and steep 
forward curves, while the three levels of the volatility factor corresponds to low, medium, and high levels of volatility.      
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Figure 5. Nonparametric estimates of the Black implied volatilities of caplets as a function of moneyness at three levels 
of the slope and volatility factors (continued). 
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Figure 6. Nonparametric estimates of the LIBOR forward densities at different levels of the slope factor. The 
slope factor is defined as the difference between the 10- and 2-year three-month LIBOR forward rates. The slope 
ranges from 0% (flat forward curve) to 3% (steep forward curve). 
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Figure 7. Nonparametric estimates of the LIBOR forward densities at three levels of the slope and volatility factors. The 
slope factor is defined as the difference between the 10- and 2-year three-month LIBOR forward rates. The volatility factor is 
defined as the first principal component of EGARCH-filtered spot volatilities and has been normalized to a mean that equals 
one. The three levels of the slope factor correspond to flat, average, and steep forward curves, while the three levels of the 
volatility factor corresponds to low, medium, and high levels of volatility.      
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Figure 7. Nonparametric estimates of the LIBOR forward densities at three levels of the slope and volatility factors 
(continued). 
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Figure 8. Mortgage Bankers Association of America (MBAA) weekly refinancing index. This figure 
reports the log of the number of weekly mortgage loan applications from Mortgage Bankers Association 
of America (MBAA). The shaded areas denote high prepayment periods, which are defined as weeks with 
changes in loan applications that are in the top 20 percentile of all weekly changes and the subsequent 
three weeks after each spike. 
 



 
 
 
 
 

     9.A. 1-Year, Low (dash) and High (solid)          9.B. 1-Year, Low (dash) - High (solid) 
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      9.C. 3-Year, Low (Dash) and High (Solid)          9.D. 3-Year, Low (Dash) - High (Solid) 
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Figure 9. Impacts of mortgage prepayment activities on the LIBOR forward densities. The first column provides 
nonparametric estimates of LIBOR forward densities during low and high prepayment periods based on observations within the 
four slope-volatility cells, while the second column provides the differences between the nonparametric forward densities 
during the low and high prepayment periods with 95% bootstrapped confidence intervals. High prepayment periods are defined 
as weeks with changes in loan applications that are in the top 20 percentile of all weekly changes and the subsequent three 
weeks after each spike. Low prepayment periods represent the rest of the sample. The slope factor is defined as the difference 
between the 10- and 2-year three-month LIBOR forward rates. The volatility factor is defined as the first principal component 
of EGARCH-filtered spot volatilities and has been normalized to a mean that equals one.   
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Figure 9. Impacts of mortgage prepayment activities on the LIBOR forward densities (continued). 
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Figure 10. Nonparametric estimates of the physical densities of LIBOR rates at three levels of the slope and volatility 
factors. The slope factor is defined as the difference between the 10- and 2-year three-month LIBOR forward rates. The 
volatility factor is defined as the first principal component of EGARCH-filtered spot volatilities and has been normalized to a 
mean that equals one. The three levels of the slope factor correspond to flat, average, and steep forward curves, while the three 
levels of the volatility factor corresponds to low, medium, and high levels of volatility. The dotted lines are the 95% confidence 
interval. 
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Figure 10. Nonparametric estimates of the physical densities of LIBOR rates at three levels of the slope and volatility 
factors (continued). 
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11.B. 3-Year 
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Figure 11. Nonparametric estimates of the state price densities projected onto LIBOR spot rates at three different levels 
of the slope and volatility factors. The slope factor is defined as the difference between the 10- and 2-year three-month 
LIBOR forward rates. The volatility factor is defined as the first principal component of EGARCH-filtered spot volatilities and 
has been normalized to a mean that equals one. The three levels of the slope factor correspond to flat, average, and steep 
forward curves, while the three levels of the volatility factor corresponds to low, medium, and high levels of volatility. The 
dotted lines are the 95% confidence interval. 
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Figure 11. Nonparametric estimates of the state price densities projected onto LIBOR spot rates at three different levels 
of the slope and volatility factors (continued). 

 


