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Forecasting Intermittent Inventory Demands: 
 
Simple Parametric Methods vs. Bootstrapping 
 

ABSTRACT 

 Although intermittent demand items dominate service and repair parts inventories in 

many industries, research in forecasting such items has been limited.  A critical research question 

is whether one should make point forecasts of the mean and variance of intermittent demand 

with a simple parametric method such as simple exponential smoothing or else employ some 

form of bootstrapping to simulate an entire distribution of demand during lead time.  The aim of 

this work is to answer that question by evaluating the effects of forecasting on stock control 

performance in more than 7,000 demand series. Tradeoffs between inventory investment and 

customer service show that simple parametric methods perform well, and it is questionable 

whether bootstrapping is worth the added complexity. 
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1. Introduction 

1.1 The Intermittent Demand Forecasting Problem 

 In the literature, inventory management and demand forecasting are traditionally treated 

as independent problems.  Most inventory papers ignore forecasting altogether and simply 

assume that the distribution of demand and all its parameters are known, while most forecasting 

papers do not evaluate the stock control consequences of employing different forecasting 

methods.  The interactions between forecasting and stock control are analyzed in this paper for 

items with intermittent demand.  Such demand series are characterized by zero demand 

occurrences interspersed by positive demands.  The choice of forecasting method is shown to be 

an important determinant of the customer service that can be obtained from a given level of 

inventory investment. 

 Since the early work of Brown (1959), the problem of forecasting for fast moving 

inventory items has attracted an enormous body of academic research.  However, forecasting for 

items with intermittent demand has received far less attention, even though such items typically 

account for substantial proportions of stock value and revenues.  Intermittent demand items 

dominate service and repair parts inventories in many industries (including the process 

industries, aerospace, automotive, IT and the military sector), and they may constitute up to 60% 

of total stock value (Johnston, Boylan, & Shale, 2003).  A survey by Deloitte (2011) 

benchmarked the service businesses of many of the world’s largest manufacturing companies 

with combined revenues reaching more than $1.5 trillion; service operations accounted for an 

average of 26% of revenues.  Thus small improvements in management of intermittent demand 

items may be translated to substantial cost savings;  it is also true to say that research in this area 

has direct relevance to a wide range of companies and industries. 
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  In addition, intermittent items are at the greatest risk of obsolescence, and case studies 

have documented large proportions of dead stock in many different industrial contexts (Hinton, 

1999; Syntetos, Keyes, & Babai, 2009; Molenaers, Baets, Pintelon, & Waeyenberg, 2010).  

Improvements in forecasting may be translated to significant reductions in wastage or scrap with 

further environmental implications.  

Intermittent demand series are difficult to forecast because they usually contain a 

(significant) proportion of zero values, with non-zero values mixed in randomly. When demand 

occurs the quantity may be highly variable (Cattani, Jacobs, & Schoenfelder, 2011).  One critical 

research question is whether one should make point forecasts of the mean and variance of 

intermittent demand with a simple parametric method or else employ some form of 

bootstrapping to simulate an entire distribution of demand during lead time.  Is bootstrapping 

worth the added complexity? The aim of this study is to answer that question in an empirical 

investigation of forecasting more than 7,000 inventory demand series. 

 

1.2 Research Background 

Two parametric methods, simple exponential smoothing (SES) and Croston’s (1972) 

method with corrections by Rao (1973), are widely used to forecast intermittent demand.  SES 

forecasts the mean level of demand for both non-zero and zero demand periods, treating them in 

the same way, while Croston makes separate forecasts of the mean level of non-zero demand and 

the mean inter-arrival time (time between demand occurrences).  Croston assumes that the 

distribution of nonzero demand sizes is normal, the distribution of inter-arrival times is 

geometric, and that demand sizes and inter-arrival times are mutually independent.  Shenstone 

and Hyndman (2005) challenge these assumptions and show that Croston’s method is 
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inconsistent with the properties of intermittent demand data. The primary problem is that 

Croston’s method assumes stationarity, while any possible model underlying the method must be 

non-stationary.  Furthermore, the underlying model must be defined on a continuous sample 

space that can take on either negative or positive demand values, something that is inconsistent 

with the reality that demand is always non-negative.   

