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ABSTRACT

A new generation of C3 (command, control, and communication) models for
military cybernetics is developed. Recursive equations for the solution of the c®
problem are derived for an amphibious campaign with linear time-varying dynamics.
Air and ground commanders are assumed to have no intelligence and no communica-

tions. Numerical results are given for the optimal decision rules.
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INTRODUCTION

Consider a C* (command, control, and communication) problem in which
there are two subordinate commanders, both striving to coordinate their
decisions to attain the tactical objective set down by superordinate
headquarters. In an amphibious campaign, the blue naval force lands ground
troops and provides close support. The objective is to move inland a certain
distance in a specified time. It is desired to attain the objective at minimum
expected cost. The primary output of mathematical models of C? is optimal
decision rules for force commitments to be employed by subordinate
headquarters.

Some general concepts of C* are discussed in Refs. [1], [2], and [3].
Recursive equations for the solution of the C* problem are derived for linear
dynamics with quadratic costs in Refs. [4] and [5]. In the latter references,
the blue naval air and ground commanders are assumed to have perfect
intelligence with degraded communication between them. In this paper, it is
assumed that the blue commanders have no intelligence and no communica-
tion. The blue air commander has no intelligence concerning the red air
strength commitment for the coming day and has no communication with
the blue ground commander. Similarly, the blue ground commander has no
intelligence concerning the red ground strength commitment for the coming
day and has no communication with the blue air commander.

The general equations for optimal tactics with no intelligence and no
communications are derived for a perturbation model followed by the
recursive equation solution. The equations may be considered to provide
either the optimal decisions for the total campaign with main objective s, or
the optimal decision increments for a perturbed objective s, Numerical
results are given for campaigns with time-invariant and time-varying dy-
namics.

C? MODEL

The C* model to be derived is a perturbation model with linear time-vary-
ing dynamics and quadratic costs. It is assumed that the scenario for the
main forces has already been planned. Thus only perturbations about the
planned scenario are considered. For example, assume that the main objec-
tive is to move inland a distance of 200 miles in 21 days. The perturbed
objective might be to move inland an additional 21 miles. The red air and
ground strengths, p and g, are the perturbation strength increments (or
decrements) about the main strengths in the 21-day campaign.
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Let N be the duration of the campaign, and let the distance to the
perturbed objective be s,. Consider K days remaining with the front line at
the perturbed position s. The new perturbed position of the front line is

S=S(s,p,q,a,B), (1)

where

S=new perturbed position increment of the front line about the
planned position with K~—1 days remaining,

s=current perturbed position increment of the front line about the
planned position with K days remaining,

p>q=red air and ground perturbed strength increments (or decrements)
about the main strengths, respectively, with K days remaining,

a, B=blue naval air and ground perturbed strength increments (or decre-
ments) about the main strengths, respectively, with K days remain-

ing.
The daily cost increment (or decrement) is given by
C=C(s,p,q,a,B,K). (2)

An additional cost is assessed if the front line at the end of the campaign is at
some perturbed position increment s other than s,. This terminal cost is

b=g(s). (3)

The red air and ground commanders make the decision to employ
strength increments p and q respectively each day. The decision making of
the enemy is simplified by assuming that p and q are random variables with
joint probability density function

w=w(p,q). (4)

Furthermore, assuming that p and q are independent random variables, the
joint probability function can be expressed as the product

w(p,q)=P(p)Q(q). (5)
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The minimum expected cost is defined by -
hy(s)=the expected cost increment (or decrement) of a campaign begin-
ning with the front line at s, of duration K, and employing an
optimal sequence of decisions,

K=0,12,...,N, alls (6)

Using Bellman’s principle of optimality [6], the functions hy . \(s) and h(s)
are related by the recurrence equation

sa(s)=min [ [{Cls.p.q08.K)+ [ S(s.p..8) ]} P(p) Olq) dp .

K=0,12,... ,N-1. (7)
All integrals on p and g are from — oo to co. When no time remains,
ho(s)=(s)- (8)
The conditions for obtaining the minimum are
0
0= 2= [ [ Beos(s.p.q..B)P(p)Q(q) dp g, (9)
0
0=5 | [Benrls:p.a.0.8)P(p) Qg dp da. (10)

where

Byyi(s.p.q,0.8)=Cls.p.q.. B, K) + b [ S(s.p. g, 8) ] (11)
Equations (9) and (10) can then be written
0= [ [{Culs.p. @ B.K) + hic [ S(s.p.q.0.8) 1 S.(s5.P. .. 8))

P(p)Q(q)dpdqg, (12)
°=ff{%@mﬁﬂﬂlﬁ+%[ﬂ&n%mﬂﬂ%ﬁmmmﬁﬂ

P(p)Q(q)dpdg, (13)
K=0,1,2,...,N—1,

where a=a(K+1,s) and 8= B(K+1,s).
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Equations (12) and (13) are the dynamic headquarters-by-headquarters
optimality conditions. They state that at every decision-making opportunity,
each headquarters is to make the decision which reduces the marginal
expected cost of the remainder of the process to zero.

