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Optimal Tactics for Close Support Operations:
Part I, Degraded Communications’

J. HESs,? H. KAGIWADA,? R, KALABA," K. SPINGARN,* AND C. TSOKOS®

Abstract. A formidable problem in the mathematical studies of C?
{command, control, and communication) is the determination of the
optimal decision rules for force commitments to be employed by
headquarters. Recursive equations are derived for an amphibious
campaign with time-invariant linear dynamics and quadratic costs. Air
and ground commanders are assumed to have perfect intelligence with
degraded communication between them.

Key Words.  Command, control, and communication; integral equa-
tions; optimal decision functions; minimum expected cost.

1. Introduction

Mathematical studies of C* (command, control, and communication)
involve concepts from dynamic programming, tcam decision theory, and
Fredholm integral equations (Refs. -1-2). The primary output of the
mathematical models is optimal decision rules for force commitments to be
employed by subordinate headquarters in coordinating their activitics to
achieve objectives laid down by superordinate headquarters. The decision
rules make use only of information available to each subordinate com-
mander, and that information is determined by intelligence and com-
munication networks. Thus, the decision rules form decision aids to be used
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by seasoned commanders. The second type of output of these models is the
assessment in military costs due to changes in the intelligence and com-
munication networks. Somme general equations were derived by Kagiwada
and Kalaba in Ref. 3 using concepts discussed in Refs. 4-5. In this papet, the
recursive solution of the equations is derived for a particular subset of the
general equations,

Consider a C* problem in which there are two subordinate com-
manders, both striving to coordinate their decisions to attain the tactical
objective set down by superordinate headquarters. In an amphibious
campaign, the blue naval force lands ground troops and provides close
support. The objective is to move inland a certain distance in a specified
time. It is desired to attain the objective at minimum expected cost.

The recursive cquations are derived for time-invariant, lincar dynamics
with quadratic costs. The bluc naval air and n«oc:a commanders are
assumed to have perfect intelligence with degraded communication.
Numerical results are obtained which give the optimal decisions per day of
the blue air and ground commanders as a function of the present position of
the front line and the daily strengths of the red air and ground forces.

2. C* Model

. For the case to be considered, the blue naval air commander has
intelligence which provides him with the red air commander’s strength p, for
the coming day; but, because of the lack of communication, this information
is not sent to the blue ground commander. The blue ground commander has
intelligence which provides him with the red ground commander’s strength
q, for the coming day; but again, because of lack of communication, he does
not communicate this to the blue naval air commander. ;

Let N be the duration of the campaign, and let the distance from the
shore to the objective be so. Consider K days remaining with the front line at
a distance s from the shore. The new position of the front line is assumed to
be a function of the old position plus a linear combination of the strengths,

rm.“h.TQ_Q.TQnmIQuQIQAQV K AHV
where S is the new position of the front line with K — 1 amv\m remaining; s is
the current position of the front line with K days remaining; a, 8 are the blue
naval air and ground strengths, respectively, with X days remaining; p, q are
the red air and ground m:m:m:: respectively with K days; and Cy, C,, C;, C4
are constants.
The daily cost is mmm_::om to be EovoEo:& to Em blue _ommom ,i:o: in
urn are proportional to the strengths utilized. The ground losses are

et

" g
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reduced S the air strength for close support missions. Thus, the daily cost is
assumed to be

C = Csa +(Cs~ Cra)B +3Csa> +3Co82, 2)

_where Cs, Cs, C1, Cg, Cy ate constants.

An additional cost is assessed if the front line at the end of the campaign
is at some position s other than sy, The terminal cost is assumed to be

B (5) = A (s —50)". 3)

The red air and ground commanders make the decision to employ the
strengths p and g, respectively, each day, The decision-making of the enemy
is simplificd by assuming that p, g are random variables with joint prob-
ability density function.

w=w(p, q). (4)

Furthermore, assuming that p, ¢ are independent random variables, the
joint probability function can be expressed as the product

w(p, q)=P(p)Q(q). (5)
The minimum expected cost is defined by
gx = gx(s), K=0,1,2,...,N, all s, 6)
where gx (s) is the expected cost of a campaign beginning with the front line
at s, of duration K, and employing an optimal sequence of decisions. Using

Bellman’s principle of optimality (Ref. 1), the functions gx+1(s) and gk (s)
are related by the recurrence equation

a,f
+gx (S)1P(p)Q(q) dp dg,

gen®)=min [ [ [Coa+ (Com Cra)B +1Caa> +1Cop?
. K=0,1,2,....,N. (7)

All integrals on p, q are from 0 to oo, From general control-theoretical
considerations, the minimum expected cost has the form

