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ABSTRACT
Returns are a significant problem for many direct marketers. New models to more accurately explain
and predict returns, as well as models that will allow accurate scoring of customers and
merchandise for return propensity, would be useful in an industry where returns can exceed 20
percent of sales. We offer a split adjusted hazard model as an alternative to simple regression of
return times. We explain why the hazard model is robust and offer an example of its estimation
using data of actual returns from an apparel direct marketer.
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1. INTRODUCTION

L. L. Bean Return PolicyDirect marketing exposes customers to merchandise
Our Guarantee Our products are guaranteedthrough an impersonal medium such as a catalog,
to give 100% satisfaction in every way.brochure, telephone conversation, or television
Return anything purchased from us at any timecommercial. The inability to inspect tangible mer-
if it proves otherwise.chandise makes the buyer’s decision more risky.
We will replace it, refund your purchase priceThis is a serious problem for direct marketers in
or credit your credit card, as you wish.competition with stores, since many customers place
We do not want you to have anything fromgreat value on browsing through the merchandise
L.L. Bean that is not completely satisfactory.they will buy and take home.

To reduce the customers’ risk and to effectively
compete against stores that have merchandise on

FIGURE 1display, many direct marketers offer very generous
L.L. Bean return policy.return policies. For example, L. L. Bean is famous

for its early introduction of an unconditional, no-
questions-asked warranty of its merchandise (Figure either general propensity to return or to classify the

customer as a quick returner or a late returner. The1). Many direct marketers have followed suit. How-
ever, there are a wide variety of warranty policies propensity to return should be a major factor in scor-

ing customers for mailings, etc., because it will havein common use by sellers (3). Many direct marketers
will exchange but not refund, charge restocking a major effect on the customer’s lifetime value. When

scoring customers for returns, it is important to havefees, or impose time limits on returns (7).
The result of liberal return policies can be a flood a model that is sophisticated enough to judge subtle

differences rather than relying solely on average re-of returned merchandise. Fenvessy (4) states that
returns of 4–25% of sales should be expected by turn rates. Thus, intervention may be appropriate

for a customer with a low overall average returndirect marketers. It is reported that return rates at
L.L. Bean which had historically been around 5% of rate if that customer buys primarily low-return-rate

merchandise but returns it at an unprofitably highsales jumped to 14% in the early 1990s (2: 42). We
have been told by a major catalog marketer of wom- rate for that class of merchandise. Likewise, inter-

vention may be inappropriate for the customer whoen’s apparel that over 30 percent of their sold items
are returned, and in some merchandise categories seems to have a high return rate, but is found to

primarily purchase merchandise with high returnthe return rate is as high as 70 percent.
If direct marketers could create detailed statistical rates. Understanding the pattern of a customer’s re-

turns also will help to flag customers who are mak-models of their returns, then they could learn more
about this important cost of doing business. Direct ing particularly late returns or simply to better pre-

dict the operational flow of returns.marketing companies can collect detailed return
data and use it to score customers or products on The marketer’s merchandise can be scored in a

way similar to the customer list. Just as customerreturn propensity. The necessary level of detail in
the data for such models, while extremely difficult return scores could be used as a basis for dropping

excessive returners from mailing lists, return scoresfor traditional retailers to collect, should be no prob-
lem for most direct marketers. The necessary data could be used to flag items to be dropped from

future merchandising. This is important, since returncould include time between shipment and return,
reason for return, etc. These data could be combined rates should be taken into account when judging

the profitability of each item or category.with data on the customer’s past purchase history
to form a very accurate picture of the return rate for A company might also be interested in under-

standing returns to project operational staffing oran individual customer, a product category, or even
an individual item. procurement demands or to develop operational

standards. An early warning system could be devel-What business decisions would be affected by
the insights gleaned from a model of returns? This oped that would warn of problems with an item in

time to adjust ongoing orders from suppliers. Returninformation could be used to score customers for
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scores that exceed an operational standard can be for the individual item. Obviously, the narrower the
scope of merchandise used in the calculation of aa sign of any number of problems from mailings that

do not accurately describe the merchandise to order- historic average time-to-return, the more closely it
will match the item. On the other hand, a narrowertaking and picking and packing problems. Likewise,

efforts to reduce such problems are hard to gauge scope may result in a very limited data set and little
predictive power. One may gain more insight bywithout an objective criterion of measurement. A

sophisticated return score is helpful here, as a simple moving from a simple average to a linear regression
model that includes factors that may affect the time-long-term average return rate will not be able to

match the variation in the customer base and item to-return.
The time between sale and return may serve asmix from week to week.