Despite its theoretical shortcomings, Croston’s method has been successful in empirical 

research (see the review in Gardner, 2006) and is widely used in practice.  Both Croston and SES 

are available in demand planning modules of component based enterprise and manufacturing 

solutions (e.g. Industrial and Financial Systems – IFS AB) and in integrated real-time sales and 

operations planning processes (e.g. SAP Advanced Planning and Optimisation - APO 4.0).   

Many improvements to Croston’s original method have been published, including 

Johnston and Boylan (1996), Snyder (2002), Syntetos and Boylan (2005), Shale, Boylan, and 

Johnston (2006), and Teunter, Syntetos, and Babai (2011). The Syntetos and Boylan method 

(known as the SBA method for Syntetos-Boylan Approximation), is the only Croston 

improvement that has substantial empirical support.  Although Croston claims that his method is 

unbiased, Syntetos and Boylan (2001) show that the opposite is true and present an improved 

method that corrects for bias (Syntetos & Boylan, 2005).  The SBA method was tested by Eaves 

and Kingman (2004) using a sample of more than 11,000 monthly repair parts demand series 

from Royal Air Force (RAF) inventories.  The results varied somewhat depending on the degree 

of aggregation of the data (weekly, monthly, quarterly) and the type of demand pattern (ranging 

from smooth to highly intermittent).  However, in general the SBA method was more accurate 

than SES and the original Croston method.  Another study by Gutierrez, Solis, and 
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Mukhopadhyay (2008) reaches similar conclusions.  In the empirical study below, all three 

parametric alternatives are tested:  SES, Croston’s original method, and the SBA method. 

Given the parametric point forecasts, a demand distribution is needed to set inventory 

levels.  Both the Poisson and Bernoulli processes have been found to fit demand arrivals, i.e. the 

probability of demand occurring (Dunsmuir & Snyder, 1989; Willemain, Smart, Shockor, & 

DeSautels, 1994; Janssen, 1998; Eaves, 2002).  Regarding the size of demand when it occurs, 

various suggestions have been made for distributions that are either monotonically decreasing or 

unimodal positively skewed. With Poisson or Bernoulli arrivals of demands and any distribution 

of demand sizes, the resulting distribution of total demand over a fixed lead time is compound 

Poisson or compound Bernoulli, respectively.  Compound Poisson distributions are simpler and 

have empirical evidence in their support (e.g., Boylan & Syntetos, 2008).  In this empirical 

study, demand is modeled with the Negative Binomial Distribution (NBD), which performed 

well in the empirical study by Snyder, Ord, and Beaumont (2012).  The NBD is a compound 

distribution in which the number of demands in each period is Poisson distributed, with random 

demand sizes governed by a logarithmic distribution.   

As the data become more erratic, the true demand size distribution may not conform to 

any standard theoretical distribution, and it may be that non-parametric approaches (that do not 

rely upon any underlying distributional assumption) may improve stock control.  Numerous 

bootstrapping methods are available  to randomly sample (with or without replacement) 

observations from demand history to build a histogram of the lead-time demand distribution.   

Alternative bootstrapping methods are found in Efron (1979), Snyder (2002), Willemain, Smart, 

and Schwarz (2004, hereafter WSS), Porras and Dekker (2008), Teunter and Duncan (2009), 

Zhou and Viswanathan (2011), and Snyder et al. (2012).  The most robust bootstrapping method 
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appears to be that of WSS, a method patented earlier by Willemain and Smart (2001).  WSS is 

tested in this paper;  further discussion on the justification for excluding other bootstrapping 

alternatives follows in the next section. 

In a large empirical study, WSS claims significant improvements in forecasting accuracy 

over both SES and Croston’s estimator.  However, Gardner and Koehler (2005) criticize this 

study because the authors do not use the correct lead time demand distribution for either SES or 

Croston’s method, and they do not consider published improvements to Croston’s method, such 

as the SBA method (see Willemain et al., 2005, for a rejoinder).  These mistakes are corrected in 

this empirical study. 

One empirical study, by Teunter and Duncan (2009), is similar to the one described in 

this paper. Using a sample of demand series for military spare parts, Teunter and Duncan 

compare the inventory and service tradeoffs that result from forecasting with the same 

parametric methods tested below.  They also test a simple bootstrapping method in which they 

sample lead time demand with replacement to estimate mean and variance, which are then fed 

into a normal distribution to set stock levels.  Reliance on the normal distribution defeats the 

purpose of bootstrapping, which does not require a distributional assumption.  

