Direct Transformation of Vari-
ational Problems into Cauchy
Systems—II.  Scalar-Semi-
Quadratic Case™

by JAMES HESS, HARRIET KAGIWADA arnd ROBERT KALABA

Department of Economics, University of Southern California,
Los Angeles, CA 90007 and HFS Associates 3117 Malcolm Ave.,
Los Angeles, CA 90034

ansTracT: This series of papers addresses three interrelated problems: the solution of a
variational problem, the solution of integral equations, and the solution of an initial valued
system of integrodifferential equations. It will be shown that a large class of variational
problems requires the solution of a nonlinear integral equation. It has also been shown that
the solution of a nonlinear integral equation is identical to the solution of a Cauchy system.
In this paper, we by-pass the nonlinear integral equations and show that the minimization
problems directly imply a solution of the Cauchy system. This second paper in the series
looks at semi-quadratic functional and scalar functions.

I Introduction

Many optimization problems result in variational problems of finding a
function z(f), 0=t=1, that minimizes the functional
1

W(z]=A H z(s)k(t, s)z(t) dtds+2 H F(z(1), t)dt

0 0

By standard variational techniques it can be shown that the optimal function,
u(1), satisfies a nonlinear Fredholm integral equation [Ref. (1)]. Recent work in
the study of integral equations [Ref. (2)] has shown that solutions of nonlinear
integral equations are equivalent to solutions of particular initial valued
systems of integrodifferential equations (Cauchy Systems). It appears that the
three problems—variational, integral equations, and Cauchy Systems—are
equivalent to each other. An important missing link in the analysis has been
the demonstration that the variational problem leads directly to a Cauchy
System without passing through an integral equation. These papers provide
that link.
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I, Derivation

Suppose we desire to find a scalar function z(f), 0=t=1, which minimizes
the semi-quadratic functional

1 pl 1
Wiz, Al=A ‘% b, z(s)k(t, s)z(t) ds dt+2 % F(z(t), t)dt, (H

0 JO 0
where k(, s) is a symmetric, positive definite kernel, F(z, t) is a convex, twice
differentiable function in z, and A is a sufficiently small scalar parameter. This
class of problems is semi-quadratic because the first term is a quadratic
functional in z. This is more general than it might look at first glance, for the
choice variable may actually be a function x(t) and z(1) might be a composite

function,
z(t) = h(x(1) 2)

where h is a convex, differentiable function. By simple change of variables this
more general problem may be reduced to Eq. (1). The standard variational
approach to this problem results in a nonlinear integral equation which the
optimal function must satisfy.

Proposition 1. The function u(t) which minimizes W[z, A] must satisfy the
integral equation

1
F(u(p), 3+>% k(t, slu(s)ds=0, O0=t=1 (3)
0

Throughout the paper, the partial derivative of F with respect to its ith
argument is denoted by F, and the derivative of u(t, A) with respect to A is
denoted by u, (1, A).

The proposition is established as follows. The arbitrary admissible functions
may be written as

z(t) = u(1) + en(t), (4)

where ¢ is an arbitrary scalar, and n(1) is an arbitrary function. Take a Taylor
series expansion of W[z, A]in e, ignoring all terms in €? or higher.
This results in

W(z, A]l= Wlu, A]+eClu, m, A] (5)
where

1

Clu, 7, A]= A % .ﬁ k(t, s)u(s)n(t)dsdt+A WL % uw(k(t, s)m(s)ds dt

Jo

1
+2 “. Fi(u(), )m(t) dt. ()
0
Optimality requires
eClu, m, A]=0 7
for all € 7. Since € has arbitrary sign, this implies
Clu, n, A1=0. ®
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Using the symmetry of k(t, s), variables of integration may be relabeled so that
Eq. (8) is expressed as

