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ABSTRACT

Team decision theory studies the problem of how a group of decision makers
should use information to coordinate their actions. Mathematically, the task is to find
functions that maximize an objective functional. The Euler equations take the form
of a system of integral equations. In this paper, it will be shown that a class of such
integral equations has solutions that are identical to the solutions of a system of
initial-valued integrodifferential equations. This Cauchy system describes the sensitiv-
ity of the solutions to underlying parameters and provides an efficient technique for
solving difficult team decision problems. An analysis of a profit maximizing firm
demonstrates the usefulness of the Cauchy system.

L. INTRODUCTION

Team decision theory extends Bayesian statistical decision theory to a-
group of interdependent decision makers [1,2]. A team is an organization
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Command, USAF, under Grant No, AFOSR 77~ 3383.
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whose members share a single, well-defined objective function. Such a
harmonious group has but one problem: how are individual activities coordi-
nated in an optimal fashion? Team decision theory explores such problems
when the organization is uncertain about its environment and when informa-
tion about the environment differs among tearn members. The decision
problem reduces to the selection of rules of action that coordinate the
interdependent activities of the teammates to maximize the expected payoff
of the team. The elements of team decision theory will be developed in Sec.
2.

The optimal decision rules must necessarily satisfy a system of integral
equations. In general these equations may be nonlinear, with multiple
integrals and infinite limits of integration, The characteristics of their solu-
tions are difficult to define. However, in Sec. 3 it is shown that the optimal
decision rules must also satisfy a system of initial-valued integrodifferential
equations, which are called the sensitivity equations. These equations de-
scribe how the solution and its resolvent kernel (which plays the role of a
matrix inverse) depend upon an irportant parameter, the degree of interde-
pendence between teammates. In Sec. 4, a model of the firm is used to
ithustrate how the sensitivity equations might be used.

2. TEAM DECISION THEORY

The team cousists of n decision makers or teammates, indexed by i=
1,2,...,n. The basic elements of the team decision problem are as follows:

# B C Rl the unknown state of nature;

A=(a,...,a)ER": the actions of the teammates;

P(A,8): the team’s payoff function;

Y=(yp...,y,) €Y CR": the information of the teammates;’

f(8): the team's prior probability density of §;

g{Y]8): the team’s conditional prior probability density of Y given &
(Y)Y ={e,(y)h... 0 4,)) EA: the team decision function.®

Several remarks should be made here. First, there is only one payoff
function, agreed upon by all members. Second, the payoff function is not

"The information that the ith teamunate uses may come from two sources, a personal ohserva-
tion of the environment or & message from another teammate that summarizes his knowledge
about the environment. Hence, it may seem more natural to make each component y, 2 vector
itself; but this will significantly complicate the results that foliow. One might imagine that the
vector of information has been reduced @ a single “statistic”.

EThe Functon space A is preswmed to be some complete normed linear vector space. The only
important distinction we want to make is that the ith component function, -), depends only
on ;.
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necessarily separable; that is, in general P, , 0. Third, there is only one pair
of probability densities, f(¢) and g(Y|8), agreed upon by all members.

Fourth, the ith teammate’s information, y;, is different from the jth team-
mate’s information, y,. Fifth, since the ith teammate knows only y,, his action
depends only on 1; ie.,

F.HQ_.AQL.

Fach teammate wants 1o select decision rules that are coordinated to
maximize the team’s expected utility

%Enhbﬁ&S,SWQESE%%. (1)

How can the optimal decision rules a*(¥) be characterized? It has been
shown [3] that the optimal decision rules must satisfy a system of integral
equations.

Turorem 2.1 (Person-by-person optimality). If «*(Y) is the optimal
team decision rule, then it must satisfy the following equations:

QH\S. i .\. .\.wﬁﬁn*r\%v“&r?\:?ﬁ S&&S:% (2)

[

forall y €%, i=12,...,n.
Here h{(Y,, 0| y)=g(Y|8)f(8)/ g(y,) is the posterior probability of § and

Yy = (YooY 110 )
given y,. The integral equations (2) can be written succinctly as
NAWQ_AQ*A%v,%vaWuQ mcm.m.z Qmm@&. va

This is referred to as “person-by-person optimality” because each teammate,
assuming his colleagues are using their best decision rules, picks a decision
rile such that his posterior expected marginal payoff equals zero no matter
what information he might receive.



