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Abstract 
 
In supply chains, forecasting is an important determinant of operational performance, 

although there have been few studies that select forecasting methods on that basis.  This 

paper is a case study of forecasting method selection for a global manufacturer of 

lubricants and fuel additives, products usually classified as specialty chemicals.  We 

model the supply chain using actual demand data and both optimization and simulation 

techniques.  The optimization, a mixed integer program, depends on demand forecasts to 

develop production, inventory, and transportation plans that minimize total supply chain 

cost.  Tradeoff curves between total cost and customer service are used to compare 

exponential smoothing methods.  The damped trend method produces the best tradeoffs. 
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Forecasting method selection in a global supply chain 
 

Introduction 

 Several recent studies have found little relationship between average forecast 

accuracy and inventory performance.  Tiacci and Saetta (2009) compared two simple 

forecasting methods in a simulation study of a warehousing operation.  The methods 

produced similar total costs, but the least accurate method gave better customer service.  

In another warehousing simulation, Sanders and Graman (2009) showed that bias in the 

forecasts was more important than average accuracy in determining warehousing and 

inventory costs.   Using real data drawn from a distribution inventory, Syntetos et al. 

(2009) showed that marginal improvements in average accuracy led to much larger 

improvements in inventory costs. 

 This paper examines the relationship between forecasting and operational 

performance in the broader context of production and distribution within a supply chain.  

Previous research has established that forecasting determines the value of information 

sharing (Zhao et al., 2002), and forecast errors contribute to the bullwhip effect, the 

tendency of orders to increase in variability as one moves up a supply chain (Chandra and 

Grabis, 2005; Dejonckheere et al., 2003, 2004; Zhang, 2004).  Therefore it makes sense 

to select forecasting methods in supply chains according to the impact on operational 

performance, although this has been done in only a few studies, as discussed in Gardner 

(2006).  The lack of research in forecasting for supply chains is perhaps understandable 

because of the expense;  usually, one must build a comprehensive model of the supply 

chain in order to project performance. 



 

 This paper presents such a model for the supply chain of a global manufacturer of 

lubricants and fuel additives, products usually classified as specialty chemicals.  The 

model includes four manufacturing plants and daily time series of actual demand 

collected over a four-year period.  Both optimization and simulation techniques are used 

to develop production schedules, inventory targets, and transportation plans.  

Optimization depends on demand forecasts supplied by exponential smoothing and is 

done with a mixed integer program to minimize total variable supply chain costs.  

 Management asked for forecasting methods that were simple and easily 

automated, making some form of exponential smoothing the only reasonable choice.  We 

considered three methods:  simple exponential smoothing (SES), Holt’s additive trend 

(Holt, 2004), and the damped additive trend (Gardner and McKenzie, 1985).  SES and the 

damped trend are obvious choices based upon their long record of success in empirical 

studies (Gardner, 2006).  The data suggest that the Holt method would not do well, but it 

was retained as a benchmark for the other methods.  To select the best method, tradeoff 

curves were computed between total supply chain cost and several measures of customer 

service.  The damped trend gave the best operational performance for any level of cost, 

followed by SES and Holt.  It is interesting to contrast these results to traditional method 

selection based on forecast accuracy measures;  surprisingly, SES gave the best average 

accuracy. 
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The Supply chain model 

 The company produces lubricants and fuel additives for automobiles, farm 

equipment, marine vessels, trains, construction equipment, and power tool motors.   

There are four manufacturing plants, in North and South America, Europe, and Asia.  

Scheduling of  production orders is best described as a combination of push and pull 

processes.  Ten component chemicals are produced in a push mode based on forecasts 

from one to six months ahead, while end products are produced in a pull mode by 

blending the components according to individual product recipes as customer orders are 

received.  Forecasting is done at the component level by aggregating component 

requirements across end products at each plant.  Considerations of technology, 

production and shipping costs, and plant capacity are such that not all components are 

produced in all plants.  Thus we have only 25 time series of component demands rather 

than 40 (4 plants x 10 components).  

