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Abstract 
 

Exponential smoothing methods gave poor forecast accuracy in Fildes et al.’s study of 

telecommunications time series.  We reexamine this study and show that parameter optimization 

improves the accuracy of the Holt and damped trend  methods.  Further improvement occurs 

when the time series are trimmed to eliminate irrelevant early data, and when the methods are 

fitted to minimize the MAD rather than the MSE.  Contrary to Fildes et al., we show that the 

damped trend is more accurate than Holt’s method.  Because most of the telecommunications 

series display steady trends, we test the Theta method of forecasting and its derivative, simple 

exponential smoothing with drift.  The Theta method proves disappointing, but simple 

exponential smoothing with drift is the best smoothing method for this data, giving about the 

same accuracy as the robust trend. 
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Exponential smoothing in the telecommunications data 

     
Introduction 

With only a few exceptions, exponential smoothing has performed well in numerous 

empirical studies of forecast accuracy (Gardner, 2006).   Perhaps the most notable exception is 

the study of telecommunications data by Fildes et al. (1998), who found that the robust trend 

method was more accurate than Holt’s additive trend or the Gardner-McKenzie (1985) damped-

additive trend.  Fildes et al. also found that Holt’s method was more accurate than the damped 

trend, a conclusion so surprising that Armstrong (2006) recommended that a replication be 

performed.  

We attempt to replicate the exponential smoothing results in Fildes et al.  We also test 

several ideas to improve the accuracy of the Holt and damped trend methods, and we test two 

additional smoothing methods that should be better suited to the data, the Theta method of 

forecasting (Assimakopoulos & Nikolopoulos, 2000) and its derivative, simple exponential 

smoothing (SES) with drift (Hyndman & Billah, 2003).  

In the next few sections, we review the characteristics of the telecommunications series 

and give brief explanations of the forecasting methods.   Next, we explain how the methods were 

fitted.  Finally, we present new empirical comparisons of the exponential smoothing methods 

and the robust trend. 

 

 

 

 



 2

The telecommunications series and the robust trend 

 There are 261 telecommunications series, each with 71 monthly, nonseasonal  

observations of the number of a particular type of telephone circuit in service by locality within a 

single U.S. state.  Compared to the series used in the M1 competition, Fildes et al. claim that the 

telecommunications series are much more homogeneous.  We agree.   Although outliers 

contaminate nearly every series, about two thirds of them are not especially difficult to forecast 

because they display steady downward trends, like Series A in Figure 1 (next page). 

The remaining series are more challenging.  In about a quarter of the series, an abrupt 

trend reversal occurs in the early fit periods.  An example is given in Series B where the data 

have a positive slope for the first 14 periods, with a negative slope thereafter.  This kind of 

behavior confounds estimation of the trend component in any exponential smoothing method.  

Domain knowledge for the telecommunications data, discussed in Fildes (1989, 1992), calls for a 

negative slope in the forecast periods, which begin at period 24.  Thus we should expect to 

improve forecast accuracy by trimming the fit periods to delete irrelevant early data, although 

this was not done in Fildes et al.  The remaining series (about 25) are characterized by jump 

shifts in level and trend and other kinds of foul discontinuities that have a major impact on 

average forecast accuracy for all series.  

For series characterized by consistent trends with outliers, Grambsch and Stahel (1990) 

developed the robust trend method, easily the best method tested in Fildes et al.’s study.  The 

model that underlies the robust trend is a random walk, or an ARIMA (0, 1, 0), with drift.  The 

method aims at robustness by estimating the drift as the median rather than the mean of the 

differenced data, subject to some complex adjustments (see Grambsch and Stahel for details). 

 



Figure 1.  Examples of the telecommunications series 
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SES with drift 

Fildes et al. tested two exponential smoothing methods, Holt’s additive trend and the 

damped-additive trend.  Given the steady trends in most of the telecommunications series, 

another method, SES with drift, seems more appropriate.  The idea for SES with drift originated 

in the “Theta” method of forecasting by Assimakopoulos and Nikolopoulos (2000).  In the M3 

competition (Makridakis & Hibon, 2000), the Theta method performed well, although the 

authors’ description of the method is complex.  Hyndman and Billah (2003) demonstrated that 

the Theta method is overly complex because the same forecasts can be obtained by using SES 

with a fixed drift term equal to half the slope of a straight line fitted to the data. 

Hyndman and Billah derive several equivalent forms of the SES with drift method.  