24 ALIREZA AKBART T AL,

In the remainder of the paper it will be assumed that the payoff is a
inear-quadratic function of the actions; that is,

PA,0)=pBYA-1/2A"0A, (4)
ﬁ:.ﬂm #{8) is a vector of random variables and where Q is a known positive
definite matrix. With the payoff function of Eq. (4), the person-by-person

optimality conditions are lincar Fredholm integral equations. The optimal
team decision rules must satisfy the following equations:

0= mﬁ?a: QL = g0 QL

- M ﬁmﬁﬁi m_.x QL

i
Hmu,ﬂ FT@: w}w - Qmﬁl QL

- > g R ot (y) 1l ity dyys )

o 7

{.xmmﬂo h{y,i y;) is the posterior probability of y; given y, i=1,2,...,n. These
w:m.wﬁ. Fredholm integral equations may be reexpressed in a standard form as
ollows:

xanﬁ%ﬁ%xi&% 0<i<l, (6)

where u(t) is an unknown vector of functions, b(f) is a vector of forcing
functions, and k{£,s) is a matrix of kernels. The transformation of Eq. (5) into
Eq. (6) is accomplished by dividing Eq. (5) by g, solving for a*(y,), and
relabeling variables, ~

3. AN EQUIVALENCE THEOREM
A slightly more general class of linear Fredholm integral equations is
1
:?yvﬂiai;\ kit s)u(s,A)ds, O<t<], {7}
i

where A is a scalar parameter. Equation (6) is a special case of Eq. (7) where
A=1. The solution of {7} will depend not only on ¢ but on the value of the
parameter A. It will now be shown that the solution, u{t,A}, of Eq. (7) is
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equivalent to the solution of a particular system of initial-valued integro-
differential equations.

Treorem 3.1, The vector function u(t,A) which satisfies the system of
linear Fredholm integral equations (7) and the mairix of resolvent kernel
functions, K(t,s,A), which satisfies the system of linear Fredholm integral
equations

K{t,s,2\)=k(t,s) +>.\e;?u\v~m?\_wu3 ds’,

0<t5<1, (8)

are eguivalent to the solutions of the following initial-valued integrodifferen-
tial equations:

S?»T\_m:,u,z:?z% (9)
0
K(ts )= [ 'K(t s, NK(s, 5.\ ds', (10)
0
w(t,0)= h(1), (11)
K{t,s,0)=k(t,s)}, (12)
0<t<1, tE

The theorem is proved in two parts. First it will be shown that the
solutions of the integral equations are solutions to the Cauchy system
{9)—(12). It is well known [4] that the solution of a linear Fredholm systemn,
Eq. (7), may be expressed using a resolvent kernel matrix, K(t.s,A), as
follows:

w{t,\)=b(t) +A h 'K (t,5,\)b(s) ds. (13)

The resolvent kernel must satisfy a related system of linear Fredholm
integral equations, given above by Eq. (8). Differentiate the system of
equations (7) with respect to A, to get

:yﬁﬁzﬂ.ﬁm»?&:?vwv&m

f "k(t5) g (5,0) ds. (14)
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This is a new Fredholm system with an unknown function w4, (£,A) but with

the same kernel as the original system (7). Therefore its solution may be
expressed using the same resolvent kernel,

w(t,Ay=A " u(t,A)— bt} ]

iﬁiﬁivi??zé@:% (15)

where the forcing term of £q. (14) has been replaced by an equivalent terrn
using Eq. (7). Equation (15) may be expressed as follows:

SRR "y : u
uy (6A) =A ;%,315740 m?m,z%i

(1 Kt A uls,\)ds. (18)

The term in braces in Eq. (16) is zero due to Eq. (13), and thus Eq. (16)
reduces to the desired integrodifferential equations (8). To get the integro-
differential equation (10), differentiate Eq. (8) with respect to A, to get

mmy?w_zﬁ.M.Hﬁﬁm&mn?n.ﬁ»v&%
1
+A \ k(t,5)Ky(s', s, \) ds". (17)
0

Since this equation has the same kernel as Eq. (7), its solution may be
expressed using the resolvent kernel, K, as folows:

K, (t,s,N)=A"[K(t,5,\) = k(t,3) ]

A f Kt AT K5 N — k(s s) ds. (18]
0

Using Eq. (8), it can be shown that Eq. (18) reduces to the desired
integrodifferential equations (10). The initial conditions, {11) and (12}, are
just Eq. (7) and (8) with A=0. The second part of the proof is to show that a
solution of the Cauchy system is a solution of the integral equations. Define
Alt,s,A) by

Alts. ) =k(£s)+A \ k(15K (s, 5,0 ds, (19)

1
0}
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where K(t,5,A) is the solution of the Cauchy system. If it can be shown that

A(t,8,A)=K(t,5,)) for all ¢ and s, then the solution of the Cauchy system
satisfies the integral equation (8). Differentiate Eq. (19) with respect to A, to

wﬂ

Alts )= h k(e )K(s' s\ ) ds’

A f "kt 5 K, (7,8.0) d” (20)
0
Substitute Eg. {10) into Eq. (20) to get

\;?..ﬁyvH%yiﬁ.ﬂv_ﬁ?\.ﬁyv%\

]
13 1 "
+£ w?ih K(s,8",)
X K(s",5,\) ds” ds" (1)

In the last term of Fq. (21), relabel 5" as s” and 57 as s, reorder the
integration, and pass ds” through all terms independent of s” to get

?:u.zn,\_??hfﬁﬁﬁﬁm?sﬁz&;v

0

X K(s',5,A)ds’ (22)

The term in braces is exactly A{t,5",A), so Eq. {22) is equivalent to
1
AtsN) = R At NK(s',5,\) ds'. (23)
0

“When A is set equal to zero in Eq. (19), the value of A(2,s,0) is determined
to be

Altys,0)=k(1,5). (24)
If the solution of the Cauchy system, (23)—(24), is unique, then since K(¢,5,A}

satisfies the Cauchy system (23) and (24), it must be true that A(t,s,A)=
K{t,s,A), which was to be shown. Define B(t,A) by

B(tA)=b(0)+ [ "k(t,5)u(s,\) ds, (25)
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where u(s,A\) is the solution of the Cauchy system. As above, t0 show that
u(t,\) satisfies the integral equation, it suffices to show that u(t,A)= B(t,A)
for all £. Differentiate (25) with respect to A, to get

By(t,\)= h ki, s)u(s,\) ds
=y "k(n8)up(s,A) ds. (26)
Q

Substitute Eq. (9) into Eq. (26} to get

BALN = [ K(ts)uls,\)ds
0

ox Kb [ Hii.z:?z&éw. @5
0 G

Pelabel s as & and & as s, reorder the integration, and pass ds’ through all
terms independent of s to get

! 1 Y ! !
m%m“ﬁu,M» Aw?u&%yh k(t,s)K(s vm,wv&mw

0

X u{s,A)ds. (28)

From the above we know that K(1,8,4) satisfies the integral equation (9), so
the bracketed term of Eq. (28] eqquals K{t,s,\); that is,

B (L,N)= h "K{t,s, A u(s,\) ds. (29)

When A=0 in the definition (25), the initial value of B(1,7) is determined to
be

B(t,0)= b(#). (30)

If the solution of the Cauchy system (29)—(30) is unique, this implies that
B(1,3)=u(t,A), which completes the proof.

This theorem provides an equivalent way of describing the person-by-per-
son optimality conditions for a linear-quadratic team decision mﬂo_%mw:. The
optimal decision rules must satisfy a system of linear m.mmmvoww .ESMH&
equations, but in addition, as function of the parameter A, the decision rules
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st satisfy the Cauchy system (9)-(12), which we call the sensitivity
sruations. In the next section it will be shown how the sensitivity equations
may be used to analyze a team problem drawn from the theory of the firm.