A ‘ﬁ ‘qw k(t, s)u(s)n(t) ds dt+ % Fi(u(t), )m(H)de=0 9)
0 JO 0

for all arbitrary m(1). Applying the fundamental lemma of the calculus of
cariations to Eq. (9) results in the desired integral equation. This completes the
f.
Eo%mom‘,ﬁ approach to the minimization problem is to ask how the optimal
solution changes as A varies. This is referred to as parameter imbedding. The
pasic idea of parameter imbedding is to convert the nonlinear wiwmm.m_
equation into a system of initial valued integrodifferential equations. The basic
result given in Ref. (2) is: . . .
Proposition 2. The function uft)=ult A) which satisfies .5@ zou_.Eoma in-
regral Bq. (3) is the solution to the following initial valued integrodifferential
cquations, involving a resolvent kernel K(t,s, A), and conversely:

u, (¢, >V+QQV>V+>%H~A? s, Ma(s,A)ds=0 (10)

0
K (t, s, \)+8(t, s, M)+ Aﬁ K(1,s',A)8(s", 5,A)ds'=0 (11)

o
Fi(u, (1,0),)=0 (12)
K(1, s, 0)+ k(1 s)/Fy(u(t, 0),1)=0 (13)

where
alt, A)= —w k(z, s)u(s, A) ds/Fy(u(, ), 1) (14)
0

1
8{t s, A)=vy(t, s, A)+ _~ k(t, s VK (s, s, A\)/Fyi(u(t, A), t)ds’
o
1
+A _. y(t, s’, A)K(s', s, A)ds' (15)
o

(5, 2) u.@.w;@ ) Fuy(ut, ), D), (16)

for0=r=1,0=ss=<1.

The Cauchy System (10)-(16) has been very useful for the computation of
“olutions of nonlinear integral equations, whether or not they arise from a
variational problem. Well-known techniques, such as the Runge-Kutta or
ns-Moulton methods, together with the methods of lines, are readily
available. [See Ref. (3) for one such example.] In addition, there are many €ases
where the parameter A has an interesting physical interpretation and thus the
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Cauchy System provides all the equations needed to study the sensitivity of the
solution to changes in important parameters

It will now be shown that the Cauchy System (10)-(16) may be derived
directly from the semi-quadratic minimization problem without ever writing
down the nonlinear integral Eq. (3). This shows that the solution of the
variational problem could have proceeded even if the integral equation had
never been discovered. The Cauchy System is perfectly adequate for describing
the optimal function u(t, A).

Proposition 3. The function u(t, A) which minimizes W[u, A] must satisfy the
Cauchy System (10)-(16).

The proposition is established as follows. Let u(t, A) be the solution of the
minimization problem for parameter value A, and let u(t, A+dA) be the
solution for A+d\. Admissible solutions to the variational problem may be
expressed as

z(1, )= ult, A) + en(D), a7
x(t, A +dr)=u(t, A +dA)+ ap(1), (18)

where € and o are arbitrary scalars and where n and p are arbitrary functions.
Approximate W[z, \]and W[x, A +dA]bya Taylor series in the first argument.
When € and ¢ are suitably small the terms in € and o or higher may be
ignored. The resulting approximations are

Wiz, Al= W[y, A1+ eClu, n, A ]+ higher order terms (19
Wx, A +dr]= Wy, A +dr]+oClu, p, A +dA ]+ higher order terms  (20)

where

1 1
Clu, d,iuww_h w. k(t, s)u(s, A)n(t) ds dt
0 JO
+2 QL Fi{u(t, A), Hn(1) dt @21

1 i
Clu, p, A +dA]=2(A +d A) _w .— k(t, s)u(s, A +dAr)p(t) ds di
b Jo
+2 ‘* Fy(u(t, A +dA), Dp(r) dt. (22)
0
If u(t, A) and u(t, A +d A) are optimal, then it must be true that
€Clu, 7, A]=0 (23)
oClu, p, A +dA]=0 24)

for all € o, m, p. Since these are arbitrary, select e =~ o and 7 = p so that (23)
and (24) are

—oClu, p, A]=0, (25)
oClu, p, A +dA]=0. (26)
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Add these two inequalities to get

a(Clu, p, A +dA1=Clu, p, ) =0. 27
Since o has arbitrary sign, this implies that
Clu, p, A +dA]=Clu, p, A]=0, (28)

tor all arbitary p. Expand Clu, p, A +dA] in a Taylor series in A +dA; ignoring
terms «* {dA)? or higher this gives

