
Matrix Manipulation of Data: Matrix Algebra 
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Scalar multiplication ,  
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Definition: x and y point in the same direction if for some k≠0, y=kx. 
 
Vectors have a direction and length.  Euclidian Length ∑= 2

ixx   
 

xy

θ tx

Inner product x’y=Σxiyi  
Note: we think of this as a row times a column 
Suppose tx is a projection of y into x:     
y’y=t2x’x +(y-tx)’(y-tx)= t2x’x +y’y-2tx’y+ t2x’x ⇒ t=x’y/x’x. 

Note: cos θ≡ t||x||/||y||, so  
x’y =||x|| ||y|| cos(θ). 

The inner product is the product of lengths correcting for not pointing in the same direction.   
If two vectors x and y point in the precisely the same direction, then we say that there are 
dependent.  More generally, they are dependent if there exists k1, k2≠0 such that k1x+k2y=0.  
That is, a linear combination of x and y with weights k=(k1,k2)’ equals the zero vector    
 
If x and y are not dependent, then they are independent: they point in different directions.   
Maximal independence is orthogonal (perpendicular): θ=90o ⇒ cos θ = 0 ⇒x’y=0.  
Orthonormal vectors are both orthogonal of unit length: x’y=0 and ||x||=1=||y||.  They lie on the 
unit circle. 
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2. Matrices 

n×p matrix:     n and p are the dimensions of the matrix.  In a data matrix, 

n is the number of observations and p is the number of variables.  X(j) denotes the jth column 
which holds all the observations of the jth variable, while Xi denotes the ith row which holds the 
ith observation of all the variables.   
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Matrix algebra 
Equality X=Y ⇔ xij=yij if dimensions conform 
Matrix addition X+Y=Z  zij=xij+yij  if dimensions conform 
Scalar multiplication kX=[kxij] 
Transpose X’ denotes a p×n matrix =[xji]  where rows and columns are interchanged 
Symmetric square matrix:  X=X’. 
 
Multiplying a matrix X by a vector b, Xb, can be thought of in two different ways depending on 
whether we focus on the rows or columns of X.  Focusing on rows, think of X as rows stacked 
one upon another.  Then the product Xb is a sequence of inner products Xib=Σxijbj stacked one 
upon another.  Alternatively, if we think of X as a collections of column vectors, then Xb is a 
linear combination of the vectors with weights given in b: ΣX(j)bj. 
 
Rank(X)=maximum number of independent rows in matrix: rank(X)≤n.  If the rank is below n, 
then some observations are essentially duplicates of others. 
Matrix Multiplication:  Z=XY  is defined if X n×p and Y p×m  then Z is n×m where zij=XiY(j) = 
inner product of ith row of X and jth column Y. 
 
Theorem: A+B=B+A, A(B+C)=AB+AC, (A’)’=A, (A+B)’=A’+B’, (AB)’=B’A’ 
Note: AB=AC ⇒/  B=C 
Note: AB≠BA except in special cases. 
 
Special matrices 
 Square 

Matrix A is n×n 
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Theorem: The centering matrix H is idempotent, HH=H. 
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3. Descriptive Statistics Using Matrix Notation 
 
Mean vector: n/'X1x = is a p-vector of means.  Note that the interpretation of inner product as a 
projection implies that the mean is a projection into the unit vector in an n-dimensional space.  
See below for 3 observations of a single variable (this is not a scatterplot). 

1

x

x 1

1st observation

2nd observation

3rd observation  
The mean p-vector x  tells us where the center of the scatterplot is located.  We are also 
interested in how the observations differ from the mean. Data as deviations from mean 
Xd=HX=X-1 x ’. 

1

view in 3-d view down the barrel of 1
view down the barrel of 1,
vectors scaled to be length 1.0.

θ

,
= correlation r =cos(θ)inner product  

Covariance matrix Sn=Xd’Xd/n=(HX)’HX/n=X’HX/n is a p×p matrix with variance along 
diagonal and covariances off-diagonal. If we calculate covariance matrix dividing by n-1 rather 
than n, we write it as S.  M=X’X is the matrix of sums of squares and products. 