 

1.3 Organization of the Paper 

Section 2 explains the parametric and bootstrapping methods.   Section 3 discusses the 

data tested, performance measurement, and simulation procedures.  Empirical results are given in 

Section 4; in contrast to most previous research in intermittent demand forecasting, results are 

presented in terms of stock control performance rather than forecast accuracy.  Section 5 
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discusses implications of the results , followed by conclusions and opportunities for further 

research in Section 6. 

 

2. Forecasting intermittent demand 

2.1 Parametric Forecasting 

Simple exponential smoothing (SES) is written:  

1)1(  ttt SXS  ,       (1) 

where  is the smoothing parameter,  is the observed value of both zero and nonzero demand, 

and  is the smoothed average as well as the forecast for next period.  Although SES is widely 

used to forecast intermittent demand, the method has important limitations.  Exponential 

smoothing weights recent data more heavily, which produces forecasts that are biased high just 

after a demand occurs and biased low just before a demand.  Replenishment quantities are likely 

to be determined by forecasts made just after a demand, resulting in unnecessarily high stock 

levels most of the time. 

tX

tS

In an attempt to compensate for these problems, Croston’s (1972) method forecasts two 

components of the time series separately, the observed value of nonzero demand ( ) and the 

inter-arrival time of transactions ( ).  The smoothed estimates are denoted  and , 

respectively: 

tD

PtQ tZ t

  1)1(  ttt ZDZ         (2) 

1 )1(  ttt PQP          (3) 

Croston assumes that the value of the smoothing parameter is the same in both 

equations.  The estimate of demand per unit time, i.e. the forecast for next period ( ) is then: tY
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ttt PZY           (4) 

If there is no demand in a period,  and  are unchanged.  Note that when demand 

occurs every period the Croston method gives the same forecasts as conventional SES.  Thus the 

same method can be used for both intermittent and non-intermittent demands. 

tZ tP

Syntetos and Boylan (2001) show that  is biased to over-forecast.  Later, Syntetos and 

Boylan (2005) developed the SBA method (for Syntetos-Boylan Approximation), a modified 

version of equation (4) that is approximately unbiased: 

tY

  ))(2/1( ttt PZY                       (5) 

 SES, Croston, and SBA are used below to forecast demand over the lead time plus review 

period.  As recommended by Syntetos and Boylan (2006) on the grounds of simplicity, the 

variance of the forecast errors is estimated by the exponentially smoothed mean squared error 

(MSE) over the lead time plus review period. 

 

2.2 Non-Parametric Forecasting 

Non-parametric or bootstrapping approaches to forecasting permit a reconstruction of the 

empirical distribution of the data, thus making distributional assumptions redundant.  

Bootstrapping works by taking many random samples from a larger sample or from a population 

itself.  These samples may be different from each other and from the population, and they are 

used to build up a histogram of the distribution of inventory demands during lead time.   

Statistics such as the mean and variance of lead-time demand are computed directly from the 

histogram rather than inferred from a theoretical distribution.  

The WSS method is an advanced form of bootstrapping that captures the autocorrelation 

between demand realizations and can produce values that have not appeared in the history.  The 
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method estimates transition probabilities in a two-state (zero vs. non-zero) Markov model and 

uses that model to generate a sequence of zero and non-zero demand occurrences. The non-zero 

occurrences are then assigned a positive value (demand) by using an ad-hoc method of “jittering” 

proposed by the authors.  The WSS method works according to the following steps, which are 

found in both WSS (2004) and Willemain and Smart (2001): 

 

1 Obtain historical demand data in chosen time buckets (e.g. days, weeks, months); 
 
2 Estimate transition probabilities for a two-state (zero vs. non-zero) Markov model; 
 
3 Conditional on last observed demand, use the Markov model to generate a sequence of 

zero/non-zero values over the forecast horizon (lead time); 
 
4 Replace every non-zero state marker with a numerical value sampled at random, with 

replacement, from the set of observed non-zero demands; 
 
5 “Jitter” the non-zero demand values X.  When X is selected at random, generate a 

realization of a standard normal random deviate Z.  The jittered value is  
)INT(1 X Z X  , unless the result is less than or equal to zero, in which case the 

jittered value is simply X; 
 
6 Sum the forecast values over the horizon to get one predicted value of lead time demand 

(LTD). 
 

