Measuring Causal Effects in Partial Mediated Models without Experiments

J. Hess
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In the traditional linear, normal version of the partial mediated model, the above graph corresponds to the equations X=X, M=aX+M=aX+M, and Y=bM+cX+Y=(ab+c)X+bM+Y.  The is are all assumed to be Normal (0,Vi).  The variance-covariance matrix is
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We might ask, “What is the functional relationship between the conditional mean of Y given M and values of observed M=m?”  The expected conditional mean of Y | M=m equals 
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  Because 
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, we should not interpret b as the amount Y is expected to increase if the observed value of M is 1 unit larger.
What is b then, anyway?  Suppose that we intervened in the process described by the above graph and experimentally manipulated M.  This means that the force of X driving M is overwhelmed by the experimental manipulation.  The actual graphical model with a manipulation of M is seen below.
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If this is the case, then Y=bm+cX+Y= bm+cX+Y.  The conditional mean of Y|M=m equals bm, so 
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.  In Pearl’s notation this is 
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, where the hat denotes experimentally controlled. 

Without an experiment, is there a way to measure the true b (we know that calculating 
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will not give b)?  Of course.  It requires that we measure a, c, VX, and VM and calculate {E[Y|M=m]-acVX/(a2VX+VM)}/m.  This strips out the effect on Y of the common cause X, revealing the true causal strength of M on Y.  To make this measurement, we have to have observations on X to measure VX, a, and c.
Suppose X is latent?  There is then a “confound” in our attempts to measure b and the model is not identifiable.    
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This is seen graphically because there is a “back-door” path from M to Y that cannot be blocked by an observed variable.  A back-door path leaves M against the arrow (hence back-door), but once out can move freely to Y, unblocked by an observable variable.  Had X been observed, it would block the flow to Y: M(X(Y, and we could thus measure the causal effect of M on Y (as seen above).  With X latent, this cannot be done.

Suppose that while X is latent, there is a manifest variable Z lying on the path from X to Y, as seen below.  Suppose that smoking X is thought to increase tar in the lungs M and that causes cancer Y.  However, we cannot do an experiment that artificially introduces tar to the lungs for ethical reasons, and actual smoking behavior is difficult to measure because people underreport it for social reasons.  However, suppose that smoking also increases the measurable amount of nicotine in the blood Z and it is thought that nicotine also causes cancer. 

[image: image10]
This intermediate manifest variable Z does block the back-door path from M to Y: M(X(Z(Y.  Our model is now M=aX+M, Z=c1X+Z, Y=bM+c2Z+Y.  Assuming that the variance of X is normalized to 1, the variance-covariance matrix of (M,Z,Y) is
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If the observed version of this is the matrix S, then we can solve for b:
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.  Notice that SMY/SMM is the OLS estimate of b, so this takes Z into account.
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In the above Z now intervenes between the unobserved exogenous variable and the observed Mediator.  Measuring Z blocks the back-door path from M to Y, so b is identifiable.  
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In the above, Z intervenes between the Mediator and the Exogenous variable. It blocks the front-door path M(Z(Y.  The back-door path from M to Z is blocked by the collision at Y, so we can measure b1.  The back-door path from Z to Y is blocked by M, so b2 can be measured.  This means that the effect of M on Y, b1b2, can be measured.

We have just shown that if X is not measured, but there is an intermediate measurable variable that intervenes in any link in the partial mediator model, then the effect of experimentally controlled adjustments M on Y can be measured without doing an experiment.

Appendix 

Connected and d-separated Variables in a Causal Graph

We will consider paths in directed acyclic graph G that represents the causal linkages between variables.  A variable corresponds to a vertex V.  Some pairs of vertices are connected by edges, and in a directed graph an arrowhead denotes the causal link between causes and effects (see Figure 1).  If we strip away the arrowheads in a graph what is left is the skeleton of G.  
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Figure 1
Two vertices X and Y are connected by a path if there is a sequence of connected edges in the skeleton of G that starts at X and ends at Y.  If every edge in a path points from the first to the second vertex, then the path is a directed path.  Note: a path from X to Y need not be directed (e.g. X(Z(Y).  If there are no loops in G, then it is a directed acyclic graph (DAG); that is, there is no directed path X(Y(Z(((((X.  If there is a directed path from X to Y, then X is an ancestor of Y (we will include Y itself in the set of ancestors of Y, as we include “=” in “(”) and Y is a descendant of X.  If there is an edge X(Y, then X is a parent of Y and Y is a child of X.  Note: a child can have any number of parents (more than two, for example) and we denote the parents of X by the set of vertices “paX.”  Note: all the variables in the DAG are assumed to be manifest or at least measured.  Latent variables will be considered later.

A probability distribution over a set of variables X1,…Xn is compatible with a DAG of formed from those variables if and only if the probability distribution can be factored as follows, P(x1,…xn)=
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.  For example, with a graph X(Y(Z, the probability can be factored as P(x,y,z)=P(z|y)P(y|x)P(x), while the graph X(Y(Z has probabilities that can be factored P(x,y,z)=P(y|x,z)P(z)P(x) and if we added a link from X to Z to this graph, then the probability factors P(x,y,z)=P(y|z,x)P(z|x)P(x).
Definition: A chain at V is a path of the form A(V(B.

Definition: A fork at V is a path of the form A(V(B.

Definition: A collider at V is a path of the form A(V(B.

In the following, we will consider paths from X to Y, X≠Y, but conditioned upon knowing the value at a vertex Z (which may or may not be on the path and may correspond to the null vertex but is not in {X,Y}).

Definition:  V is an active vertex given Z on a path from X to Y if and only if



a. V is a chain or fork and V(Z, or



b. V is a collider and V is an ancestor of Z.

Definition: X and Y are connected in graph G given Z if and only if there is a path from X to Y whose vertices are active given Z.

Definition: V is a blocked vertex given Z on a path from X to Y if and only if



a. V is a chain or fork and V=Z, or



b. V is a collider and V is not an ancestor of Z.

Definition: X and Y are d-separated (“d” stands for directionally) in graph G given Z if and only if for every path from X to Y- there is a vertex that is blocked given Z.

Comment: d-separation can be tedious to check because we need to explore every path from X to Y and look at many of the vertices to find one that is blocked.

Theorem 1: For almost all probability distributions compatible with a DAG G, X is independent of Y given Z if an only if X and Y are d-separated in G given Z.

Corollary:  For a DAG of normal RVs X and Y are d-separated in G given Z if and only if Cov(X,Y|Z)=0.

 Back-Door Theorem(Pearl 2000, pp. 79-83): The probability 
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 is identifiable without an experiment as 
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 if there a variable X exists that blocks all back-door paths from M to Y, namely
1) X is not a descendent of M, and

2) X blocks every path between M and Y that has an arrow into M.
Front-Door Theorem:  The probability 
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 if there a variable X exists that blocks all front-door paths from M to Y, namely

1) X intercepts all directed paths from M to Y, 

2) there is no back-door path from M to X, and

3) all back-door paths from X to Y are blocked by M.
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� Based upon Judea Pearl, Causality: Models, Reasoning and Inference, Cambridge Univ. Press, 2000.


� If x~N( then x1|x2 ~ N(1+1222-1(x2-2), 11-1222-121)
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