Clu, p, A +dA]=Clu, p, A]+dA{2 _H _L k(t, s)u(s, M)p(t)ds dt
o
+2A A‘V ﬁ k(t, s)yu,(s, A)p(t)ds dt
b Jo

+2 bv Foa(u(t, A), Huy (1, A)p(t) de}. (29)
o

Hence for di sufficiently small, Eqgs. (28) and (29) imply that the term in
brackets in Eq. (29) must be zero for all arbitrary p(f). Apply the fundamental
lemma of the calculus of variations and we have

Fiilu(t, A), Hu, (6, A)+ «— k(t, s)u(s, A) ds
0

+>% k(t, s)u, (s, A)ds=0. (30)

Divide Eq. (30) by Fy(u(t, ), t) and we have the linear Fredholm integral
cquation in the unknown function u, (t, A)

1
5?\C+Q?>v+>h m(t, s, Au, (s, A)ds =0, 31)

where a(1, A) is defined in Eq. (14) and m(z, s, A) is defined by
m(t, s, \) = k(t, s)/Fpy(u(t, 1), 1). (32)

A linear Fredholm integral equation with kernel m(t, s, A) has a solution that
may be expressed using a resolvent kernel K(t, s, A) as follows:

1

§?>v+a?$+>% K(t, s, M)a(s, A)ds=0. (33)
0

This is Eq. (10) of the Cauchy System. The resolvent kernel must satisfy a
related linear Fredholm integral equation [see Ref. (2)],

1

K(, 5004 m(, 5, 0)+ A % (s s’ MK(s', 1) ds' = 0. (34)
0
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Differentiate (34) with respect to A to get (2) H. Kagiwada and R. Kalaba, “Integral Equations Via Imbedding Methods™
Addison-Wesley, Reading, Mass., 1974. ’

(3) 1. Casti and R. Kalaba, “Imbedding Methods in Applied Mathematics”, Addison-
Wesley, Reading, Mass., 1973.

(4) J. Hess and R. Kalaba, “Direct transformation of variational problems into Cauchy
systems-1. Scalar-quadratic case”, J. Optimization Theory and Applications Vol
24, No. 4, 1978. T

{8) J. Marschak and R. Radner, “Economic Theory of Teams”, Yale University Press
wew Haven, Conn., 1972. |

1
NyAmq A >w+ \%AHM 35 >v+ 4‘ Sﬁﬁ m‘u Vrvwﬂﬁmf S, .VV &m~

0

1
+ A M v(t, s, MK(s', s, A)ds’

0

H
i % s:wi??izanp aw
0

where y(1, s, A) is defined in Eq. (16). Since Eq. (35) is also a linear Fredholm
integral equation with a kernel m(t, s', A), its solution may be expressed using
the same resolvent kernel,

1
K, (1,5, A)+ 5(t, s, A)+ ‘m K(1, s, \)8(s', s A ds'=0 (36)
o

where 8(t, s, A) is defined in Eq. (15). This is Eq. (11) of the Cauchy system.
When A =0 in the original minimization problem, Wlu(t, 0),0] is minimized
when F(u(t, 0),t) is minimized for each t. This implies that

Fy(u(t,0),)=0 37

which is the initial condition (12). The initial condition (13) follows from Eq.
(34) by setting A =0. This completes the proof.

JII, Discussion

The objective of this paper has been to reduce the semi-guadratic variational
problem in Eq. (1) to the Cauchy System in relations (10)-(16). In particular
we have been able to do this without making any use of the Euler equation.
which takes the form of the nonlinear integral equation (3.

The earlier paper in this series, Ref. (4), demonstrated that the reduction
could be performed in the quadratic case. In this paper, the general technique
of direct reduction is made more explicit. The objective functional is approxi-
mated first in a Taylor series in the choice function and then in a Taylor series
in the parameter A. It would have been possible to derive the nonlinear integra!
equation along the way but this was not done in order to arrive at the
sensitivity Eqs. (10)~(16). This general technique may be applied to problems
which are not semi-quadratic and which have a vector of choice funetions. This
approach may be used to develop new equations for such variational problems
as the team decision problem, [Ref. (5)], or the simplest problem in the
calculus of variations.
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