Using their notation, the simplest form is as follows: 

ttt b αε++= −1ll          (1) 

)(ˆ htX hbt += l ,         (2) 

where l  is the level, b is the drift, and is the h-step forecast.   Hyndman and Billah argue 

that the drift term should be optimized in equations (1) and (2), rather than fixed at a 

predetermined value like the Theta method.  Both alternatives are tested below. 

)(ˆ htX
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Model-fitting 

For each series, Fildes et al. made forecasts through 18 steps ahead, using five irregularly 

spaced time origins at months 23, 31, 38, 45, and 53.   At the same origins, we used the Excel 

Solver to fit the Holt, damped trend, SES with drift, and Theta methods.   For each method, we 

compared MSE and MAD fit criteria.  The MSE has been used in almost all empirical research in 

exponential smoothing, including Fildes et al., although Gardner (1999) showed that the MAD 

criterion often produces better ex ante accuracy in series contaminated by outliers. 

The intercept and slope of a straight line fitted to the data were used to initialize all 

methods.  In the Holt and damped trend methods, we compared optimization of parameters alone 

to simultaneous optimization of parameters and initial values.  In SES with drift, we optimized 

the initial level and drift simultaneously with the smoothing parameter.  In the Theta method, we 

optimized the initial level and smoothing parameter simultaneously, while keeping the drift 

component fixed at half the slope of the fit data.  For all methods, we compared parameter 

selection from the usual [0,1] interval to selection from the complete range of invertibility of the 

underlying ARIMA model.  This was done because we found that the optimal level parameter 

from the [0,1] interval was frequently equal to 1.0 for all methods. 

Finally, we compared the use of two sets of data to fit each method.   In the first fit,  we 

used all data through the forecast origins.  In the second fit, we trimmed the data by discarding 

any observations prior to an early trend reversal.  This was done by dividing the first set of fit 

periods roughly in half.  We compared the slope of the first 12 observations to the next 11;  if the 

slope changed from positive to negative, we simply started the fit at the maximum observation 

value during the first 23 periods.   
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Accuracy comparisons 

MAPE results are given in Table 1, along with Fildes et al.’s original results for the 

robust trend, Holt, and damped trend methods.  Fildes et al. also tested ARIMA and ARARMA 

methods, but the results are not repeated here because these methods performed poorly.  Our 

results are voluminous, and we made several decisions to reduce the size of Table 1.  For all 

methods, we found little difference in forecast accuracy between optimization of parameters over 

the  [0,1] interval vs. the complete range of invertibility, so only the first option is reported.  In 

the Holt and damped trend methods, we found little difference between optimization of 

parameters alone vs. simultaneous optimization of parameters and initial values, so only the first 

option is reported to make the results as comparable as possible to Fildes et al. (who did not 

optimize initial values).   Finally, we do not report median APEs because the differences among 

methods are similar to MAPE comparisons. 

At all forecast origins, our damped trend results are better than those reported by Fildes et 

al.  For example, at origin 23, Fildes et al. reported a damped trend MAPE of 9.25% for the 

average of horizons 1-18.  This result is found in the Damped 1 row of the first section in Table 

1. Using an MSE criterion to fit the original data (Damped 2), we reduced the MAPE to 7.31%.  

If we continue with the MSE and trim the irrelevant early data (Damped 3), the MAPE falls to 

6.32%.   If we minimize the MAD and trim the data (Damped 4), the MAPE falls to 5.71%.  

Although the improvements in damped trend results vary somewhat by forecast origin and 

horizon, they are consistent. 



Table 1.  MAPEs for the telecommunications data (261 series)

Fit Fit
Origin Method data criterion 1 6 12 18 1-6 1-12 1-18

23 Robust trend Original MSE 0.68 3.26 6.09 10.27 2.06 3.48 5.14

Holt 1 (Fildes et al.) Original MSE 1.46 6.79 11.30 16.20 4.43 6.99 9.37
Holt 2 Original MSE 1.94 5.76 9.42 14.11 4.05 6.01 8.04
Holt 3 Trimmed MSE 1.83 5.08 8.47 12.76 3.62 5.37 7.24
Holt 4 Trimmed MAD 1.00 4.39 8.27 12.87 2.73 4.75 6.82

Damped 1 (Fildes et al.) Original MSE 1.25 6.46 11.05 17.14 4.27 6.67 9.25
Damped 2 Original MSE 1.97 5.19 8.42 12.96 3.85 5.45 7.31
Damped 3 Trimmed MSE 1.76 4.40 7.31 11.38 3.21 4.66 6.32
Damped 4 Trimmed MAD 1.08 3.63 6.77 11.16 2.39 3.92 5.71

