Violations of Classical Linear Regression Assumptions
Mis-Specification 

Assumption 1. Y=X+
a. What if the true specification is Y=X+Z+ but we leave out the relevant variable Z?

Then the error in the estimated equation is really the sum Z+.  Multiply the true regression by X’ to get the mis-specified OLS:

X’Y=X’X+X’Z+X’.

The OLS estimator is b=(X’X)-1X’Y= (X’X)-1X’X+(X’X)-1X’Z+(X’X)-1X’. The last term is on average going to vanish, so we get b=+(X’X)-1X’Z Unless =0 or in the data, the regression of X on Z is zero, the OLS b is biased.

b.  What if the true specification is Y=X+ but we include the irrelevant variable Z: Y=X+Z+(-Z).  The error is *=.  Var(*)=var()+’var(Z).  

The estimator of [ ]’ is
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The expected value of this is 
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.  Thus the OLS produces an unbiased estimate of the truth when irrelevant variables are added.  However, the standard error of the estimate is enlarged in general by g’Z’Zg/(n-k) (since e*’e*=e’e-2e’Zg+g’Z’Zg).  This could easily lead to the conclusion that =0 when in fact it is not.

c.  What if the coefficients change within the sample, so  is not a constant?  Suppose that i=+Zi Then the proper model is Y=X(+Z)+=X+XZ+.  Thus we need to include the interaction term XZ.  If we do not, then we are in the situation (a) above, and the OLS estimates of the coefficients of X will be biased.   On the other hand, if we include the interaction term when it is not really appropriate, the estimators are unbiased but not minimum variance.  We can get fooled about the true value of .


How do you test whether the interactions belong or not.  Run an unconstrained regression (which includes interactions) and then run a constrained regression (set interaction coefficients equal to zero).  [(SSEconst-SSEunconst)/q]/[SSEunconst/(n-k)]~ Fq,n-k where q=number of interaction terms.
d.  Many researchers do a “search” for the proper specification.  This can lead to spurious results and we will look at this is some detail in a lecture to follow.
Censored Data and Frontier Regression

Assumption 2. E[|X]=0.

Suppose that E[i|X]=≠0.  Note: this is the same for all i.  b=(X’X)-1X’Y=(X’X)-1X’(X+) =+(X’X)-1X’.  Thus E[b]=+(X’X)-1X’1.  The term (X’X)-1X’1 is the regression of 1 on X, but the first column of X is 1 so the resulting regression coefficients must be [1 0 0…0]’.  As a result E[b]=+[ 0 0 … 0]’.  Only the intercept is biased.

· Now suppose that E[i|X]=i but this varies with i.  That is, ≠1. By reasoning like the above, E[b]=+(X’X)-1X’The regression of on X will in general have non-zero coefficients everywhere and the estimate of b will be biased in all ways.
In particular, what if the data was censored in the sense that only observations of Y that are not too small nor too large are included in the sample:  MIN (Yi(MAX.  Hence for values of Xi such that Xi are very small or vary large, only errors that are high and low respectively will lead to observations in the dataset.  This can lead to the type of bias discussed above for all the coefficients, not just the intercept.  See the graph below where the slope is also biased.

[image: image3.emf]X


Y


Censored, too low


Censored, too high


True Regression


Apparent, but biased


regression line


MIN


MAX




X

Y

Censored, too low

Censored, too high

True Regression

Apparent, but biased

regression line

MIN

MAX


Frontier Regression: Stochastic Frontier Analysis

Cost Regression:   Ci=a + bQi + ii
The term a+bQ+ represents the minimum cost measured with a slight measurement error . Given this, the actual costs must be above the minimum so the inefficiency term  must be positive.  Suppose that  has an exponential distribution: 

f()=e-/ for (

[Note: E[]= and Var[]=2.]  Suppose that the measurement error ~N(0,2) and is independent of the inefficiency .  The joint probability of  and  is
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.  Let the total error be denoted =+.  [Note: E[]= and Var[]=2+2.]  Then the joint probability of the inefficiency and total error is 
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.  The marginal distribution of the total error is found by integrating the f(,) with respect to  over the range [0,().  Using “complete-the-square” this can be seen to equal
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, where  is the cumulative standard normal.  


To fit the model to n data-points, we would select a, b ,  and  to maximize log-likelihood:


[image: image7.wmf]å

l

-

-

-

å

l

s

-

s

-

-

F

+

l

s

+

l

-

=

i

i

i

i

i

i

2

2

.