 The supply chain model integrates optimization and simulation and performs 

tactical planning at two levels. At the first level, the model  produces a monthly master 

production schedule and a stock transfer plan over a six-month planning horizon. These 

plans are generated by a mixed integer programming (MIP) model that incorporates 

demand forecasts as described below, pending orders, beginning inventory levels,  

machine and storage capacity, alternative modes of transportation, and shipments in 

transit.  The model also incorporates company business rules for minimum run lengths 

and transportation carrier selection.  The objective is to minimize total variable supply 

chain cost, including the costs of production, transportation, inventory carrying, and 

import tariffs.  Tactical planning at the second level uses another MIP model to break 
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down the first level results into a detailed weekly production schedule for each machine 

at each plant over a 12-week planning horizon.   For a complete mathematical 

formulation and solution methodology for the MIP models, see Acar et al. (2009a).  The 

models in Acar et al. are developed using simple assumptions about demand, whereas in 

this paper we study the behavior of the models when they are driven by a forecasting 

system for real data. 

The simulation model at the second level executes the manufacturing plans on a 

daily basis, using actual daily demand history that occurred over a four-year period.  The 

model reads the first-level production schedule and manufactures components 

accordingly, placing them in inventory.  Production is measured in tons, and total demand 

for the last year of operations totaled about 250,000 tons.  As customer orders arrive, 

demand is met by blending end products from component inventory.  There are a total of 

15 machines in the four plants, and production lead-times range from two to seven days, 

depending on product and order size.  If available inventory is not sufficient to meet 

demand, backorders are generated.  The second-level model also transfers stock between 

plants as required, debiting inventory from the sending plant on the departure date and 

crediting inventory at the receiving plant on the arrival date.   There are numerous 

transshipments between plants, and the average transportation lead-time is 47 days.  All 

shipment quantities are set as close as possible to those determined in the first-level 

model (based on inventory availability).  If a shipment quantity is significantly less than 

suggested in the first-level model, another shipment cannot be scheduled until that model 

is run again.  
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There are three sources of uncertainty in the simulation.   First, actual demand is 

of course uncertain.  Second, transportation lead-times are generated from a set of 

truncated normal distributions, one for each source-destination pair.  Means and standard 

deviations are based on actual experience, and the distributions are truncated such that the 

minimum lead-time is 85% of the mean.  The reason for the truncation is that most 

transportation is by marine vessel, and it is impossible to achieve lead-times any shorter.  

Finally, there is some supply uncertainty due to machine breakdowns.  We did not have  

empirical data to develop distributions of machine breakdowns, and we chose the 

following simulation procedure in consultation with maintenance and supply chain 

managers.  The occurrence of breakdown for each machine was generated from a uniform 

distribution;  for each breakdown, the duration was generated from a normal distribution 

with a mean of five days and a standard deviation of two days.  It might seem that the 

probability of  breakdown should increase with time, but the company disagreed because 

rigorous maintenance schedules were enforced.  Managers reviewed the simulated 

breakdowns and found them to be reasonable. 

 At the end of each week, the second-level model records inventory levels, 

pending orders, quantities shipped to other plants,  and costs incurred.  The model also 

records two measures of customer service:  number of orders late and weighted lateness.  

The latter measure, considered the most important by management, is defined as the 

number of days an item is backordered times the backorder quantity. 

When the second-level model completes the last week of the month, the first-level 

model is run again.  Otherwise, the second-level model calculates production targets for 

the remainder of the month.  The calculations are based on week-ending inventory levels, 
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pending orders, consumption of the forecast within the current week, and scheduled 

incoming shipment quantities.  Also considered are the end-of-month inventory targets, 

any shipments scheduled to depart later in the month, and safety stocks.  There are many 

alternative procedures for computing safety stocks in the literature.   We chose the 

bootstrap procedure of Snyder et. al. (2002), which was incorporated in the simulation 

model and used to compute safety stocks after the forecast updates described below.  The 

Snyder et al. procedure has several advantages.  It is easy to implement, tailored to lead-

time demand, and does not require normally distributed demand, an assumption that 

cannot be supported in most inventory systems. 

The combined optimization and simulation model was run 300 times:  20 

replications times three forecasting methods times five levels of safety stock 

corresponding to Z-values of 0.5, 1.0, 1.5, 2.0, and 2.5.  The precision test of Law and 

Kelton (2000) showed that 20 replications were sufficient to achieve what we considered 

to be reasonable 90% confidence limits around each measure of customer service.   

 

Forecasting 

At the end of each month, forecasts required in the first-level model, from one to 

six months ahead, are updated using one of the exponential smoothing methods.  Before 

forecasting, the 25 time series of demand were aggregated from daily to monthly.   At 

first we considered using weekly or biweekly time series, but most series presented 

intermittency problems.  All zero observations disappeared in the monthly series, 

although many observations are near zero.  The monthly series are not homogeneous, and 

it is difficult to generalize about their properties except to say that they are nonseasonal 

 6



 

and very ill behaved.  Some series display a relatively constant level with extreme 

variance, as in Figure 1, series 1.  Some display drastic shifts in level like series 2, while 

others display changes in variance like series 3.  There are trend patterns in more than 

half the series, and all are erratic as in series 4. 

