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Do Wet Lawns “Cause” Grass to Grow?

You have been watching your neighbor’s grass grow.  When you awake, you immediately take note of whether {the grass has grown or not, his lawn is dry or wet, his lawn sprinkler has been on or off and rain has fallen or not}.  After almost an eternity of data gathering, the evidence that you find is that there is a positive correlation between how wet the lawn is and whether the sprinkler is on, between how wet is the lawn and whether rain has fallen, but that there is zero correlation between rain and the sprinkler.  Moreover, your data says that there is a positive correlation between rainfall and grass growth, but conditional upon a dry or wet yard, this correlation between rain and grass growth is zero.  See Figure 1.
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Figure 1

Do wet lawns cause grass to grow?  There is a strong urge to use your intuition to solve this problem. Resist, temporarily.  


The evidence that the sprinkler is uncorrelated with the rain, implies that the lawn dryness does not cause the rain to fall nor for the sprinklers to turn on.  If it did, then there would be a correlation between rain and sprinklers but there is not.  You might jump to the conclusion that  rain “causes” the lawn to get wet, but this evidence does not rule out a latent common cause that we do not understand entirely.  Perhaps, your neighbor is a “rainman” who always does his rain dance and then hose down his yard.  Of course, it is possible that when your neighbor is feeling pleased, he both turns on the sprinkler for just the flower bed and hoses the lawn but that the sprinkler does not itself wet the yard.  Stick to the evidence.  All you can conclude is “Dry lawns do not cause rain to fall.”  


Perhaps the rainfall could directly cause the grass to grow regardless of the dryness of the lawn.  Again, there may be a story that you haven’t heard of that explains grass growth:  rain triggers worms to wiggle and that causes the grass to grow even if there was a tarp over the grass so it did not get wet from the rain.  However, your data says that while rain correlates with grass growth, if we do a conditional calculation that holds the lawn wetness constant, rain has nothing to do with grass growing.  Apparently, the worms wiggling due to rain is not a plausible story.  The only thing left with is that the wetness of the lawn causes the grass to grow: “Wet Lawn”(”Grass Grows”.

What is Needed to Establish that X causes Y?

Suppose that we are interested in establishing that A causes X rather than vice versa.  The problem is that P(A,X)=P(X|A)P(A)=P(A|X)P(X) so evidence of statistical dependence of A and X does not distinguish the priority of A or X:  correlation alone does not prove causation.  However, suppose that we also have a third variable B which is statistically related to X but not to A.  In Figure 1 illustrates this with a path diagram.  The marginal “independence” notation of an invisible line implies that P(A,B)=P(A)(P(B)  or P(A|B)=P(A) and P(B|A)=P(B). 
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Figure 2

What can we infer about the relationship between A and X from the evidence in Figure 2?  With details to follow, we can establish that A is a “potential cause” of X or equivalently X is not a cause of A.
  The evidence of the relationships between A and X, B and X and no relationship between A and B implies that only some of the 9 patterns seen in Figure 3 can hold.  

[image: image3.emf]B


A


X


B


A


X


e.


h.


B


A


X


b.


B


A


X


B


A


X


B


A


X


a.


d.


g.


B


A


X


B


A


X


f.


i.


B


A


X


c.




B

A X

B

A X

e.

h.

B

A X

b.

B

A X

B

A X

B

A X

a.

d.

g.

B

A X

B

A X

f.

i.

B

A X

c.


Figure 3

Consider each in sequence.  In Figure 3a, the facts that both B causes X and X causes A implies that B indirectly causes A, which contradicts the assumption that A and B are marginally independent (A 
[image: image4] B).  In Figure 3b, the fact that X is a common cause of both A and B implies that they will be correlated, in contradiction of A 
[image: image5] B.  In Figure 3d, although B causes X, X does not drive the latent common cause of A and X, so changes in X do not cause changes in A; there is no direct contradiction of A 
[image: image6] B (this logic applies to Figure 3i, too).  In Figure 3e, when the latent common cause of A and X drive X up or down, that causally implies that B will go up or down, too; this implies that A and B will be correlated in contradiction of A 
[image: image7] B (this logic applies to Figure 3c, too).  In Figure 3g, the fact that X is driven separately by A and B says nothing about whether these two causes are related, so there is no contradiction of A 
[image: image8] B.  In Figure 3h, changes in A causally change X which in turn causes changes in B, implying that A and B will be correlated in contradiction of A 
[image: image9] B.  Finally, in Figure 3f, the two latent causes of A and B are uncorrelated so there is no contradiction of A 
[image: image10] B.  


