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Mean-Centering Does Nothing for Moderated Multiple Regression
Abstract
The cross-product term in moderated regression may be collinear witinststwent parts,
making it difficult to detect main and interaction effects. The commonplapemse is to mean-
center. However, we prove that mean-centering neither changes the cmnplpaiecision of

parameters, the sampling accuracy of main, simple, and interaction efted,



Moderated multiple regression models are widely used in marketing and have been the
subject of much scholarly discussion (Irwin and McClelland 2001; Sharma, Durand, and Gur-
Arie 1981). The interaction (or moderator) effect in a moderated regressiohiseskmated by
including a cross-product term as an additional exogenous variable as in
(1) Y = 03Xy X, HUgX X, +0g HA X, +HE,
where % plays the role of other covariates that are not part of the moderated elementxJI his
cross-product is likely to be correlated with the tegmsirce we can think of»as a non-constant
multiplier coefficient of x. This has been interpreted as a form of multicollinearity, and
collinearity makes it difficult to distinguish the separate effectsaf xand x (and/or x).

In response to this problem, various researchers including Aiken and West (1991) and
Jaccard, Wan, and Turrisi (1990) recommend mean-centering the variphlebxasan
approach to alleviating collinearity related concerns. If the variablesdx are mean-centered,
then the equation will be of the form
2) Y =B1(Xg =Xq) +Ba(Xp =X3) +Ba(Xg =X) (X5 =X;) +Bg +BcXc +U.

In comparison, the interaction term in (2) involving-&;)(x2- X 2) will have relatively smaller
covariance with the termyxx 1 because the multiplier coefficient-X », is zero on average.

This practice of mean-centering has become commonplace throughout thecsentass
for example, the Social Science Citation Index shows 2,501 cites for Aiken andl\@&sxt A
review of the influential marketing journals over the past decade reveatsdgbatcentering has
become the standard method by which marketing researchers deal with ctllowecerns in
moderated regression models, including eight citations iddilraal of Marketing Research, 15
in theJournal of Marketing, and four in theournal of Consumer Research. A typical statement

taken from Rokkan, Heide, and Wathne (2003, p. 219), which typifies the standard usage of



mean-centering, is, “To mitigate the potential threat of multicollibgasie mean-centered all
independent variables that constituted an interaction term (Aiken and West 1991).”

Can such a simple shift in the location of the origin really help us see the etteren
variables? We use a hypothetical example to answer this question. Let tmedeldor this
simulated data be: y 532 x;x>+¢ wheree~N(0,0.1). In Figure 1a, we graph the relationship
between y and uncentered,(x2). In Figure 1b, we see the relationship between y and mean-
centered (x x2). Obviously the same pattern of data is seen in both the graphs, since shifting the
origin of the exogenous variablesand % does not change the relative position of any of the
data points. Intuitive geometric sense tells us that looking for statiptitterns in the mean-
centered data will neither be easier nor harder than looking for statistiteathpah the

uncentered data.

In fact, Aiken and West (1991, p. 182) made their recommendation not because of better
statistical properties, but because of computational reasons stating $Ahowan in chapter 4,
centering versus not centering has no effect on the highest order interactiam teultiple
regression with product variables. However, centeriagbe useful in avoiding computational
difficulties.” (emphasis added).

In this paper, we will demonstrate that geometric intuition is correctn{oertering in
moderated regression does not help. Specifically, we show the following: 1}iastda Aiken
and West's (1991) suggestion, mean-centering does not improve the accuracy of humerica
computation of statistical parameters, 2) it does not change the samplingcgaaf main effects,

simple effects, and/or interaction effects (point estimates and stamdasiage identical with or



without mean-centering), and 3) it does not change overall measures of fit sifciinas R
adjusted-R It does not hurt, but it does not help, not one iota.
1. Mean Centering Neither Helps Nor Hurts

Straight-forward algebra of equation (1) shows that it is equivalent to:

3) y = (0 05X, ) (X = X) + (0, +05X) (X, —X5) Ha5(Xp =X ) (X, —X;5)
+ 00y + 0y Xy +0,X, + 05X X, + 0 X, +E.

Comparing (2) and (3), there is a linear relationship betweem éinel parameter vectors:

B1 1 o %, 0 0]q,
B, o 1 % o0 olla,
@) B=|p,|=|0 0 1 0 o|la,|=Wa
Bo| [X2 X XX 1 0Offag
8] [0 0o o 0 1]a]

The inverse of W is easily computed as:

1 0 -%X, 00
0 1 -x, 00
(5) wil=l 0 o0 1 00
-X, -X, XX, 1 0
0 0 0 0 1

Notice that the determinants of both W and @gual 1.

