Random Vectors

x is a p×1 random vector with a pdf probability density function $f(\mathbf{x})$: $\mathbf{R}^p \rightarrow \mathbf{R}$. Many books write **X** for the random vector and **X**=**x** for the realization of its value. E[**X**]= $\int \mathbf{x} f(\mathbf{x}) d\mathbf{x} = \mu$.

Theorem: E[Ax+b] = AE[x]+b

Covariance Matrix $E[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{2}]=var(\mathbf{x})=\Sigma$ (note the location of transpose)

Theorem: $\Sigma = E[\mathbf{xx'}] - \mu \mu'$

If **y** is a random variable: covariance $C(\mathbf{x}, \mathbf{y}) = E[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{y}-\boldsymbol{\nu})']$

Theorem: For constants **a**, A, var (**a**'**x**)=**a**' Σ **a**, var(A**x**+**b**)=A Σ A', C(**x**,**x**)= Σ , C(**x**,**y**)=C(**y**,**x**)'

Theorem: If \mathbf{x} , \mathbf{y} are independent RVs, then $C(\mathbf{x},\mathbf{y})=0$, but not conversely.

Theorem: Let \mathbf{x}, \mathbf{y} have same dimension, then $var(\mathbf{x}+\mathbf{y})=var(\mathbf{x})+var(\mathbf{y})+C(\mathbf{x},\mathbf{y})+C(\mathbf{y},\mathbf{x})$

Normal Random Vectors

The Central Limit Theorem says that if a focal random variable x consists of the sum of many other independent random variables, then the focal random variable will asymptotically have a distribution that is basically of the form e^{-x^2} , which we call "normal" because it is so common.

Normal random variable has pdf
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\left(\frac{x-\mu}{\sigma}\right)^2/2} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)\frac{1}{\sigma^2}(x-\mu)/2}$$

Denote $\mathbf{x} p \times 1$ normal random variable with pdf

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)}$$

where $\boldsymbol{\mu}$ is the mean vector and $\boldsymbol{\Sigma}$ is the covariance matrix: $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Bivariate Normal
$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}} e^{-\begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix} \cdot \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix}^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix} / 2}$$
 Note

Recall variance σ_{11} is also sometimes written σ_1^2 and by symmetry $\sigma_{12}=\sigma_{21}$. The correlation is $\rho_{12}=\sigma_{12}/\sqrt{\sigma_{11}\sigma_{22}}=\sigma_{12}/(\sigma_1\sigma_2)$.

Theorem: Eigenvalue of Σ^{-1} is reciprocal of eigenvalue of Σ and eigenvectors are identical. Proof: Let $\Sigma^{-1}x = \lambda x$. Then $x = \lambda \Sigma x$ or $\Sigma x = (1/\lambda)x$. Contour of constant probability is ellipsoid $(\mathbf{x}-\boldsymbol{\mu})^{2}\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})=c^{2}$ for some c. This is an ellipse centered at $\boldsymbol{\mu}$ and with axis that point in the directions of the eigenvectors of Σ with length $c\sqrt{\lambda_{i}}$, that is the axes are $\pm c\sqrt{\lambda_{i}} \mathbf{e}_{i}$ where λ_{i} and \mathbf{e}_{i} are the eigenvalues and eigenvectors of the covariance matrix Σ .

Suppose that $\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$, then eigenvalues are defined by $(1-\lambda)^2 - \rho^2 = 0$ or $\lambda = 1 \pm \rho$. The

eigenvectors are values of (x_1,x_2) such that $\pm \rho x_1 + \rho x_2 = 0$ and $x_1^2 + x_2^2 = 1$; these are $(1/\sqrt{2}, \pm 1/\sqrt{2})$. If the correlation ρ is positive, then the eigenvector $(1/\sqrt{2}, 1/\sqrt{2})$ is stretched to a length greater than 1, $\sqrt{1+\rho}$, while the eigenvector $(1/\sqrt{2}, -1/\sqrt{2})$ is shrunk to a length less than 1, $\sqrt{1-\rho}$. See the figure below.

