Random Vectors

X is a px1 random vector with a pdf probability density function f(x): RP—>R. Many books write
X for the random vector and X=X for the realization of its value.

E[X]zjxf(x)dx =p.

Theorem: E[Ax+b]= AE[x]+b
Covariance Matrix E[(X-p)(X-p)’]=var(X)=2 (note the location of transpose)
Theorem: X=E[xX’]-up’
Ify is a random variable: covariance C(X,y)= E[(X-p)(Y-v)’]
Theorem: For constants @, A, var (a’x)=a’Za, var(AX+h)=AZA’, C(x,x)=Z, C(X,y)=C(y.,X)’
Theorem: If X, y are independent RVs, then C(x,y)=0, but not conversely.
Theorem: Let X,y have same dimension, then var(x+y)=var(X)+var(y)+C(X,y)+C(y,X)
Normal Random Vectors
The Central Limit Theorem says that if a focal random variable x consists of the sum of many

other independent random variables, then the focal random variable will asymptotically have a

2
distribution that is basically of the form ¢™* , which we call “normal” because it is so common.
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Normal random variable has pdf f(x)= e * ° = e c
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Denote X px1 normal random variable with pdf

_ 1 —(x—p)' =7 (x—p)

where p is the mean vector and X is the covariance matrix: X~Np(p,2).
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Bivariate Normal f(x;,x,) = 1 e [X2-Ma [0 on| [X2-p Note
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Recall variance o is also sometimes written 612 and by symmetry c1,=0,;. The correlation is

p122612/11611(522 :(512/(6162).

Theorem: Eigenvalue of = is reciprocal of eigenvalue of T and eigenvectors are identical.
Proof: Let &'x=Ax. Then x=AZx or Zx=(1/A)x.



Contour of constant probability is ellipsoid (x-p)’ L (x-p)=c” for some c. This is an ellipse
centered at p and with axis that point in the directions of the eigenvectors of £ with length

c+/A , that is the axes are J_rc\/k_i e; where A; and e; are the eigenvalues and eigenvectors of the
covariance matrix X.
1
Suppose that X = {
p
eigenvectors are values of (x;,X3) such that -+px;+px,=0 and x12+xz2=1; these are (1/ \/5 ,
+1/4/2 ) . If the correlation p is positive, then the eigenvector (1/ V2 , 1/ V2 ) is stretched to a
length greater than 1, /1+ p , while the eigenvector (1/ V2 , -1/ 2 ) is shrunk to a length less

than 1, /1 —p . See the figure below.

ﬂ , then eigenvalues are defined by (1-A)*p>=0 or A=1%p. The

Theorems: The moment generating function (mgf) for multivariate normal is
be(t) = Efet*|= et
X~N(p,Z) = xi ~ N(i,0ii)

' 1 2.1
y=a’x = y~N(a’p,a’za) and mgf ¢,(t)=¢"" htJytiaza

3
X1|x2 ~ N((1+012/622(X2-2), G11-C127/022)

Theorem (X-p)’ 2™ (X-p) ~ sz

Proof: (note:chi-sq is the sum of the squares of independent normals). Using spectral
decomposition, (X—|,t)’2'1(X—;,L)Z(X—;,t)’(PAP’)'1(X—;,L)Z(X—;,t)’PA_U2 AY 2P’(X—;,t). From above
AP (x-p) ~N(0, A™2P7ZP A"H)=N(0, A™"*A A™"H)=N(0,]), so quadratic form is the sum of
independent squared normal random variables. QED

Xl'
Normal data matrix X =| M| where X; is iid Ny(p,X). This is a nxp matrix of random variables.
Xp'
Each row is independent of other rows and identically distributed.
_ —n/2 e
P(X) = (2m) "PPIE ™ T exp(— 2L (% —W'ET (X ) /2)

= (2m) /2y 2 exp[— tr[z—l Qo (% = X)X = X)' + (X = ) (X — ')/ 2)}

Note: x’ Ax=tr(x’ Ax)=tr(Axx”)
Aside: On Union Intersection Tests
X~N(p,I) = y=a’x~N(a’p, a’a)
Ho:p=0 < y,= a’x~N(0, a’a) for all a.
Hoa: @’p =0



H,= N H,, note: if you find one a that violates H,, then H, cannot be true.

Let’s test Ho, using z,=y,/ \/ﬁ . The rejection region is R,={z,| za2>c2}. What about H,?
R=UR,. So H, is accepted if and only if 7.2<c? for all a. The worst case scenario is max, z,’.
So, if max, zaz<c2 then this will be true for all a.