 

Porras and Dekker (2008) propose an empirical method based on the construction of a 

histogram of demands over the lead time (L). A block of L consecutive demand observations is 

sampled repeatedly with replacement. Such a procedure results in capturing the potential auto-

correlation of the demand data. The method is intuitively appealing and links naturally to stock 

control.  However, the method cannot extrapolate beyond previous demands (an important 

advantage of WSS), making it difficult to attain realistically high service level targets. 
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Preliminary results not reported here show poor performance of the Porras and Decker method, 

which is not considered further. 

 Viswanathan and Zhou (2008) claim an improvement to the WSS bootstrapping 

procedure. The key difference is that instead of the two-state Markov chain used by WSS, the 

historical inter-demand interval distribution generates demand arrivals. However, this procedure 

is heavily dependent upon lengthy demand histories that are not often available.  Zhou and 

Viswanathan (2011) compare their procedure to parametric methods on empirical data and find 

the parametric methods are more accurate. They attribute the inferior performance of the 

bootstrapping method to the short demand histories available, and this approach is not considered 

further.  

Finally, a parametric bootstrapping method proposed by Snyder (2002) was shown to 

perform well on a few SKUs.  However, we did not consider the Snyder method due to its 

constraining theoretical assumptions that defy the purpose of using bootstrapping procedures in 

the first place.  

 

3.  Experimental design 

3.1 Data 

Forecasting performance is tested in the data described in Tables 1 – 2 (all data are 

available from the corresponding author).  The jewelry data are one year of weekly retail 

demands for an inexpensive line of costume jewelry; the distribution of demand intervals is 

relatively compact around a median of 4.4 weeks, and most demands are for one or two units.  

Stock replenishment lead-times in the jewelry data are one week.  A Japanese manufacturer 

supplied the electronics data, which consists of four years of monthly demand histories for spare 
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parts used in European support operations.  The median demand interval is relatively short at 2.6 

months, but both demand intervals and sizes are skewed right due to outliers in most time series. 

Lead-times in the electronics data are three months, which makes stock control far more difficult 

than in the jewelry data.  

 
------------------------------ 

Insert Table 1 Here  
------------------------------ 

------------------------------ 
Insert Table 2 Here  

------------------------------ 

 

3.2 Performance Measurement 

 Syntetos and Boylan (2006) and Syntetos, Nikolopoulos, and Boylan (2010) demonstrate 

that there is little relationship between traditional measures of forecast accuracy, such as the 

mean error, and stock control performance as measured by inventory investment and customer 

service. (For a general discussion of the organizational and inventory implications of forecast 

errors, refer to Sanders & Graman, 2009). Therefore, accuracy measures are bypassed in this 

study and forecasting is evaluated by its direct effects on stock control.  Gardner (1990, 2006) 

recommends  the use of tradeoff curves for this purpose, and that example is followed here by 

computing tradeoffs between total inventory investment and customer service. 

 Another suggestion for evaluating performance is the use of average regret metrics (Sani 

and Kingsman, 1997) or implied stock-holdings that are based on a calculation of the exact 

safety margin providing a maximum stock-out of zero (Eaves and Kingsman, 2004). An 

alternative formulation involves fixing a target service measure and searching for the investment 

necessary to hit the target.  However, tradeoff curves are the most realistic representation of the 
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various methods’ comparative performance and the most meaningful one from a practitioner 

perspective.  

Performance is simulated using a periodic order-up-to-level stock control system, which 

is widely used in practice because it requires optimization of only one parameter, the order-up-

to-level.  The stock control system is designed to meet a target fraction of replenishment cycles 

in which total demand can be delivered from stock. This fraction is called the cycle service level 

(CSL) (i.e. the probability of no stock-outs during a replenishment cycle).  During out-of-sample 

testing, the forecasting methods are used to compute weekly or monthly order-up-to-levels that 

attempt to meet four CSL targets: 85%, 90%, 95%, and 99%.  Other service measures (like the 

most commonly used fill rate for example) are not considered because bootstrapping does not 

allow direct calculation of such measures.  