The first step in understanding returns is to find the dependent variable to be regressed on indepen-
dent explanatory variables that describe characteris-a way of modeling the phenomenon. This paper

concentrates on developing a theoretically sound tics of the item and the customer. This model at-
tempts to explain the variation in return times. Itand practically estimable model of direct marketing

returns. Such a model is described and then esti- uses only data from items that have been returned,
and thus cannot take advantage of the much largermated using a small sample from an actual direct

marketing database. We feel that this new model database of nonreturn observations.
This brings up a serious drawback. In either theof direct marketing returns offers managers a new

chance to understand their returns, and that the un- simple mean approach or regression model, one has
the problem that not all of the items that will eventu-derstanding of returns will lead to great gains in the

practice of direct marketing. ally be returned have already been returned (the
data are ‘‘censored’’). Thus, the return times will be
biased downwards. One may attempt to correct for
this by using only ‘‘old’’ sales where future returns2. MODELING RETURNS
are very unlikely. This calls the timeliness of the
model into question.Given the importance of understanding returns for

customer and merchandise scoring and for opera- If we do nothing, the regression results will be
biased if the unusable ‘‘not yet returned’’ data differtions, it is important to minimize error in return scor-

ing. We propose a statistical approach to modeling from the ‘‘already returned’’ observations in the re-
gression in some systematic way. Whether or notreturns (hazard rate models) that breaks out the ef-

fects of merchandise category, price, etc. to gain a the results are biased, however, they will certainly
be statistically inefficient, as available data are beingmore accurate view of the customer’s and item’s

baseline return probability. Our approach also esti- ignored.
A final problem with regression models is thatmates the probability of return over time, giving the

manager a predicted pattern of returns for opera- they are often supplemented by an arbitrary assump-
tion of normally distributed random errors. This istional control. The method is somewhat more com-

plex than simple means or regressions, but we feel inappropriate for modeling the time between sale
and return because this variable must be positive.that the possibilities for savings are great enough to

warrant further research by both practitioners and The normal distribution always has a negative tail,
so the model is theoretically misspecified.academics. We begin with the familiar regression

model before spelling out the hazard rate model. The second return question, what is the probabil-
ity that the product will be returned, can be modeled
by calculating the simple historic return rate. As withA. A Split Regression Model of Returns

Two key components of the return phenomenon time-to-return, this may be a return rate for the com-
pany as a whole, for the merchandise category, ormust be modeled if returns are to be understood:

the timing of return and the probability of return. for the individual item. A more powerful approach
is a discrete choice model, such as a logit or probitThe first return question, when the return will occur,

may be modeled simply with a historic average time- model, which can simultaneously estimate a base-
line return rate and the influence of the various fac-to-return. This may be a time-to-return for the com-

pany as a whole, for the merchandise category, or tors on that baseline rate. However, such a model
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still faces the problem that return rate may confuse adjustment factor that is a function of other variables
that are thought to influence the timing of the event.‘‘not yet returned’’ with ‘‘never will be returned’’
Thus, one can gauge the importance of various mer-observations due to data censorization.*
chandise or consumer characteristics in terms ofIn summary, both the when will it be returned?
their impact on return timing.and will it be returned? questions cannot be ade-

A concern in modeling returns is the chance thatquately answered with regression models, simple
the event may never occur. Most items are neverdiscrete choice models, or a combination of the two.
returned, while some come back after varyingA more unified approach to returns modeling is re-
lengths of time. Does a nonreturn indicate that thequired.
item will not come back or simply that it has not
come back yet? As discussed above, to leave out theB. Hazard Models
nonreturn observations introduces inefficiency andAnother way to understand the timing of events is
possible bias into the model. This problem can bewith hazard models (6,8,9). Hazard models are com-
overcome, however, by using all of the observationsmon in the measurement of reliability, and are often
in a split hazard model.referred to as waiting time or failure time models.

A split hazard model explains not only the re-The basic idea is that the event of interest (the arrival
turns, but also the nonreturns. The probability ofof the next storm, the failure of a part, etc.) will
seeing a return in a particular observation in a dataeventually occur and the timing follows some statis-
set is the probability that the item would be returnedtical distribution. The hazard rate is the ratio of the
multiplied by the probability that it would have beenprobability that the event will occur in a short inter-
returned by that point in time. The probability ofval of time and the probability that it has not hap-
observing a nonreturn is the sum of two probabili-pened yet (see Technical Appendix, equation 1).
ties. The first is the probability that the item neverThis is a conditional probability: the probability that
will be returned. The second is the probability thatthe event occurs ‘‘now’’ given that it has not oc-
the item is going to be returned multiplied by thecurred ‘‘yet.’’ Therefore, it is important to think of
probability that it would not have been returnedhazard rates not as probabilities, but rather as ratios
by that time. Thus, all three possible situations areof probabilities. For example, while a probability
accounted for: the possibility that it will not be re-density function must integrate to one, a hazard
turned, the possibility that it has already been re-function need not. It need only be positive and as-
turned, and the possibility that it will be returned inymptotically bounded above zero. Every probability
the future. Accounting for all possibilities eliminatesdistribution has an implied hazard function, and ev-
bias and allows all observations to be used, thusery hazard function has an implied probability distri-
simultaneously eliminating inefficiency in estima-bution.
tion.The hazard function is a pure function of time,

