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Mean-Centering Does Nothing for Moderated Multiple Regression 

Abstract 
 
The cross-product term in moderated regression may be collinear with its constituent parts, 

making it difficult to detect main and interaction effects. The commonplace response is to mean-

center.  However, we prove that mean-centering neither changes the computational precision of 

parameters, the sampling accuracy of main, simple, and interaction effects, nor R2. 
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 Moderated multiple regression models are widely used in marketing and have been the 

subject of much scholarly discussion (Irwin and McClelland 2001; Sharma, Durand, and Gur-

Arie 1981). The interaction (or moderator) effect in a moderated regression model is estimated by 

including a cross-product term as an additional exogenous variable as in   

(1)        ε+α+α+α+α+α= cc02132211 xxxxxy ,     

where xc plays the role of other covariates that are not part of the moderated element.  This x1x2 

cross-product is likely to be correlated with the term x1 since we can think of x2 as a non-constant 

multiplier coefficient of x1. This has been interpreted as a form of multicollinearity, and 

collinearity makes it difficult to distinguish the separate effects of x1x2  and x1 (and/or x2).  

 In response to this problem, various researchers including Aiken and West (1991) and 

Jaccard, Wan, and Turrisi (1990) recommend mean-centering the variables x1 and x2 as an 

approach to alleviating collinearity related concerns.  If the variables x1 and x2 are mean-centered, 

then the equation will be of the form 

(2)  υ+β+β+−−β+−β+−β= cc022113222111 x)xx)(xx()xx()xx(y .  

In comparison, the interaction term in (2) involving (x1- x 1)(x2- x 2) will have relatively smaller 

covariance with the term x1- x 1 because the multiplier coefficient, x2- x 2, is zero on average.   

 This practice of mean-centering has become commonplace throughout the social sciences; 

for example, the Social Science Citation Index shows 2,501 cites for Aiken and West (1991). A 

review of the influential marketing journals over the past decade reveals that mean-centering has 

become the standard method by which marketing researchers deal with collinearity concerns in 

moderated regression models, including eight citations in the Journal of Marketing Research, 15 

in the Journal of Marketing, and four in the Journal of Consumer Research. A typical statement 

taken from Rokkan, Heide, and Wathne (2003, p. 219), which typifies the standard usage of 
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mean-centering, is, “To mitigate the potential threat of multicollinearity, we mean-centered all 

independent variables that constituted an interaction term (Aiken and West 1991).” 

 Can such a simple shift in the location of the origin really help us see the pattern between 

variables?  We use a hypothetical example to answer this question. Let the true model for this 

simulated data be: y = x1+½ x1x2+ε where ε~N(0,0.1). In Figure 1a, we graph the relationship 

between y and uncentered (x1, x2).  In Figure 1b, we see the relationship between y and mean-

centered (x1, x2).  Obviously the same pattern of data is seen in both the graphs, since shifting the 

origin of the exogenous variables x1 and x2 does not change the relative position of any of the 

data points. Intuitive geometric sense tells us that looking for statistical patterns in the mean-

centered data will neither be easier nor harder than looking for statistical patterns in the 

uncentered data.   

------- Figure 1 about here ------- 

 In fact, Aiken and West (1991, p. 182) made their recommendation not because of better 

statistical properties, but because of computational reasons stating “As was shown in chapter 4, 

centering versus not centering has no effect on the highest order interaction term in multiple 

regression with product variables.  However, centering may be useful in avoiding computational 

difficulties.” (emphasis added). 

 In this paper, we will demonstrate that geometric intuition is correct: mean-centering in 

moderated regression does not help.  Specifically, we show the following: 1) in contrast to Aiken 

and West’s (1991) suggestion, mean-centering does not improve the accuracy of numerical 

computation of statistical parameters, 2) it does not change the sampling accuracy of main effects, 

simple effects, and/or interaction effects (point estimates and standard errors are identical with or 



 5 

without mean-centering), and 3) it does not change overall measures of fit such as R2 and 

adjusted-R2.  It does not hurt, but it does not help, not one iota.   