 For the parametric methods, the order-up-to-level in each period is computed as the 

inverse of the cumulative distribution function of demand over the lead time plus one review 

period. Replenishment decisions take place at the end of every period (week or month), so the 

review period is set equal to one. Demands are assumed to follow the Negative Binomial 

Distribution (NBD).  One difficulty with the NBD is that it requires the variance to be greater 

than the mean; in the few cases where the reverse was true, the variance is set equal to 1.1 times 

the mean. Although this may look ad hoc, Sani (1995) shows that it produces robust results. 

 

3.3 Model-Fitting and Forecasting  

To test the parametric forecasting methods, the demand history for each SKU is split into 

two parts: within sample (for initialization and optimization purposes) and out-of-sample (for 

reporting performance). The first 12 observations are used as an initialization sample to compute 
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an average for the beginning level of demand and, in the case of Croston’s method, the beginning 

demand size and interval (expressed also as averages of the corresponding variables over the 

initialization block).  To make the most use of the data available, the optimization block contains 

the initialization block and extends it by the same number of periods. That is, the first 24 

observations are used as an optimization sample to select the smoothing parameter over the range 

0.05 to 0.30 (in steps of 0.01) that minimizes the mean squared error (MSE) per series. (For more 

details on the issue of optimization of parameters in an intermittent demand context, please refer 

to Petropoulos, Nikolopoulos, Spithourakis, & Assimakopoulos, 2013.)  Variances are estimated 

by the cumulative smoothed MSE using a fixed smoothing parameter of 0.25;  analysis not 

reported here indicates that this value performs well.  In Croston’s original method, the same 

smoothing parameter updates both demand size and interval, but a separate smoothing parameter 

for each one is used here, following Schultz’s (1987) advice that separate parameters lead to 

better forecast accuracy.  For the WSS method, the within sample data are used to compute an 

initial value for the order-up-to-level, which is then updated weekly or monthly.  Out-of-sample 

testing starts at period 25, so there are 28 out-of-sample observations in each jewelry series and 

24 in each electronics series. 

 

4.  Empirical results 

Three performance measures are reported for every combination of forecasting method, 

dataset, and target CSL.  First, total inventory investment is computed by pricing each SKU by 

unit cost and summing across all SKUs.  Second, the achieved CSL is computed as the actual 

percentage of replenishment cycles in which demand is satisfied directly from stock on hand. 

Finally, total backorders are computed by averaging backorder values over time (weeks or 
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months) for each SKU and then summing across all SKUs.  These measures are presented in the 

form of tradeoff curves showing achieved CSL and total backorders as a function of total 

investment.  Each curve has four plotting symbols corresponding to the four CSL targets. 

 

4.1 Jewelry Data 

In the jewelry data, Figure 1 shows tradeoff curves between investment and CSL.  All 

forecasting methods achieve CSLs slightly larger than the 99% target (with the exception of SES 

that just falls short of that), but achieved levels are significantly greater than targets of 85%, 

90%, and 95%. The descriptive statistics presented in Table 2 indicate that the jewelry data are 

neither particularly intermittent nor erratic, the latter referring to the variability of the demand 

sizes.  Thus the NBD provides a good fit to the empirical data and the parametric methods 

produce very similar CSL tradeoff curves (with the SBA and Croston being indicated as the 

‘best’ approaches).  The curve for the WSS method runs above the parametric curves at targets 

of 95% and 99% and gives a slightly better CSL for any level of investment greater than about 

$130,000. For example, at an investment of $175,000, WSS adds about one percentage point to 

CSL compared to the other methods. Inventory investment vs. backorders are plotted in Figure 2, 

and again the parametric methods produce similar results, while the WSS method yields lower 

backorder values for any investment greater than $130,000. 

 

------------------------------ 
Insert Figure 1 Here  

------------------------------ 

------------------------------ 
Insert Figure 2 Here  

------------------------------ 
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4.2 Electronics Data 

The electronics data are more erratic than the jewelry data, and the results are 

considerably different.  In Figure 3, all methods achieve CSLs greater than the 85% target, and 

all methods are close to the 90% target.  However, at the 95% and 99% target, all methods 

significantly underperform.  For example, when SES is run with a target of 99%, the achieved 

CSL is only 95%.  Outliers in the electronics data make it extremely difficult to estimate the 

parameters of the demand distribution and hit the CSL targets.   