Modeling the split between returns and nonre-but it can be adjusted by other parameters or covari-
turns also allows the direct marketer to study theates. In modeling returns, one might be interested
impact of merchandise and consumer characteristicsin the influence of merchandise category, consumer
on return probability. As discussed above, merchan-characteristics, or other special purchase characteris-
dise or consumer characteristics can be included intics, such as whether the item was a gift. The adjust-
an adjusted hazard rate model to gauge their impactment is generally done by defining a baseline hazard
on return timing. Including such variables in boththat is a function only of time and multiplying by an
the hazard adjustment function and the split function
allows one to identify the characteristics that influ-
ence the probability or timing of return. Thus, the* (Note that one may take a further step of jointly estimating the discrete

choice model and time-to-return regression model in a two-step procedure,
procedure becomes a valuable source of returnfirst estimating the discrete choice model and then including that model’s

results for the return observations in the regression function. This decreases ‘‘scoring.’’
the bias in the estimation of the regression parameters as correlations
between the logit and regression parameters are explicitly modeled. How- C. Choosing a Split Adjusted Hazard Rateever, this cannot eliminate the bias in either model that is caused by
the inability to separate ‘‘never will be returned’’ and ‘‘not yet returned’’ Model for Direct Marketing
observations. It also does away with one of the main benefits of the regres- Given that a split adjusted hazard rate model is the
sion model, its great simplicity. The joint logit-regression equation is given
in the Technical Appendix.) proper model of direct marketing returns, one must
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next choose specific functional forms for the split, of covariates of return. To form a return probability,
this function is exponentiated and then divided byadjustment, and hazard rate. We will begin with a

choice of functional form for the baseline hazard. one plus the same exponentiated function (see
Technical Appendix, equation 7).One may observe the pattern of returns and then

choose a functional form that fits that pattern, or
choose a flexible functional form that can take on
many different shapes. The first option has the ad- 3. AN APPLICATION OF THE MODELS

TO ACTUAL RETURN DATAvantage of simplicity. It may be possible to choose
a simpler function with fewer parameters to be esti-
mated. This option also has the disadvantage of be- A. Direct Marketing Return Data

To show the usefulness of the hazard model weing less general. As this is exploratory research, the
first attempt to apply hazard models to direct mar- obtained return data from a large direct marketer of

apparel. The database is a small sample from theketing returns data, we see the loss of generality as
a serious flaw. actual house list, but should be sufficient to estimate

a simple returns model. The data are from a periodWe have chosen a functional form that is qua-
dratic in time for nonnegative values that allows for of about four years for a random group of about

1,000 customers from the company’s multimillion-an increasing or decreasing return rate over time, or
any form that is first increasing and then decreasing, name list. This group purchased 2,024 items over

the time period ranging in price from a few dollarsor vice versa. To guarantee that the hazard is strictly
positive, we exponentiate a quadratic equation (see to about $400 (mean Å $60, s.d. Å $44), of which

242 items were returned. These data include theTechnical Appendix, equation 2). We expect the pa-
rameters from the estimation of the model with re- order date, return date, price, category of clothing

or accessory (pants, shirt, etc.), and a code for theturn data to define a hazard rate that is bell-shaped,
with negative values truncated. The truncation may customer’s stated reason for return.

The purchases and returns occur at various times,be such that the hazard at time zero is very small
and first rises and then falls over time, such as the but the data had to be censored at the date they

were sent to us. Therefore, while each observationfirst graph in Figure 2. Alternatively, the hazard
could start high and then fall, as the second graph has a purchase date, the lack of a return date does

not mean the item never will be returned. The timein Figure 2.
Next, one must choose a functional form for the between purchase and return varies from 2 to 104

days in the 242 return observations. The time fromhazard adjustment equation. Since hazard rates are
ratios of probabilities, negative values are ruled out, purchase to observation censorization varies from 1

to 1,308 days in the total set of 2,024 observations.so we exponentiate a simple linear function of co-
variates that describe attributes of the consumer, the We are interested not only in the explanatory

power of the estimated model, but also in its pre-item purchased, or the fulfillment process (see Tech-
nical Appendix, equation 3). dictive accuracy. Therefore, in addition to estimating

the model with the full data set, we will also re-Finally, one must choose a functional form for
the discrete split between returns and nonreturns. estimate it using only a subset of the data. The com-

plementary subset serves as a holdout sample forMany discrete choice models have been proposed
in the marketing and econometrics literature, but the use in judging the fit of the model to new data. We

will present fit statistics to compare the fit of thelogit model has been by far the most popular be-
cause it is theoretically simple and its closed form regression and hazard models for both the estima-

tion and prediction samples. In creating the holdoutprobability equation lends itself well to maximum
likelihood estimation (1). The probability of a return sample, we assign a random number to each obser-

vation and then divide the data roughly evenly intois theorized to depend on a number of covariates
such as importance of fit or whether the item is a four groups of observations. We then use each of

these four samples in turn as a holdout sample, esti-gift. The return/nonreturn probability does not de-
pend on time. Time affects only the pattern of re- mating the model on the remaining three quarters

of the data. The results of estimating the model onturns for items that are going to be returned. The
logit return probability is based on a linear function the full sample and each of the four partial estima-
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FIGURE 2
Bell-shaped hazard functions truncated at time zero.

tion samples should be similar, since they overlap Regression, while simple to execute, reveals no use-
ful information regarding returns except the meanso heavily. The fit statistics in the holdout samples,

however, will not necessarily be similar, since the return time, 3.828 weeks. This information is of no
help in scoring households or merchandise.holdout samples are disjoint.

