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ABSTRACT

A many-decision-maker dynamic-control problem under uncertainty is presented
25 an extension of the standard control problem. It is assumed that only one payoff
function exists, identical for all decision makers. The outstanding problem is to find a
sequence of several decision rules that optimally coordinate activities both across
time and between decision makers. This cooperative dynamic programming problem
requires the researcher to consider how to solve large numbers of systems of integral
equations.

*Research sponsored by the Alr Force Office of Scientific Research, Air Force Systems
Command, USAF, under Grant No. 77-3363. )

APPLIED MATHEMATICS AND COMPUTATION 5:69-74 (1979) 69
© Elsevier North-Holland, Inc., 1979 0006//3003,/79/010069 + 8301.75



J. HESS, H. KAGIWADA, R. KALABA, AND C. TSOKOS

'NTRODUCTION

amical systems requires 93.» mmom&.cﬁ Bm%_wq
dinate the actions he takes in several mc.oomo&sm time wM:M@m.B wsm
slus of variations, Pontryagin's theory of optimal ?oomm.”mm m:?m timan s
amic programming provide &33»@3, ways of .m@mo.: ing z:@mmwz vl
,ence of actions, Uncertainty and _nw:::m have been Smoo_‘ﬂm o
lels of stochastic and adaptive control. Only :wooamw ,Jm mzw mSN o
mal control considered the problem of noﬁ.vmvmnmcfwo. oosﬂME o w.w._v\w e
-oup of decision makers [1-5]. Cooperative decision m Q:Wr M b
iod model has been studied in the theory of teams [6] an
entralization [7]. .
 this paper, a simple model of cooperati : °
MM-HM mﬂﬂmﬁ to mMn:m altention on ﬂ a...:c hﬁmmwrwoocm”wwm_”_nwhm %Muw,w_w ;

roblems. No attempt is ;
reral mo:s;_ugcs..mvcno:ma that has been done _a_waﬁ.rﬁmaa“mrwm_mqﬁuwﬂ.%m
iple examples are sufficient to indicate the degree ©

y isi . lem.
szw m“w%ﬂh“ﬂ_““_ v_ﬂwuvrn_e:, discussed here might be aw??wa to _‘MM ¢M
sblem of dynamical team decision making, mm.:eo :,?M,n.n w_w wsnwﬂwwv o
sup of decision makers with differing information 2 Mw s e
ﬂuﬂ:n environment. However, there are already sever S.: e mm& o
yns of what is meant by dynamic teams (Refs. 3 and 6), so we ha

rm “cooperative dynamic programming”’ to m@mw:..cm :Mm Msromn._w“:m“ww MH
-estipated here. Further qualifications of the topic _:o_c e ~a. MW &_M: ors
f%mamnmpo finite time and of perfect knowledge of all probability

ons of the random variables.

he optimal control of dyn

ve dynamic control will be
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To illustrate the concepts of cooperati e o . The

i : isi akers, 2
usiness firm with two decision 3 ,ap forema, et
._Mmmmmi is responsible for all capital expenditures, and the for

i i irm has K
that i d. If, in any 1&20@‘ the firm

i the amount of labor that is _::m ] o fir

_.”“M Mmcwuv%»_ and L units of labor services, the m:om.a of the firm

EAZ.SIEP!«X. (1)

itive pric L) is a production function
where p is the competitive price of output, f(K,L)is a p

te on

lating inputs to outputs, W is the wape rate, w:m r is p.rn .ESMMM«VM M N

o wv_m.ﬂmw firm hires labor and buys capital at the vmm:m:.”.mn e e
M“wa v.amo% which are indexed by 1=1,2,...,T. The facto
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assumed to be competitive, so that the firm has no influence on w or r.
However, random fluctuations in market supply and demand make the wage
and interest uncertain from the viewpoint of the individual firm. The firm,
however, knows that the frequency of any particular (w,r) pair is described
by a probability density g(w,r) (which for simplicity will be assumed to be
independent of time).

