
Random Vectors 
 

x is a p×1 random vector with a pdf probability density function f(x): Rp→R.  Many books write 
X for the random vector and X=x for the realization of its value. 
E[X]=  µ=∫ xxx d)(f .

 
Theorem: E[Ax+b]= AE[x]+b 
 
Covariance Matrix E[(x-µ)(x-µ)’]=var(x)=Σ   (note the location of transpose) 
 
Theorem: Σ=E[xx’]-µµ’ 
 
If y is a random variable: covariance C(x,y)= E[(x-µ)(y-ν)’] 
 
Theorem: For constants a, A, var (a’x)=a’Σa, var(Ax+b)=AΣA’, C(x,x)=Σ, C(x,y)=C(y,x)’ 
 
Theorem: If x, y are independent RVs, then C(x,y)=0, but not conversely. 
 
Theorem: Let x,y have same dimension, then var(x+y)=var(x)+var(y)+C(x,y)+C(y,x) 
 

Normal Random Vectors 
 
The Central Limit Theorem says that if a focal random variable x consists of the sum of many 
other independent random variables, then the focal random variable will asymptotically have a 

distribution that is basically of the form , which we call “normal” because it is so common. 
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Normal random variable has pdf  
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Denote x p×1 normal random variable with pdf 
 

)()'(
2/12/p

1
e

)(

1(f µµ −Σ−− −

Σπ
= xx

2
x)  

where µ is the mean vector and Σ is the covariance matrix: x~Np(µ,Σ). 

Bivariate Normal
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Recall variance σ11 is also sometimes written σ1
2 and by symmetry σ12=σ21. The correlation is 

ρ12=σ12/ 2211σσ =σ12/(σ1σ2). 
 
Theorem: Eigenvalue of Σ-1 is reciprocal of eigenvalue of Σ and eigenvectors are identical. 
Proof: Let Σ-1x=λx.  Then x=λΣx or Σx=(1/λ)x. 
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Contour of constant probability is ellipsoid (x-µ)’Σ-1(x-µ)=c2 for some c.  This is an ellipse 
centered at µ and with axis that point in the directions of the eigenvectors of Σ with length 
c iλ , that is the axes are ±c iλ ei where λi and ei are the eigenvalues and eigenvectors of the 
covariance matrix Σ.   
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1 2-ρ2=0 or λ=1±ρ.  The 

eigenvectors are values of (x1,x2) such that -±ρx1+ρx2=0 and x1
2+x2

2=1;  these are (1/ 2 , 
±1/ 2 ) .  If the correlation ρ is positive, then the eigenvector (1/ 2 , 1/ 2 ) is stretched to a 
length greater than 1, ρ+1 , while the eigenvector (1/ 2 , -1/ 2 ) is shrunk to a length less 

than 1, ρ−1 .  See the figure below. 
 
 
 
 
 
 
 
 
Theorems:  The moment generating function (mgf) for multivariate normal is 
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 x~N(µ,Σ) ⇒ xi ~ N(µi,σii) 

 y≡a’x ⇒ y~N(a’µ,a’Σa)  and mgf φy(τ)= a'a'a 2
2

1
e Στ+µτ  

 x1|x2 ~ N(µ1+σ12/σ22(x2-µ2), σ11-σ12
2/σ22) 

  
Theorem (x-µ)’Σ-1(x-µ) ~ χ2

p   
Proof:  (note:chi-sq is the sum of the squares of independent normals). Using spectral 
decomposition,  (x-µ)’Σ-1(x-µ)=(x-µ)’(PΛP’)-1(x-µ)=(x-µ)’PΛ−1/2 Λ−1/2P’(x-µ).  From above 
Λ−1/2P’(x-µ) ~N(0, Λ−1/2P’ΣP Λ−1/2)=Ν(0, Λ−1/2Λ Λ−1/2)=Ν(0,Ι), so quadratic form is the sum of 
independent squared normal random variables. QED 
 

Normal data matrix  where x
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Μ i is iid Np(µ,Σ).  This is a n×p matrix of random variables. 

Each row is independent of other rows and identically distributed. 
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Note: x’Ax=tr(x’Ax)=tr(Axx’) 
Aside: On Union Intersection Tests 

x~N(µ,I) => y=a’x~N(a’µ, a’a) 
Ho:µ=0  ya= a’x~N(0, a’a) for all a. 
Hoa: a’µ =0 
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Ho= ∩ Hoa  note: if you find one a that violates Hoa then Ho cannot be true. 
Let’s test Hoa using za≡ya/ a'a .  The rejection region is Ra={za| za

2>c2}.  What about Ho?  
R= ∪Ra.  So Ho is accepted if and only if za

2<c2 for all a.  The worst case scenario is maxa za
2.  