Theorems: The moment generating function (mgf) for multivariate normal is

$$\phi_{\mathbf{x}}(\mathbf{t}) = E\left[e^{\mathbf{t'x}}\right] = e^{\mathbf{t'\mu} + \frac{1}{2}\mathbf{t'}\Sigma\mathbf{t}}.$$

$$\mathbf{x} \sim N(\mathbf{\mu}, \Sigma) \Longrightarrow x_{i} \sim N(\mathbf{\mu}_{i}, \sigma_{ii})$$

$$\mathbf{y} \equiv \mathbf{a'x} \Longrightarrow \mathbf{y} \sim N(\mathbf{a'\mu}, \mathbf{a'\Sigma a}) \text{ and } mgf \phi_{\mathbf{y}}(\tau) = e^{\tau \mathbf{a'\mu} + \frac{1}{2}\tau^{2}\mathbf{a'\Sigma a}}$$

$$x_1|x_2 \sim N(\mu_1 + \sigma_{12}/\sigma_{22}(x_2 - \mu_2), \sigma_{11} - \sigma_{12}^2/\sigma_{22})$$

Theorem $(\mathbf{x}-\boldsymbol{\mu})^{2}\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}) \sim \chi^{2}_{p}$

Proof: (note:chi-sq is the sum of the squares of independent normals). Using spectral decomposition, $(\mathbf{x}-\boldsymbol{\mu})^{2}\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})=(\mathbf{x}-\boldsymbol{\mu})^{-1}(\mathbf{x}-\boldsymbol{\mu})=(\mathbf{x}-\boldsymbol{\mu})^{2}P\Lambda^{-1/2}\Lambda^{-1/2}P^{2}(\mathbf{x}-\boldsymbol{\mu})$. From above $\Lambda^{-1/2}P^{2}(\mathbf{x}-\boldsymbol{\mu}) \sim N(0, \Lambda^{-1/2}P^{2}\Sigma P \Lambda^{-1/2})=N(0, \Lambda^{-1/2}\Lambda \Lambda^{-1/2})=N(0, I)$, so quadratic form is the sum of independent squared normal random variables. QED

Normal data matrix $X = \begin{bmatrix} \mathbf{x}_1 \\ M \\ \mathbf{x}_n \end{bmatrix}$ where \mathbf{x}_i is iid $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. This is a n×p matrix of random variables.

Each row is independent of other rows and identically distributed.

$$P(\mathbf{X}) = (2\pi)^{-np/2} |\Sigma|^{-n/2} \exp\left(-\sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu})/2\right)$$
$$= (2\pi)^{-np/2} |\Sigma|^{-n/2} \exp\left[-\operatorname{tr}\left(\Sigma^{-1} (\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{x}_{i} - \overline{\mathbf{x}})' + n(\overline{\mathbf{x}} - \boldsymbol{\mu})(\overline{\mathbf{x}} - \boldsymbol{\mu})')/2\right)\right]$$

Note: x'Ax=tr(x'Ax)=tr(Axx')

Aside: On Union Intersection Tests

 $\begin{aligned} \mathbf{x} \sim N(\mathbf{\mu}, I) &=> y = \mathbf{a}^* \mathbf{x} \sim N(\mathbf{a}^* \mathbf{\mu}, \mathbf{a}^* \mathbf{a}) \\ H_0: \mathbf{\mu} = \mathbf{0} &\Leftrightarrow y_a = \mathbf{a}^* \mathbf{x} \sim N(\mathbf{0}, \mathbf{a}^* \mathbf{a}) \text{ for all } \mathbf{a}. \\ H_{0a}: \mathbf{a}^* \mathbf{\mu} = 0 \end{aligned}$

 $H_o = \cap H_{oa}$ note: if you find one **a** that violates H_{oa} then H_o cannot be true. Let's test H_{oa} using $z_a \equiv y_a / \sqrt{a'a}$. The rejection region is $R_a = \{z_a | z_a^2 > c^2\}$. What about H_o? $R = \bigcup R_a$. So H_o is accepted if and only if $z_a^2 < c^2$ for all a. The worst case scenario is max_a z_a^2 . So, if max_a $z_a^2 < c^2$ then this will be true for all a. Suppose that we have independent draws of a random vector. Let \mathbf{x}_i be the jth draw. Define

y=**a**'**x**_j. Then we know that $\overline{y} = a'\overline{x}$ and $s_y^2 = a'Sa$. Compute $t^2 = \frac{n(a'(\overline{x} - \mu))^2}{a'Sa}$. Following the Union Intersection test procedure we would like to find the value of a that is the worst case

scenario. The Cauchy-Schwartz inequality helps here: $(x'y)^2 \le (x'x)(y'y)$ (this is a consequence of $x^{y} = ||x|| ||y|| \cos \theta$: $(a^{\prime}(\overline{x}-\mu))^{2} \le (a^{\prime}Sa)((\overline{x}-\mu)^{\prime}S^{-1}(\overline{x}-\mu))$ and can only "=" if $a = S^{-1}(\overline{x}-\mu)$. Taking this worst case scenario, the max_a $t^2 = n (\bar{x} - \mu)^3 S^{-1}(\bar{x} - \mu)$.