Standard deviation matrix  D½=
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A linear combination of variables is defined by a vector a: Xa. Sample mean of linear 
combination is a'x .  Sample variance of a linear combination is a’Sa. 
 
In a p-dimensional scatter plot, we have the n observations of the p variables.   
 

x1
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For each observation (row Xi of data matrix X), we could calculate the Euclidian distance 

∑ =
=

p

1j
2

ijii x'XX .  However, it is possible that one variable fluctuates much more than 

another and yet all variables are treated equally in the summation.  To adjust for this, we often 
take a scaling transformation: zi=D-½(xi- x ); this subtracts the mean and divides by the standard 
deviation.  The resulting distance does not put extra emphasis on the variables with greater 
variance. 

The variables can be correlated with one another so that the scatter diagram is tilted. 
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To account for this, we take the Mahalanobis transformation zmi=S-½(xi- x ), where S½ is the 
square root matrix which has the property it is symmetric and S½ S½=S (more on this later).  The 
square root matrix is not a diagonal matrix like the standard deviation matrix, and takes into 
account the covariance between variables.  The statistical length of an observation is the length 
of the Mahalanobis vector. 
 The p×p covariance matrix S summarizes all that we know about the shape of the scatter 
of points around the mean.  When there are many variables (p is large), S has so many numbers 
in it that it too needs to be summarized.  If we think of our scatterplot as a football  in a p-
dimensional space, we would like to know how long the football compared to how round and in 
which direction it points.  This leads to eigenvalues and eigenvectors of S. See below. 
 

4. Data Decompositions 
 

Y X1 X2 
6 1 2 
4 2 5 
2 6 -3 

Can we express Y in terms of X1 and X2? 
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Equations with “row focus”: 
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Equations with “column focus”:  
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Numbers can be decomposed into products in multiple ways: a positive number can be 

decomposed into the product of its square roots: XXX = , but it can also be decomposed 
into the product of a number and one plus that number: Y(Y+1)=X  ⇒ Y2+2 ½ Y + ½ 2 – ½ 2X 
⇒ (Y+ ½ )2=X + ¼ ⇒ Y= 41X + - ½ .  For example, 0.1 = .316×.316 = .09×1.09.  Similarly, a 
matrix can be decomposed into products of matrices. 
 
Elimination: subtract a multiple of row i from row k with the objective of putting 0’s everywhere 
below a pivot element.  
 
By the process of elimination, we can decompose a data matrix X into the product of a lower 
triangular matrix and an upper triangular matrix.   

 We will work on the data matrix  using elimination.  First, subtract 2 

times the first row from the second.  Record both a matrix that represents what we have done and 

the consequences of doing it: .   
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At this point we have zeroes below the pivot in row 1, so we switch to row 2 and begin with the 
pivot 1.   

The third step of elimination is .  At this point the adjusted data matrix 

is an upper triangular matrix - elements on or above the diagonal are non-zero while all the 
elements below the diagonal are zero. 
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If we string together the matrices representing the elimination steps we get 
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The product of  and  is .  That is, X=LU where L is a 

lower triangular matrix and U is an upper triangular matrix.   
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Theorem:  Every matrix X can be factored into the product of lower and upper triangular 
matrices: X=LU. 
 
This is most basic of all decompositions, but there are others that are more important in statistics: 
Spectral Decomposition: If S is a symmetric matrix, then it can be decomposed into PΛP’, where 
Λ is a diagonal matrix and P is an orthogonal matrix. If S is positive definite, then Λ is positive. 
Singular Value Decomposition: every X n×p matrix can be decomposed into QDV’ where Q is a 
n×n orthogonal matrix, D is a n×p positive diagonal matrix, and V is a p×p orthogonal matrix. 
Cholesky Decomposition:  If S is a symmetric, positive define matrix, then it can be decomposed 
into LL’ where L is a lower triangular matrix with positive elements along the diagonal. 