In operational problems such as forecasting re-
turns, the pattern of returns over time is important.B. Results: Regression Model
The regression model can offer only a bell-shapedof Time-to-Return
normal curve centered at the mean return time. Also,We first estimate a regression model of time-to-re-
with a normal curve, the mean and mode coincide.turn. This will serve as a baseline model for compari-
Thus, the model’s modal return time is 3.828 weeks,son to the more theoretically correct hazard model.
while the true mode of the data is at 3.143 weeks.Time-to-return is the dependent variable. An exami-
The regression’s predicted pattern of returns, a bell-nation of the variables in the data reveals few that
shaped normal curve with a mean and mode ofmight be indicators of return time. Price is a possible
3.828 weeks and a standard deviation based on theindicator, with the hypothesis that a consumer who
standard error of the regression residuals of 2.625is going to return an item would be motivated to act
weeks, is a poor match to the actual shape of themore quickly if a larger amount of money is at stake.
returns in the data, as we will show below.Thus, we hypothesize that more expensive items

will be returned more quickly and that the price
coefficient in a time-to-return regression will be neg- C. Results: Logit Model of Return Rates

In addition to the regression model of return timing,ative. We do not include category of merchandise
or reason for return, as we could find no suitable we estimate a logit model of the rate of return. We

include variables in the logit return/nonreturn modelhypotheses for how these variables could affect the
timing of return. to capture the baseline return probability and the

impact of price and the general importance of fitThe results of the regression are shown in Table
1. The intercept suggests an average baseline time- for the category. Price is hypothesized to positively

affect probability of return. Our logic is that consum-to-return of 3.799 weeks. Price is measured in hun-
dreds of dollars, and its coefficient is not significantly ers will be less likely to accept a poor fit as the

item becomes more expensive. For some items fit isdifferent from zero, suggesting that price has no sys-
tematic effect on returns. Thus, our hypothesis that simply less important than for other items (e.g.,

socks vs. suits) and for some items the fit is almostprice would have a negative impact on return time
is not supported. The fit of the model is extremely totally unimportant (scarves or ties). We define

dummy variables that describe fit as somewhat im-poor (the R2 of the model is 0.000). Thus, the model
explains almost none of the variation in return time. portant or very important (a zero for both variables
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TABLE 1
Time-to-Return1 Regressions on Return Observations

Full Data Sample 1 Sample 2 Sample 3 Sample 4

Constant 3.799 3.489 3.731 4.126 3.843

(Standard error) (0.325) (0.370) (0.366) (0.389) (0.377)

Price2 0.041 0.258 0.234 00.411 0.077

(Standard error) (0.384) (0.424) (0.443) (0.460) (0.446)

Observations 242 175 189 176 186

R2 0.000 0.002 0.001 0.005 0.000

Mean fitted return time 3.828 3.681 3.896 3.828 3.899

Standard error of residuals 2.625 2.530 2.654 2.657 2.649

1 Time is measured in weeks.
2 Price is measured in hundreds of dollars.

indicates the fit is unimportant). We expect the coef- regression and split adjusted hazard models. With-
out the logit split, the regression model attempts toficients for both dummies to be positive and we

expect the coefficient for the dummy representing explain only the timing of returns, not the question
of whether the item will be returned. To comparecategories where fit is ‘‘very important’’ to be larger

than the coefficient for ‘‘somewhat important.’’ The the models, therefore, we must either throw away
the split portion of the hazard model, or add a splitlogit split and regression models are disjoint and

estimated separately. The estimated coefficients of to the regression model. We augment the regression
model with a logit split rather than handicap thethe logit model are shown in Table 2. The price

coefficient is positive and significant in each of the hazard model.
estimated models, as we expected. The variables
capturing the importance of fit, however, are uni- D. Results: Split Adjusted Hazard Model

The baseline hazard function is an exponentiatedformly insignificant. Thus, more expensive items are
more likely to be returned, but differences in the quadratic function of time (referred to as a Box-Cox

hazard function), as explained above. We expectimportance of fit across categories have very little
impact on the return rate. the coefficients of the baseline hazard function to

define a function that is increasing and then decreas-The estimation of the logit model also allows us
to compare the fits and predictive accuracy of the ing in time. The adjustment function is a simple ex-

TABLE 2
Logit Model of Return Rate

Full Data Sample 1 Sample 2 Sample 3 Sample 4

Constant—g1 02.486 02.774 02.323 02.599 02.280

(Standard error) (0.238) (0.329) (0.147) (0.328) (0.172)

Price1—g2 0.597 0.700 0.492 0.638 0.559

(Standard error) (0.137) (0.161) (0.159) (0.161) (0.154)

Fit med import—g3 0.103 0.326 0.029 0.118 00.033

(Standard error) (0.240) (0.336) (0.069) (0.351) (0.105)

Fit high import—g4 0.136 0.262 0.174 0.220 00.089

(Standard error) (0.269) (0.369) (0.204) (0.364) (0.241)