1.  Mean Centering Neither Helps Nor Hurts 

 Straight-forward algebra of equation (1) shows that it is equivalent to: 

(3) .xxxxx
)xx)(xx()xx)(x()xx)(x(y

cc21322110

221132213211231
ε+α+α+α+α+α+

−−α+−α+α+−α+α=  

Comparing (2) and (3), there is a linear relationship between the αααα    and ββββ parameter vectors: 

(4)   .=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

α
α
α
α
α

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

β
β
β
β
β

= ααααββββ W

10000

01xxxx

00100

00x10

00x01

c

0

3

2

1

2121

1

2

c

0

3

2

1

 

The inverse of W is easily computed as: 

(5)    
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Notice that the determinants of both W and W-1 equal 1. 

 Suppose a data set consists of an n×5 matrix of explanatory variable values X ≡ 

[X1�X2�X1*X 2�1�Xc], where Xj is a column n-vector of observations of the jth variable, X1*X 2 is 

an n-vector whose typical component is Xi1X i2, and 1 is a vector of ones. The empirical version of 

(1) is therefore Y=Xαααα+ε. This is equivalent to Y=XW-1Wαααα+ε=XW-1ββββ+ε. It is easily seen that 

XW-1≡[X1- x 11�X2- x 21� (X1- x 11)*(X 2- x 21)�1�Xc], the mean-centered version of the data.   

 An immediate conclusion is that ordinary least squares (OLS) estimates of (1) and (2) 

produce identical estimated residuals e, and because the residuals are identical, the R2 for both 
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formulations are identical.  OLS estimators a=(X’X) -1X’Y and b=((XW-1)’(XW -1))-1(XW-1)’Y are 

related to each other by b=Wa.  Finally, the variance-covariance of the uncentered and mean-

centered OLS estimators are Sa=s2(X’X) -1 and Sb=s2(W’ -1X’XW -1)-1=s2W(X’X) -1W’, where the 

estimator of σ2  is s2=e’e/(n-5). 

 As noted earlier, Aiken and West (1991) recommend mean-centering because it may help 

avoid computational problems.  What are these unspecified computational problems?  Rounding 

errors may be large when computing the inverse of X’X using finite precision digital calculations.  

When the determinant of X’X is near zero as it might be with collinear data, the computation of 

(X’X) -1 will eventually lead to division by almost zero (recall A-1=adj(A)/|A| for a square matrix 

A), which produces rounding error that might make estimates computationally unstable.  Each 

computation done at double-precision on a modern computer will be accurate to at least 15 digits 

of accuracy, but repeated computations can cause the errors to accumulate.  However, since the 

mid-1980s, major statistical software packages have inverted matrices with singular value 

decomposition algorithms, which have been shown to dramatically reduce this accumulation 

compared to Gaussian elimination (Hammarling 1985). McCullough (1999) demonstrates that 

while cumulative computational errors are indeed possible in statistical software such as SAS and 

SPSS, for even complex linear regression problems we will get 7 to 10 digits of computational 

accuracy. This is more than enough computational accuracy for typical purposes, especially given 

that raw data may come from a survey with one significant digit of accuracy (say, using seven-

point scales).   

 Regardless, Aiken and West (1991) seem to suggest that mean-centering reduces the 

covariance between the linear and interaction terms, thereby increasing the determinant of X’X 

and mitigating the roundoff errors in inverting the product matrix.  Is this true?  In the uncentered 
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data, we must invert X’X and in the centered data we must invert W’-1X’XW -1.  Intuitively, 

reducing the collinearity between X1, X2, and X1*X 2 should reduce computational errors.  

However, mean-centering not only reduces the off-diagonal elements (such as X1’X 1*X 2), but it 

also reduces the elements on the main diagonal (such as X1*X 2’X 1*X 2). Furthermore, mean-

centering has no effect whatsoever on the determinant. 

Theorem 1:  The determinant of the uncentered data product matrix X’X equals the determinant 

of the centered data product matrix W’-1X’XW -1. 