 
5. Algebra of Square Matrices 

 
From this point forward assume that A is square. You could think of A as a covariance matrix. 
 
Trace tr(A)  sum along diagonal of square matrix ∑= i iia

Theorem: tr(A+B)=tr(A)+tr(B), tr(kA)=ktr(A), tr(XY)=tr(YX) if X is n×p and Y is p×n, 
tr(x’y)=tr(yx’). 
 
A causes a transformation of a vector x into y: Ax=y.  This can be thought of as a rotation, 
stretch, and pinch. 

Rotation Stretch Pinch   
Is there are reverse rotation, stretch and pinch that returns you to where you began? 
Inverse:  B is the inverse matrix of a square matrix A if and only if AB=I=BA.  Notationally, we 
write the inverse A-1. 

Example:  then . ⎥
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Theorem: If A-1 exists, then it is unique. 
Theorem: If A,B are square, then (AB)-1=B-1A-1. 
 
Quadratic form in x:  x’Ax where A is a square symmetric matrix.   
A is positive definite if all non-trivial quadratic forms are positive: x’Ax>0 for all x≠0.   

Example 2×2:  Let , then x’Ax=ax1
2+2bx1x2+cx2⎥
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A 2.  Complete the square to write this 

x’Ax=a(x1
2+2b/ax1x2)+dx2

2= a(x1
2+2b/ax1x2 +(b/ax2)2)-b2/ax2

2+dx2
2=a(x1+b/ax2)2+(ad-b2)/a x2

2.  
Hence if A is positive definite a>0 and ad-b2>0.  By completing the square with x2, it is also true 
that d>0. 
 
Theorem: x’Sx=x’(HX)’(HX)x/(n-1)=y’y/(n-1)≥0 where y=HXx.  Hence the covariance matrix 
is positive-semidefinite. 
Theorem: ( ) ( )∑∑ =

i iii ii 'AtrA'tr xxxx . 
 

Determinants   |x11|=x11, 21122211
2221

1211 xxxx
xx
xx

−=  

Minor |Mij| = determinant of X with ith row and jth column deleted. 
Cofactor |Cij|=(-1)i+j|Mij| 
Determinant via Laplace expansion along ith row: |X|=xi1|Ci1|+xi2|Ci2|+…+xim|Cim| 
Theorem: |AB|=|A| |B| if A and B are square. 
 
A square p×p matrix X is nonsingular if its rows are independent vectors: a’X=0 implies that 
a=0, or equivalently that rank(X)=p.  
 
Three Elementary Row Transformations: 

1) Tij  Interchange rows i and j,  e.g. X ⎥
⎦

⎤
⎢
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01
10

2) Ti(k) Multiply row i by scalar k, e.g. X ⎥
⎦

⎤
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⎡
10
0k

3) Tij(k) Add row j times k to row i e.g. X ⎥
⎦

⎤
⎢
⎣

⎡
10
k1

X is equivalent to Y, denoted X~Y, if X can be transformed into Y by elementary row 
transformations.  Elementary row transformations do not change the rank of a matrix.  By 
elementary row transformations X can be transformed into one of the following four matrices: 

Im, [Im 0], , or . If X~  then the rank(X)=m.   ⎥
⎦

⎤
⎢
⎣

⎡
0

Im
⎥
⎦

⎤
⎢
⎣

⎡
00
0Im
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⎦

⎤
⎢
⎣

⎡
00
0Im

Theorem: Tij changes sign of determinant; Ti(k) multiples determinant by k, and Tij(k) does not 
change the determinant of a square matrix. 
If X~I then there exists a sequence of elementary row transformations: TqTq-1…T2T1X=I.  Since 
I has rank p, X has rank p and is nonsingular.  Multiply both sides by X-1 to get X-1= TqTq-

1…T2T1I.  Since |I|=+1, |X| cannot be zero.   
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Theorem:  The following are equivalent: |X|≠0, X is nonsingular, and X-1 exists.  
  
