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Direct Transformation of Variational Problems into
Cauchy Systems. 1. Scalar-Quadratic Case!

1. HESs? AND R. KALABA®

Abstract. This series of papers addresses three interrelated problems:
the solution of a variational minimization problem, the solution of
integral equations, and the solution of an initial-valued system of
integro-differential equations. It will be shown that a large class of
minimization problems requires the solution of linear Fredholm
integral equations. It has also been shown that the solution of a linear
Fredholm integral equation is identical to the solution of a Cauchy
system. In this paper, we bypass the Fredholm integral equations and
show that the minimization problem directly implies a solution of a
Cauchy system, This first paper in the series looks only at quadratic
functionals and scalar functions.

Key Words. Variational problems, integral equations, parametric
imbedding.

1. Introduction

Many interesting optimization problems result in variational problems
of finding a function z (1), 0= =1, that minimizes the functional

1.1 1 1
W[z]—‘a\j0 L z(s)k(t,s)z(t)dtds+L z(1) dt+2j f(Hz(r)de

0

By standard variational techniques, it can be shown that the optimal
function u(t) satisfies a linear Fredholm integral equation (Ref. 1). Recent
work in the study of integral equations (Ref. 2) has shown that solutions of
integral equations are equivalent to solutions of particular initial-valued
' This research was sponsored by the Air Force Office of Scientific Research, Air
Force Systems Command, USAF, under Grant No. AFQOSR-77-3383.
* Agsistant Professor of Economics, University of Southern California, Los
Angeles, California,
3 professor of Biomedical Engineering and Economics, University of Southern
California, Los Angeles, California.
49

0022-3239/78/0500-xxxx$05.00/0 © 1978 Plenum Publishing Corporation



50 JOTA: VOL. 25, NO. [, MAY 1978

systems of integro-differential equations (Cauchy systems). It appears that
the three problems—-variational, integral equations, and Cauchy systems-—
are equivalent to each other. An important missing link in the analysis has
been the demonstration that the variation problem leads directly to a
Cauchy system without passing through an integral equation. These papers
provide that link. It would seem that the historical emphasis put on the
integral equations is but an accident. The Cauchy systems can just as easily
be developed and provide interesting insights and computational aid in
studying such variational problems.

The direct reduction of the simplest problem in the calculus of varia-
tions to a Cauchy system is given in Ref. 3; the train of thought is quite
different from that employed here.

2. Derivation

Suppose that we desire to find a scalar function z(#), 0=r=1, which
minimizes the quadratic functional

i sl i 1
W[z,z\]‘z/\J’ J;z(s)k(t,s)z(x)dsdt+J z(t)2dt+'2j f(H)z (1) dr,
(4] (4]

(4

(1)

where k(1,s) is a symmetric, positive definite kernel, f(r) is a given
function, and A is a sufficiently small nonnegative scalar parameter. The
standard variational approach to this problem results in a linear Fredholm
integral equation which the optimal function must satisfy.

Proposition 2.1. The function u(r) which minimizes W{u, A] must
satisfy the linear Fredholm integral equation

1

u(t)+f(t)+AJ’O k@, Hu(s)ds =0, O=r=s1. 2)

) Proof. Denote the optimal function by u(¢). The arbitrary admissible
functions may be written as

w(t)=u(t)+en (),

where € is ar} arbitrary scalar and »(¢) is an arbitrary function. The value of
the functiof;‘for w (1) may be expressed as

Wlw;Al= Wlu, A}+€Clu, n; A]+€’Dn; A],
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where

1 1 1
C[u,n;/\]?—%[ J u(s)k(r,s)n(t)dsdwzj u(mt) de

)] }

1
-uLfmmom

1 1
Din,Al=A j n($Yk(t, sn{t)ds dit + J n(t) dt.
(\ 0
For € sufficiently smail, the term in e* may be ignored. If u is in fact the
minimizing solution, then for all €

Clu, n;A]1=0. (3)

We apply to Eq. (3) the fundamental lemma of the calculus of variations
{Ref.1):

j g(Dh()dt=0
(4

for arbitrary h(r) implies that

g(nN=0

for all 0=t = 1. Since n(¢) is arbitrary, we get Eq. (2). -

Another approach to the minimization problem is to ask how the
optimal solution changes as A varies. This is referred to as parametric
imbedding. The standard technique would begin with the linear Fredholm
integral equation and convert it into a system of initial-valued integro-
differential equations. The basic result given in Ref. 2 is the following
proposition.