The exponential smoothing methods were fitted to the first three years of data, 

with the last year reserved as a holdout sample to evaluate performance measures in the 

simulation model.  During the last year, the methods were not refitted, and forecasts were 

made from one to six steps ahead following monthly updates of method components.  

The methods could have been fitted to less data, with a longer holdout sample.  However, 

it was not clear that supply chain performance measures stabilized until near the end of 

the third year of operations, so we waited until the fourth year to evaluate the methods.    

The smoothing parameters in all methods were selected from the [0,1] interval by using 

the Excel Solver to minimize the mean squared error (MSE) over the first three years.  

SES was initialized with the mean of the observations in the fit periods, while the damped 

trend and Holt methods were initialized with a linear regression on time.  

 Different procedures for initialization and fitting were tested, although they made 

no significant difference in cost and service performance during the last year of 

operations.  For example, to confirm parameter optimization, we restarted the Solver 

several times from different initial positions in each series, but found little difference in 

performance.  There was also little difference when parameters were optimized 

simultaneously with initial values of method components, when the methods were fitted 

to minimize the mean absolute error, and when the methods were initialized using only 

the first six months or the first year of data.  
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Fig. 1.  Examples of monthly time series of end-product demand. 
 

 

 

 

 

 

 

 

 

 

 8



 

Tradeoff analysis 

 Gardner (1990) recommended the use of tradeoff curves to evaluate the 

operational performance of forecasting methods, and we followed that example here.  For 

the last year of operations, Figure 2 gives a tradeoff curve for total supply chain costs vs. 

average weighted lateness, and Figure 3 gives another curve for costs vs. numbers of 

backorders.  The plotting symbols on each curve represent the five levels of safety stock, 

and the corresponding costs and service measures are averages of the replications at each  

level.  To put the numbers of backorders into perspective, there were about 41,000 

customer orders processed during the last year of operations, and the percentages of 

backorders were rather large, ranging from about 7% to 19% for the damped trend for 

example.  We were concerned by these percentages, but management felt that the 

numbers were reasonable in view of capacity constraints.  All four plants worked near 

capacity, both during the last year of the simulation and in actual operations in recent 

years.  Fortunately, most of the backorders were of relatively short duration. 

 In both Figures 2 and 3, the damped trend gives the best tradeoffs, that is the 

lowest cost for any customer service level, followed by SES and Holt.  For example, 

management believed that a cost target of about $115 million was appropriate for this 

system;  at that cost, the damped trend produces weighted lateness of about 118,000 ton-

days compared to 134,000 for SES.   At the same cost target, the damped trend produces 

6,100 backorders compared to 7,600 for SES.  For the Holt method, this cost target could 

not be achieved at reasonable levels of weighted lateness or backorders.  In both Figures 

2 and 3, as costs and safety stocks increase, the differences between methods become 

smaller as should be expected, although the differences are always significant.   
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Fig. 2.  Tradeoffs between total supply chain cost and weighted lateness (tons 

backordered times days on backorder) during the last year of operations. 
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Cost vs. backorders
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Fig. 3.  Tradeoffs between total supply chain cost and number of backorders during the 

last year of operations. 
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  Production costs account for an average of  90% of total costs for each forecasting 

method, and we found that these costs do not vary significantly between methods.  

Management believed that this made sense because all plants operated near capacity.  The 

production process is highly automated, and expediting or overtime related costs are 

minimal when shortages develop.   

The remaining costs are related to transporting and carrying inventory, and they 

are sensitive to the choice of forecasting method.  The consequences of forecast errors are 

extremely complicated, and there is no simple explanation of why the damped trend 

produced the best tradeoff curves.  To illustrate the problem, consider the effects of 

under-forecasting for a single product, which of course creates backorders.  But 

backorders usually develop not just for that product, but often for others as well.  What 

happens is that under-forecasting sets off a chain reaction due to capacity constraints.  To 

fill backorders for a single  product, capacity is borrowed from routine production 

schedules for other products, and they in turn can suffer shortages of stock at a later date.  