For linear time-varying dynamics with quadratic costs, the new perturbed
position of the front line is assumed to be a function of the old perturbed
position plus a linear combination of the strengths

S=s+Ca+CB~Cyp—Cyg, (14)
where

C1=C1(K), C2=C2(K), C3=C3(K)’ C4=C4<K)-

The perturbed daily cost is assumed to be proportional to the losses, which in
turn are proportional to the strengths utilized. The ground losses are reduced
by the air strength for close-support missions. Thus the daily cost is assumed
to be

C=C5a+(C6-—C7a),8+-;—C8a2+§C9,82, (15)
where
Cs= CS(K>’ Ce= CG(K>’ C= C7(K)’ C= CS(K)’ C9=C9(K>-

The terms in o and 2 in the above cost expression serve to limit the force
commitments made each day. To assure convexity we assume that Cg >0 and
C2 <Cy4C,.

The terminal cost is assumed to be

(s)=A(s=s,)" (16)

From general control-theoretical considerations, the minimum expected cost
has the form

i (s) = v + 8 s + 5%, (17)

where the coefficients vy, 8¢, and ¢, are computed for K stages remaining,
Differentiating Eqs. (14), (15), and (17) and substituting into Eqgs. (12) and
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(13), the following equations are obtained:

0= ff{ B)+ Cga+ [ 8 +2¢(s+ Cia+ Co B~ Cap— Cq)]C}
X P(p)Q(q)dpdq, (18)
0=fj{(Cs-—C7a)+CQB+[8K+2€K(s+C1a+C2,8—C3p—C4q)]C2}

X P(p)Q(q)dpdaq, (19)

which are a set of linear algebraic equations for « and f. Clearly a and 8 are
linear in s.

RECURSIVE EQUATIONS

The recursive equations for the solution of Eqs. (6) and (7) are derived as
follows. Making use of the equations

[P(p)dp=1, [olq)dg=1. (20)
[ [pP(p)O(9)dpdg =P (21)
f f qP(p)Q(q)dpdq =g, (22)

Egs. (18) and (19) can be integrated and rearranged to obtain
-[Cs+ 8¢ C,+26, Cys — 26, C,C3p — 26, C,C,7 |
= (2ex C}+ Cy)a+(26,C,C, — C7) B, (23)
— [ Co+ 84 Cy+2€5 Cos — 264 CyCy p 26, CoCaq |
= (2e C,C,— Cp)a+ (26,C5+ Cy) B. (24)

Solving the simultaneous equations (23) and (24) for a and B, it can be
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shown that
a(K+1,s)=ug +vgs, (25)
B(K+1,s)= x4 + s, (26)
where
e =(— BB, + B,B;) /D, (27)
v = — 26 (CoCr+ C,Cy) /D, (28)
x =(—B,B;+ B,B,)/D, (29)
yx = —2¢(C,Cr+ CyCs)/ D, (30)
B, = Cs+ 8¢ C; —26,C,C3p—2¢,C,Cq, (31)
By=2¢,C,Cy—C,, (32)
By=Cg+ 6, Cy— 26, C,C3p — 26, C,Cq, (33)
B,=2C2+ Cy, (34)
B, =26 C2+ C,, (35)
D=B,Bs— B;. (36)

Substituting the optimal « and § into Eq. (14), the new position of the front
line becomes

S=s+ C 1y + vgs) + Colag +yxs) — Cap— Cyq
= Cuy + Conge + (14 Crog + Cuyg)s — Cyp— Cyq. (37)

The minimum expected cost, by, (s), is obtained by substituting Egs.
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(14), (15), and (17) into Eq. (7):
hgr(s)= ff{ Colug + vgs) + [ G~ Cyluy +DKS):}<xK + ygs)
+ é Coluyx + UKs)z + % Co(xg + yKS>2 + vk
+ 8k [ s+ Cy(ug + vgs) + Colxg + Yxs)

—Cyp—Cyq]
+ e[ s+ Cyuy +0gs) + Cylag + ygs) — Cop— C4q]2}

X P(p)Q(q)dpdgq. (38)

To simplify the notation, express Eq. (38) in the form

i 1(8) = vk o1+ O 418 + €18
=ff{C5uK+C51)Ks
+ Corg — Crtagx + [ Gy — Crlugyg + g ) |8 — Crogygs®
+3(Cetig + Coxg) + (ugevg Gy + Yy Co)s + 5 (Cgv + Cy y)s?
vk + 8 (A +Ags+ A p+Ag)
+eK[<A1+A3p+A4q)2+2A2(A1+A3p+A4q)s+A§s2]}

X P(p)Q(q)dpdy. (39)

Integrating and setting the coefficients of the constant terms, s, and s* equal,
it can be shown that

Yr+1= Cstig + Coxg — Cougexy + %(Csu?( + ngI%) + g + 6K(A1 +A373+A4‘7)
+€K[A12+2(A1A3 77+A1A4‘7+A3A45(7)+A§—7;§ +A%? ]’ (40)
O +1= Csvg + Cg yx — Colug yx + v ) + g 0x Cg + a1 Y Cg + S A,
+2 Ag(A + Ay P+ AG), (41)

€ 41= — Cogyx + Z::’(CBU?( + Gy ?/1%) + €A, (42)
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where
A, = Cyuyg + Cyxg, (43)
Ay=1+ Cyvg + Cy yx, (44)
Ag=—G;, (45)
A=—C, (48)

The second moments of p and q are

p? zﬁ2+a§, q* =q"+a,, (47)

where § and § are the average values and o, and o, are the standard
deviations of p and q.