4, MULTIDIVISIONAL FIRM

Suppose a firm consists of two autonomous divisions that produce diffe-
rent commodities in the amounts a; and ay, respectively. The commodities
are sold in competitive markets at prices Py and P,. Because of random
variations in supply and demand, the prices are not known precisely until the
instant the commodities are sold. ¥ach division separately gathers informa-
tion about the market it sells in and uses this information to help select its
quantity of output. Let y; be the “price forecast” which the ith division uses
in its decision making.

The firm’s total revenue is P,a, + Poa,. Suppose that the total cost to the
firm of producing quantities ¢; and gy is

lnt@wv = wnﬂam +epaag+ wnwwmm. (31)

Notice that since ¢y is nonzero, there js an interdependence between the
amounts of production in the two divisions.

Assume that the firm believes that the relative prices of its two commodi-
ties are fixed but is uncertain about the price level. That is, the price vector
that will be ohserved is (P8, P,8), where # is a random variable and P, and
P, are fixed numbers. The expected profit of the firm is

E A%TNQHA )+ MNQNA mmL - wo:hﬂ Svm

— 19ty { Yy)ag( yo) — WQEQNA cmvww‘ (32)

fuppose that the price level, #, and the price forecasts of the individual
"isions, 1, and gy, are uniformly distributed across a pyramid, with the
:Jﬁo&m&ﬁ@&@ﬁﬁq

3, 0<y <0<], 0<y, <0<,
g ={ % O v )
0 elsewhere. -

The price forecasts give lower bounds on the value of the price “level” &.
One can caleulate the needed posterior probability densities from Eq. (33).
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They are
28
. —n <P,
foly= - ¥ (34)
] elsewhere,

\ , _“mﬁ!gmum S,wa
%»S.m;;,,_ﬂ Him_.w

0 elsewhere.

The person-by-person optimal decision rules for the two divisions, af{y,)
and af(y,), must satisfy the following system of linear Fredholm integral
equations:

P 28
QWA i) = I@.!Hi o 7 dd
uJ, 1-p
1
¢ N mﬁ%gﬁﬁ wr,mwd
- QHM anﬁ@m.w 2 Dwm&_w
SN 1—yy
_Ph2l-y
¢y 3 HEQW
1
¢ 21 -Max| y. 9,
llm.wlm aF{ ys) A _Hmw aﬁ difa, (36)
u 13
- 1
P 28
ag(yy) = mim b df
2., 1—1y
oy g 2(1—Max| y1.45])
Omwvhw Q_Mw AW\HV M{tmm &Qw
_bh21-g
Cop 31—y}
1
¢ 2(1-Max[ y,,4,])
iMm af(yy) 1— 2 dy,, (37)
22 Y2

Toam Theory's Integral Equations 31

for 0< 4, <1, 0< yp < 1. These equations represent the posterior equaliza-
tion of expected marginal revenue and expected marginal cost.
The integral equations (36) and (37) may be written in the following

at(t)=by(0) 41 [ ku(ts)edt(s)ds

N[ il s)az(s)ds (38)
a3 (1) = bu{t) +A [ “hasl5)act () ds

A h gt 5) a2 (s) ds, (39)

where the following definitions hold:

PL21-¢
by(f)=->% , 40
_ﬁ v O.: ,W Htﬁﬁ& A v
by{t)= th 21-¢ , {41)
Cgg 3 1—¢7
»:?,mvﬂouwmm?uy (42)
A=cy, (43)
~2 1—Max(¢,s)
koolt, g)=—— , 44
HNA wv QHH Mi..u.m A V
W Tm .wv" ....|ilm .._.f;gmkﬁmfwv . Aﬁmv
e Coz -

%t should be noted that the cost coefficient ¢, has been selected as the
parameter A. The solution of the two-division team problem will depend,
among other things, on the value this coefficient of interdependence. The
adjustment of the optimal output decision rules, af(t,A) and a(£A), to
changes in A= ¢, is described completely by the Cauchy system of Theorem
3.1,