When backorders are filled, emergency shipments are necessary, with transportation costs 

greater than the costs of routine shipments.  On the other hand, over-forecasting for a 

single product means that capacity has been put to the wrong use, and excess stocks are 

created.   What is surprising is that over-forecasting can also create backorders.  During 

the time that limited capacity is devoted to building excess stocks, products competing 

for that capacity may incur backorders and later emergency shipments as capacity 

becomes available.   

Keep in mind that all 25 products contribute forecast errors that interact with each 

other in allocating production capacity, and the system is dynamic with monthly updates.  
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This means that forecast errors are sometimes reversed before the system has fully 

responded to previous backorders or excess stocks.  Given this complexity, the best that 

can be done in explaining the performance of the damped trend is to say that the method  

consistently generated fewer backorders and costly emergency shipments than did the 

other methods.  The damped trend did especially well in avoiding backorders for a group 

of four critical products that account for about 3/4 of total system demand. 

 

Average forecast accuracy 

 It is interesting to compare the average forecast accuracy of the exponential 

smoothing methods with their customer service and cost performance.  To evaluate 

accuracy, traditional measures (such as those used in the M- and M3 competitions) are 

useless in these series because they vary drastically in scale, with some observations near 

zero.  Therefore, we followed the advice of Hyndman and Koehler (2006) and scaled the 

errors based on the in-sample, one-step errors from the naïve method.  The mean absolute 

scaled error (MASE) is thus the mean of the absolute values of the scaled errors, and the 

mean square scaled error (MSSE) is defined analogously.   

 Scaled error measures for horizons 1-6 are shown in Table 1.  For all products,  

SES is the most accurate method at every horizon, followed by the damped trend and 

Holt.  However, for the group of critical products mentioned above, the damped trend is 

the most accurate method.  It should be noted that Table 1 is greatly affected by outliers, 

and removal of a few selected series from the averages for all products would change the 

rankings. 
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1 2 3 4 5 6 All

MASE All products Holt 1.08 1.08 1.11 1.16 1.20 1.28 1.15
Damped 1.00 0.98 1.02 1.05 1.07 1.11 1.04
SES 0.93 0.90 0.93 0.97 0.99 1.01 0.95

MASE Critical products Holt 1.12 1.15 1.21 1.23 1.27 1.38 1.23
Damped 0.97 0.98 1.00 1.03 0.98 1.03 1.00
SES 1.02 1.04 1.07 1.06 1.10 1.08 1.06

MSSE All products Holt 1.13 1.14 1.18 1.23 1.32 1.46 1.24
Damped 1.05 1.01 1.06 1.13 1.17 1.26 1.11
SES 0.93 0.88 0.90 1.03 1.06 1.10 0.98

MSSE Critical products Holt 1.01 1.14 1.21 1.18 1.26 1.40 1.20
Damped 0.79 0.86 0.88 0.88 0.87 0.86 0.86
SES 0.92 0.96 0.90 0.98 1.08 0.95 0.96

Horizon

 

Table 1.  Average scaled error measures for the chemicals demand series.  In each series, 
errors at all horizons were scaled by the one-step naïve error. 
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Conclusions 
  
 Most previous research related to forecasting for supply chains has avoided the 

question of how forecasting methods should be chosen, and has been concerned instead 

with examining the negative effects of demand uncertainty.  As discussed in Acar et al. 

(2009b), deterministic and often simplistic mathematical models are widely employed 

and are followed by multiple sensitivity analyses to judge the impact of demand 

uncertainty.  The supply chain model in this paper is driven by actual daily demand data 

and integrates exponential smoothing, optimization, and simulation.   We show that the 

choice of forecasting method makes a significant difference in operational performance. 

 Hyndman and Koehler’s scaled error measures appear to be the best available 

options for measuring average forecast accuracy, but there is no relationship between 

operational performance and average accuracy across all products in this supply chain.   

In comparisons of average accuracy for inventory demands, the errors should logically be 

weighted by costs or customer service impact, an idea discussed in Syntetos et al. (2009).  

It may be possible to do this in a pure distribution inventory, where there is little 

interaction between inventory items, but it appears to be impossible to do so when 

modeling production, transportation, and distribution in the supply chain context. 

 Finally, one obvious question about this research is whether the damped trend is 

superior to the company’s existing forecasting method.  Anecdotal evidence suggests that 

the damped trend is an improvement, but the company has relied on purely subjective 

forecasts for many years and has not kept dependable records of forecasting performance.  
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