The Croston method consistently gives better CSL performance than the SBA method, 

even though SBA was designed to improve on Croston. The problem is that the Croston method 

is biased high, which increases both customer service and inventory investment.  SES produces 

the best CSL tradeoff curve through an investment of about €48 million, and thereafter WSS is 

marginally better.  At an investment of €40 million, SES yields a CSL about one percentage 

point better than WSS.  But at an investment of €65 million, WSS is about one-half percentage 

point better than SES.    

Differences in backorder performance are more significant.  In Figure 4, all parametric 

methods produce smaller backorders than WSS at all levels of investment. For example, at an 

investment of €35 million, SES backorders are €1.4 million compared to €2.2 million for WSS. 

SES yields the smallest backorders though an investment of about €50 million; thereafter, the 

SBA method is best, followed closely by Croston. 

 

------------------------------ 
Insert Figure 3 Here  

------------------------------ 

------------------------------ 
Insert Figure 4 Here  

------------------------------ 
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5.  Implications and practical considerations 

The jewelry data are relatively well behaved, with moderately intermittent demands and 

short lead times; all parametric methods give similar performance, and the WSS bootstrapping 

method is marginally better than the parametric methods.  The electronics data are more difficult 

to forecast because they are more intermittent, contain more outliers, and have longer lead times.  

Under these conditions, we might expect WSS to perform better than the parametric methods, 

but this did not happen.  In the electronics data, all parametric methods give significantly better 

backorder performance than WSS.   

Willemain et al. (2004) claimed that an important advantage related to the use of 

bootstrapping is its attractiveness to practitioners:   “Users intuitively grasp the simple 

procedural explanation of how the bootstrap works. Their comfort with the bootstrap approach 

may derive from the concrete, algorithmic nature of computational inference, in contrast to the 

more abstract character of traditional mathematical approaches to statistical inference.”  This 

claim may be true for the general bootstrapping concept, but the details of the WSS method, such 

as the use of transition probabilities and Markov models, are more complicated and difficult to 

understand than any of the parametric methods tested.   

 Another consideration in evaluating the WSS procedure is that demand forecasts are 

often subject to judgmental adjustments (Syntetos, Nikolopoulos, Boylan, Fildes, & Goodwin, 

2009).  Such adjustments can be beneficial, especially when they are based on information not 

available to the forecasting model.  However, adjustments can be unnecessary or even harmful 

when they are applied without an understanding of how the forecasts were produced.  Simple 

methods should result in fewer damaging judgmental interventions. 
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Although the parametric forecasting methods are simple, their interactions with stock 

control are not.  Many authors have pointed out that forecast errors may seriously distort 

projections of customer service levels in an intermittent demand context. The fundamental 

problem is that inventory theory has been developed upon the assumptions of known moments of 

the hypothesized demand distribution. Although no concrete theory has been developed in this 

area there is an expectation that parametric estimators will sometimes under-achieve the 

specified targets. A common reaction from practitioners is to incorporate some bias in the 

forecasts to avoid running out of stock.  However, such adjustments are not straightforward since 

the variance of the estimates (sampling error of the mean) is also affected, leading to confusion 

about the effects on performance of the system. 

The application of bootstrapping is relatively straightforward under the CSL constraint, 

but such is not the case should other service measures and cost criteria be considered. Parametric 

theory, despite its shortcomings, does provide guidelines for optimization of the stock control 

system under a wide range of objectives and/or constraints.  More research is needed to extend 

the capacity of bootstrapping to match parametric theory.  Consider for example the specification 

of a fill-rate target as opposed to the CSL in a practical setting;  bootstrapping cannot be used 

directly to meet a fill-rate target. 

 

6.  Conclusions and future research 

The WSS method of bootstrapping does have advantages, most notably the ability to 

simulate demand values that have not appeared in history.  However, it is questionable whether 

the WSS method is worth the considerable added complexity. Parametric methods are simpler, 
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and the simplest method of all, SES, performs well.  In the messy electronics data, SES produces 

fewer backorders than WSS at all levels of inventory investment. 