The Cauchy system (9)-(12) may be used to solve the team’s integral
equations. Make the following numerical assumptions, Let ¢;,=1=cy, and
\=1=P, When A=c,,=0, it is clear from Eqs. (38) and (39) that the
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optimal decision rules are just of*(t, 0)=h(1); the lack of mwﬂ&mmvmnmmmo@
between divisions greatly simplifies the solution. When A=cCyy increases, m.:m
decision rules and resolvent kernels must follow the integrodifferential
equations (9)—(10). Let us compute the decision rules and wmmo?n”ﬁ ngmw
at points 4,5 on a fixed grid of the unit square. Assuming 11 muoEﬂ in the
subdivision, a Runge-Kutta start, Adams-Moulton continuation chEn.?m for
solving differential equations was used, where integrals were approximated
by the trapezoid rule (5],

The value of the parameter A= c;, was taken from zero up to 1 {(beyond
this the payoff function is no longer concave) with a step size 0.1, The
numerical results are given in Table 1 and Fig. 1. . .

Several regularities are apparent from this nuomerical exercise. First, the
decision rules are monotonically increasing functions of the price forecast:
the higher the forecasted price is, the more ocutput should be muﬁwacoma.
Second, the decision rules have a noticeable convex shape: the decisions are
more sensitive to price forecasts tor larger forecasts. Third, the outputs are
uniformly lower as the coefficient of interdependence increases: ﬁw& larger
the cost interdependence, the lower are the individual division’s output
levels, since they must account for the other division's impact on marginal
cost. Fourth, the decision tules as a function of the coefficient of interdepen-
dence have a distinct convex shape: the decision rules are less sensitive to A
as A becomes larger. Fifth, the decision rules for the two &S.w._omm are
identical; this follows from the symmetry of the numerical assumptions.

The last regularity, identical decision rules, depends on the assumption
that Py=1=P,. It should be noted that P,,P, only influence the forcing
terms by(f) and b,(t). The resolvent kernel depends only on the kernel, not
the forcing function [see Eq. (8)]. Once the resolvent kernel has been
computed for a particular value of A=¢y,, the optimal decision rules for
various values of by(f) and by({) may be computed by evaluating the

right-hand side of Fq. (13). This permits the easy computation of the supply
functions, ie., the output rules as a function of relative prices F; and P,
These supply functions are given in Table 2 for A=¢);= 5. It is clear from
Eq. (13) that the supply is a linear function of relative prices; ie.,

QWA @.t?w,:mwmv = B SVVVN +v vavmqmu
where

\ ; H ’ AT I 7
_m% 5,3 = @; Svéwh K mt.ﬁft%& ds, Afw

1 N
fﬁ QTVC ﬂ?h HAEA Sua;vw%i ds ﬁmv
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TABLE 1
DECISION RULES &7 (), A}, af( yg, A)
A 0.0 0.2 04 0.6 0.8 1.0
Y af ol af af af af aof a} af af af af
0.0 0.667 0.667 0544 0544 0457 0457 0393 0393 0.343 0343 0303 0.303
a1 0.673 0673 0350 0550 0463 0463 0398 (.398 0.348 0.348 0308 0308
0.2 0.690 0690 0566 0.566 0478 0478 0413 0413 0383 0383 0323 0.323
0.3 07313 0713 0583 0589 0501 03501 0435 0435 0584 0.384 0344 0344
0.4 0.743 0743 0818 0618 0529 0529 0.463 0463 0411 0411 6370 0370
0.5 0778 0778 0.652 0.852 0582 0.562 0495 (495 0.440 0442 0400 0400
0.5 0817 0817 0890 0.850 0589 0599 0530 0530 0476 0476 0433 0433
0.7 0.859 0.859 0.730 0.730 0838 0638 0568 0568 0513 G513 0463 0.460
2.8 0504 054 0774 0.774 0.680 0.880 0808 0.608 0552 0552 0506 0506
0.9 0.851 0951 0819 0819 0.723 0.723 0.650 0.650 0593 0593 0346 0.546
10 LOOG 1000 0866 0866 0.768 0.768 0.644 0644 0.634 0.634 0586 0.586
ar iy, )
1.0 +  A=0.0
5.9 .
. « A=0.2
0.8 ° :
. - am0.4
0.7 ) ) . . ) ) . A=0.6
0.6 . . - Comeed
) . . . . r=i.0
0.5 . ) ! .
6.4 . ' . .
0.3 -
6.2
0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9 1.0 v