Suppose a data set consists of &b matrix of explanatory variable valuessX
[X1:X2: X1*X2:1: X¢], where Xis a column n-vector of observations of the jthalale, X*X, is
an n-vector whose typical component igX%, andl is a vector of ones. The empirical version of
(1) is therefore Y=)+¢. This is equivalent to Y=XWWa-+e=XW'B+¢. It is easily seen that
XWIE[X 1-X 115 X - X217 (X1- X 11)*(X 2- X 21) 1 11 X ], the mean-centered version of the data.

An immediate conclusion is that ordinary leastasga (OLS) estimates of (1) and (2)

produce identical estimated residuals e, and bectesresiduals are identical, thefBr both



formulations are identical. OLS estimatargX'X) *X’Y and b=((XW™)'(XW ")) (XW™)'Y are
related to each other lprWa. Finally, the variance-covariance of the uncentered and mean-
centered OLS estimators arg=§(X'X) * and $=sA(W’ X'XW 1 1=2W(X'X) *W’, wherethe
estimator ob” is $=e’e/(n-5).

As noted earlier, Aiken and West (1991) recommend mean-centering becauséélmay
avoid computational problems. What are these unspecified computational problems?ndroundi
errors may be large when computing the inverse of X’X using finite precisidaldiglculations.
When the determinant of X’X is near zero as it might be with collinear data, thputation of
(X'X) * will eventually lead to division by almost zero (recaftAadj(A)/|A| for a square matrix
A), which produces rounding error that might make estimates computationally endtatuh
computation done at double-precision on a modern computer will be accurate to at leass 15 digi
of accuracy, but repeated computations can cause the errors to accumulateertHswce the
mid-1980s, major statistical software packages have inverted matribesingtlar value
decomposition algorithms, which have been shown to dramatically reduce this a¢cmmula
compared to Gaussian elimination (Hammarling 1985). McCullough (1999) demonstaates t
while cumulative computational errors are indeed possible in statisifbabse such as SAS and
SPSS, for even complex linear regression problems we will get 7 to 10 digits of coomaltati
accuracy. This is more than enough computational accuracy for typical purppseslbsgiven
that raw data may come from a survey with one significant digit of acc(sagyusing seven-
point scales).

Regardless, Aiken and West (1991) seem to suggest that mean-centering tteeluce
covariance between the linear and interaction terms, thereby increasdegaimainant of X’X

and mitigating the roundoff errors in inverting the product matrix. Is this thnéffe uncentered



data, we must invert X’X and in the centered data we must invetXWwW . Intuitively,
reducing the collinearity between XX, and X*X , should reduce computational errors.
However, mean-centering not only reduces the off-diagonal elements (su¢ch &s<X%), but it
also reduces the elements on the main diagonal (suctt¥s X,*X ,). Furthermore, mean-
centering has no effect whatsoever on the determinant.

Theorem 1. The determinant of the uncentered data product matrix X’X equals the determinant
of the centered data product matrix ¥Xw ™.

(Proofs of all theorems are relegated to the appendix). Because the source of
computational problems in inverting these matrices is a small determinarditbe s
computational problems exist for mean-centered data as for uncentered data.

Also, assuming that the random variable normally distributed, the OL&is normally
distributed with a meaa, and variance-covariance matd& (X'X) *. Becaus® is a linear
combination of these, Wb must be normal with mean&Yyand an estimated variance-
covariance matrix Ws3V'. As Aiken and West (1991) have shown, estimation of the interaction
term is identical for uncentered and centered data; we repeat this forf sakepteteness.

Theorem 2. The OLS estimates of the interaction temgsndfs, a for (1) and b for (2), have
identical point estimates and standard errors.

This result generalizes to all other effects as seen in the nextithozerhs.

Theorem 3. The main effect of x(B, from equation (2) oa;+03X 2 from equation (3)) as
measured by the OLS estimate &r by the OLS estimatg-eas X », have identical point
estimates and standard errors.

Note that the coefficiert; in equation (1) is not the main effect af the “main effect”
means the “average effect” of, namelya;+a3X,. Instead, the coefficient; is the simple effect

of x; when %=0. Algebraic rearrangement of (4) states that this simple effieclsa be

measured from the main effects found in the mean-centered equation (2) bgehiiselas.



Theorem 4: The simple effect of xwhen %=0 is either; in equation (1), o;:- X 233 from
eqguation (2), and the OLS estimates of each of theser(él) and k- X 2bs for (2)) have
identical point estimates and standard errors.

Theorem 5. The simple effect of xwhen %=1 is eithem;+a3 in equation (1), oB:-(1-X2)B3
from equation (2) and the OLS estimates of each of thesas far (1) and kb-(1-X2)b3
for (2)) have identical point estimates and standard errors.