/

)

bQ

a

C

(

)

/

/

)

bQ

a

C

((

ln

)

2

/

(

n

)

ln(

n

)

L

ln(


Once we have estimated the parameters, we can measure the amount of inefficiency for each observation, i.  The conditional pdf f(i|i) is computed for i=Ci-a-bQi:
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.  This is a half-normal distribution and has a mode of i-2/, assuming this is positive. The degree of cost inefficiency is defined as IEi=
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; this is a number greater than 1, and the bigger it is the more inefficiently large is the cost.  Of course, we do not know i, but if we evaluate IEi at the posterior mode i-2/ it equals IEi (
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.  Note that the term 2/ captures the idea that we do not precisely know what the minimum cost equals, so we slightly discount the measured cost to account for our uncertainty about the frontier. 

Non-Spherical Errors
Assumption 3. var(Y|X)=var(|X)=2 I  

Suppose that var(|X)= 2 W, where W is a symmetric, positive definite matrix but W≠I.  What are the consequences for OLS?

a. E[b]=E[(X’X)-1X’(X+)]=+(X’X)-1X’E[] = , so OLS is still unbiased even if W≠I.  

b. Var[b]=E[(b-)(b-)’]=(X’X)-1X’E[’]X(X’X)-1=2(X’X)-1X’WX(X’X)-1≠2(X’X)-1
Hence, the OLS computed standard errors and t-stats are wrong.  The OLS estimator will not be BLUE.  

Generalized Least-Squares
Suppose we find a matrix P (n(n) such that PWP’=I, or equivalently W=P-1P’-1 or W-1=P’P (use spectral demcomposition).  Multiply the regression model (Y=X+) on left by P:  PY=PX+P Write PY=Y*, PX=X* and P=*, so in the transformed variables Y*=X*+*.  Why do this?  Look at the variance of *:  Var(*)=E[**’]=E[P’P’]=PE[’]P’=2PWP’=2 I.  The error * is spherical; that’s why.

GLS estimator:   b*=(X*’X*)-1X*’Y*=(X’P’PX)-1X’P’PY=(X’W-1X)-1X’W-1Y.  

Analysis of the transformed data equation says that GLS b* is BLUE.  So it has lower variance that the OLS b.

Var[b*]=2(X*’X*)-1=2(X’W-1X)-1
How do we estimate 2?  [Note: from OLS E[e’e]/(n-k)=E[’M]/(n-k)=E[tr(’M)]/(n-k)=E[tr(M’)]/(n-k) =tr(ME[’])/(n-k)=2tr(MW)/(n-k).  Since W≠I, tr(MW)≠n-k, so E[e’e]/(n-k) ≠2.]  Hence, to estimate 2 we need to use the errors from the transformed equation Y*=X*b*+e*.

s*2=(e*’e*)/(n-k)

E[s*2]=tr(M*E[**’])/(n-k)=2tr(M*PWP’)/(n-k)=2tr(M*)/(n-k)=2.  Hence s*2 is an unbiased estimator of 2.

Important Note:  all of the above assumes that W is known and that it can be factored into P-1P’-1.  How do we know W?  Two special cases are autocorrelation and heteroskedasticity.

Autocorrelated Errors
Suppose that Yt=Xt+ut  (notice the subscript t denotes time since this problem occurs most frequently with time-series data).  Instead of assuming that the errors ut are iid, let us assume they are autocorrelated (also called serially correlated errors) according to the lagged formula

ut=ut-1+t,

where t is iid.  Successively lagging and substituting for ut gives the equivalent formula

ut=t+t-1+t-2+…

Using this, we can see that E[utut]=2(1+2+4+…)=2/(1-2), E[utut-1]=2/(1-2), 

E[utut-2]=2/(1-2), … E[utut-m]=m2/(1-2).  Therefore, the variance matrix of u is

var(u)=E[uu’] =
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where 
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and 
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It is possible to show that W-1 can be factored into P’P where
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Given this P, the transformed data for GLS is
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Notice that only the first element is unique.  The rest just involves subtracting a fraction  of the lagged value from the current value.  Many modelers drop the first observation and use only the last n-1 because it is easier, but this throws away information and I would not recommend doing it unless you had a very large n.  The Cochrane-Orcutt technique successively estimates of  from the errors and re-estimating based upon new transformed data (Y*,X*).

1. Guess a starting 0.

2.  At stage m, estimate  in model Yt-mYt-1=(Xt-mXt-1)+t using OLS. If the estimate bm is not different from the previous bm-1, then stop.  Otherwise, compute error vector em=(Y*-X*bm).

3. Estimate  in emt=em,t-1+t via OLS.  This estimate becomes the new m+1.  Go back to 2.

Durbin-Watson test for ≠ in  ut=ut-1+t.


1. Compute OLS errors e.


2. Calculate 
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3.  d<2 ( >0, d>2 ( <0, d=2 ( =0. 
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where: k = the number of independent variables in the equation.