Fic. 1 Decision rules o*{ y;,A).
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TABLE 2

DECISION RULES o.f{ ), A

P=10

P,=10 P,=108

=96 Py=10 PF=10 F=10 P;=104

092 B=10 P

ALIREZ] AKBARI ET AL,

0.383
0.389
0.404
0.426
0.454
0.486
0.522
0.560
0.600
0.643

0.687

seory’s Integral Equaiions

0.496
G.502
0.519
0.543
0.573
0.608
0.647
0.689
0.734
0.781
6.828

0403
0.409
(.424
0.446
0.474
0.506
0.542
0.580
0.621

0.664

0.708

0.459
6.465
0,481
0.504
0.534
0.587
0.605
0.645
0.688
0.733

0.779

0.423
0.428
0.444
0.466
0.494
0.526
0.562
0.601
0.642
0.655
0.729

0.428
0.444
0.466
0.494
0.526
0.562
0.601
0.642
0.685

0.423
0.72%

0.442
0.448
0.464
0.486
0.514
0.546
0.582
0.621
0.662
0705
0.750

0.386
0.392
0.408
0.427
0.454
0.485
0.519
0.556
0.565
0.6836
0.679

0.462
0.468
0.483
0.508
0.534
0.5

0.602
0.641
0.683
0.726
0.771

0.349
0.355
0.369
0.389
0414
0.444
0,477
0.512
0.5449
4.588
0.629

PP P,

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.5
0.5
1o

35
TABLE 3
COEFFICIENTS By, A=1), vy, A= o
y By 2=valy. 3) Ny 4)=Baly.3)
0.0 0.916 —.493
0.1 6.922 —0.494
0.2 0.938 —0.495
0.3 0.962 —0.496
0.4 0.993 —0.499
0.5 1.028 —=0.502
0.6 1.067 —~0.505
6.7 1116 - 0.509
0.8 1155 ~0.513
0.9 1.202 - (.518
1.0 1.252 —0.523
1
Bal o M= [ Ko\ (5) s (49)
I
Vol 9 A= ol o) + A [ Ko 5. \)By5) s (50)

n - — 1 .
For A=c =1, the values of these coefficient functions are given in Table 3

5. CONCLUSION

The oisjective of this paper has been to show that there is an equivalent

way of characterizing the optimal decision rules of tearm decision theory. B
technigues of parametric imbedding it has been shown that the om:.Eva
st rules must satisfy a system of initial-valued integrodifferential
mmamm 13, which are referred to as the sensitivity equations. These sensitivit
equations describe the adjustment of the decision rule to changing values ovm
%w mmmqmm of interdependence within the team. In addition, they permit
&mﬁmwm computation of optimal decision rules, The analysis was restricted to
rzmm.ﬁmmmmwmﬁ.n teams but allowed for general probability distributions
wwﬁu_c:.m work on team decision theory has been almost exclusively m@éﬁ.&.
to the Tinear-quadratic and Gaussian-normal case, The quadratic assum mmm
may be dropped at some loss of simplicity [6]. !
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ABSTRACT

A model for the growth of a population with p+ g+ r age groups in which there is
competition for limited resources is considered. The steady-state solution is obtained
and its stability is discussed. The existence of a time-invariant structure in which the
ratios of the populations of the various age groups do not change with time is
established under very general conditions, and its relation with the steady-state
solution is discussed. The conditions under which we can treat the population as
homogeneous with a common birth rate, a common death rate and a common
inhibiting constant are also discussed.

i, THE MODEL

We first divide the population into three groups of prereproductive
children, of reproductive adults and of postreproductive old persons, We
further subdivide the three groups into p,q,r age subgroups respectively. Let
%,.(f) be the population of the vth subgroup of the uth group, and let the
birth and death rates for this subgroup be b,,.d,, respectively. Let the
migration rate from this subgroup to the next be m,,. Also let the decrease in
rate of growth of the population of this subgroup due to competition for
limited resources be K, x,(x, + - ta, tay e g, oy

+er ). We then get the following system of differential equations:

dx
11
g Pmimt o + By s, —{dy +my)x;,
- mﬂﬂa:?: Faxpt-oo-+ Huﬂv_
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