SES with drift 1 Original MSE 1.67 4.11 7.13 11.31 2.96 4.42 6.13
SES with drift 2 Trimmed MSE 1.78 4.02 6.77 10.41 2.97 4.32 5.83
SES with drift 3 Trimmed MAD 0.92 3.29 5.88 9.59 2.18 3.52 5.02

Theta 1 Original MSE 0.91 3.68 7.24 12.54 2.32 3.93 6.01
Theta 2 Trimmed MSE 1.82 4.05 6.95 10.75 3.03 4.39 5.97
Theta 3 Trimmed MAD 0.88 3.61 7.07 11.29 2.34 4.02 5.85

31 Robust trend Original MSE 1.65 4.19 8.40 12.80 2.97 4.83 6.88

Holt 1 (Fildes et al.) Original MSE 1.79 5.30 10.77 16.66 3.59 6.09 8.80
Holt 2 Original MSE 1.72 5.02 10.03 15.13 3.38 5.68 8.11
Holt 3 Trimmed MSE 1.71 4.93 9.84 14.88 3.34 5.58 7.99
Holt 4 Trimmed MAD 1.72 4.99 9.81 14.61 3.39 5.62 7.96

Damped 1 (Fildes et al.) Original MSE 1.97 6.36 13.23 20.53 4.15 7.25 10.65
Damped 2 Original MSE 1.78 5.17 10.54 15.85 3.48 5.90 8.50
Damped 3 Trimmed MSE 1.74 4.82 9.77 14.69 3.32 5.53 7.92
Damped 4 Trimmed MAD 1.71 4.66 9.64 15.09 3.22 5.40 7.89

SES with drift 1 Original MSE 1.75 4.77 9.55 14.20 3.30 5.43 7.73
SES with drift 2 Trimmed MSE 1.69 4.45 8.94 13.33 3.12 5.12 7.27
SES with drift 3 Trimmed MAD 1.63 4.13 8.25 12.30 2.93 4.74 6.71

Theta 1 Original MSE 1.49 5.86 11.40 17.77 3.65 6.27 9.24
Theta 2 Trimmed MSE 1.68 4.73 9.45 14.20 3.22 5.37 7.66
Theta 3 Trimmed MAD 1.69 4.74 9.49 14.22 3.24 5.40 7.68

Horizon
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Table 1 (continued)

Fit Fit
Origin Method data criterion 1 6 12 18 1-6 1-12 1-18

38 Robust trend Original MSE 1.25 4.32 8.15 12.11 2.74 4.56 6.56

Holt 1 (Fildes et al.) Original MSE 1.19 4.10 7.78 11.91 2.67 4.40 6.31
Holt 2 Original MSE 1.35 4.75 9.10 13.78 3.06 5.11 7.37
Holt 3 Trimmed MSE 1.37 4.83 9.13 13.90 3.11 5.16 7.42
Holt 4 Trimmed MAD 1.32 4.52 8.48 12.77 2.95 4.83 6.91

Damped 1 (Fildes et al.) Original MSE 1.34 5.74 11.84 18.83 3.45 5.25 9.51
Damped 2 Original MSE 1.33 4.92 9.63 14.84 3.08 5.30 7.78
Damped 3 Trimmed MSE 1.33 4.71 9.01 13.84 2.99 5.03 7.33
Damped 4 Trimmed MAD 1.31 4.70 9.01 13.77 2.97 5.01 7.30

SES with drift 1 Original MSE 1.39 4.82 9.32 14.26 3.09 5.18 7.56
SES with drift 2 Trimmed MSE 1.35 4.64 8.88 13.62 2.99 4.98 7.24
SES with drift 3 Trimmed MAD 1.30 4.34 8.20 12.11 2.79 4.62 6.61

Theta 1 Original MSE 1.49 5.86 11.40 17.77 3.65 6.27 9.24
Theta 2 Trimmed MSE 1.43 5.14 9.93 14.92 3.26 5.53 8.02
Theta 3 Trimmed MAD 1.41 5.12 9.91 14.89 3.24 5.51 7.99

45 Robust trend Original MSE 1.02 3.80 7.35 12.26 2.45 4.25 6.14

Holt 1 (Fildes et al.) Original MSE 1.10 4.10 8.09 12.92 2.61 4.50 6.63
Holt 2 Original MSE 1.20 4.87 9.78 15.90 3.05 5.43 8.03
Holt 3 Trimmed MSE 1.22 4.83 9.56 15.59 3.02 5.33 7.86
Holt 4 Trimmed MAD 1.13 4.44 8.37 13.54 2.79 4.82 6.95