In summary, the evidence that A and B are independent, yet both are statistically related to X, implies that only Figures 3d, f, g, and i are free of contradictions (see Figure 4)  In none of these possibilities does X cause A.  This evidence is not conclusive that A causes X, since it is possible that a latent common cause exists between A and X.  
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Figure 4

When would we have genuine causal evidence that X causes Y?  Suppose that we knew that both X and A are related in some way to Y and that A is a potential cause of X.  Finally, suppose that we know that A is uncorrelated with Y if we condition on X.  This evidence is described in Figure 5.   The dashed line from A to Y indicates that while there may be a marginal correlation between A and Y, conditional upon fixed values of the other variables, A and Y are independent.
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Figure 5
Given that A is a potential cause of X, we can combine Figure 4 and Figure 5 to have the twelve possible relationships as seen in Figure 6. We have assumed that B and Y have a common latent cause, but this could also be a causal link; the focus is on A not on B, because A is conditionally independent of Y.   Are these consistent with the above facts?  Consider each in turn.
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Figure 6

Figure 6a states that Y is driven only by the latent common cause of X and Y.  If this latent variable also drove A, then there would be a correlation between A and Y given X, a contradiction; however, if this latent variable is unrelated to A, then A will be uncorrelated to Y, which is also a contradiction of the evidence (the dotted line from A to Y). So Figure 6a cannot be true.  Another proof strategy is to suppose that the relationships are linear: X=A+B++, Y=+. If  is uncorrelated with A then Cov(A,Y)=E[A+A]=0.  The conditional covariance given X can be calculated as follows (see p. 5): Cov(A,Y|X)= Cov(A,Y)-Cov(A,X)Var(X)-1 Cov(X,Y) = Cov(A,)-(V(A)+Cov(A,))Cov(a,)+V())/(V(A)+V(B)+V()+V())≠0.  This contradicts the assumption that A is independent of Y given X.  By similar reasoning we can eliminate Figure 6b, c and d.  

Figure 6e or f implies a relationship between A and Y given X (which is assumed not to exist).  For example, if X is “your lawn is wet” then the probability that it rained last night (Y=rain) given the sprinkler system was turned on (A=sprinkler on) differs from (and is much larger than) the probability that it rained last night given the sprinkler system was turned off.  Equivalently, X=A+B+aY+ and X=x implies that A=x-aY-B-, so A and Y are correlated given X, contrary to the assumption.  By similar reasoning, Figure 6g and h implies that given the value of X, there is a relationship between Y and the latent common cause of A and X; this implies that conditional upon X there is a relationship between A and Y, contrary to the evidence.  

The only possibilities left, Figure 6i, j, k and l, involve a causal link from X to Y: X(Y.  

Theorem 3:  To establish that X causes Y, four variables X, Y, A, B must exist such that

a. X and Y are unconditionally correlated,

b. The variable A is a potential cause of X, which requires A to be unconditionally correlated with X but where there is a variable B unconditionally independent of A but unconditionally correlated with X (this eliminates the possibility that X causes A),

c. A is correlated with Y without knowing the value of X, but knowing the value of X makes A and Y independent random variables. 
 A point made by David Freedman:  In Figure 3b, it was argued that the values of A and B would be correlated if both were caused by X (see Figure 7a for reproduction of Figure 3b).  However, there might be an unobserved variable U that exactly cancels the effects of X as in Figure 7b.  The covariance between A and B in Figure 7b is abVar(X)+Var(U).  If is possible that the coefficients and variances are just right so that abVar(X)+Var(U)=0.  Thus it will look like A
[image: image14]B, even though this requires an extraordinary coalescing of parameter values.  Pearl rules out these pathologies as being unstable.  This makes complete sense if we are thinking that the covariances are population values, rather than estimates from a sample; the set of parameters so that abVar(X)+Var(U) may be indistinguishable from zero statistically. 
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Figure 7
Conditional Covariance Matrix

In all of the above, the critical ingredient is that A
[image: image16]Y | X.  If all the variables were normal, then this would imply that the conditional covariance of A and Y given X is zero.  What does this say about the variance covariance matrix, ?  Let the vector of RVs x be partitioned into (x1, x2) and the covariance matrix partitioned as
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where the blocks along  the diagonal are square, symmetric matrices ii and the off-diagonal blocks are symmetrically identical 12=21’.  Elementary matrix algebra says that the sub-vector conditional upon the other, x1 | x2, is normal with variance covariance matrix 11-1222-121.  If we let x1=(Z,Y) and x2=X, then conditional independence occurs when ZY-ZXXY/XX=0.


Putting this into the requirement of the above Theorem 3, we have the following requirements for X to causes Y:  


a. X( Y or XY(0,


b. There exists A and B such that(X or AX(0, (X or BX(0, A
[image: image18]B or AB=0, and 

    A 
[image: image19]Y | X or AY=AXXY/XX.
Notation: Correlation X(Y means P(X,Y)(P(X)P(Y) or for normal RVs, cov(X,Y)(0.  

    Independence X 
[image: image20]Y means P(X,Y)=P(X)P(Y) or for normal RVs, cov(X,Y)=0.  

� Based upon Judea Pearl, Causality: Models, Reasoning and Inference, Cambridge Univ. Press, 2000.


� Our focus is on the relationship between A and X, but the symmetry of the evidence in � REF _Ref94330401 �Figure 2� also says something about the relationship between B and X.  We will suppress this to concentrate on A.  





PAGE  
3

_1166872805.unknown