1 Price is measured in hundreds of dollars.
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ponential function of price. We expect price to have model are shown in Table 3. First, let us examine
the baseline hazard coefficients. All four coefficientsa positive coefficient, our prior belief being that
are highly significant and they define a curve thatmore expensive items would be returned more
rises from zero, peaks at 6.286 weeks, and then fallsquickly (have a greater hazard of return). Finally,
to approximately zero (0.01) at 14.501 weeks. It mustwe include variables in the logit return/non-return
be remembered that the time of peak hazard andmodel to capture the baseline return probability and
the time of peak returns should not be expected tothe impact of price and the general importance of
coincide: hazard is not the probability distributionfit for the category. The logit model has the same
of time-to-return. The time of peak returns is thevariables as the logit model described above.†
mode or peak of the probability density of returns,The maximum likelihood results of the hazard
not the peak of the hazard function. As explained
above, however, a density function is implicit in
each hazard function. The modal return time of† Note that we do not show the estimated coefficient a4 (see equations (2)

and (3) in the Technical Appendix). The exponent of this coefficient defines 3.012 weeks that is implied by the estimated baselinea baseline hazard rate that is independent of time. The estimated coefficient
of about 050 defines a baseline hazard of zero. However, a4 also has a hazard function is much closer to the true modal
near infinite variance and covariances with all other coefficients. The soft- return time of 3.143 weeks than the regressionware we use, GAUSS, is unable to estimate the standard errors if such a
coefficient is included in the model. model estimate of 3.828 weeks.

TABLE 3
Split Adjusted Hazard Models of Return Time and Rate

Full Data Sample 1 Sample 2 Sample 3 Sample 4

Baseline Hazard1

a1 1.880 2.135 2.139 1.447 1.811
(Standard error) (0.433) (0.440) (0.581) (0.462) (0.405)
a2 0.216 0.224 0.213 0.213 0.217
(Standard error) (0.018) (0.021) (0.020) (0.021) (0.020)
a3 01.323 01.345 01.338 01.280 01.334
(Standard error) (0.094) (0.109) (0.105) (0.114) (0.107)

Hazard Adjustment
Price2—b1 0.059 00.051 00.109 0.339 0.075
(Standard error) (0.223) (0.137) (0.290) (0.235) (0.172)

Logit Split
Constant—g1 02.450 02.752 02.310 02.528 02.234
(Standard error) (0.226) (0.331) (0.171) (0.469) (0.145)
Price—g2 0.584 0.702 0.509 0.590 0.536
(Standard error) (0.144) (0.164) (0.172) (0.167) (0.156)
Fit med import—g3 0.130 0.351 0.055 0.148 00.006
(Standard error) (0.222) (0.340) (0.131) (0.483) (0.022)
Fit high import—g4 0.161 0.279 0.200 0.246 00.066
(Standard error) (0.258) (0.367) (0.217) (0.491) (0.199)

1 Time is measured in weeks.
2 Price is measured in hundreds of dollars.

The price coefficient in the hazard adjustment The logit split coefficients are also shown in Table
3. The intercept of 02.450 implies a baseline returnequation is not statistically significant. This result

matches the regression result that the price of the probability of 7.944%. The price coefficient is posi-
tive and significant, confirming our prior belief thatitem is not having a significant impact on the timing

of its return, given that it will be returned. Thus, our more expensive items are more likely to be returned.
The coefficients for the dummies describing the im-hypothesis that price would have a positive impact

on hazard (a negative impact on time-to-return) is portance of fit are not significant, although the coef-
ficient for ‘‘fit is very important’’ is larger than thenot substantiated in either the regression or hazard

model. coefficient for ‘‘fit is somewhat important’’ as we
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hypothesized. The mean fitted return probability better than the regression model. Fit statistics based
on a summation only over the time to the final ob-taking price and fit import into account is 12.497%,

which is larger than the actual sample return rate of served return (nÅ 104 days) are also shown in Table
4. These fit statistics suggest that the hazard model11.957%. We expected such a difference in return

probabilities, however, as the modeled return prob- also outperforms the regression model over the time
of greatest interest, the time period where returnsability takes sample censorization into account, rec-

ognizing that some of the items that have been sold are most likely to occur.
Table 5 contains fit statistics for the four predic-and not yet returned will be returned at some future

time. tion samples. The hazard model is not uniformly
superior in fitting the prediction sample as it was in
estimation sample fit. It is interesting to note, how-E. Comparing Fit and Predictive Accuracy
ever, that if only the return observations are exam-We must define a fit measure to compare the regres-
ined, the hazard model is uniformly superior. Thission and hazard models. We have chosen the total
suggests that the difference in the logit return proba-absolute difference in cumulative distribution over
bilities is the cause of the superior regression modelthe time of the longest observation. The regression
fit. In fact, as seen in Table 5, the winning fit infunction’s cumulative distribution function is a nor-
each sample clearly belongs to the model with themal cumulative distribution function with mean
predicted return probability closer to the actual re-equal to the regression mean and standard deviation
turn rate. This is to be expected, as summing theequal to the standard error of the regression residu-
difference in return probability over the very largeals. Normal curves are defined from negative to posi-
number of observation days (1,308 days is the lon-tive infinity, but return times are only positive. Our
gest censorization time and 104 days is the longestchoice to sum absolute deviation in cumulative dis-
return time) leads to very large cumulative absolutetribution only over the space of sample days allevi-
errors. A possible explanation for the mixed predic-ates this problem, not penalizing the regression
tion results described here is the bell shape of themodel for predicting returns in negative time. The
distribution of returns. We investigate the impor-actual cumulative flow of returns along with the
tance of bell-shaped return patterns next.flows that are predicted by applying the estimated

regression and hazard models to the 2,024 observa-
tions are shown in Figure 3. It is clear from the figure