In summary, although some researchers may believe that mean-cerdeabies in
moderated regression will reduce collinearity between the interactiaratet linear terms and
will therefore miraculously improve their computational or statistical losians, this is not so.

We have demonstrated that mean-centering does not improve computational acouda®s it

change the ability to detect relationships between variables in modemgteskien.

2. Comments

Why do so many researchers mean-center their moderated variabledy ti#gado so
to counter the fear that by including a terry4n the regressors, they will create collinearity
with the main regressor, such asso that it will become difficult to distinguish the separate
effects of X and xx, ony. If we make x the multiplier of xin the interaction term, closer to
zero on average, then we can reduce the covariance and correlation. One sintpldonttys is
to replace the multiplierady x- X ». By subtracting the mean, the typical value of the multiplier
is zero and hence the covariance between the regressor and the interactiasm saraller. This
appears to reduce the “potential threat of multicollinearity” and hopefullyowmegrour ability to
distinguish the effect of changes infrom changes inx..

This logic seems plausible, but it is incomplete. Mean-centering not only seithece
covariance between xand %x,, which is “good,” but it also reduces the variance of the

exogenous variablex,, which is “bad.” For accurate measurement of the slope of the



relationship, we need the exogenous variables to sweep out a large set of values;, hoseave
centered (¥ X1) (Xo-X2) has a smaller spread thaixx When both the improvement in
collinearity and the deterioration of exogenous variable spread are considened,emiesing
provides no change in the accuracy with which the regression coefficienttaetext The
complete analysis of mean-centering shows that mean-centering neigisendrehurts
moderated regression.

A point that may confuse some researchers in this regard is thatttestéisindividual
regressors may change when data are mean-centered. This does not occugXpteha.xAs
noted by Aiken and West (1991) and shown here, the coefficient and the standard error for the
interaction (highest order) term, and hence the significance of this tefrbewdentical with or
without mean-centering. However, t-statistics may change; for % terms as a result of shifting
the interpretation of the effect. In a regression without mean-centdrengoéfficients represent
simple effects of the exogenous variables, i.e., the effects of each variable whemethe ot
variables are at zero. When data are mean-centered, the coefficierdenmtpam effects of
these variables, i.e., the effects of each variable when the other variabletharenaean values.
When there is a meaningful interaction betwegand %, the main effect will not equal the
simple effect, and may have a significant t-statistic where the sefifplet does not.

We illustrate this point that results of linear effects may chaogessthe uncentered and
mean-centered models by running separate regressions on the synthetic datdiesesuppose
that, as above, the true model is: y; =% xx,+e wheree~N(0,0.1), and the mean of is equal
to 1.5, and the mean of is equal to 1.0. Table 1 shows the results of both the uncentered and

mean-centered regressions from a simulated sample of n = 121 observations.



Table 1a shows the results of the mean-centered regression model and Table 1b shows the
results of the uncentered model. Both the mean-centered and the uncentered modetsgrovide
identical fit to the data, and yielded the same modeAR expected, the coefficients of the
interaction, the standard errors, and the t-statistics obtained from both the areddentical.

An examination of the linear effects from Tables 1a and 1b reveals a diffengn{lhe
linear effect of x is significant in both the uncentered and mean-centered models, wheiseas x
significant only in the mean-centered model. As discussed earlier, thecsighisult for xin
the mean-centered model should not be taken to imply that the mean-centering approach is
superior in alleviating collinearity concerns. The effects tested gettveo models are vastly
different (simple effects from the uncentered models vis-a-vis mairnteffem the centered
models), and hence, direct comparisons of the corresponding effects are inagprdjreat
infamous “comparison of apples and oranges” metaphor is appropriate. Using equatigh (1) a
b=Wa, we can recover an equally accurate measure of the main effect from theetetteata,
and using equation (2) amgW b, we can recover an equally accurate measure of the simple
effect from the centered data. This equivalence between uncentered ancemeasd models
may be viewed as an extension of Irwin and McClleland (2001).

In such a circumstance, should a researcher mean-center or not? One metitartne
main effects are the more meaningful term because they better chaeaitteroverall
relationships, so the data should be mean-centered. However, one might also arpaesiimgie
effects are preferable because they provide a more fine-grained understdndengatterns, so
the data should be uncentered. Both arguments may be persuasive, but the choice shoeld be mad
independent of the spurious rationale pertaining to multicollinearity sinceftrenation can be

recovered from either approach. Of course, recovery of the proper standardeguoes
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computing the diagonal elements of matrices such agWM8 the former or WS,W™ in the

latter, and this may be more easily accomplished by reversing the d&targpdecision.

However, mean-centering does not hurt, so there is no need to re-evaluate the conclusions of the
many published papers that have used mean-centering as long as the resmarcleasabout

the proper interpretation of the linear terms.