Heteroskedasticity

Here we assume that the errors are independent, but not necessarily identically distributed.  That is the matrix W is diagonal, but not the identity matrix.  The most common way for this to occur is because Yi is the average response of a group i that has a number of members mi.  Larger groups have smaller variance in the average response: var(i)=2/mi.  Hence the variance matrix would be

Var()=
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An related example of this would be that Y is the sum across the members of many similar elements, so that the var(i)=2 mi and 

Var()=
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If we knew how big the groups where and whether we had the average or total response, we could substitute for mi in the above matrix W. 


More generally, we think that the variance of I depends upon some variable Z.  We can do a Glessjer Test of this as follows.


1. Compute OLS estimate of b,e


2. Regress |ei| on Zi, where =1,-1, and ½.  


3. If the coefficient of Zis 0 then the model is homoscedastic, but if it is not zero, then the model has heteroskedastic errors.

In SPSS, you can correct for heteroskedasticity by using Analyze/Regression/Weight Estimation rather than Analyze/Regression/Linear.  You have to know the variable Z, of course.

Trick:  Suppose that t2=2Zt2.  Notice Z is squared.  Divide both sides of equation by Z to get

Yt/Zt=(Xt/Zt)+t/Zt.  This new equation has homoscedastic errors and so the OLS estimate of this transformed model is BLUE.

Simultaneous Equations

Assumption 4.  X is fixed

Later in the semester will return to the problem that X is often determined by actors in the play we are studying rather than by us scientists.  This is a serious problem in simultaneous equation models.

Multicollinearity
Assumption 5.  X has full column rank.

What is the problem if you have multicollinearity?  In X’X there will be some portions that look like a little square 
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 and this has a determinant equal to zero, so its reciprocal will be near infinity.   OLS is still BLUE, but estimated var[b]=(X’X)-1Y’(I-X(X’X)-1X’)Y/(n-k) can be very large.

If there is collinearity, then there exists a weighting vector  such that X is close to the 0 vector.  Of course, we cannot just allow  to be zero.  Hence let’s look for the value of  that minimizes ||X||2 subject to ’=1.  The Lagrangian for this constrained optimization is L=’X’X+(1-’) and the first order conditions are X’X-  This is the equation for the eigenvalue and eigenvector of X’X.  Multiply the first order condition by ’ and use the fact that eigenvectors have a length of 1 to see that ’X’X=, so we are looking at the smallest of the eigenvalues when we seek collinearity.  When is this eigenvalue “small” enough to measure serious collinearity?  We compute a Condition Index as the square root of the ratio largest eigenvalue to the smallest eigenvalue:
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.  When the condition index is greater than 20 or 30, we have serious collinearity. In SPSS Regression/Linear/Statistics click “Collinearity Diagnostics.”
Warning: Many people use the Variance Inflation Factor to identify collinearity. This should be avoided (see Chennamaneni, Echambadi, Hess and Syam 2009).  The problem is that VIF confuses “collinearity” with “correlation” as follows. Let R be the correlation matrix of X:  

R=D-½X’HXD-½/(n-1) where the standard deviation matrix D½=sqrt(diag(X’HX)/(n-1)).  Compute R-1.  For example,
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and along the diagonal is 1/(1-2) which is called the Variance Inflation Factor (VIF).  More generally VIFi=(1-Ri2)-1 where Ri2 is the R-square from regressing xi on the k-1 other variables in X.  The problem with VIF is that it starts with a mean-centered data HX, when collinearity is a problem of the raw data X.  In OLS we compute (X’X)-1, not (X’HX)-1.  Chennamani et al. provide a variant of VIF that does not suffer from these problems.

What can you do if there is collinearity?

1) Do nothing.  OLS is BLUE.  

2) Get more information.  Obtain more data or formalize the links between the elements of X.  

3) Summarize X.  Drop a variable or do principal component analysis (more on this in next chapter of the textbook).  

4) Use ridge regression.  This appends a matrix kI to the bottom of the exogenous data X and appends a corresponding vector of 0’s to the bottom of the endogenous data Y.  This synthetic data obviously results in a biased estimator (biased toward 0 since the augmented data has Y not responding to changes in X), but the augmented data kI has orthogonal and hence maximally “not collinear” observations.  Hence, the estimates become more precise.  For k(0, the improved precision dominates the bias. 

� Aigner, D., C. Lovell and P. Schmidt (1977), “Specification and Estimation of Production Frontier Production Function Models,” J. Econometrics, 6:1 (July), 21-37; Kumbhaka, S and C. Lovell (2000), Stochastic Frontier Analysis, Cambridge Univ Press. Free SFA software FRONTIER 4.1 is available at � HYPERLINK "http://www.uq.edu.au/economics/cepa/frontier.htm" ��http://www.uq.edu.au/economics/cepa/frontier.htm� .
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