4. AN APPLICATION OF THE MODELSthat the hazard model lies much closer to the actual
TO SIMULATED RETURN DATAdata than the regression model. Total absolute devi-

ation should be smaller for the hazard model than
for the regression model. As stated above, the regression model of return time

has difficulty with non–bell-shaped return patternsThe actual fit statistics for the estimation samples
are shown in Table 4. The hazard model clearly fits due to its traditional assumption of normality in ran-

TABLE 4
Fit Statistics of Regression and Split Adjusted Hazard Models—Estimation Samples (Absolute Deviation from Actual
Cumulative Return Proportion)

Full Data Sample 1 Sample 2 Sample 3 Sample 4

Cumulated over maximum observation time
Cumulation Weeks 186.857 186.857 186.857 186.857 186.857
Regression model with logit split 3.718 3.446 3.768 3.805 3.856
Split adjusted hazard model 3.432 3.233 3.431 3.514 3.542

Cumulated over maximum return time
Cumulation weeks 14.857 14.714 14.857 14.857 14.857
Regression model with logit split 0.687 0.659 0.725 0.645 0.729
Split adjusted hazard model 0.624 0.561 0.661 0.584 0.691
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FIGURE 3
Cumulative return rates over time (in weeks)

TABLE 5
Fit Statistics of Regression and Split Adjusted Hazard Models—Prediction Samples (Absolute Deviation from Actual
Cumulative Return Proportion)

Sample 1 Sample 2 Sample 3 Sample 4

Cumulated over maximum observation time
Cumulation weeks 186.857 186.857 186.857 186.857
Regression model with logit split 18.809 21.969 33.475 16.220
Split adjusted hazard model 12.688 28.818 28.038 22.622

Cumulated over maximum Return Time
Cumulation weeks 14.857 13.571 14.714 14.000
Regression model with logit split 1.212 1.318 2.369 1.096
Split adjusted hazard model 0.691 1.505 1.852 1.256

Cumulated over maximum Return Time—Return Observations Only
Cumulation weeks 14.714 13.571 14.714 14.000
Regression model (no split) 5.895 6.948 6.665 6.910
Adjusted hazard model (no split) 3.342 4.562 5.329 4.305

Mean return rates (percent)
Fitted from regression model with logit split 11.701 12.446 11.568 12.189
Fitted from split adjusted hazard model 12.170 12.991 12.217 12.777

Actual 12.909 10.433 13.983 10.667
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dom errors. The actual return data that we describe TABLE 7
in the above section are reasonably bell-shaped. Logit Model of Return Rate—Simulated Data From
Therefore, to dramatize the difference in fit of the Exponential Distribution
regression and hazard models as the return pattern

Constant—g1 2.964becomes non–bell-shaped, we generated a data set
(Standard error) (0.241)of 2,000 observations whose time-to-return was ex-
Price—g2 00.776ponentially distributed across only positive times,
(Standard error) (0.214)rather than normally distributed across the real num-

ber line. The simulated return data were designed
to look similar to the actual data used in the previous

6 and Table 7. As with the results of the modelssection.
estimated with the actual return data, the regressionSpecifically, for each item purchased a price was
gives a very poor fit, with only the constant beingassigned from ($.50, $.75, . . . , $1.50) with equal
significant. In the logit model, both the constant andfrequency (the mean would be $1.00). With this sin-
price are significant and have the correct signs. Thegle covariate, the item was ‘‘returned’’ with a proba-
results of the split adjusted hazard model are shownbility computed as 1/(1 / exp(2.7 0 0.5*Price). As
in Table 8. Baseline hazard and the logit split coeffi-a result, 207 of the items were returned. For these,
cients are significant. The hazard adjustment is notthe time-to-return was determined by drawing ran-
significant. All coefficients are within two standarddomly from an exponential distribution with a mean
errors of the parameters of the distribution fromequal to exp(1.15 / 0.05*Price). The typical time-
which the data were drawn, with the exception ofto-return would therefore be exp(1.20) Å 3.3 weeks.
the baseline hazard coefficient.The times were censored after 10 weeks.

Table 9 contains fit statistics for the two models.The models used with the simulated return data
The split adjusted hazard model clearly fits better.are similar to those used with the actual return data
This difference in fit is also clearly visible in Figuredescribed above, but are somewhat simpler. No im-
4, which shows the actual cumulative flow of returnsportance-of-fit measures are included. Also, only the
along with the flows that are predicted by the regres-coefficient for the constant hazard is reported, as the
sion and hazard models. The difference is even moreother coefficients are zero in the theoretical model
dramatic, however, in Figure 5, which shows theand in the estimation the coefficients were close to
actual return density along with the estimated returnzero.‡
densities from the two models. The underlying ex-The results of the time-to-return regression and
ponential shape of the return density can be seenthe logit model of return rate are presented in Table
quite clearly in the actual returns. This shape is fol-
lowed very closely by the split adjusted hazard func-

‡ (Another reason not to report these results is that GAUSS was unable to
tion. The logit-regression, however, predicts a bell-estimate standard errors for the coefficients, because the standard errors

approach infinity.)