The firm's decision makers specialize in observing the market conditions
for the factors they must buy. To simplify the analysis, it will be assumed
that this specialization implies that the president learns the market interest
rate r, before he makes his decision to buy more capital goods in period {,
and that the foreman learns the market wage rate w, before hiring labor in
period 1. There is no communication between president and foreman con-
cerning their specialized knowledge. This assumption can be relaxed, but is
meant to capture the realistic fact that decision makers seldom have identi-
cal knowledge about the environment of the firm.

It is assumed that the president and foreman make their decisions
independently (authority is decentralized). The president must establish a
rule for relating his knowledge of the interest rate to the changes in the
capital stock. This rule is called the investment policy and is denoted

I=1(n). (2)
The foreman must establish a rule for how he will relate his knowledge of |

the wage rate to the size of the labor force. This rule is called the hiring
policy and is denoted

L= PT&.V. ) va
The objective of this firm is to maximize the total expected profit over the

T period time horizon by the selection of a sequence of investment and
hiring policies. That is, the firm wishes to

mainize 5 11K, L)) L) =K
— C(K,~ K,_,)] glw,r) dw,dr, (4)
{(where C is the cost .cm capital adjustment) subject to
K=K+ 1y(nai) (5)
K, given. (6)
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functional in (4) gives the total expected profit. Equation (5) is the
tal accumulation equation for the firm, and Eq. (6) specifies the firm’s
al capital stock. It should be remarked that although both authority and
rmation are decentralized, both decision makers are attempting to maxi-
e the same objective function: they constitute a team. There are no game
sretic aspects to the firm’s problem. In addition, cooperation between the
" decision makers is imperative because the objective function is not
itively separable in K and L; the marginal productivity of capital (labor)
Mluenced by the quantity of labor (capital) used.

PRINCIPLE OF OPTIMALITY

The cooperative dynamic programming problem of the relations (4)-(6)
y be expressed in recursive form by applying Bellman’s principle of
iimality {8, 8}. No matter what the initial capital stock and initial invest-
nt and hiring policy, the remaining policics must constitute optimal
licies with regard to the capital resulting from the first decision. Define a
rction &,(K) to be the maximum total expected profit for the time periods
t+1,..., Tif the capital stock inherited from the previous «xﬁom is K.

is function ¢,(K) must satisfy the recurrence relation
()=, max SRR o)
- C(L(r.K))~ (K + 1(n K))+ 60 (K+ 1L{n.K))]

X g(te,r) dwdr, (7

«1,..., T—1, and

{K)= N\mﬁ._ﬂw«q?nv:m mim + ?Aq.xv.??&h: - SFLS.RV

—C(I(r,K))—r(K+ I(r.K))] g(w,r)dwdr. (8)

that when only one time period remains in
1e process, maximum total axﬁma:i profit with inherited capital is vaormmém
v maximizing E{ pf(K + It Ly)—wly— f(K+1;)} with respect to the
olicies I,, L,. When we are at time ¢ in the process, Eq. (7) requires
hat L,, I, maximize the sum of expected profit earned m;&:m.:ﬁ: time
eriod and the maximum expected profit for the remainder of the process
eginning with the capital stock K+ L.

quation (8) expresses the fact
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4. ANALYTIC AND COMPUTATIONAL ASPECTS

What difficulties are there in evaluati
i a ating the optimal sequence of i -
Msdm”“ “”mrr_:.wm ﬂo_—wo.o% At any stage in the process the MME‘SMOM -M.MMMM.
st be solved for the optimal functions L(w,K) and I
possible value of K these optimal polici ! satishy 1 s e
- of K policies must satisfy th i
by person optimality conditions (see Ref. [6]):  the following person