Damped 1 (Fildes et al.) Original MSE 1.11 4.72 10.65 17.57 2.86 5.55 8.53
Damped 2 Original MSE 1.13 4.60 9.33 15.55 2.84 5.17 7.70
Damped 3 Trimmed MSE 1.13 4.35 8.52 14.27 2.73 4.82 7.10
Damped 4 Trimmed MAD 1.05 4.01 7.82 12.55 2.49 4.41 6.41

SES with drift 1 Original MSE 1.18 4.62 9.10 14.65 2.90 5.14 7.48
SES with drift 2 Trimmed MSE 1.18 4.56 8.86 14.27 2.87 5.04 7.31
SES with drift 3 Trimmed MAD 1.07 4.00 7.54 12.56 2.55 4.38 6.32

Theta 1 Original MSE 1.19 5.26 10.75 18.32 3.20 5.95 8.91
Theta 2 Trimmed MSE 1.24 5.02 9.77 15.62 3.10 5.54 8.04
Theta 3 Trimmed MAD 1.22 5.00 9.75 15.60 3.08 5.52 8.02

Horizon
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Table 1 (continued)

Fit Fit
Origin Method data criterion 1 6 12 18 1-6 1-12 1-18

53 Robust trend Original MSE 0.94 4.18 7.71 11.55 2.46 4.27 6.25

Holt 1 (Fildes et al.) Original MSE 1.25 6.09 11.16 17.54 3.54 6.32 9.15
Holt 2 Original MSE 1.15 5.78 11.08 16.80 3.37 6.15 8.97
Holt 3 Trimmed MSE 1.19 5.85 11.24 17.07 3.42 6.25 9.10
Holt 4 Trimmed MAD 1.15 5.48 10.07 15.34 3.21 5.71 8.22

Damped 1 (Fildes et al.) Original MSE 1.06 5.58 14.69 20.95 3.15 6.31 10.64
Damped 2 Original MSE 1.05 5.18 9.51 14.76 2.99 5.32 7.83
Damped 3 Trimmed MSE 1.06 5.07 9.09 14.09 2.95 5.18 7.53
Damped 4 Trimmed MAD 1.05 4.76 8.43 12.30 2.78 4.86 6.88

SES with drift 1 Original MSE 1.01 5.19 9.91 14.64 3.00 5.47 7.96
SES with drift 2 Trimmed MSE 1.05 5.17 9.74 14.39 3.02 5.45 7.85
SES with drift 3 Trimmed MAD 0.94 4.31 7.95 12.10 2.54 4.43 6.51

Theta 1 Original MSE 0.71 5.03 13.19 15.12 2.72 5.60 8.93
Theta 2 Trimmed MSE 1.06 5.34 10.37 15.23 3.11 5.72 8.29
Theta 3 Trimmed MAD 1.05 5.33 10.37 15.23 3.10 5.71 8.28

Avg. Robust trend Original MSE 1.11 3.95 7.54 11.80 2.54 4.28 6.19

Holt 1 (Fildes et al.) Original MSE 1.36 5.28 9.82 15.05 3.37 5.66 8.05
Holt 2 Original MSE 1.47 5.24 9.88 15.14 3.38 5.67 8.10
Holt 3 Trimmed MSE 1.46 5.10 9.65 14.84 3.30 5.54 7.92
Holt 4 Trimmed MAD 1.26 4.76 9.00 13.83 3.01 5.15 7.37

Damped 1 (Fildes et al.) Original MSE 1.35 5.77 12.29 19.00 3.58 6.21 9.72
Damped 2 Original MSE 1.45 5.01 9.49 14.79 3.25 5.43 7.82
Damped 3 Trimmed MSE 1.40 4.67 8.74 13.65 3.04 5.04 7.24
Damped 4 Trimmed MAD 1.24 4.35 8.33 12.98 2.77 4.72 6.84

SES with drift 1 Original MSE 1.40 4.70 9.00 13.81 3.05 5.13 7.37
SES with drift 2 Trimmed MSE 1.41 4.57 8.64 13.20 2.99 4.98 7.10
SES with drift 3 Trimmed MAD 1.17 4.01 7.56 11.73 2.60 4.34 6.23