TABLE 8
Split Adjusted Hazard Model of Return Time and Rate—TABLE 6
Simulated Data From Exponential DistributionTime-to-Return Regressions on Return Observations—

Simulated Data From Exponential Distribution Baseline Hazard
a4 01.625

Constant 3.407
(Standard error) (0.306)

(Standard error) (0.541)
Hazard adjustment

Price 00.599 Price—b1 0.412
(Standard error) (0.254)(Standard error) (0.475)

Logit splitObservations 207
Constant—g1 2.834R2 0.008
(Standard error) (0.265)

Mean fitted return time 2.757 Price—g2 00.708
(Standard error) (0.233)Standard error of residuals 2.381
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difference in fit change with more data on customers?TABLE 9
The hazard model could do a much better job ofFit Statistics of Regression and Split Adjusted Hazard
adjusting the predicted return rate through both theModels—Simulated Data From Exponential Distribution
hazard adjustment and the return/nonreturn split. The(Absolute Deviation from Actual Cumulative Return
hazard model is not unique in this respect, however,Proportion)
as the regression model could also add demographic

Cumulated over maximum observation time or other terms to take household or item covariates
Cumulation time 10.000

into account. Still, the regression model does not ap-Regression model with logit split 0.941
proach the hazard model in usefulness. The possibleSplit adjusted hazard model 0.229
differences in fit are too great. An even more serious
problem with the regression model, however, is its

shaped return pattern that is totally inappropriate. ever present censorization bias. There is no attempt
This bell-shaped return density is an artifact of the to correct for the bias that arises from not including
assumption of normally distributed errors. In Figure in the model sales that will be returned but have not
5, the restrictive nature of this assumption is clear, been returned yet. The return time regression also
as is the benefit of the flexible functional form we must be estimated with data only from items that are
have chosen for the split adjusted hazard model. returned, and cannot take into account the informa-

tion inherent in the much larger set of observations
from items that have not been returned. From either5. CONCLUSION
a researcher’s or a manager’s point of view, it is dis-

As described above, the split adjusted hazard model turbing to estimate a regression model that cannot use
the overwhelming majority of the data.outperforms the regression model. How would the

FIGURE 4
Cumulative return rate over time—simulated data from exponential distribution.
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FIGURE 5
Density of return over time—simulated data from exponential distribution.

Another serious problem of the regression model nential distribution of returns, where the return rate
starts almost at time zero at its highest rate and thenis its inflexibility. The regression model was not an

absolute failure with the actual return data from a di- declines steadily. The hazard model is perfectly capa-
ble of taking on such a shape, but the bell-shape re-rect marketer of apparel used here because the return

pattern was close to bell-shaped. The regression striction on the regression model will lead to at least
half of predicted returns occurring in negative time.model will predict only bell-shaped return patterns.

The more unusual the return pattern becomes, the The regression model’s lack of flexibility, together with
its use of a restricted data sample and an inability tomore dramatic will be the difference in fit between

the flexible hazard model and the inflexible regression handle sample truncation bias, suggest that it is an
inferior model that should be used only with seriousmodel. This was clearly seen above in the extremely

poor fit of the regression model versus the hazard caveats.
One may ask, however, if the hazard model’smodel using simulated return data from an exponential

distribution. Another very plausible shape the regres- added insight is worth the added trouble. What are
the marginal costs of hazard function estimation ver-sion model will have a very hard time with is a pro-

longed return pattern where returns have no sharp sus regression? The hazard model is much less com-
mon, and its estimation and interpretation are notpeak but do trail off after a few weeks. The regression

model will have a very wide distribution, leading to almost universally understood as are regression
models. Regression estimation is easily performeda significant cumulative distribution in negative time

periods. The regression model will also have a poorer by any number of statistical packages or even
spreadsheet software. Such software, however, mayfit the shorter the time to the peak return rate. This

would become most extreme in the case of an expo- not be capable of estimating the logit model of re-
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turn rate. Software with a specific logit function or above, the hazard function allows the estimation of
the ‘‘not yet returned’’ portion of a company’s nonre-software capable of maximum likelihood estimation

would be required to estimate the logit model turns. The unbiased estimation of the logit model of
returns has its potentially greatest usefulness in theshown here. Such software is readily available for a

few hundred dollars. Estimating the logit model with scoring of merchandise and households for return
propensity. Small increases in scoring accuracysuch software should not be a problem for anyone

familiar with standard statistical packages. could potentially lead to significant savings.
Much work remains in the process of changingIs there software for estimating a split adjusted

hazard model? There is no standard software pack- the state of the art in the modeling of direct market-
ing merchandise returns. We have demonstrated theage for performing the hazard function estimation

shown here, although any package capable of opti- usefulness of hazard modeling of returns using a
simple model and a single small data set. The sizemization should be able to estimate the parameters

by maximizing the likelihood function (all calcula- of direct marketing data sets may pose new prob-
lems in the estimation of models such as this thattions in this study were done using the GAUSS soft-

ware package). Writing the program that defines the require the maximization of relatively flat likelihood
functions. Larger data sets, however, might solvelikelihood function is not difficult for anyone familiar

with maximum likelihood estimation. Therefore, the other problems. One might expect the actual return
distribution graphed in Figure 2 to be much moremarginal cost of the split adjusted hazard function

versus a sophisticated regression analysis is very smooth as the number of observations is increased.
This should allow a better fit for the models. Largersmall. The marginal cost versus a very simple regres-

sion analysis is not insignificant, but it should prove data sets also would allow the inclusion of more
variables to describe both the customers and theno problem for direct marketing companies that reg-