, mx@vubmw.sauifﬁﬁnv (8)

where the coeflicients px, ok, Tx are computed for K stages remaining.
The minimization in Eq. (7) is over

et g E:Qﬁ a.vv ~ and B = pLK, s, i.,



Then, differentiation leads to the conditions

0= ._v Aﬂﬁumlﬁuqmvvfﬂux% +_HQK +Nﬂka+ﬁu“h« +Q~m
~ Cap ~ Caq)]C1}Q(q) dg, . 9)

0= ._v ?Q@I Cqa)+ Cof +_”Q.R +N9R@ +Cia + ﬁumm
= Cip—Caq)]C2}P(p) dp, - (10)
which are a system of Fredholm integral equations for the functions a, 8.
Equations (9)-(10) are the dynamic headquarters-by-headquarters opti-
mality conditions. They statc that, at every decision-making opportunity,

each headquarters is to make the decision which reduces the marginal
conditional expected cost of the remainder of the process to zero.

i

i
< b
;

3. Recursive Equations

The recursive equations for the solution of Egs. (6)~(7) are derived as
follows. Making use of the equations

[ewda=1, a
[0@da=a, (12)

and similar relations for p, Eqs. (9)- Cov can be written as the linear
Fredholm integral ma:w:osm

«(p)=01/(Crx + ol (€1-261Come) [ @0 dg
+Nﬁu~ﬁaﬂxa ﬁw Q~QNIMQ~:AM+M\:AQwﬁMQH* :wv
Bl@)=[1/QClr 5%0199& [ aiP(p) dp

+NQ~Q”_%R@.WQ,@L«Q~,Q.W(N,QN%WM +Nﬁkﬁﬁﬁﬁ&~ ‘ . ‘ AMAV

e

[ L e o i o
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We shall solve these integral equations observing that they have degenerate
kernels. Define two new parametets

0= [ B@0l) da (15)

02= [ a(p)P(p) dp. (16

Substituting 8(q) into Eq. (15), we have
v1=[1/(2C37k + Co)[[(C7=2C1 Caic )2+ 2C, Carypp ~ Cs
= Chog = 2Cyrgs + 27k Cr Cad ). (17)
Substituting «(p) into Eq. (16), we have
v2=[1/Q2C}rx + C)l[(C71~2C,Carg )01 +2CCyrrd — Cs

~Cyox —2C1xs + 27k C1C3p ). (18)
To simplify the notation, express Eqgs. (17)-(18) in the form
vi=B(Byv;—Bais + B.), (19)
‘ vy = Bs(Bv1~ Bgs + By). (20)
m:,cm%c::m vy into ,mn. (19) and v, into Eq. (20), it can be shown that
v1=D+D;s, i (21)
vy = D3+ Dys, (22)

where the D;’s are functions of the B;’s. Then, substituting Eq. (21) into Eq.

(13) and Eq. (22) into Eq. (14), it can be shown that the oE::m_ decision

functions are

a@(p) = ux + vgs + wgp, (23)
B(@) = xx + yis + 2xq, (24
where
= BsB,D,+ BsB), (25)
ok = BsB,D; ~ BsB, - (26)
wi =21xC1C3Bs, 27)
" xx = B1B,Ds+ B1BY, (28)
=B\B:Di~B\Bs, | 9
25 = 21k CiCaBy, (30)
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Bi=1/Q2Cix+Co), (3D
By=Cy—2C,Cary, ; (32
By=2Cs7x, - L (33)
B4 =2C,Cs1p — Co— Caog +27xCaCad, (34)
Bl =20,Cy1ip — Co = Caox, | (35)
Bs=1/(2C7x + Cy), . - (36)
Be=2Cy7k, . s 37N
By =2CCarxi — Cs— Cyox +27xC1Cap, (38)
B =2C\Carx§ = Cs— Cro, . (39)
Dy =[B1/(1~B\B3B5)[(B2BsBy + Ba), (40)
Dy =[~B\/(1~B\B}B5)|(B3BsBe+ B3), @1)
D3 =(Bs/(1~B1B}Bs)|(B:B\Bs+ By), (42)
Dy ={-Bs/(1-B,B3Bs))(B2B:B;+ By), (43)

Note that § can be expressed in terms of these coefficients and s, p, q.
Substituting the optimal «, 8 into Eq. (1}, the new position of the front line
waooaom ,; .