(Proofs of all theorems are relegated to the appendix).  Because the source of 

computational problems in inverting these matrices is a small determinant, the same 

computational problems exist for mean-centered data as for uncentered data.  

 Also, assuming that the random variable ε is normally distributed, the OLS a is normally 

distributed with a mean αααα,,,, and variance-covariance matrix σ2 (X’X) -1.  Because b is a linear 

combination of these, Wa, b must be normal with mean Wαααα,,,, and an estimated variance-

covariance matrix WSaW’.  As Aiken and West (1991) have shown, estimation of the interaction 

term is identical for uncentered and centered data; we repeat this for sake of completeness.  

Theorem 2:  The OLS estimates of the interaction terms α3 and β3, a3 for (1) and b3 for (2), have 
identical point estimates and standard errors. 

 
 This result generalizes to all other effects as seen in the next three theorems. 

Theorem 3:  The main effect of x1 (β1 from equation (2) or α1+α3 x 2 from equation (3)) as 
measured by the OLS estimate b1, or by the OLS estimate a1+a3 x 2, have identical point 
estimates and standard errors. 

 
 Note that the coefficient α1 in equation (1) is not the main effect of x1; the “main effect” 

means the “average effect” of x1, namely α1+α3 x 2.  Instead, the coefficient α1 is the simple effect 

of x1 when x2=0.  Algebraic rearrangement of (4) states that this simple effect can also be 

measured from the main effects found in the mean-centered equation (2) because a1=b1- x 2b3. 
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Theorem 4:  The simple effect of x1 when x2=0 is either α1 in equation (1), or β1- x 2β3 from 
equation (2), and the OLS estimates of each of these (a1 for (1) and b1- x 2b3 for (2)) have 
identical point estimates and standard errors. 

 
Theorem 5:  The simple effect of x1 when x2=1 is either α1+α3 in equation (1), or β1-(1-x 2)β3 

from equation (2) and the OLS estimates of each of these (a1+a3 for (1) and b1-(1-x 2)b3 
for (2)) have identical point estimates and standard errors. 

 

 In summary, although some researchers may believe that mean-centering variables in 

moderated regression will reduce collinearity between the interaction term and linear terms and 

will therefore miraculously improve their computational or statistical conclusions, this is not so.  

We have demonstrated that mean-centering does not improve computational accuracy nor does it 

change the ability to detect relationships between variables in moderated regression.   

 

2. Comments 

 Why do so many researchers mean-center their moderated variables?  Clearly they do so 

to counter the fear that by including a term x1x2 in the regressors, they will create collinearity 

with the main regressor, such as x1, so that it will become difficult to distinguish the separate 

effects of x1 and x1x2 on y.  If we make x2, the multiplier of x1 in the interaction term, closer to 

zero on average, then we can reduce the covariance and correlation. One simple way to do this is 

to replace the multiplier x2 by x2- x 2. By subtracting the mean, the typical value of the multiplier 

is zero and hence the covariance between the regressor and the interaction terms is smaller.  This 

appears to reduce the “potential threat of multicollinearity” and hopefully improves our ability to 

distinguish the effect of changes in x1 from changes in x1x2. 

 This logic seems plausible, but it is incomplete.  Mean-centering not only reduces the 

covariance between x1 and x1x2, which is “good,” but it also reduces the variance of the 

exogenous variable x1x2, which is “bad.”  For accurate measurement of the slope of the 



 9 

relationship, we need the exogenous variables to sweep out a large set of values; however, mean-

centered (x1- x 1) (x2- x 2) has a smaller spread than x1x2.  When both the improvement in 

collinearity and the deterioration of exogenous variable spread are considered, mean-centering 

provides no change in the accuracy with which the regression coefficients are estimated.  The 

complete analysis of mean-centering shows that mean-centering neither helps nor hurts 

moderated regression. 