0={[ pfi(K+1(r,K),L(w,K)) = r+4],,(K+1(r,K))
= CYIL(r.K))] g(wlr)dw  forall7, (9)
oﬂ:E’mcm.vb?.k.v.hks.x:téu g(rlw)dr  forallw, (10)

where ¢/, is the derivative of
‘ be1 glwlr) and g(rlw) are posteri
MMWMW_”M:M. m:% fi vaa:w partial derivative of f §mm_m _zwvvmn. ~Momm”mo_wm.~‘
- Equations (9) and (10) are a coupled system of nonli i
equations. This presents a severe analyti 4 ol oo oAt
ytic and computational probl
Mwm_ Ms.mm. ME one but many systems of nonlinear integral aacwc.ﬂﬂvm -M:Bﬂ WM |
o ed Awm ranges from zero to infinity). Techniques of parameter imbed-
P Mhm p %@M Ref. [10]) may simultaneously solve the optimality conditions
or i
e every K, but this may involve large amounts of computer
In addition, once the opti isi
: : ptimal decision rules are f i
MMM.@QM@ profit must be computed by evaluating 9”:%&“%05%: ﬂm“
¢ ned in the relations (7) and (8). This could involve large e Q_MM
omputational costs or both. 8 eron or e
%mmlrﬁw_ %wozoﬂmmawo_o.w& above is the simplest possible example. Further
ey es could arise if the information of the decision makers consists of
v S_cé:.uv_mm *.53& of just one. In this case the integral equations (9
oozm% .v M_,o:E involve multiple integrals. If investment or Awmvca ecmnov
?cv_aﬂ_d:om W: any way (say, to be non-negative) then the optimization
D el _ﬂw Maw.w.ﬂ.n_ (8) Soc_m_nwa considerably more difficult. Finally, if the
: ’ sities are not known, th i . ing i
Emﬂwﬂ. _ioﬂE have to be modeled in m%ﬂ%ﬂhﬂ.ﬂﬂos to sccumiating fafor-
ile the difficulties of coo ic programm :
e di perative dynamic pro i i
m:mm. the situation is not hopeless. If the wq&:nc.%s mnhabom _:mm «”_.rm :.&o&
near-quadratic, on of the firm s

fIK.L)=ay+a,K+ oL+ ayK*+a, KL+ oL, (11)

and the random variables are distributed Gaussian-normal, then #t is well
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known [6] that the decision rules with one stage to go are linear in the
information variables and K. It can then be shown that the decision rules at
any stage are linear. This implies that instead of solving integral equations,
the cooperative dynamic programming problem involves solving linear alge-
braic equations.

Even if the linear-quadratic and Gaussian assumptions fail to hold, it may
be permissible to restrict the decision rules to a function space which is
linear in a finite number of parameters (as is done in standard regression
analysis). This restriction will also result in linear algebraic equations rather
than the more complicated integral equations.

5. DISCUSSION

The many decision maker dynamic control problem has been presented as
an extension of the standard control problem. The assumption of only one
payoff function, identical for all decition makers, removes many game
theoretic difficulties. The outstanding problem is to find a sequence of
several decision rules that optimally coordinate aclivities both across time
and between agents. The multi-agent nature of cooperative dynamic pro-

. gramming requires the researcher to consider how to solve large numbers of
systems of integral equations.
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ABSTRACT

A ,a<o consider the direct trecatment of the second-order system of equations y”(t)+
y(f)= f{1), such as might arise in finite-element or finite-difference semidiscretiza-
tions of the wave equation. We develop the exact solution and some three-t
recurrences involving trigonometric matrices. We approximate these Emomoa_mnnm.m
m:wﬂowm by _.mmo.sn_ approximants of Padé type and thus develop a two-parameter
mwh”&w mMmS Mwwwﬂwﬂwmo: mnwaiwm.a—a“mn analyze the stability behavior and computa-
. : members of this family and isolate four schemes for numerical
experimentation, the results of which we tabulate. We si i
effective the classical Stormer-Numerov method and &uM »EMMNM MMM.M&W“M:MHW

1. INTRODUCTION

There is a vast amount of literatur i

Ther vast e dealing with the applicati £
Bco:w._ mE.uno.cEmco: of the exponential function to the ma%%cﬁiaﬁ““ Mm
approximation schemes for the solution of the initial-value problem

Y(t)=Ay(t)+q(1),
(%) =ye, (1L1)
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