Suppose that we have independent draws of a random vector. Let X; be the jth draw. Define
nfa' (- p))
a'Sa

Union Intersection test procedure we would like to find the value of a that is the worst case
scenario. The Cauchy-Schwartz inequality helps here: (x’y)*< (x’x)(y’y) (this is a consequence
of x’y=||x|| |ly|| cos 0): (a’(X-p))’< (a’Sa) ((X-p)’S™(X-p)) and can only “=" if a=S'(X -p).
Taking this worst case scenario, the max, t*=n (X-p)’S™ (X -p).

y=a’X;. Then we know that y =a'x and syzza’Sa. Compute t’= . Following the

p(n—1)a'Sa
n-p n

Theorem: The interval a'x £ \/ F, ., (a) will contain a’p a fraction 1-a% of the

time, simultaneously for all possible a.

Comparison of Traditional and Simultaneous Confidence Intervals
Suppose that you had Hei:pi=0 for i=1,2,...,p. If you ignore the fact that there are several
simultaneous test, you would do this one variable at a time, computing confidence intervals:

X; /s, /n-t, (a/2).

As we have seen before, the confidence for these as a whole is not 1-a.%, but rather (1-a): for 6
variables 0.95°=0.75. Hence the rectangular region sketched out by these intervals is really only
a 75% confidence region. If you had 13 variables, then this region will capture the truth in all
dimensions only 50% the time. We have a false sense of high accuracy.

The above Union Intersection test would sequentially set a’=(0,..0,1,0,..0) where the 1 is
in the ith entry and then calculate the intervals

X, t4/s;/n '\/Mijn_p(a).
n-p

These simultaneous intervals will be much wider than the above, but we can then say that there is
a 95% confidence that all variables will be covered by the combined rectangle. These intervals
are the “shadows of the 95% confidence ellipse in a p-dimensional space.

How much wider are these simultaneous intervals? It depends on n and p. As you can
see the intervals are much wider, making it very difficult to say with high confidence, “All

elements of my theory are true.”
p(n—1)
\/— Fp,n—p ((1)

n-—p
n tn.1(0.025) p=4 p=10
15 2.145 4.14 11.52
25 2.064 3.60 6.39
50 2.010 3.31 5.05
100 1.970 3.19 4.61
00 1.960 3.08 4.28




Generalization of t-test to T>-test
Neither the traditional nor the simultaneous interval tests take into account that the
variables may be correlated with one another. The 95% confidence region should not be a
rectangle, but rather an ellipse. How should we handle this? This is not that complicated.

. . : X —
In the single normal variable case, we test usingt = £
s/~/n

we want to combined without having —*s canceling +’s, we use the Hotelling T>-distribution of

When we have several variables that

= 2
the variable t> = (Xz—u) . For p-variate normal vector case, the equivalent statistic is
s“/n
- P
2 X—W'S "(X— - N
12, = EWS W ys ko).

1/n
This statistic has normals on the top (the x’x terms) and normals *"**? in the bottom (since

S is composed from squared normals). That is, it is the ratio of y*s and hence has the F-
distribution:

squared

n-1
Tont ~ % Fonp-
Thus if we had a null hypothesis that the p-variate variable X had mean p, then we would
construct the above T? statistic and see if it exceeded the critical value found in an F-distribution
table. This will tells us whether our theoretical value p is covered by the confidence ellipsoid
1-0% of the time in repeated samples. The 1-a% confidence ellipsoid has axes determined by

n(X-W)'S'(X—p)<c’ = ﬂFp’n_p (o). That is they are determined by starting at X and
going + \/k_l ¢/vn= i\/k_i \/% F, ., () units along the eigenvectors €;. This is better
n(n—p

than doing p separate t-tests of each variable, since it uses all the information in S, including the
fact that some variables are highly correlated.
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In summary, do not claim when you study p variables and all of them fit your theory that
you are 95% confident in your theory. Apparent confidence is not real confidence. On the other
hand, even if one-at-a-time you cannot reject the null, you still may be able to with 95%
confidence state, “There are some elements of this theory that must be true, I just cannot tell you
which ones.” In the above graph, the true p is inside the apparent 95% confidence interval, so
you apparently cannot reject any element p;, but p is outside the 95% confidence ellipsoid, so
you reject 1 as a whole.