 A point that may confuse some researchers in this regard is that t-statistics for individual 

regressors may change when data are mean-centered. This does not occur for the x1x2 term. As 

noted by Aiken and West (1991) and shown here, the coefficient and the standard error for the 

interaction (highest order) term, and hence the significance of this term, will be identical with or 

without mean-centering. However, t-statistics may change for x1 or x2 terms as a result of shifting 

the interpretation of the effect. In a regression without mean-centering, the coefficients represent 

simple effects of the exogenous variables, i.e., the effects of each variable when the other 

variables are at zero. When data are mean-centered, the coefficients represent main effects of 

these variables, i.e., the effects of each variable when the other variables are at their mean values. 

When there is a meaningful interaction between x1 and x2, the main effect will not equal the 

simple effect, and may have a significant t-statistic where the simple effect does not.  

We illustrate this point that results of linear effects may change across the uncentered and 

mean-centered models by running separate regressions on the synthetic data used earlier. Suppose 

that, as above, the true model is: y = x1+½ x1x2+ε where ε~N(0,0.1), and the mean of x1 is equal 

to 1.5, and the mean of x2 is equal to 1.0. Table 1 shows the results of both the uncentered and 

mean-centered regressions from a simulated sample of n = 121 observations. 

------- Table 1 about here ------- 
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Table 1a shows the results of the mean-centered regression model and Table 1b shows the 

results of the uncentered model. Both the mean-centered and the uncentered models provided an 

identical fit to the data, and yielded the same model R2. As expected, the coefficients of the 

interaction, the standard errors, and the t-statistics obtained from both the models are identical.   

An examination of the linear effects from Tables 1a and 1b reveals a different story. The 

linear effect of x1 is significant in both the uncentered and mean-centered models, whereas x2 is 

significant only in the mean-centered model. As discussed earlier, the significant result for x2 in 

the mean-centered model should not be taken to imply that the mean-centering approach is 

superior in alleviating collinearity concerns. The effects tested in these two models are vastly 

different (simple effects from the uncentered models vis-à-vis main effects from the centered 

models), and hence, direct comparisons of the corresponding effects are inappropriate.  The 

infamous “comparison of apples and oranges” metaphor is appropriate. Using equation (1) and 

b=Wa, we can recover an equally accurate measure of the main effect from the uncentered data, 

and using equation (2) and a=W-1b, we can recover an equally accurate measure of the simple 

effect from the centered data.  This equivalence between uncentered and mean-centered models 

may be viewed as an extension of Irwin and McClleland (2001). 

In such a circumstance, should a researcher mean-center or not?  One might argue that the 

main effects are the more meaningful term because they better characterize the overall 

relationships, so the data should be mean-centered. However, one might also argue that the simple 

effects are preferable because they provide a more fine-grained understanding of the patterns, so 

the data should be uncentered.  Both arguments may be persuasive, but the choice should be made 

independent of the spurious rationale pertaining to multicollinearity since the information can be 

recovered from either approach.  Of course, recovery of the proper standard errors requires 
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computing the diagonal elements of matrices such as WSaW’ in the former or W-1SbW
-1’ in the 

latter, and this may be more easily accomplished by reversing the data-centering decision. 

However, mean-centering does not hurt, so there is no need to re-evaluate the conclusions of the 

many published papers that have used mean-centering as long as the researchers are clear about 

the proper interpretation of the linear terms. 

Due to the fact that mean-centering does not mitigate multicollinearity in moderated 

regression, one might ask, “What else can be done?” One alternative is to use the residual-

centering method proposed by Lance (1986), but this is a distinctly bad idea. Echambadi, Arroniz, 

Reinartz, and Lee (2004) show that residual-centering biases the x1 and x2 effects, which is 

undesirable. Because collinearity problems cannot be remedied after the data has been collected 

in most cases, we recommend that researchers carefully design their research studies prior to 

collecting their data. If feasible, one can address it by using a data collection scheme that isolates 

the interaction effect (for example, a factorial design). Likewise, if feasible, one can address the 

loss of power associated with multicollinearity by increasing the sample size; in this regard, 

Woolridge (2001) notes that the effects of multicollinearity are indistinguishable from the effects 

of micronumerosity, or small sample sizes.  