Eigenvalues and Eigenvectors   
A p×p matrix S transforms x into a stretched version of x (with no rotation) when Sx=λx, for 
some scalar λ.  A nontrivial solution exists if (S-λI)x=0 for x≠0.  This says the columns of S-λI 
are dependent but then |S-λI|=0.  This is a polynomial equation that defines the eigenvalue λ. 

Example:  eigenvalues of  :  ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

λ−
λ−

=⎥
⎦

⎤
⎢
⎣

⎡
λ−⎥

⎦

⎤
⎢
⎣

⎡
dc

ba
10
01

dc
ba

=(a-λ)(d-λ)-bc=  

λ2-(a+d)λ+ad-bc=0= λ2-tr(S)λ+|S|=0.  There will be two eigenvalues (in general, p).  The sum of 
the eigenvalues equals the trace of the matrix tr(S) and the product of the eigenvalues equals the 
determinant of the matrix |S|.  This is true in general. 

For each eigenvalue, λi, there is a direction, eigenvector ei, such that Sei=λiei and we 
standardize these to have unit length, ei’ei=1.  Put these eigenvectors side-by-side into a matrix P. 
 
Theorem: if S=S’ then P’P=I.  That is, the eigenvectors are orthonormal. 

Proof: Sei=λiei implies ej’Sei=λiej’ei.  By similar reasoning and using symmetry, 
λiej’ei=λjej’ei.  Since λi≠λj, this implies that ej’ei=0.  The length of the 
eigenvectors equals 1 so that takes care of the diagonal of I.  QED 

 
Spectral Decomposition of symmetric square matrix S 

Sei=λiei  is equivalent to SP=PΛ  where Λ is a diagonal matrix with eigenvalues along the 
diagonal.  Multiply on the right by P’ to get SPP’=PΛP’ or (using the above theorem),  
S=PΛP’= .  That is, a symmetric square matrix S can be expressed as a combination of 

elements built from the orthonormal eigenvectors. If we order the eigenvalues from largest (λ1) 
to smallest (λm), then if we used just the first few elements in the sum 

∑λ
i iii 'ee

∑λ
i iii 'ee  we get the best 

approximation of S possible. 
Recall that the p×p covariance matrix S can be pretty big in a multivariate study; a survey 

with 20 questions has a covariance matrix with 210 unique numbers.  We might try to capture the 
essence of what is going on by looking at the 4 or 5 directions suggested by the football-shaped 
scatterplot that contain the most information.  The 4 or 5 largest eigenvalues tells us the ones 
with the most information and their eigenvectors tell us the direction the football points. 

 
 
Theorem: S is positive definite if and only if the eigenvalues of S are all positive.   
Proof: x’Sx=x’PΛP’x by spectral decomposition.  Let y=P’x, then x’Sx=Σλiyi

2>0 if all 
eigenvalues are positive. QED 
 
Singular-Value Decomposition 
 
Spectral decomposition applies only to symmetric square matrices. Suppose that from the data 
matrix X we compute the p×p square matrix X’X and the n×n square matrix XX’.  Use the 
spectral decomposition to write X’X=VΛV’ where V is p×p and write XX’=UΛ0U’ where U is 
n×n.  We assume that n>p. Define the matrix n×p Λ½ to be the diagonal matrix with elements 
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equal to the square root of the eigenvalues in Λ; the last n-p rows are all zeroes.  Compute 
Y=UΛ½V’.  Y’Y= (UΛ½V’)’UΛ½V’=VΛ½’U’UΛ½V’=VΛ½’IΛ½V’=V(Λ+0)V’=VΛV’=X’X  
hence X=UΛ½V’.  Thus, any data matrix is really composed of a collection of n uncorrelated 
variables with unit variances (U), a selection of p of these stretched or shrunk (Λ½) and these 
values rotated (V’).  See below. This is called the Singular-Value Decomposition. 
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