Proposition 2.2. The function u(f, A) which satisfies the linear Fred-
holm integral equation (2) is the solution u(f, A) to the following initial-
valued integro-differential equations in u, augmented by a resolvent kernel
K, s, A), and conversely:

1

0= (6 )+ 96 M)+ [ K (s, A6, A) s, @)
(1]
1
K, (1, s,A)r«J K(t, s, A)K(s', s, A)ds', (5)
0
u(’o 0) = “f(t)7 . (6)

K@, s, 0)=~k(ls), (7)
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1
w,9)= [ kG s)uls, A dh, (8)

(1]
O0=1=1, D=s=1,. 9)

The Cauchy system (4)-(9) has proved to be very useful for the
computation of the solution of Fredholm integral equations, as well as for
the study of the sensitivity of the solution to changes in the parameter A,

We will now show that the Cauchy system (4)-(9) may be derived
directly from the original minimization problem, without ever writing
down the Fredholm integral equation (2). In fact, the solution of the
minimization problem could have proceeded even if historically the Fred-
holm integral equation had never been discovered. The Cauchy system is
perfectly adequate for describing the optimal function u(r).

Proposition 2.3. The. function u(t, A) which minimizes Wlu;A]
satisfies the Cauchy system (4)-(9).

Proof. Suppose that u(r,A) is the minimizing function for the
parameter value A; and suppose that u(t, A + dA) is the minimizing function
for the parameter value A +dA; then, the first variations must satisfy the
following inequalities for arbitrary €, 0, €, 7:

eClu(t,A), n;A]=0, (10)
EC[u(t, A +dr), 7, A +dA]=0. 1y
Since €, 7, €, 7 are all arbitrary, pick
7N =7 and €= —¢,
so that (10) and (11) are
~&C[u(t, A), 73 A1=0,
EC[u(t, A +dAr), 7; A +dr =0.

Add these two inequalities to get
1 41

Ef2A J L (u(s, A +dr)—u(s, Ak, s)7(1) ds dt

0

+2L (u(t, A +dA)—u(e, A)n(r) ds

1

+2d1\j’

0

1
J u(s, A +dr)k(, s)yn(t)dsdi]=0. (12)
o
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Since € has arbitrary sign, the term in square brackets in (12) must be zero.
Since 7(¢) is arbitrary, apply the fundamental lemma of the calculus of
variations to the bracketed term to get

1
2A j’ k(r, $)u(s, A +dA)—u(s, A)yds +2(u(1, A +dA)Y—u(1, A))
0

1
+2dAJ u(s, A +dr)k(t,s)ds =0. (13)
0
Divide (13) by 2 dA and take the limit as dA ~ 0, to obtain

1 1

O$u;\(t,A)+AI k(t,s)ux(s,/\)ds+f k{1, su(s, A)ds. (14)
0 (4]

This is a Fredholm integral equation with kernel k (1, s). Corresponding to
k(t,s) is a resolvent kernel K(f,5,A) such that solutions of Fredholm
integral equations
1
Oxv(!)+:{z(:,;\)+/\j k(t, s)v(s) ds (1%)

()

can be expressed as
1
O=v()+@, A)+A ‘[ K@, s Ay(x, A)ds.
(]

Using the resolvent kernel to express the solution of (14), where
1

¢t A)= L k(, sduls, A ds

we get
1

O=u(t, )+t A)+A j' K1, s, A (s, A)ds.
0
This is nothing other than Eq. (4) of the Cauchy system. The resolvent
kernel must itself satisfy a Fredholm integral equation
1

O0=K(, s, A)+k(t,s)+A j k@, sNK (s, s,A) ds’. (16)

0

Differentiate (16) with respect to A to get
1 1

k(t, s\K (s', 5, A) ds’+A j k(, sYKA (s, 5, 1) ds!

0= Ki(1, s,,\)+j
0
a7

(4]



54 JOTA: VOL. 25, NO. 1, MAY 1978

From Eq. (16), we can reexpress the second term of (17):

1
0=K,\(t, s, \)—~(1/MN[K (1, s, )+ k(1 $)+A J k(1, s"HKx(s',s,A)ds'. (18)
(4]
However, Eq. (18) is a Fredholm integral equation with the same kernel as
Eq. (15). Its solution may be expressed using the same resolvent kernel
K(t, 5 A)
1

0=K,\(t,s,)\)~(l/,\)[K(t,s,A)—~k(z,s)]+AJ K(1,s,A)

0

— (/MK (s, s, AT k(s', s)l ds". (19)

Using Eq. (16) again, several terms in Eq. (19) cancel out, leaving
1
K\(t, s, A)= L Kt s, MK (s',s,A)ds',

which is just Eq. (5) of the Cauchy system. To get the initial conditions (7),
set

A=0

in Eq. (16). To get the initial condition (6), set A=0 in W(z,A]. The
‘minimizing function u(t, 0) of

1 i
j u(t, 0 dt+2 J' f(Nu(t, 0)dr
0

0

can easily be shown to be

u(t, 0)=f(t). O

3. Discussion

The main purpose of this paper has been to reduce the quadratic
variational problem in Eq. (1) to the Cauchy system in relations (4)-(9). In
particular, we have been able to do this without making any use of the
Euler equation, which takes the form of the Fredholm integral equation
).

Subsequent papers in this series will be devoted to systems and to the
treatment of nonquadratic variational problems. Application to team
decision theory and other areas will be presented.
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