S =5+ Ci{ug +vgs + wgp) + Calxg + yxs + 2xq) — Cap — Caq

= Cyug + Caxg +{(1+ Cyok + Coyk)s + (Cywg — C3)p +(Crzx — Ca)g.
o | (44)

" The expected cost gx+1(s) is obtained by substituting Egs. (1) and (8)
into Eq. (7):

gen(s) =min [ [ (Coo+(Co- Cra)B +4Coa> +1Cop?
B

+px +ax(s + Cra + Coff — C3p — Caq)
+ 15 (s + Cra+ Cyf ~Cip - OEVJEAEOSV dpdq. (45)
Substituting Eqs. (23)-(24) into Eq. (45); we have

mx,,:?v = “.TQ%SA + Uks + wgp)

+[Ce — Crlux + vis + wep)Wxx + yxs +zxq) -

+ wﬂmgw +vgs + 5%% +wﬁo§x + yrs + NwEN +pg

e P e e e e, e . e

PR ——

[

I e

e gt s

JUTA! VOL. 30, NO. t, JANUARY 1980 g5

u

+ok[s+ Cilux +vks + wip)+ Calxg + yxs + 2xq) ~ Cap ~ Cuq]
+ric[s + Cilug + vis + wip) + Calxk + yxs + 2xq)
—Cap~CaqT}P(p)Q(q) dp dq. (46)
To simplify :E notation, express Eq. (46) in the form
B +1(8) = pray+ oS + 10187

== ._v~_ *ﬁ.utkufﬂumcxh.fﬁwx\‘mﬁvfnmkk+Q0NKQ ;
~ Cyux +wip)(xk +2xq)
+mQa.<mA - ﬁ‘q?:ﬂ + I\Xﬁvv:a - Q.NCQA + NKQVCKH_% - Qqcx‘u:w&.m

+3Csluk + 2uxwip + wkp® + 2uxvk + vxwip)s + vks?)
+3Co[x% +2xxzkq + 2kq° + 2xxyxk + YkZkq)$ + yxs?] |

+ox +ok(A1+As+Asp+Agg)

+r[(A1+Asp + Asq)’ +2(A + Asp + Asq)Ass
+A3s’IP(p)Q(q) dp dg. (47)

Integrating and setting the coefficients of the constant terms, 5, and s equal,
it can be shown that

pr+1 = Csug + Cswip + Coxg + Cozxq ~ Colug + wip)(xk + 2xqG)
+3Cs(uk + 2ugwyp + wxkp)+5Cs(x % + 2xk2KG + 2 %G7)
+ox tox(A1+Asp+Auq)
+rk[AT+2(A1435 + A 1AL + AsApq) + AP+ A2GY),  (48)
Ok +1= Csvx + Coyx — Coluk + wip)yk — Colxx + zxG) vk

+ Colugvg + vgwip) + Colxkyk + yxzxq)

oA+ 2rkAL A+ AP+ ALg), (49)

Tk +1 = —Crogyk +w0mcwm+wﬁoww+qxbw, (50)
where

A= Crug + Coxg, (51)

Ay =1+ Civg + Cyyk, (52)

As= Cywi —Cs, (53

As=Chrg ~ 1?, (54)

" The recirsive felations are given by Eqs. (48)-(50), supplemented by
Egs. (25)~(30) and (31)-(43).
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4. Numerical Results

Numerical results were obtained using the recursive equations. At each
stage, the coeflicients uk, vk, wx for the optimal blue air strength a(p) and
the coeflicients xg, yx, zx for the optimal blue ground strength 8(q) are
computed in Eqs. (23)-(24) using Eqs. (25)-(43). These coefficients are
~functions of the coefficients px, ok, Tk, of the expected cost given by Eq. (8)
for K stages remaining. Once the coeflicients in the equations for a(p), B(q)
have been computed, the coefficients in the equation for the expected cost
for K +1 stages remaining can be computed using Eqgs. (48)-(50). The new
coefficients g1, Uk+1, Wi+t for a(p) and xx.1, Yx+1, 2x+1 for B{g) can
then be computed and the process repeated until the coefficients have been
computed for all N stages of the campaign. The coefficients are stored for
subsequent processing, The process is initiated with no time remaining by
the terminal cost _‘_ ,

{
go(s)=A(s l.wc.__vu.
from which py, oy, 7o can be computed.

The equation for the new position of the front line is a function of s, the
optimal decisions, and the red strengths p, q. The new position of the front
line can thus be computed recursively using Eq. (44), starting with N stages
remaining, after the coefficients ug, vk, Wk, Xk, Yk, Zx have been computed
and stored as described above. The minimum expected cost can be
computed at each stage using Eq. (8) with the position of the front line s just
computed.