<u>Theorem</u>: The interval $a'\bar{x} \pm \sqrt{\frac{p(n-1)}{n-p}} \frac{a'Sa}{n} F_{p,n-p}(\alpha)$ will contain $a'\mu a$ fraction 1- α % of the

time, simultaneously for all possible a.

Comparison of Traditional and Simultaneous Confidence Intervals

Suppose that you had $H_{0i}:\mu = 0$ for i=1,2,...,p. If you ignore the fact that there are several simultaneous test, you would do this one variable at a time, computing confidence intervals:

$$\overline{\mathbf{x}}_{i} \pm \sqrt{\mathbf{s}_{ii}} / \mathbf{n} \cdot \mathbf{t}_{n-1} (\alpha / 2).$$

As we have seen before, the confidence for these as a whole is not $1-\alpha\%$, but rather $(1-\alpha)^p$: for 6 variables $0.95^6=0.75$. Hence the rectangular region sketched out by these intervals is really only a 75% confidence region. If you had 13 variables, then this region will capture the truth in all dimensions only 50% the time. We have a false sense of high accuracy.

The above Union Intersection test would sequentially set a'=(0,...0,1,0,...0) where the 1 is in the ith entry and then calculate the intervals

$$\overline{x}_{i} \pm \sqrt{s_{ii} / n} \cdot \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha).$$

These simultaneous intervals will be much wider than the above, but we can then say that there is a 95% confidence that all variables will be covered by the combined rectangle. These intervals are the "shadows of the 95% confidence ellipse in a p-dimensional space.

How much wider are these simultaneous intervals? It depends on n and p. As you can see the intervals are much wider, making it very difficult to say with high confidence, "All elements of my theory are true."

		$\sqrt{rac{p(n-1)}{n-p}}F_{p,n-p}(\alpha)$	
n	$t_{n-1}(0.025)$	p=4	p=10
15	2.145	4.14	11.52
25	2.064	3.60	6.39
50	2.010	3.31	5.05
100	1.970	3.19	4.61
00	1.960	3.08	4.28

Generalization of t-test to T²-test

Neither the traditional nor the simultaneous interval tests take into account that the variables may be correlated with one another. The 95% confidence region should not be a rectangle, but rather an ellipse. How should we handle this? This is not that complicated.

In the single normal variable case, we test using $t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$. When we have several variables that

we want to combined without having -'s canceling +'s, we use the Hotelling T²-distribution of

the variable $t^2 = \frac{(\overline{x} - \mu)^2}{s^2/n}$. For p-variate normal vector case, the equivalent statistic is

$$T_{p,n-1}^{2} \equiv \frac{(\overline{\mathbf{x}} - \boldsymbol{\mu})' S^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu})}{1/n} = n(\overline{\mathbf{x}} - \boldsymbol{\mu})' S^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}).$$

This statistic has normals ^{squared} on the top (the x'x terms) and normals ^{squared} in the bottom (since S is composed from squared normals). That is, it is the ratio of χ^2 s and hence has the Fdistribution:

$$T_{p,n-1}^2\sim \frac{(n-1)p}{n-p}\,F_{p,n-p}$$

Thus if we had a null hypothesis that the p-variate variable \mathbf{x} had mean $\boldsymbol{\mu}$, then we would construct the above T^2 statistic and see if it exceeded the critical value found in an F-distribution table. This will tells us whether our theoretical value μ is covered by the confidence ellipsoid $1-\alpha\%$ of the time in repeated samples. The $1-\alpha\%$ confidence ellipsoid has axes determined by

 $n(\overline{\mathbf{x}} - \boldsymbol{\mu})' S^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}) \le c^2 = \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha).$ That is they are determined by starting at $\overline{\mathbf{x}}$ and going $\pm \sqrt{\lambda_i} c / \sqrt{n} = \pm \sqrt{\lambda_i} \sqrt{\frac{(n-1)p}{n(n-p)}} F_{p,n-p}(\alpha)$ units along the eigenvectors \mathbf{e}_i . This is better

than doing p separate t-tests of each variable, since it uses all the information in S, including the fact that some variables are highly correlated.

In summary, do not claim when you study p variables and all of them fit your theory that you are 95% confident in your theory. Apparent confidence is not real confidence. On the other hand, even if one-at-a-time you cannot reject the null, you still may be able to with 95% confidence state, "There are some elements of this theory that must be true, I just cannot tell you which ones." In the above graph, the true μ is inside the apparent 95% confidence interval, so you apparently cannot reject any element μ_i , but μ is outside the 95% confidence ellipsoid, so you reject µ as a whole.