Due to the fact that mean-centering does not mitigate multicollinearitpderated
regression, one might ask, “What else can be done?” One alternative is to useltiad-re
centering method proposed by Lance (1986), but this is a distinctly bad idea. Echanmoad, Ar
Reinartz, and Lee (2004) show that residual-centering biases &neél % effects, which is
undesirable. Because collinearity problems cannot be remedied aftetatmasléeen collected
in most cases, we recommend that researchers carefully designgbarchestudies prior to
collecting their data. If feasible, one can address it by using a datetioollscheme that isolates
the interaction effect (for example, a factorial design). Likewideasible, one can address the
loss of power associated with multicollinearity by increasing the sasmpé; in this regard,
Woolridge (2001) notes that the effects of multicollinearity are indistingbislieom the effects
of micronumerosity, or small sample sizes.

Summary Whether we estimate uncentered moderated regression equation (1) or the
mean-centered equation (2), all the point estimates, standard errors antidsstéiise main
effects, simple effects, and interaction effects are identical, andewdbmputed with the same
accuracy by modern double-precision statistical packages. This is also traewétall

measures of accuracy such &sRd adjusted-R
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Tablel

Results from Regression Analysis Utilizing Uncentered and Mean-Centered Terms®

True Model: Y = 1X + 0 X + ¥ XX, + €, wheree~N(0,0.1) andX,= 1.5, X,=1.0

a. Mean-centered model: OL Sregression coefficients for main effects

Dependent variable: Y
Unstandardized

Variables Coefficients t-statistic Interpretation
Constant 2.237* 241.767
(0.009)
X1 _Yl 1.505* 51.423 Main effect of Xat mean levels of X
(0.029)
X, _Yz 0.736* 25.157 Main effect of Xat mean levels of X
(0.029)
(X =Xy)x 0.386* 4.173 Interaction
(X;=X3) (0.093)
R® 0.966
N=121 Adjusted R 0.965

b. Uncentered model: OL Sregression coefficientsfor simple effects

Dependent variable: Y
Unstandardized

Variables Coefficients t-statistic Interpretation
Constant -0.177 -1.189
(0.149)
Xy 1.119* 11.526 Simple effect of Xfor X, =0
(0.097)
X 0.157 1.106 Simple effect of,Xor X; = 0
(0.142)
X% X, 0.386* 4.173 Interaction
(0.093)
R° 0.966
N=121 Adjusted R 0.965

* significant at 0.01 level,
& standard errors are given in parentheses
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Figurel
Graphical Representation of Uncentered and Mean-centered Datain 3D Variable Space

X=Xy

a. Uncentered Data b. Mean-centered Data
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Appendix

Proof of Theorem 1: Recall that the determinant of ¥quals 1. So, det(WX'XW )=

det(W™)det(X’'X)det(W)=det(W)det(X'X)det(W)=det(X'X). Q.E.D.

Proof of Theorem 2: From the third row of (4),45&. In this appendix, we will denote By S.

Using matrix multiplication of (4), the third column of SW’ is

The third row of W is [0 0 1 0 0], so th& 8owx3 column of WSW' is &. That is,

SE(k)=SE(a)=4/Ss; - Q.E.D.

Proof of Theorem 3: From the first row of (4), the point estimates are equal. The first column

of SW'is

The first row of W is [1 OX, 0 0], so the variance of kthe £' rowx1* column of

WSW') is §1+2X 2813+ X2°Ss3. The variance ofi@a; X » is var(a)+2X»
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S30
Sz

(S +X,S5 |
Sp1 1+ X5553
S31+ X253 |
Sp1 + X253

| Sg + XS |




cov(a,a)+ X var(a)= Si+2X 2S1a3+ X 2°Ses. That is,

SE(D)=SE(a+a:X2)=+/Sy; + 2X,S;5 +X3S55 . Q.E.D.
Proof of Theorem 4: The variance of bX sbs equals var(H)-2X » cov(by, bs)+ X s2var(hs). From

the proofs of Theorems 2 and 3 we know that \sx@3; and var(h)=

S11+2X 2S5+ X 2°Ses. The first column of SW’ is
[ Si+X,S;3]
S1+X5S,3
S31+ X553
Sp1+ X503

| Sg + XS |

and the third row of W is [0 0 1 0 0], so the céaace of h and b (the 3% rowx1™
column of WSW’) is $1+X»Ssz3. Hence the variance of4x ;b; equals

S1+2X 2S13+ X 2 Se3-2 X o(Sart X 2Sa3)+ X2°Saz = Sia. That is, SE(9=SE(h-bsX2)=4/S,; -
Q.E.D.

Proof of Theorem 5: a variant of the above.
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