ularly use statistical methods. merchandise, further improving the fit of the models
and adding new insights into the phenomenon ofThe small marginal cost of estimating a split ad-

justed hazard model must be compared with the returns.
Future research on larger data sets can also exam-marginal benefit of the increased accuracy of returns

estimation. Let us briefly review the marginal insight ine the usefulness of our split adjusted hazard ap-
proach to modeling returns in the context of scoring.from this very small data set for the hazard model

versus the regression model. First, let us again state If the model we propose is useful in developing
customer or merchandise return scores, then its use-that the hazard model fits and predicts better based

on our fit measure. The absolute difference between fulness in direct marketing will be clearly estab-
lished. Case studies would also be useful as theypredicted return rate and actual return rate is also

smaller for the hazard model. We learn that the peak would allow the estimation of actual dollar savings
that might result from the use of hazard models.return time is at 3.012 weeks rather than the 3.828

that the regression model suggested. The cumulative We look forward to the new knowledge that will
be gained as both academic researchers and prac-return level at time zero for the hazard model is

zero, while the regression model suggests immedi- titioners share their advances in the modeling of
returns. The more we learn about returns, the moreate returns.

What impact would such knowledge have on a accurately companies will be able to score their cus-
tomers and merchandise, and the more accuratelydirect marketer’s costs? Most companies refurbish

and resell much of their returned merchandise. Such they will be able to predict returns to streamline
their operations for both cost savings and increasedrefurbishing operations must be staffed to handle

the return flow in an optimal manner. If staffing is customer satisfaction.
insufficient to handle the return flow, then merchan-
dise sits, increasing inventory costs. If refurbishing TECHNICAL APPENDIX
is overstaffed, then money is unnecessarily spent
on salaries. What if returned merchandise is simply A. Split Adjusted Hazard Model

Hazard rates and probability density and distributionthrown away? Then the timing of returns is of inter-
est only insofar as it allows the return rate and its functions are all jointly implied, as shown in equa-

tion (1).causes to be more accurately predicted. As discussed
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log L Å ∑
i

log [ f(tiÉa, b, xit)]h(t) Å f (t)

1 0 F(t)
(1)

Å ∑
i

log [ f(tiÉa, b, xit , di Å 1)(di Å 1)
In (1), h is the hazard function, a function of time,
t. F is the cumulative distribution function and f is / 1(di Å 0)] (4)
the probability density function. One may estimate
one of the functions f, F or h, and simply calculate

In equation (4), the log of the likelihood of observ-the other functions. We estimate h because it does
ing the data in question is the sum of the log-likeli-not have the integration or range restrictions that f
hood of observing the predicted returns at their pre-and F have.
cise times. Notice that the probability of observingIn choosing a baseline hazard function, flexibility
a nonreturn is 1 for items that will not be returned.is important. The fewer restrictions that must be
Also notice that we have moved from the hazardplaced on the functional form, the more closely it
function to the probability density function that iscan fit the data and the less impaired by the research-
implied in it. This density function is shown in equa-er’s biases it will be. We use the exponentiated qua-
tion (5).dratic functional form in equation (1), which is simi-

lar to the Box-Cox formulation in Flinn and Heck-
f (tÉa, b, xt , d Å 1)man (5) and Helsen and Schmittlein (6).

Å h(tÉa, b, xt , d Å 1) ∗ S(tÉa, b, xt , d Å 1) (5)h(tÉa, d Å 1)

In equation (5), S represents the survivor function,Å 2a1a2√
p

exp[0(a2t / a3)
2] / exp(a4) (2)

which is 1 minus the cumulative distribution func-
tion, 1 0 F. The functional form of S implicit in our

In equation (2), h, the hazard function, is a function definition of h is shown in equation (6).
of time and depends on a group of coefficients, a
(where underlining indicates a vector), and the fact S(tÉa, b, xt , d Å 1)
that the item will be returned at some point in time
(d is a return indicator variable). The final term, Å exp[[0a1[0erf (a3) / erf (a2t / a3)]
exp(a4), is an integration constant that generally will

0 exp(a4)] exp(b *xt)] (6)be close to zero.
Adding an exponential adjustment term depen-

dent on covariate xt, yields the adjusted hazard func-
The problem with equation (4) is that we do not

tion shown in equation (3).
have d. We must replace the deterministic return
indicator with a probabilistic measure (p) dependent

h(tÉa, b, xt , d Å 1) on covariate y. We use the logit function for p, as
shown in equation (7).Å h0(tÉa, d Å 1)u(b, xt)

Å S2a1a2√
p

exp[0(a2t / a3)
2] pi Å

exp(yig)

1 / exp(yig)
(7)

/ exp(a4)D exp(b *xt) (3)
The log-likelihood using the logit probability of re-
turn function is shown in equation (8).

Finally, we can add the information contained in
log L Å ∑

i

log [ f(tiÉa, b, xit , di Å 1)pi(Ri Å 1)the non-return observations (d Å 0). This leads to
the split hazard function with the log-likelihood
shown in equation (4). / [(1 0 pi) / Sitpi](Ri Å 0)] (8)
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In equation (8), R is an indicator of whether the item
ti Å b *xi 0 R

f[F01(pP i)]

pP i

, where R Å rs (9)was an observed return.
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