 Summary:  Whether we estimate uncentered moderated regression equation (1) or the 

mean-centered equation (2), all the point estimates, standard errors and t-statistics of the main 

effects, simple effects, and interaction effects are identical, and will be computed with the same 

accuracy by modern double-precision statistical packages.  This is also true of the overall 

measures of accuracy such as R2 and adjusted-R2. 
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Table 1 
Results from Regression Analysis Utilizing Uncentered and Mean-Centered Terms a 

 

True Model: Y = 1X1 + 0 X2 + ½ X1×X2 + ε, where ε~N(0,0.1) and 1X = 1.5,  2X = 1.0 

a. Mean-centered model: OLS regression coefficients for main effects 

Dependent variable: Y 

Variables 
Unstandardized  

Coefficients t-statistic 
 

Interpretation 

Constant 2.237* 241.767  

 (0.009)   

11 XX −  1.505* 51.423 Main effect of X1 at mean levels of X2 

 (0.029)   

22 XX −  0.736* 25.157 Main effect of X2 at mean levels of X1 

 (0.029)   

( 11 XX − )× 0.386* 4.173 Interaction 

( 22 XX − ) (0.093)   

 R2 0.966  

N=121 Adjusted R2 0.965  

 

b. Uncentered model: OLS regression coefficients for simple effects  

Dependent variable: Y 

Variables 
Unstandardized  

Coefficients t-statistic 
 

Interpretation 
Constant -0.177 -1.189  

 (0.149)   

1X  1.119* 11.526 Simple effect of X1 for X2 = 0 
 (0.097)   

2X  0.157 1.106 Simple effect of X2 for X1 = 0 
 (0.142)   

1X × 2X  0.386* 4.173 Interaction 
 (0.093)   
 R2 0.966  

N=121 Adjusted R2 0.965  
* significant at 0.01 level; 
a  standard errors are given in parentheses 
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Figure 1 
Graphical Representation of Uncentered and Mean-centered Data in 3D Variable Space 
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Appendix 

 

Proof of Theorem 1:  Recall that the determinant of W-1 equals 1. So, det(W’-1X’XW -1)= 

det(W’-1)det(X’X)det(W-1)=det(W-1’)det(X’X)det(W-1)=det(X’X).  Q.E.D. 

 

Proof of Theorem 2:  From the third row of (4), b3=a3.  In this appendix, we will denote Sa by S.  

Using matrix multiplication of (4), the third column of SW’ is 
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The third row of W is [0 0 1 0 0], so the 3rd row×3rd column of WSW’ is S33.  That is, 

SE(b3)=SE(a3)= 33S .  Q.E.D. 

Proof of Theorem 3:  From the first row of (4), the point estimates are equal.  The first column 

of SW’ is 
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The first row of W is [1 0 x 2 0 0], so the variance of b1  (the 1st row×1st column of 

WSW’) is S11+2x 2S13+x 2
2S33.  The variance of a1+a3 x 2 is var(a1)+2x 2 
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cov(a1,a3)+ x 2
2var(a3)= S11+2x 2S13+x 2

2S33. That is, 

SE(b1)=SE(a1+a3 x 2)= 33
2
213211 SxSx2S ++ .  Q.E.D. 

Proof of Theorem 4:  The variance of b1- x 2b3 equals var(b1)-2x 2 cov(b1,b3)+ x 2
2var(b3).  From 

the proofs of Theorems 2 and 3 we know that var(b3)=S33 and var(b1)= 

S11+2x 2S13+ x 2
2S33.  The first column of SW’ is 
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and the third row of W is [0 0 1 0 0], so the covariance of b1 and b3  (the 3rd row×1st 

column of WSW’) is S31+ x 2S33.  Hence the variance of b1- x 2b3 equals 

S11+2x 2S13+ x 2
2S33 -2x 2(S31+x 2S33)+ x 2

2S33 = S11.  That is, SE(a1)=SE(b1-b3 x 2)= 11S .  

Q.E.D. 

Proof of Theorem 5: a variant of the above. 

 