The recursive relations are given by Eqgs. (40), (41), and (42) supple-
mented by Eqgs. (27) to (30) and (31) to (36). These equations may be
considered to provide either:

(1) the optimal daily decisions, & and f, for the total campaign with the
main objective s;, or

(2) the optimal daily decision increments, a and B, for the perturbed
objective s,.

NUMERICAL RESULTS

Numerical results were obtained using the recursive equations derived in
the previous paragraphs. At each stage the coefficients in the equations for
the optimal blue air strength, o, and the optimal blue ground strength, 3, are
computed. The new position of the front line is computed in Eq. (37) using
the optimal decisions.

Consider a campaign with the following duration, N, and additional
distance to be covered, sy

N=21 days, 5p==21 miles.
The average red strengths and standard deviations are assumed to be
p=q=1,  ©,=0,=05.

Assume the coefficients in Eqs. (14), (15), and (16) are constants with the
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exception of Cg:

C,=0.1, C,=1, Cy=0.02,
Cy=1, Co=0.1, Cy=0.02,
C,=0.1, C,=0.01, A=1

The coefficient Cy in the cost equation is proportional to the red anti-air
strength and may vary during the course of the campaign as the red anti-air
fortifications are destroyed. Then for various choices of C5(K) the optimal air

and ground decisions, « and 8 for K =21, 11, and 1 stages to go are as shown
in Table 1.

In Case I, the coefficient C; is constant. Considering the campaign as a
whole with 21 days and 21 miles to go, and starting with the front line at
s=0, if the red air and ground strengths are constant and equal to their
average values of one, ie., p=p=1 and g =g =1, then the optimal blue air
and ground strengths are also constant and given by

a=1359 and [=10961.
The daily cost given by Eq. (15) is

C=Csa+(Cs— Cra) B+ 3 Cga®+ 3 Cy B2

=0.00679+0.169 +0.018 +0.038
=(},233.
TABLE 1
Case I, C5 constant Case I1, Time-varying Cs
Cs=0.005 Cs(K)=0.005+0.0005K
K=21: K=21:
a=1359-2.573x10"% a=07TT76—2.573x10"%
B=1961-4503x10"% B=1801-4.503 %107 %
K=11: K=11:
a=1848—-4.911x10"3% a=1547—4911 16" %
B=2.818—8.5904 10" % B=2.748—8.594 X 10~ %
K=1: K=1:
a=12.07 - 0.5369s a=12.04 —0.5369s

B=20.70-0.93965 B=20.70-0.9396s
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The front line will move forward at the increment of approximately one mile
per day.

In Case II, C5(K) decreases as the campaign progresses. If the red air and
ground strengths are equal to their average values, then «=0.7776 and
B=1.819 at the beginning of the campaign, and they gradually increase to
a=1444 and B=2.153 at the end of the campaign. The front line moves
forward at the increment of 0.8 miles per day at the beginning of the
campaign, which gradually increases to 1.2 miles per day at the end of the
campaign. The front line moves forward at a lower rate at the beginning of
the campaign where the coefficients of the daily cost are higher, and moves
forward at a higher rate near the end of the campaign where the coefficients
are lower.

It should be noted that in the examples given, the optimal decisions are
the perturbed strength increments about the main strengths, and the posi-
tions are the perturbed position increments of the front line about the
planned position. Furthermore, a, B, and the minimum expected cost
increments are all positive.

The optimal decisions correspond closely to those obtained for perfect
intelligence with no communications in Ref. [5]. In the latter case the
optimal decisions have the form

a(p)=ug + vgs+ wp,

B(q) =k + yxs+29-

For no intelligence, as discussed in this paper, wg =2 =0, and the
coefficients of s in Eqgs. (25) and (26) are numerically the same as in the
above equations, ie., vxg=vg and yg= yy. If the red air and ground
strengths are equal to their average values, then the optimal decisions for
perfect intelligence with no communications are identical to those with no
intelligence and no communications, assuming the coefficients C; given
above are the same. The optimal decisions for no intelligence and no
communications do not depend directly on p and g. The minimum expected
cost for the latter case is higher, however, and increases much more rapidly
as the standard deviations, o, and d,, are increased. The effect of increasing
the standard deviations is to increase Y., in Eq. (40).

In this paper the air and ground commanders were assumed to have no
intelligence and no communications. Future papers will consider perfect
intelligence and perfect communications, and detailed comparisons will be
made so that the effects of intelligence and communications on tactics and
costs can be assessed.
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