Parametric methods require less computing power, which is important when demands for 

very large numbers of SKUs have to be forecast.  Parametric methods also require less specialist 

knowledge and thus are more transparent and more resistant to potentially damaging judgmental 

interventions.  

 Teunter and Duncan (2009) observed that analytical projections of customer service are 

often different from empirical results in an intermittent demand context, a conclusion that applies 

to this study as well.  In the jewelry data, achieved CSLs for all methods were significantly 

greater than targets of 85%, 90%, and 95%.  In the electronics data, achieved CSLs were 

significantly less than targets of 95% and 99%. The difference between target and achieved 

CSLs are attributed to errors in estimating the parameters of the demand distribution; if these 

parameters were known, achieved CSLs should correspond to the targets.    

There are several opportunities for further research in intermittent demand forecasting.  

The M and M3 forecasting competitions (Makridakis, Andersen, Carbone, Fildes, Hibon, 

Lewandowski, Newton, Parzen, & Winkler, 1982, and Makridakis & Hibon, 2000, respectively) 

did not consider intermittent demand data.  Future competitions should include such data. 

An alternative strategy to deal with intermittent demand patterns is to aggregate demand 

in lower-frequency time buckets thereby reducing the presence of zero observations. Temporal 

aggregation is a practice employed in many real world settings but there has been no research 

apart from a few studies (Nikolopoulos, Syntetos, Boylan, Petropoulos, & Assimakopoulos, 

2011; Babai, Ali, & Nikolopoulos, 2012; Spithourakis, Petropoulos, Nikolopoulos, & 

Assimakopoulos, 2012). 
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Another research opportunity is to consider stationary models for intermittent demand 

forecasting rather than restricting attention to models based on Croston’s method. For example, 

Poisson autoregressive models have been suggested by Shenstone and Hyndman (2005).  Models 

based on a variety of count probability distributions, coupled with dynamic specifications to 

account for potential serial correlation, have recently been analyzed by Snyder et al. (2012), 

although the authors made no attempt to evaluate stock control results.  Further development and 

testing of such models in the context of stock control is the next step in our research. 

 Finally, we acknowledge that the bootstrapping algorithm considered in this paper is the 

exclusive property of Smart Software, Inc. under US Patent 6205431 B1.  Use in this paper was 

permitted by a special licensing arrangement with Smart Software and does not imply a public 

license to use the algorithm.  According to Smart Software:  “This algorithm differs in several 

important ways from the commercial implementation in the SmartForecasts™ software, so 

conclusions about the performance of the algorithm implemented here cannot be extrapolated to 

the performance of SmartForecasts™.  Further, Smart Software provided no oversight or 

guidance in implementing the algorithm.” 

Note:  At least one of the authors has read each reference in this paper.  We contacted   

Ruud Teunter and Thomas Willemain to ensure that their work was properly summarized. 
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TABLES 

Table 1:  Jewelry data - 52 weeks of demands for 4,076 SKUs

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Minimum 1.3 0.6 1.0 0.0 0.1 0.3
25th percentile 3.3 2.6 1.1 0.3 0.2 0.4
Median 4.4 3.7 1.2 0.4 0.3 0.5
75th percentile 5.6 5.0 1.4 0.7 0.4 0.7
Maximum 8.7 13.0 3.2 3.7 2.2 2.5

Demand interval Demand size Demand per period

 

 

Table 2:  Electronics data - 48 months of demands for 3,055 SKUs

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Minimum 1.0 0.0 1.0 0.0 0.0 0.2
25th percentile 1.5 1.0 3.5 3.0 0.9 2.2
Median 2.6 2.3 5.9 6.2 2.1 4.5
75th percentile 4.7 4.4 12.1 13.9 6.0 10.5
Maximum 24.0 32.5 5,366.2 9,149.3 5,366.2 3,858.4

Demand interval Demand size Demand per period
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FIGURES 

Figure 1:  Jewelry data - investment vs. CSL 
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Figure 2:  Jewelry data - investment vs. backorders 
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Figure 3:  Electronics data - investment vs. CSL 
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Figure 4:  Electronics data - investment vs. backorders 
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