So, if maxa za
2<c2 then this will be true for all a.   

Suppose that we have independent draws of a random vector.  Let xj be the jth draw.  Define 

y=a’xj.  Then we know that x'ay =  and sy
2=a’Sa.  Compute t2= ( )

Sa'a
)x('an 2µ− .  Following the 

Union Intersection test procedure we would like to find the value of a that is the worst case 
scenario.  The Cauchy-Schwartz inequality helps here:  (x’y)2 ≤ (x’x)(y’y)  (this is a consequence 
of x’y=||x|| ||y|| cos θ):  (a’( x -µ))2≤ (a’Sa) (( x -µ)’S-1( x -µ)) and can only “=” if a=S-1( x -µ).  
Taking this worst case scenario, the maxa t2=n ( x -µ)’S-1( x -µ).   
 

Theorem:  The interval )(F
n
Sa'a

pn
)1n(px'a pn,p α

−
−

± − will contain a’µ a fraction 1-α% of the 

time, simultaneously for all possible a.   
 
Comparison of Traditional and Simultaneous Confidence Intervals 
 Suppose that you had Hoi:µi=0 for i=1,2,…,p.  If you ignore the fact that there are several 
simultaneous test, you would do this one variable at a time, computing confidence intervals: 

).2/(tn/sx 1niii α⋅± −  
As we have seen before, the confidence for these as a whole is not 1-α%, but rather (1-α)p: for 6 
variables 0.956=0.75.  Hence the rectangular region sketched out by these intervals is really only 
a 75% confidence region.  If you had 13 variables, then this region will capture the truth in all 
dimensions only 50% the time. We have a false sense of high accuracy.   

The above Union Intersection test would sequentially set a’=(0,..0,1,0,..0)  where the 1 is 
in the ith entry and then calculate the intervals 
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−
−

⋅± −  

These simultaneous intervals will be much wider than the above, but we can then say that there is 
a 95% confidence that all variables will be covered by the combined rectangle.  These intervals 
are the “shadows of the 95% confidence ellipse in a p-dimensional space. 

How much wider are these simultaneous intervals?  It depends on n and p.  As you can 
see the intervals are much wider, making it very difficult to say with high confidence, “All 
elements of my theory are true.” 
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n tn-1(0.025) p=4 p=10 
15 2.145 4.14 11.52 
25 2.064 3.60 6.39 
50 2.010 3.31 5.05 
100 1.970 3.19 4.61 
∞ 1.960 3.08 4.28 
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Generalization of t-test to T2-test 
 Neither the traditional nor the simultaneous interval tests take into account that the 
variables may be correlated with one another.  The 95% confidence region should not be a 
rectangle, but rather an ellipse.  How should we handle this?  This is not that complicated. 

In the single normal variable case, we test using
n/s

xt µ−
≡ .  When we have several variables that 

we want to combined without having –‘s canceling +’s, we use the Hotelling T2-distribution of  

the variable 
n/s
)x(t 2
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≡ .  For p-variate normal vector case, the equivalent statistic is 
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This statistic has normals squared on the top (the x’x terms) and normals squared in the bottom (since 
S is composed from squared normals).  That is, it is the ratio of χ2s and hence has the F-
distribution: 
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Thus if we had a null hypothesis that the p-variate variable x had mean µ, then we would 
construct the above T2 statistic and see if it exceeded the critical value found in an F-distribution 
table.  This will tells us whether our theoretical value µ is covered by the confidence ellipsoid 
1-α% of the time in repeated samples.  The 1-α% confidence ellipsoid has axes determined by 

)(F
pn

p)1n(c)(S)'(n pn,p
21 α

−
−

=≤−− −
− µxµx .  That is they are determined by starting at x  and 

going )(F
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−
λ±=λ± − units along the eigenvectors ei. This is better 

than doing p separate t-tests of each variable, since it uses all the information in S, including the 
fact that some variables are highly correlated.  
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In summary, do not claim when you study p variables and all of them fit your theory that 
you are 95% confident in your theory.  Apparent confidence is not real confidence.  On the other 
hand, even if one-at-a-time you cannot  reject the null, you still may be able to with 95% 
confidence state, “There are some elements of this theory that must be true, I just cannot tell you 
which ones.”   In the above graph, the true µ is inside the apparent 95% confidence interval, so 
you apparently cannot reject any element µi, but µ is outside the 95% confidence ellipsoid, so 
you reject µ as a whole. 
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