Let us consider a special campaign with the following duration N and
distance to be covered sg:

N =21 days,

The average red strengths are assumed to be

- o= 21 miles,

p=1, q=1
The second moments of p and q are given by
p=p+a;, @ =G +0%

The constant coeflicients in Eqgs. (1)-(3) are

Ci=0.1, Cs=0.005, Cy=0.1,
C=10, Ge=01,  ,=0.5,
Cs=0,  C=001,  0,=0.5,
Co=10, Ce=0.1,  A=10.

JULAD VUL, 34, NU. I, JANUAKY [Y¥U g/

The optimal air and ground decisions a(p), B(q) for K =21, 11, and 1 stages
to go are as follows:

K =21, a(p)=04544-9.225%10"25+4.792x107*p,
K=21, Blq)=2.002-4.659x107%s+4.575x107%q;
K=11, a(p)=0.6285-1.758x107%s+9.557x 10™*p,
K=11, B(q)=2.841-8.876x10"%s+8.731x 107 %q;
k‘u?, a(p)=3.967-0.18535+0.1667p,
K =1, B(q)=19.67—-0.93565 +0.95244.

Consider the situation with K = 11 days remaining and the front line at
s = 10 miles. The blue air commander receives the intelligence that the red
air strength for the coming day will be p = 1. Then, using the above table, the
optimal blue air strength is

a(p)=0.6285-1.758 x 107%(10) +9.557 X 107%(1) = 0.45.

Assume that the blue ground commander receives the intelligence that the
red ground strength for the coming day will be g = 0.7. Then, the optimal
blue ground strength is

B(q)=2.841-8.876x107%(10)+8.731 x 107%(0.7) = 2.01.

Note that the blue air and ground decisions are not dependent on each other,
because of the assumed lack of communication. Each commander bases his
decision on his own intelligence.

Considering the campaign as a whole with 21 days and 21 miles to go,
then, starting with the front line at s = 0, the optimal decisions are such that
the front line moves forward approximately one mile per day. Furthermore,
if the red air and ground strengths are constant throughout the campaign and
equal to their average values of one [i.e,, p=p =1 and g =4 = 1), then the
optimal blue air and ground strengths are also constant with

Qavvno.pmap B(q)=2.047.

The daily blue loss, Eq. (2), is constant in this case and equal to C = 0.4176.
The minimum expected cost, Eq. (8), is equal to the sum of the daily costs
plus the terminal cost when i

s

op=0,=0.

:anomﬁ:mqsQaaoam:og:m:ma:aov:_aaA,__Q..\Zo:m.cﬁm:o:wmmom:a
expected cost. - :



&, Discussion

The above sample campaign is one of many for which results have been
obtained. In this example, a(p), B(q) are positive. In general, roéo.ér for
arbitrary choices of the C; coefficients, a(p), B(q) may vn negative. >.:
important interpretation of this situation involves the oo:maoguﬁ_c: of this
model as a perturbation model, so that a(p), B(q) represent increments
above and below previously assigned values. o

In an actual campaign, a coefficient such as Cs in the cost equation is
proportional to the red anti-air strength and may vary during the course of
the campaign as the red anti-air fortifications are destroyed. The analysis of
such a case involves time-varying coefficients and is easily handled by an
extension of the foregoing analysis. The time-varying casc will ?.w %m.o:mmoa
in a future paper, followed by consideration of different combinations ,oﬁ
intelligence and communication Sﬁmc::ﬂw. ,

Aﬁ,_
M
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. Communicated by M. D. Intriligator

Abstract.  This paper develops an optimal control model for a graded
manpower system where the demand for manpower is uncertain, The
organization’s objective is to minimize the discounted costs of operating
the manpower system, including excess demand costs. The stock of
workers in various grades can be adjusted in two ways. The first method
is outside hiring flows, which is the usual control variable used in
previous research. The second method is to control the transition rates
between grades of the hierarchy, an instrument not previously studied.
Incorporating the transition rates into the control variables creates time
lags in the control process. The resulting problem is solved numerically
using an approximation for the time-lagged control variables. The
numerical example is based on the Air Force officer hierarchy. The
model is used to examine such issues as the desirability of granting
tenure to workers who are not promoted to the highest grade and the

cffects of length-of-service and demand uncertainty on manpower
policy. ,

Key Words. Stochastic optimal control, labor hierarchy, time-lagged
control, internal labor markets, manpower planning,

1. Introduction

A distinguishing feature of many oryanizations is the hierarchical form
of their labor force. This hierarchy is an arrangement of workers according
to grade; the stock of workers in each grade is changed by a flow of workers
between grades within the organization and also by a flow of people entering
and leaving it. The problem posed in this paper is to find optimal worker flow
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