Introduction to Bayesian Statistics


J. Hess
Traditional Approach:
p(D|) = probability of getting data D if true parameter is .

Select a value for the parameter * that maximizes likelihood of getting this data:

*=argmax p(D|).  Obviously the MLE depends on the data *(D) so it would vary from sample to sample and most of statistics involves describing this variation as being significant or not.
Bayesian Approach:

Suppose that we had a prior belief about the unknown  summarized in a pdf p().  The joint probability of the data and the parameter is thus p(D|)p().  Bayesians want to compute the posterior pdf of  given the data:
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The term in the bottom is p(D) and this is just a scaling factor so that the posterior sums to 1 across .  Hence we often just write
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 There is a concern with the Bayesian approach: the posterior depends on the prior and the prior is subjective, arbitrary, and unscientific.  The Bayesians reply that one can specify the prior as a very, very diffuse distribution (with a variance of a million) and hence the posterior will not depend heavily on the prior.  There is a practical concern, too.  How do you know what the posterior probability distribution means, except in some special cases?  For example, suppose that the data is normally distributed with a mean  and variance 1 and the parameter has a prior that is uniformly distributed from 0 to 1.  Then the posterior is proportional to exp(-(-D)2/2) but only on the interval 0 to 1; see the graph below.  The posterior is not normal since it is truncated at 0 and 1 but it is clearly not uniform, either.  If the distributions were more complex then we would have a hard time even visualizing the posterior.
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The major innovation in the past twenty years is that we have developed ways for simulating draws from the posterior distribution, even if we cannot identify a classic distribution for its shape.  That is we create histograms that closely approximate the posterior and use  computational approximations to get “statistics” of the posterior.  For example, the Bayes estimator of  is the expected value of the posterior distribution of . To get this we have to calculate the integral E[|D]= 
[image: image4.wmf]q

ò

q

q

q

d

)

D

(

p

)

(

p

)

|

D

(

p

.  To approximate this, suppose that we could draw a sample of s from the posterior, then calculate E[|D]((1+…+T)/T.  The trick of course is how to draw the sample from the posterior.

Regression example
y~N(X,2I) or 
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.  Noting that (y-X)’(y-X) can be written as (y-Xb)’(y-Xb)+(-b)’X’X(-b), where b is the OLS (X’X)-1X’y, this allows use to reexpress the likelihood as
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The terms prior to the ( can be interpreted as a pdf for 2 and the terms after the ( as a pdf for |2.  Note that the Inverted Gamma distribution has the pdf 
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, so 2 looks like an inverted gamma.  The natural conjugate priors that go with this likelihood are thus:
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In this we are saying that  has a normal prior with a prior mean
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 and a covariance matrix 2(U’U)-1.  The variance 2 has in prior inverted gamma as ythough it was based upon a sample with degrees of freedom 0 and mean s02.

From this, the natural conjugate priors, the posterior is reasonably easy to express:

p(|2, y, X)~N((X’X+U’U)-1(X’Xb+U’U
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), 2(X’X+U’U)-1).  That is,  is normal with a mean that is a weighted average of the OLS estimator b and the prior
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, with weights reflecting the variability of the observed data X relative to the implicit prior data U.  The posterior of 2 is Inverted Gamma with degrees of freedom n+0 and mean that is a weighted average of the sample variance s2 and the prior s02: 
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