Theta 1 Original MSE 1.16 5.14 10.80 16.30 3.11 5.60 8.47
Theta 2 Trimmed MSE 1.45 4.86 9.29 14.14 3.15 5.31 7.60
Theta 3 Trimmed MAD 1.25 4.76 9.32 14.25 3.00 5.23 7.57

Horizon
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Why did these improvements occur?  The answers are straightforward.  For the MSE fit 

using original data, the difference is due to the use of optimal smoothing parameters rather than 

heuristic parameters from a grid search.   We experimented with several programs, and found 

that we were able to come very close to Fildes et al.’s damped trend results at all origins and 

horizons using Gardner’s (1983) Autocast software, which employs an heuristic grid search 

procedure to minimize MSE after initial values are determined by least-squares regression.  For 

the MSE fit with trimmed data, we made further improvements by avoiding excessive damping 

caused by trend reversals  like that in Figure 1.  Finally, the MAD fit minimized additional 

parameter distortion caused by outliers. 

For the Holt method, we obtained better forecast accuracy than Fildes et al. at origins 23, 

31, and 53, but not at origins 38 and 45.  In fact, our Holt results are much worse than Fildes et 

al. at origins 38 and 45.  Using Autocast, we were able to replicate Fildes et al.’s Holt results at 

origins 23, 31, and 53, but we could not do so at origins 38 and 45.  At origin 38, the Autocast 

average MAPE over all horizons was 7.14%, compared to 6.31% in Fildes et al.  At origin 45, 

Autocast gave an average MAPE over all horizons of 7.62%, compared to 6.63% in Fildes et al.  

We cannot explain why we could replicate some, but not all of Fildes et al.’s results. 

SES with drift performed extremely well at all forecast origins.  Detailed inspection of 

the results showed that this method was particularly sensitive to the fit criterion, and the MAD fit 

consistently produced better estimates of the fixed drift component.  SES with drift beat all 

methods for the average of horizons 1-18 at origins 23 and 31, and was a close second to the 

robust trend at the other origins.  For the average of all origins and horizons (last section of Table 

1), SES with drift gave an MAPE of 6.23%, only a bit worse than the robust trend at 6.19%.   As 
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predicted from the work of Hyndman and Billah (2003), the Theta method performed poorly 

compared to SES with drift, giving an MAPE over all origins and horizons of 7.57%. 

Why did SES with drift do so well?  One simple explanation is that the trends in most of 

these series are linear and so consistent that there is no need to change the initial estimates 

obtained by least squares regression.  Another explanation is more subtle, that SES with drift 

imitates the robust trend in many series.  This is because the smoothing parameter was fitted at 

1.0 about 40% of the time, which creates a method equivalent to the underlying model for the 

robust trend, an ARIMA (0, 1, 0) with drift.   

 

Conclusions 

SES with drift was clearly the best smoothing method overall in the telecommunications 

series.  This method is simpler than the robust trend, but gives about the same forecast accuracy.  

Given the steady trends in most of the telecommunications series, the performance of the Theta 

method of forecasting was disappointing.  If a fixed drift term is used with SES, we agree with 

Hyndman and Billah that it should be optimized.  

With better model-fitting, the Holt and damped trend methods are much more 

competitive in the telecommunications data.  In many other empirical studies in the literature, 

parameter searches for exponential smoothing methods have been carried out with heuristic 

procedures.  Our results suggest that the smoothing methods in these studies should be re-fitted 

with optimal parameters, which may well change the conclusions. 

Contrary to Fildes et al., we show that the average forecast accuracy of the damped trend 

method is better than that of the Holt method.  This finding is consistent with theory (see 

Gardner, 2006) and with all other empirical comparisons in the literature. 
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The telecommunications series contain numerous outliers, and we found that a MAD fit 

made significant improvements in forecast accuracy compared to a conventional MSE fit.  See 

also Gardner (1999) for a similar conclusion in an analysis of the annual time series from the M1 

competition.  Like the use of optimal parameters, a MAD fit could change the conclusions in 

other empirical studies involving exponential smoothing.  

Our results suggest that one should trim irrelevant data before fitting exponential 

smoothing methods, but it is difficult to make general recommendations about how this should 

be done.  Our trimming procedure is ad hoc and depends on domain knowledge that is often 

unavailable in time series forecasting.  The only other research on trimming irrelevant data 

appears to be that of Collopy and Armstrong (1992) and Gardner (1999);  in both papers, 

judgmental methods were used.  The development of an automatic trimming algorithm for time 

series awaits further research. 
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